231 research outputs found

    Process Variability and Electrostatic Analysis of Molecular QCA

    Get PDF
    Molecular quantum-dot cellular automata (mQCA) is an emerging paradigm for nanoscale computation. Its revolutionary features are the expected operating frequencies (THz), the high device densities, the noncryogenic working temperature, and, above all, the limited power densities. The main drawback of this technology is a consequence of one of its very main advantages, that is, the extremely small size of a single molecule. Device prototyping and the fabrication of a simple circuit are limited by lack of control in the technological process [Pulimeno et al. 2013a]. Moreover, high defectivity might strongly impact the correct behavior of mQCA devices. Another challenging point is the lack of a solid method for analyzing and simulating mQCA behavior and performance, either in ideal or defective conditions. Our contribution in this article is threefold: (i) We identify a methodology based on both ab-initio simulations and post-processing of data for analyzing an mQCA system adopting an electronic point of view (we baptized this method as "MoSQuiTo"); (ii) we assess the performance of an mQCA device (in this case, a bis- ferrocene molecule) working in nonideal conditions, using as a reference the information on fabrication-critical issues and on the possible defects that we are obtaining while conducting our own ongoing experiments on mQCA: (iii) we determine and assess the electrostatic energy stored in a bis-ferrocene molecule both in an oxidized and reduced form. Results presented here consist of quantitative information for an mQCA device working in manifold driving conditions and subjected to defects. This information is given in terms of: (a) output voltage; (b) safe operating area (SOA); (c) electrostatic energy; and (d) relation between SOA and energy, that is, possible energy reduction subject to reliability and functionality constraints. The whole analysis is a first fundamental step toward the study of a complex mQCA circuit. It gives important suggestions on possible improvements of the technological processes. Moreover, it starts an interesting assessment on the energy of an mQCA, one of the most promising features of this technolog

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    ANALYSIS AND MODULATION OF MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA) DEVICES

    Get PDF
    Field-Coupled nanocomputing (FCN) paradigms offer fundamentally new approaches for digital computing without involving current transistors. Such paradigms perform computations using local field interactions between nanoscale building blocks which are organized with purposes. Among several FCN paradigms currently under active investigation, the Molecular Quantum-dot Cellular Automata (MQCA) is found to be the most promising and its unique features make it attractive as a candidate for post-CMOS nanocomputing. MQCA is based on electrostatic interactions among quantum cells with nanometer scale eliminating the need of charge transportation, hence its energy consumption is significantly decreased. Meanwhile it also possesses the potential of high throughput if efficient pipelining of information propagation is introduced. This could be realized adopting external clock signals which precisely control the adiabatic switching and direction of data flow in MQCA circuits. In this work, in order to model MQCA as electronic devices and analyze its information propagation with clock taken into account, an effective algorithm based on ab-initio simulations and modelling of molecular interactions has been applied in presence of a proposed clock mechanism for MQCA, including the binary wire, the wire bus and the majority voter. The quantitative results generated depict compelling clocked information propagation phenomena of MQCA devices and most importantly, provide crucial feedback for future MQCA experimental implementation

    A study on the effect of lateral interactions on methanation over Fe(100)

