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—— Abstract
We prove that, assuming the exponential time hypothesis, finding an e-approximately optimal
signaling scheme in a two-player zero-sum game requires quasi-polynomial time (nQ(lg ")). This
is tight by [8] and resolves an open question of Dughmi [12]. We also prove that finding a
multiplicative approximation is NP-hard.

We also introduce a new model where a dishonest signaler may publicly commit to use one
scheme, but post signals according to a different scheme. For this model, we prove that even
finding a (1 — 27™)-approximately optimal scheme is NP-hard.
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1 Introduction

Many classical questions in economics involve extracting information from strategic agents.
Lately, there has been growing interest within algorithmic game theory in signaling: the study
of how to reveal information to strategic agents (see e.g. [16, 13, 14, 12, 8] and references
therein). Signaling has been studied in many interesting economic and game theoretic
settings. Among them, ZERO-SUM SIGNALING proposed by Dughmi [12] stands out as a
canonical problem that cleanly captures the computational nature of signaling. In particular,
focusing on zero-sum games clears away issues of equilibrium selection and computational
tractability of finding an equilibrium.

» Definition 1 (ZERO-SUM SIGNALING [12]). Alice and Bob play a Bayesian zero-sum game
where the payoff matrix M is drawn from a publicly known prior. The signaler Sam privately
observes the state of nature (i.e. the payoff matrix), and then publicly broadcasts a signal
© (M) to both Alice and Bob. Alice and Bob Bayesian-update their priors according to
@ (M)’s and play the Nash equilibrium of the expected game; but they receive payoffs
according to the true M. Sam’s goal is to design an efficient signaling scheme ¢ (a function
from payoff matrices to strings) that maximizes Alice’s expected payoff.

Dughmi’s [12] main result proves that assuming the hardness of the PLANTED CLIQUE
problem, there is no additive FPTAS for ZERO-SUM SIGNALING. The main open question
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left by [12] is whether there exists an additive PTAS. Here we answer this question in the
negative: we prove that assuming the Exponential Time Hypothesis (ETH) [15], obtaining an
additive-e-approximation (for some constant e > 0) requires quasi-polynomial time (nQ(lg ")).
This result is tight thanks to a recent quasi-polynomial (n Pflﬁ(ﬂé)) time algorithm by Cheng
et al. [8]. Another important advantage of our result is that it replaces the hardness of
PLANTED CLIQUE with a more believable worst-case hardness assumption (see e.g. the

discussion in [7]).

» Theorem 2 (Main Result). There exists a constant € > 0, such that assuming ETH,
approximating ZERO-SUM SIGNALING with payoffs in [—1,1] to within an additive € requires
time nf¥8n),

Using a similar construction, we also obtain NP-hardness for computing a multiplicative-
(1 — €)-approximation. Unfortunately, in our example Alice can receives both negative and
positive payoffs, which is somewhat non-standard (but not unprecedented [9]) in multiplicative
approximation. One main reason that multiplicative approximation with negative payoffs
is problematic is that this is often trivially intractable for any finite factor: Start with a
tiny additive gap, where Alice’s expected payoff is ¢ in the “yes” case, and s = ¢ — € in the

“no” case; subtract (¢ + s) /2 from all of Alice’s payoffs to obtain an infinite multiplicative

hardness. We note, however, that the combination of negative and positive payoffs in our
construction serves only to obtain structural constraints on the resulting equilibria; the
hardness of approximation is not a result of cancellation of negative with positive payoffs:
Alice’s payoff can be decomposed as a difference of non-negative payoffs U = U™ — U, such
that it is hard to approximate Alice’s optimal payoff to within e - E[U" + U~]. Nevertheless,
we believe that extending this result to non-negative payoffs could be very interesting.

» Theorem 3. There exists a constant € > 0, such that it is NP-hard to approximate
ZERO-SUM SIGNALING to within a multiplicative (1 — €) factor.

Finally, we note that since all our games are zero-sum, the hardness results for ZERO-
SUM SIGNALING also apply to the respective notions of additive- and multiplicative-e-Nash
equilibrium.

