5,118 research outputs found

    Automated syntactic mediation for Web service integration

    No full text
    As the Web Services and Grid community adopt Semantic Web technology, we observe a shift towards higher-level workflow composition and service discovery practices. While this provides excellent functionality to non-expert users, more sophisticated middleware is required to hide the details of service invocation and service integration. An investigation of a common Bioinformatics use case reveals that the execution of high-level workflow designs requires additional processing to harmonise syntactically incompatible service interfaces. In this paper, we present an architecture to support the automatic reconciliation of data formats in such Web Service worklflows. The mediation of data is driven by ontologies that encapsulate the information contained in heterogeneous data structures supplying a common, conceptual data representation. Data conversion is carried out by a Configurable Mediator component, consuming mappings between \xml schemas and \owl ontologies. We describe our system and give examples of our mapping language against the background of a Bioinformatics use case

    Approaches to Semantic Web Services: An Overview and Comparison

    Get PDF
    Abstract. The next Web generation promises to deliver Semantic Web Services (SWS); services that are self-described and amenable to automated discovery, composition and invocation. A prerequisite to this, however, is the emergence and evolution of the Semantic Web, which provides the infrastructure for the semantic interoperability of Web Services. Web Services will be augmented with rich formal descriptions of their capabilities, such that they can be utilized by applications or other services without human assistance or highly constrained agreements on interfaces or protocols. Thus, Semantic Web Services have the potential to change the way knowledge and business services are consumed and provided on the Web. In this paper, we survey the state of the art of current enabling technologies for Semantic Web Services. In addition, we characterize the infrastructure of Semantic Web Services along three orthogonal dimensions: activities, architecture and service ontology. Further, we examine and contrast three current approaches to SWS according to the proposed dimensions

    Extending OWL-S for the Composition of Web Services Generated With a Legacy Application Wrapper

    Get PDF
    Despite numerous efforts by various developers, web service composition is still a difficult problem to tackle. Lot of progressive research has been made on the development of suitable standards. These researches help to alleviate and overcome some of the web services composition issues. However, the legacy application wrappers generate nonstandard WSDL which hinder the progress. Indeed, in addition to their lack of semantics, WSDLs have sometimes different shapes because they are adapted to circumvent some technical implementation aspect. In this paper, we propose a method for the semi automatic composition of web services in the context of the NeuroLOG project. In this project the reuse of processing tools relies on a legacy application wrapper called jGASW. The paper describes the extensions to OWL-S in order to introduce and enable the composition of web services generated using the jGASW wrapper and also to implement consistency checks regarding these services.Comment: ICIW 2012, The Seventh International Conference on Internet and Web Applications and Services, Stuttgart : Germany (2012

    Mediation of semantic web services in IRS-III

    Get PDF
    Business applications composed of heterogeneous distributed components or Web services need mediation to resolve data and process mismatches at runtime. This paper describes mediation in IRS-III, a framework and platform for developing WSMO-based Semantic Web Services. We present our approach to mediation within Semantic Web Services and highlight the role of WSMO mediator types when solving mismatches at the semantic level between a service requester and a service provider. We describe the components of our mediation framework and how it can handle data, goal and process mediation during the activities of selection, composition and invocation of Semantic Web Services

    Using Semantic Web Technology to Automate Data Integration in Grid and Web Service Architectures

    No full text
    While the Grid and Web Services have helped us support heterogeneous resource access through the use of service oriented architectures, they have not addressed the issue of heterogeneous data representation. Since service providers often describe their service interfaces using different data models than those assumed by the client, it is common for additional processing to be required to compensate for the mismatch in data formats. By utilising technology from the Semantic Web, we are able to augment existing Web Service systems with middleware to automatically perform data harmonisation when a syntactic mismatch occurs. To achieve this, we have developed a mapping language which can be used to annotate XML data structures with OWL concepts and properties, a Mapping Language Engine to implement this language, and a Dynamic Web Service Invocation component to execute Web Services

    Model-driven design, simulation and implementation of service compositions in COSMO

    Get PDF
    The success of software development projects to a large extent depends on the quality of the models that are produced in the development process, which in turn depends on the conceptual and practical support that is available for modelling, design and analysis. This paper focuses on model-driven support for service-oriented software development. In particular, it addresses how services and compositions of services can be designed, simulated and implemented. The support presented is part of a larger framework, called COSMO (COnceptual Service MOdelling). Whereas in previous work we reported on the conceptual support provided by COSMO, in this paper we proceed with a discussion of the practical support that has been developed. We show how reference models (model types) and guidelines (design steps) can be iteratively applied to design service compositions at a platform independent level and discuss what tool support is available for the design and analysis during this phase. Next, we present some techniques to transform a platform independent service composition model to an implementation in terms of BPEL and WSDL. We use the mediation scenario of the SWS challenge (concerning the establishment of a purchase order between two companies) to illustrate our application of the COSMO framework
    • 

    corecore