    Get PDF
    In this thesis, the lateral interactions involved in conversion of synthesis gas, a mixture of H2 and CO, to methane over Fe(100) and the effect they have on the kinetics of the process is explored. Understanding the methanation of syngas allows for a better understanding of the initial stages of Fischer-Tropsch synthesis. Density functional theory was used to calculate the energies and properties of simple methanation adsorbates on an Fe(100) surface. All of the parameters were tested and optimized in order to find a balance between efficiency and accuracy. A number of configurations were calculated to investigate nearest neighbour and next nearest neighbour interactions. An energetic break down of the lateral interactions is postulated using the components of the Hamiltonian. The charges associated with the different atoms in each configuration were identified using the Mulliken population analysis and the Bader population analysis. These gave insights into configurations which displayed large electrostatic lateral interactions. Lateral interactions were investigated using larger unit cells than typically utilized in molecular modelling up to now (viz. p(4x4) and p(3x2) unit cells) to enable the estimation of nearest neighbour and next nearest neighbour interactions. When using larger p(4x4) unit cells for CO adsorption on Fe(100), the results showed that the heat of adsorption can differ by as much as 0.24 eV at 0.25 ML. It was concluded that lateral interactions are a function of local coverage (i.e. number of nearest and next nearest neighbours) and not necessarily global coverage. Nearest neighbour interactions are typically repulsive and much larger than next nearest neighbour interactions, which varied between repulsive and attractive interactions. While this is not a unique conclusion it did allow for the creation lateral interaction matrices that vary with temperature. The study has shown that lateral interactions can be broken down into kinetic and potential energy and an inverse relationship exists between these component energies. If this relationship is truly understood, then the total energy can be calculated knowing either kinetic or potential energy instead of both. This would then give additional value to well explored electrostatic interaction models. The lateral interactions were empirically related to nearest neighbour and next nearest neighbour interactions. Two kinetic studies were investigated in this thesis and in both cases, mean field approximations and quasi chemical approximation (QCA) were used and compared to incorporate lateral interactions into the kinetics. The mean field approximation over estimates the lateral interactions and considers global coverage while the QCA approximation considers probability of local combinations. The first kinetic study was a simulated CO TPD experiment on Fe(100). The mean field approximation was an improvement on systems which considered no lateral interactions but did not describe all the aspects observed in the experimental TPD. The prediction by the quasi-chemical approximation shows good agreement for the desorption of associatively bound CO. The deviation observed for the dissociatively adsorbed CO is attributed to the presence of alternative pathways for the adsorbed species (specifically the diffusion of oxygen into the lattice of the solid). A microkinetic model for the methanation of syngas over Fe(100) was also created. The results showed that different methods of lateral interaction incorporation resulted in significantly different coverage profiles and reaction energy profiles. Both methods showed a build-up of oxygen on the surface towards the end of the simulation. The build-up of oxygen on the surface of Fe(100) may indicate that iron-based catalysts need to undergo phase changes to complete the catalytic cycle

    Virtual Clocking for NanoMagnet Logic

    Get PDF
    Among emerging technologies nanomagnet logic (NML) has recently received particular attention. NML uses magnets as constitutive elements, and this leads to logic circuits where there is no need of an external power supply to maintain their logic state. As a consequence, a system with intrinsic memory and zero stand-by power consumption can be envisioned. Despite the interesting nature of NML, a fundamental open problem still calls for a solution that could really boost the NML technology: the clock system. It constrains the layout of circuits and leads to a potentially high dynamic power consumption if not carefully conceived. The first clock system developed was based on the generation of a magnetic field through an on-chip current. After that other types of NML, based on several different types of clock systems, were proposed to improve clocking. We present here our proposal for a new clock delivery method. We named this system “virtual clock.” It offers several important advantages over previous solutions. First, it notably simplifies the clock generation network, reducing the complexity of the fabrication process. It improves the efficiency of circuits layout, substantially reducing interconnections overhead and boosting the reliability of the majority voter. It enables the fabrication of in-plane NML circuits with two layers, while they were confined to one single layer up to now. Finally, it allows to globally reduce dynamic power consumption by considerably shrinking circuits area. Overall the “virtual clock” system that we propose represents an important step forward in the development of the NML technology

    Quantifying Ca 2+ Current and Permeability in ATP-gated P2X7 Receptors

    Get PDF
    International audienceATP-gated P2X7 receptors are prominently expressed in inflammatory cells and play a key role in the immune response. A major consequence of receptor activation is the regulated influx of Ca(2+) through the self-contained cation non-selective channel. Although the physiological importance of the resulting rise in intracellular Ca(2+) is universally acknowledged, the biophysics of the Ca(2+) flux responsible for the effects are poorly understood, largely because traditional methods of measuring Ca(2+) permeability are difficult to apply to P2X7 receptors. Here we use an alternative approach, called dye-overload patch-clamp photometry, to quantify the agonist-gated Ca(2+) flux of recombinant P2X7 receptors of dog, guinea pig, human, monkey, mouse, rat, and zebrafish. We find that the magnitude of the Ca(2+) component of the ATP-gated current depends on the species of origin, the splice variant, and the concentration of the purinergic agonist. We also measured a significant contribution of Ca(2+) to the agonist-gated current of the native P2X7Rs of mouse and human immune cells. Our results provide cross-species quantitative measures of the Ca(2+) current of the P2X7 receptor for the first time, and suggest that the cytoplasmic N terminus plays a meaningful role in regulating the flow of Ca(2+) through the channel

    Acidic Amino Acids Impart Enhanced Ca2+ Permeability and Flux in Two Members of the ATP-gated P2X Receptor Family