1.1 The computational complexity of lying

As a motivating example, consider the purchase of a used car (not a zero-sum game, but a
favorite setting in the study of signaling since Akerlof’s seminal “Market for Lemons” [2]),
and let us focus on the information supplied by a third party such as a mechanic inspection.
The mechanic (Sam) publishes a signaling scheme: report any problem found in a one-hour
inspection. Unbeknownst to the buyer (Bob), the mechanic favors the seller (Alice), and
chooses to use a different signaling scheme: always report that the car is in excellent condition.
Notice that it is crucial that the buyer does not know that the mechanic is lying (and more
generally, we assume that neither party knows that the signaler is lying).

Much of the work in economics is motivated by selfish agents manipulating their private
information. Here we introduce a natural extension of Dughmi’s signaling model, where the
signaler manipulates his private information. We formalize this extension in the ZERO-SUM
LYING problem, where the signaling scheme consists of two functions @, ipeep (“report any
problem found”) and @pgs, (“car is in excellent condition”) from payoff matrices to signals.
Sam promises Alice and Bob to use @, seep, which is what Alice and Bob use to compute

the posterior distribution given the signal (i.e. the seller and buyer look at the mechanic’s
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report and negotiate a price as if the state of the car is correctly reflected). But instead Sam
signals according to @grgar.

We formally define the ZERO-SUM LYING problem below; notice that the original ZERO-
SUM SIGNALING (Definition 1) corresponds to the special case where we restrict Ygrpa, =

PALLEGED -

» Definition 4 (ZERO-SUM LyING). Alice and Bob play a Bayesian, one-shot, zero-sum
game where the payoff matrix is drawn from a publicly known prior. A dishonest signaling
scheme consists of two (possibly randomized) functions @ ecep; Prean from payoff matrices
to signals, that induce the following protocol:

Nature draws a private payoff matrix M ~ Dyarure-

Alice and Bob observe the scheme ,;;pcep and the signal o £ @y, (M). (But they

don’t know the scheme prgaL!)

Alice and Bob choose a Nash equilibrium (x;y) for the zero-sum game with payoff matrix

E [M/ ‘ PALLEGED (M/) = 0']1-

(We assume that the support of ¢gg,;, is contained in the support of @apircen-.)
Alice and Bob receive payoffs x" My and —x " My, respectively.

Sam’s goal is to compute a pair (@aniecen, Prean) that maximizes Alice’s expected payoff.

In the toy-setting of a biased car inspection, the Sam’s optimal strategy was very simple.

In contrast, we show that for a general distribution over zero-sum games, it is NP-hard
to find a pair (@arLecep; Prear) that is even remotely close to optimal. Notice that this is
very different from the honest case where, as we mentioned earlier, NP-hardness of additive
approximation is unlikely given the additive quasi-PTAS of [8].

» Theorem 5. Approzimating ZERO-SUM LYING with Alice’s payoffs in [0, 1] to within an
additive (1 —27™) is NP-hard.

Further discussion of dishonest signaling

It is important to note that the dishonest signaling model has a few weaknesses:
Alice and Bob must believe the dishonest signaler. (See also further discussion below.)
In particular, Sam cheats in favor of Alice, but Alice doesn’t know about it — so what’s
in it for Sam? Indeed, we assume that Sam has some intrinsic interest in Alice winning,
e.g. because Sam loves Alice or owns some of her stocks.
The game for which players’ strategies are at equilibrium may be very different from the
actual game. Note, however, that this is also the case for the honest signaling model
(when the signaling scheme is not one-to-one).
The players may receive different payoffs for different equilibria; this may raise issues of
equilibrium selection.
Despite those disadvantages, we believe that our simple model is valuable because it already
motivates surprising results such as our Theorem 5. On a higher level, we hope that it
will inspire research on many other interesting aspects on dishonest signaling. For example,
notice that in our model Sam lies without any reservation; if, per contra, the game was
repeated infinitely many times, one would expect that Alice and Bob will eventually stop

1 When @arLrcep, Prear, are randomized, we have o ~ @gear (M) and expectation conditioned on
E [M/ ‘ 0 ~ OALLEGED (M/)] .
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believing the signals, hence only honest signaling is possible. There is also a spectrum of
intermediate situations, where Alice and Bob observe some partial information about past
games (e.g. marginal distribution of signals) and may encounter questions about distribution
testing.

