156 research outputs found

    Parameterised and Fine-Grained Subgraph Counting, Modulo 2

    Get PDF
    Given a class of graphs ?, the problem ?Sub(?) is defined as follows. The input is a graph H ? ? together with an arbitrary graph G. The problem is to compute, modulo 2, the number of subgraphs of G that are isomorphic to H. The goal of this research is to determine for which classes ? the problem ?Sub(?) is fixed-parameter tractable (FPT), i.e., solvable in time f(|H|)?|G|^O(1). Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that ?Sub(?) is FPT if and only if the class of allowed patterns ? is matching splittable, which means that for some fixed B, every H ? ? can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at most B vertices. Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all hereditary pattern classes ?, and (II) all tree pattern classes, i.e., all classes ? such that every H ? ? is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of hereditary patterns (I)

    Modular Counting of Subgraphs: Matchings, Matching-Splittable Graphs, and Paths

    Get PDF
    We systematically investigate the complexity of counting subgraph patterns modulo fixed integers. For example, it is known that the parity of the number of kk-matchings can be determined in polynomial time by a simple reduction to the determinant. We generalize this to an nf(t,s)n^{f(t,s)}-time algorithm to compute modulo 2t2^t the number of subgraph occurrences of patterns that are ss vertices away from being matchings. This shows that the known polynomial-time cases of subgraph detection (Jansen and Marx, SODA 2015) carry over into the setting of counting modulo 2t2^t. Complementing our algorithm, we also give a simple and self-contained proof that counting kk-matchings modulo odd integers qq is Mod_q-W[1]-complete and prove that counting kk-paths modulo 22 is Parity-W[1]-complete, answering an open question by Bj\"orklund, Dell, and Husfeldt (ICALP 2015).Comment: 23 pages, to appear at ESA 202

    Honest signaling in zero-sum games is hard, and lying is even harder

    Get PDF
    We prove that, assuming the exponential time hypothesis, finding an \epsilon-approximately optimal symmetric signaling scheme in a two-player zero-sum game requires quasi-polynomial time. This is tight by [Cheng et al., FOCS'15] and resolves an open question of [Dughmi, FOCS'14]. We also prove that finding a multiplicative approximation is NP-hard. We also introduce a new model where a dishonest signaler may publicly commit to use one scheme, but post signals according to a different scheme. For this model, we prove that even finding a (1-2^{-n})-approximately optimal scheme is NP-hard

    Approximating Directed Steiner Problems via Tree Embedding

    Get PDF
    In the k-edge connected directed Steiner tree (k-DST) problem, we are given a directed graph G on n vertices with edge-costs, a root vertex r, a set of h terminals T and an integer k. The goal is to find a min-cost subgraph H of G that connects r to each terminal t by k edge-disjoint r,t-paths. This problem includes as special cases the well-known directed Steiner tree (DST) problem (the case k = 1) and the group Steiner tree (GST) problem. Despite having been studied and mentioned many times in literature, e.g., by Feldman et al. [SODA'09, JCSS'12], by Cheriyan et al. [SODA'12, TALG'14] and by Laekhanukit [SODA'14], there was no known non-trivial approximation algorithm for k-DST for k >= 2 even in the special case that an input graph is directed acyclic and has a constant number of layers. If an input graph is not acyclic, the complexity status of k-DST is not known even for a very strict special case that k= 2 and |T| = 2. In this paper, we make a progress toward developing a non-trivial approximation algorithm for k-DST. We present an O(D k^{D-1} log n)-approximation algorithm for k-DST on directed acyclic graphs (DAGs) with D layers, which can be extended to a special case of k-DST on "general graphs" when an instance has a D-shallow optimal solution, i.e., there exist k edge-disjoint r,t-paths, each of length at most D, for every terminal t. For the case k= 1 (DST), our algorithm yields an approximation ratio of O(D log h), thus implying an O(log^3 h)-approximation algorithm for DST that runs in quasi-polynomial-time (due to the height-reduction of Zelikovsky [Algorithmica'97]). Consequently, as our algorithm works for general graphs, we obtain an O(D k^{D-1} log n)-approximation algorithm for a D-shallow instance of the k-edge-connected directed Steiner subgraph problem, where we wish to connect every pair of terminals by k-edge-disjoint paths
    • …
    corecore