    Get PDF
    P2X receptors are ATP-gated cation channels expressed in nerve, muscle, bone, glands, and the immune system. The seven family members display variable Ca2+ permeabilities that are amongst the highest of all ligand-gated channels (Egan and Khakh, 2004). We previously reported that polar residues regulate the Ca2+ permeability of the P2X2 receptor (Migita et al., 2001). Here, we test the hypothesis that the formal charge of acidic amino acids underlies the higher fractional Ca2+ currents (Pf%) of the rat and human P2X1 and P2X4 subtypes. We used patch-clamp photometry to measure the Pf% of HEK-293 cells transiently expressing a range of wild-type and genetically altered receptors. Lowering the pH of the extracellular solution reduced the higher Pf% of the P2X1 receptor but had no effect on the lower Pf% of the P2X2 receptor, suggesting that ionized side chains regulate the Ca2+ flux of some family members. Removing the fixed negative charges found at the extracellular ends of the transmembrane domains also reduced the higher Pf% of P2X1 and P2X4 receptors, and introducing these charges at homologous positions increased the lower Pf% of the P2X2 receptor. Taken together, the data suggest that COO− side chains provide an electrostatic force that interacts with Ca2+ in the mouth of the pore. Surprisingly, the glutamate residue that is partly responsible for the higher Pf% of the P2X1 and P2X4 receptors is conserved in the P2X3 receptor that has the lowest Pf% of all family members. We found that neutralizing an upstream His45 increased Pf% of the P2X3 channel, suggesting that this positive charge masks the facilitation of Ca2+ flux by the neighboring Glu46. The data support the hypothesis that formal charges near the extracellular ends of transmembrane domains contribute to the high Ca2+ permeability and flux of some P2X receptors

    Metal -surface reactions in mixed aqueous organic solvents

    Get PDF
    The effect of mixed aqueous-organic solvents on exchange and adsorption reactions onto clay minerals is examined in this study while accounting for the effect of cosolvents on metal solution properties, ionic activity and complexation. In the absence of published values, a determination of the primary association constant of selected ions in solution was conducted using conductometric methods. These stability constant values were used to correct for ion-pairing in the exchange and the adsorption experiments. A spectrophotometric determination of pH was accomplished through the quantification of the conditional dissociation constants, sKI, of two indicators (methyl red and phenol red) at constant ionic strength and at 25°C +/- 2.0 in ethanol and methanol-water mixtures. In these mixtures and under these conditions, solution pH was determined from measurements of the indicator absorbance ratios at two wavelength lambdaHIn, and lambdaIn- within the range 4.5 ≀ pH ≀ 8.5. Calcium-sodium exchange on Wyoming bentonite in methanol, ethanol and acetone-water systems were investigated at constant total chloride concentration and at room temperature. In all treatments, Ca-Na exchange in cosolvents was a surface-controlled phenomenon involving electrostatic and specific solvent-surface interactions. The effect of cosolvents on Cd and Zn sorption to Ca-saturated bentonite and illite in mixed alcohol-water systems at low ionic strength and low initial metal concentration in the presence of nitrate varied between metals. Cd2+ sorption to bentonite and illite was independent of the solvent dielectric constant suggesting a specific mechanism for Cd2+ sorption involving inner-sphere complexes with the surface edge sites. Zn2+ sorption to both clay minerals was strongly dependent on epsilonr with both increases (illite) and decreases (bentonite) in retention observed with decreased epsilon r. Although it is not yet possible to predict the effects of cosolvents on metal-surface reactions, it is clear that cosolvents can affect metal concentrations in solution, and therefore contaminant transport (increased hydraulic conductivity resulting from flocculation as Ca2+ replaces Na+, and hence greater risk of clay liners failure). Additional study is needed on the effects of cosolvents on surface charge density, changes in the interlayer spacing, surface acidity and pH changes before and after sorption

    VHDL-AMS Simulation Framework for Molecular-FET Device-to-Circuit Modeling and Design

    Get PDF
    We concentrate on Molecular-FET as a device and present a new modular framework based on VHDL-AMS. We have implemented different Molecular-FET models within the framework. The framework allows comparison between the models in terms of the capability to calculate accurate I-V characteristics. It also provides the option to analyze the impact of Molecular-FET and its implementation in the circuit with the extension of its use in an architecture based on the crossbar configuration. This analysis evidences the effect of choices of technological parameters, the ability of models to capture the impact of physical quantities, and the importance of considering defects at circuit fabrication level. The comparison tackles the computational efforts of different models and techniques and discusses the trade-off between accuracy and performance as a function of the circuit analysis final requirements. We prove this methodology using three different models and test them on a 16-bit tree adder included in Pentium 4 that, to the best of our knowledge, is the biggest circuits based on molecular device ever designed and analyzed
    • 

    corecore