Another related direction of potential future research is to think about Sam’s incentives.
When is honest signaling optimal for Sam? When is it approximately optimal? How should
one design an effective “punishing” mechanism?

1.2 Concurrent work of Bhaskar et al.

In independent concurrent work by Bhaskar et al. [5], quasi-polynomial time hardness for
additive approximation of ZERO-SUM SIGNALING was obtained assuming the hardness of
the PLANTED CLIQUE problem (among other interesting results? about network routing
games and security games). Although we are not aware of a formal reduction, hardness
of PLANTED CLIQUE is a qualitatively stronger assumption than ETH in the sense that it
requires average case instances to be hard. Hence in this respect, our result is stronger.

1.3 Techniques

)

Our main ingredient for the quasi-polynomial hardness is the technique of “birthday repetition’
coined by [1] and recently applied in game theoretic settings in [7, 4]: We reduce from a
2-ary constraint satisfaction problem (2-CSP) over n variables to a distribution over N
zero-sum N X N games, with N = 29(v7) | Alice and Bob’s strategies correspond to
assignments to tuples of y/n variables. By the birthday paradox, the two y/n-tuples chosen
by Alice and Bob share a constraint with constant probability. If a constant fraction of the
constraints are unsatisfiable, Alice’s payoff will suffer with constant probability. Assuming
ETH, approximating the value of the CSP requires time 2(") = N$(gN),

1.3.0.1 The challenge

The main difficulty is that once the signal is public, the zero-sum game is tractable. Thus we
would like to force the signaling scheme to output a satisfying assignment. Furthermore, if the
scheme would output partial assignments on different states of nature (aka different zero-sum
games in the support), it is not clear how to check consistency between different signals.
Thus we would like each signal to contain an entire satisfying assignment. The optimal
scheme may be very complicated and even require randomization, yet by an application of
the Caratheodory Theorem the number of signals is, wlog, bounded by the number of states
of nature [12]. If the state of nature can be described using only lg N = © (,/n) bits®, how
can we force the scheme to output an entire assignment?

To overcome this obstacle, we let the state of nature contain a partial assignment to
a random +/n-tuple of variables. We then check the consistency of Alice’s assignment
with nature’s assignment, Bob’s assignment with nature’s assignment, and Alice and Bob’s
assignments with each other; let 742, 75:% 748 denote the outcomes of those consistency
checks, respectively. Alice’s payoff is given by:

U= 57_A,Z _ 62’7'3’2 + 537_A,B
2 For zero-sum games, Bhaskar et al. also rule out an additive FPTAS assuming P # NP. This result

follows immediately from our Theorem 14.
3 In other words, N, the final size of the reduction, is an upper bound on the number of states of nature.
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for some small constant ¢ € (0,1). Now, both Alice and Bob want to maximize their chances
of being consistent with nature’s partial assignment, and the signaling scheme gains by
maximizing 745.

Of course, if nature outputs a random assignment, we have no reason to expect that it
can be completed to a full satisfying assignment. Instead, the state of nature consists of N
assignments, and the signaling scheme helps Alice and Bob play with the assignment that
can be completed.

Several other obstacles arise; fortunately some can be handled using techniques from

previous works on hardness of finding Nash equilibrium [3, 10, 4].

2 Preliminaries

Exponential Time Hypothesis
» Hypothesis 6 (Exponential Time Hypothesis (ETH) [15]). 3SAT takes time 2%,

PCP Theorem and CSP

» Definition 7 (2CSP). 2-CSP (2-ary Constraint Satisfaction Problem) is a maximization
problem. The input is a graph G = (V, E), alphabet X, and a constraint C, C ¥ x ¥ for
every e € b.

The output is a labeling ¢ : V' — X of the vertices. Given a labeling, we say that a
constraint (or edge) (u,v) € E is satisfied if ¢ (u), ¢ (v) € Cpy ). The value of a labeling
is the fraction of e € E that are satisfied by the labeling. The value of the instance is the
maximum fraction of constraints satisfied by any assignment.

» Theorem 8 (PCP Theorem [11]; see e.g. [6, Theorem 2.11] for this formulation). Given

a 3SAT instance ¢ of size n, there is a polynomial time reduction that produces a 2CSP

instance 1, with size |¢| = n - polylogn variables and constraints, and constant alphabet size,

such that:

Completeness. If ¢ is satisfiable, then so is 1.

Soundness. If ¢ is not satisfiable, then at most a (1 — n)-fraction of the constraints in v
can be satisfied, for some n = Q(1).

Balance. FEvery variable in v participates in exactly d = O (1) constraints.

Finding a good partition

» Lemma 9 (Essentially [4, Lemma 6]). Let G = (V, E) be a d-reqular graph and n = |V|.
We can partition V' into n/k disjoint subsets {Sl, ey Sn/k} of size at most 2k such that:

Vi,j |(Si x S;)NE| < 8d°k*/n. (1)

See full version for proof [17].

How to catch a far-from-uniform distribution

The following lemma due to [10] implies that:

» Lemma 10 (Lemma 3 in the full version of [10]). Let {a;}.—, be real numbers satisfying the
following properties for some 0 > 0: (1) a1 > a2 > -+ > an; (2) Y. a; =0; (3) ZZL:/? a; < 0.
Then > 1, |a;| < 46.
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3 Additive hardness

» Theorem 11. There exists a constant € > 0, such that assuming ETH, approzimating
ZERO-SUM SIGNALING with payoffs in [—1,1] to within an additive € requires time n**18™)

Construction overview

Our reduction begins with a 2CSP i over n variables from alphabet 3. We partition the
variables into n/k disjoint subsets {51, ceey Sn/k}, each of size at most 2k for k = /n such
that every two subsets share at most a constant number of constraints.

Nature chooses a random subset S; from the partition, a random assignment i € %2* to
the variables in S;, and an auxiliary vector b € {0, 1}2X[2k]
may not correspond to any satisfying assignment. Alice and Bob participate in one of |Z|2k
subgames; for each ¥ € ¥.2¥, there is a corresponding subgame where all the assignments are
XOR-ed with 9. The goal of the auxiliary vector b is to force Alice and Bob to participate in
the right subgame, i.e. the one where the XOR of ¥ and # can be completed to a full satisfying
assignment. In particular, the optimum signaling scheme reveals partial information about b
in a way that guides Alice and Bob to participate in the right subgame. The scheme also
outputs the full satisfying assignment, but reveals no information about the subset S; chosen
by nature.

Each player has (|Z|2Ic X 2) X (n/k X (17//2kk) X |E\2k) — 20(vn) strategies. The first

. As mentioned in Section 1.3, @

\E|2k strategies correspond to a X-ary vector v that the scheme will choose after observing
the random input. The signaling scheme forces both players to play (w.h.p.) the strategy
corresponding to ¢ by controlling the information that corresponds to the next 2 strategies.
Namely, for each o € %2* there is a random bit b (7") such that each player receives a payoff
of 1 if they play (¢",b(¢")) and 0 for (¢',1 — b(¢")). The b’s are part of the state of nature,
and the optimal signaling scheme will reveal only the bit corresponding to the special .
Since there are |Z\2k bits, nature cannot choose them independently, as that would require
211" states of nature. Instead we construct a pairwise independent distribution.

The next n/k strategies correspond to the choice of a subset S; from the specified partition
of variables. The (://Qkk) strategies that follow correspond to a gadget due to Althofer [3]
whereby each player forces the other player to randomize (approximately) uniformly over the
choice of subset.

The last |Z\2k strategies correspond to an assignment to S;. The assignment to each S;
is XOR~ed entry-wise with v. Then, the players are paid according to checks of consistency
between their assignments, and a random assignment to a random S; picked by nature.
(The scheme chooses ¥ so that nature’s random assignment is part of a globally satisfying
assignment.) Each player wants to pick an assignment that passes the consistency check
with nature’s assignment. Alice also receives a small bonus if her assignment agrees with
Bob’s; thus her payoff is maximized when there exists a globally satisfying assignment.

See formal construction below, or refer to summary table in full version [17].

Formal construction

Let ¥ be a 2CSP-d over n variables from alphabet X, as guaranteed by Theorem 8. In
particular, ETH implies that distinguishing between a completely satisfiable instance and
(1 — n)-satisfiable requires time 2°*"). By Lemma 9, we can (deterministically and efficiently)
partition the variables into n/k subsets {S1,..., S,/ } of size at most 2k = 2y/n, such that
every two subsets share at most 8d2k?/n = O (1) constraints.
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States of nature. Nature chooses a state (B,i,ﬁ) e {0, 1}2X[2k] x [n/k] x £2* uniformly

at random. For each @, b (%) is the XOR of bits from b that correspond to entries of o

Vo e x%F b(7) & T

o
(0,0): [0],=0 (@)

Notice that the b (¥)’s are pairwise independent and each marginal distribution is uniform
over {0,1}.

Strategies. Alice and Bob each choose a strategy (v,c,j,T,w) € X2 x {0,1} x [n/k] x
(E:L//lel) x 22 We use 94, ¢4, ete. to denote the strategy Alice plays, and similarly 72, ¢B, etc.
for Bob. For 0,0’ € 3, we denote o @y 0’ 2 o + ¢’ (mod |3|), and for vectors v, " € X2¥,

we let T @y 0 € 2F denote the entry-wise @y.

Payoffs. Consider state of nature (l;,i,ﬁ) and players’ strategies (74, ¢, j4,T4,w*) and
(UB,CB,jB,TB,u")'B).

When o4 = #B = ¥, we set 744 = 1 if assignments 1 and (¥ ©x, ) to subsets Sja and S;,
respectively, satisfy all the constraints in 1) that are determined by (Si U SjA), and 74% =0
otherwise. Similarly, 752 = 1 iff P and (¢ ®x, @) satisfy the corresponding constraints in
; and 74P checks w4 and @WB. When o4 # 8, we set 74% = 784 = 748 = 0.

We decompose Alice’s payoff as:
U £ U + URitnoter + vau
where
U 21{ct =b (")} —1{c® =b(77)},
Uithotr =1 {52 € T4} =1 {j* € TP},
and
U;;‘ L §7AZ _ §2.B.7 | g3, AB 2)

for a sufficiently small constant 0 < § < /7.

Completeness

» Lemma 12. [f ¢ is satisfiable, there exists a signaling scheme and a mized strategy for
Alice that quarantees expected payoff 6 — 6% + 63.

Proof. Fix a satisfying assignment @& € ¥.". Given state of nature (B,i,ﬁ), let ¥ be such
that (7 ®yx @) = [@]g,. The scheme outputs the signal (7,b(v),d). Alice’s mixed strategy
sets (04, c¢?) = (¥,b (7)), picks j* and T uniformly at random, and sets w* = [d]g | .

Because Bob has no information about b (¢") for any ¥ # ¥, he has probabilityjl /2 of
losing whenever he picks 78 # @, i.e. E [UbA] > %Pr [UB =+ 17]. Furthermore, because Alice
chooses T and j* uniformly, E [Ugiioer] = 0.

Since @ completely satisfies 1, we have that 744 = 1 as long as vZ = ¥ (regardless of the
rest of Bob’s strategy). Bob’s goal is thus to maximize E [§?75Z — §374.B]. Notice that "
and (¥ @y, @) are two satisfying partial assignments to uniformly random subsets from the

77:7
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partition. In particular, they are both drawn from the same distribution, so we have that for
any mixed strategy that Bob plays, E [TB Z ] =E [TA’B]. Therefore Alice’s payoff is at least

(5 -8+ 6% Pr (07 = 7] + S Pr[i” £7] 25~ 6 4 5 <

Soundness

» Lemma 13. If at most a (1 — n)-fraction of the constraints are satisfiable, Alice’s maxmin
payoff is at most § — 6% + (1 — Q,, (1)) 6, for any signaling scheme.

Proof. Fix any mixed strategy by Alice; we show that Bob can guarantee a payoff of at least
—(6—6%+ (1=, (1)) 6%). On any signal, Bob chooses (77, ¢?) from the same distribution
that Alice uses for (ﬁA,cA). He chooses j2 uniformly, and picks T2 so as to minimize
E [Uf\ihofer] - Finally, for each jZ, he draws @” from the same marginal distribution that
Alice uses for @W* conditioning on j4 = j# (and uniformly at random if Alice never plays
j4 = jB). By symmetry, E [Ul;“] =0and E [Uﬁlthofer] <0.

In this paragraph, we use Althoefer’s gadget to argue that, wlog, Alice’s distribution
over the choice of j4 is approximately uniform. In Althofer’s gadget, Alice can guarantee an
(optimal) expected payoff of 0 by randomizing uniformly over her choice of j4 and T4. By
Lemma 10, if Alice’s marginal distribution over the choice of j4 is 852-far from uniform (in
total variation distance), then Bob can guess that j4 is in some subset T2 € (Z’/;k]) with
advantage (over guessing at random) of at least 262. Therefore E [Uglp o] < —26%; but

this would imply E [UA] < -202+E {U{ﬂ < § —26% + 5. So henceforth we assume wlog

that Alice’s marginal distribution over the choice of j4 is O (62)—close to uniform (in total
variation distance).

Since Alice’s marginal distribution over j4 is O (62)-close to uniform, we have that Bob’s
distribution over (jB, wh ) is O (52)—close to Alice’s distribution over (jA, u7A). Therefore
E [757] > E[r*7] — O (6?), and so we also get:

E[UY] <E[U] <6-8*+E[r*P] +0(5%). (3)
Bounding E [TA’B} . To complete the proof, it remains to show an upper bound on E [TA’B] .
In particular, notice that it suffices to bound the probability that Alice’s and Bob’s induced
assignments agree. Intuitively, if they gave assignments to uniformly random (and independ-
ent) subsets of variables, the probability that their assignments agree cannot be much higher
than the value of the 2CSP; below we formalize this intuition.

By the premise, any assignment to all variables violates at least an n-fraction of the
constraints. In particular, this is true in expectation for assignments drawn according to
Alice’s and Bob’s mixed strategy. This is a bit subtle: in general, it is possible that Alice’s
assignment alone doesn’t satisfy many constraints and neither does Bob’s, but when we check
constraints between Alice’s and Bob’s assignments everything satisfied (for example, think of
the 3-Coloring CSP, where Alice colors all her vertices blue, and Bob colors all his vertices
red). Fortunately, this subtlety is irrelevant for our construction since we explicitly defined
Bob’s mixed strategy so that conditioned on each set S; of variables, Alice and Bob have the
same distribution over assignments.

The expected number of violations between pairs directly depends on the value of the
2CSP. To bound the probability of observing at least one violations, recall that every pair
of subsets shares at most a constant number of constraints, so this probability is within a
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constant factor of the expected number of violations. In particular, an € (n)-fraction of the
pairs of assignments chosen by Alice and Bob violate 1.

Finally, Alice doesn’t choose j4 uniformly at random; but her distribution is O (52)—close
to uniform. Therefore, we have E [TA’B} <1-Q(n)+0 (52). Plugging into (3) completes
the proof. |

4  Multiplicative hardness

» Theorem 14. There exists a constant € > 0, such that it is NP-hard to approzimate
ZERO-SUM SIGNALING to within a multiplicative (1 — €) factor.

Construction overview

Our reduction begins with a 2CSP v over n variables from alphabet 3.

Nature chooses a random index ¢ € [n], a random assignment v € ¥ for variable x;, and an
auxiliary vector be {0, 1}2. Notice that w may not correspond to any satisfying assignment.
Alice and Bob participate in one of |X| subgames; for each v € X, there is a corresponding
subgame where all the assignments are XOR-ed with v. The optimum signaling scheme
reveals partial information about bina way that guides Alice and Bob to participate in the
subgame where the XOR of v and u can be completed to a full satisfying assignment. The
scheme also outputs the full satisfying assignment, but reveals no information about the
index ¢ chosen by nature.

Alice has (]3] x 2) x (n x n x [E]) = © (n?) strategies, and Bob has an additional choice
among n strategies (so © (n?) in total). The first |S| strategies correspond to a value v €
that the scheme will choose after observing the state of nature. The signaling scheme forces
both players to play (w.h.p.) the strategy corresponding to v by controlling the information
that corresponds to the next 2 strategies. Namely, for each v/ € %, there is a random bit b (v')
such that each player receives a small bonus if they play (v/,b(v')) and not (v',1 — b (v")).
The b’s are part of the state of nature, and the signaling scheme will reveal only the bit
corresponding to the special v.

The next n strategies correspond to a choice of a variable j € [n]. The n strategies that
follow correspond to a hide-and-seek gadget whereby each player forces the other player
to randomize (approximately) uniformly over the choice of j. For Bob, the additional n
strategies induce a hide-and-seek game against nature, which serves to verify that the scheme
does not reveal too much information about the state of nature (this extra verification was
unnecessary in the reduction for additive inapproximability).

The last |X| strategies induce an assignment for x;. The assignment to each z; is XOR-
ed with v. Then, the players are paid according to checks of consistency between their
assignments, and a random assignment to a random z; picked by nature. (The scheme
chooses v so that nature’s random assignment is part of a globally satisfying assignment.)
Each player wants to pick an assignment that passes the consistency check with nature’s
assignment. Alice also receives a small bonus if her assignment agrees with Bob’s; thus her
payoff is maximized when there exists a globally satisfying assignment.

Formal construction

Let ¥ be a 2CSP-d over n variables from alphabet 3, as guaranteed by Theorem 8. In
particular, it is NP-hard to distinguish between 1 which is completely satisfiable, and one
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where at most a (1 — n)-fraction of the constraints can be satisfied. We denote (4, j) € ¥ if
there is a constraint over variables (x;, x;).

States of nature. Nature chooses a state (5, i, u) € {0,1}” x [n] x 2 uniformly at random.

Strategies. Alice chooses a strategy (v?,c?,j4,t4,w?) € £ x {0,1} x [n] x [n] x , and
Bob chooses (v?,c?, 8,1 ¢P wP) € ¥ x {0,1} x [n] x [n] x [n] x £. For 0,0’ € &, we
denote 0 @5 0’ £ o + 0’ (mod |X|), and for a vector @ € £™ we let (0 ©x &) € X" denote
the &y, of o with each entry of &.

Payoffs. Consider players’ strategies (UA,CA,jA,tA,wA) and (UB,CB,jB,tB,qB,wB) and
state of nature (5, 1, u)

When v4 = v8 = v, we set 7% =1 if ¥ contains a constraint for variables (jA, i)7 and
the assignments w* and (v @y u) to those variables, respectively, satisfy this constraint, and
4% = 0 otherwise. Similarly, 754 = 1 iff w? and (v @5 u) satisfy a corresponding constraint
in 1p; and 7% checks w? with w?. When v4 # v8, we set 74% = 782 = 4B =,

We decompose Alice’s payoff as:
A A A A
U £ Ub + Useek + Uw ’

where

[I>

Ut

1 {CA = [ELA} /n—1 {cB = [I;LB}/TL,
Ulre =2-1{j7 =t} =1 {j* =17} —1{i=¢"},
and?*
UA L §3,AZ _ 54187 | 55 AB

for a sufficiently small constant 0 < § < /7).

Completeness

» Lemma 15. If ) is satisfiable, there exists a signaling scheme, such that for every signal
s in the support, Alice can guarantee an expected payoff of% (53 -t + 55).

Notice that the for every signal in the support qualification is different than the corresponding
Lemma 12 (and there is a similar difference between Lemma 16 and Lemma 13). Indeed,
this is stronger than we need for proving Theorem 14, but will come handy in Section 5.

Proof. Fix a satisfying assignment @ € ¥™. Given state of nature (5, i,u), let v be such

that (v @y u) = [@),. The scheme outputs the signal s = (v, b, 62). Alice’s mixed strategy

A=

sets (UA,CA) = (v, 5U>; picks j4 and t4 uniformly at random; and sets w al ja- See full

version for details [17]. <

4 We use 63747 — §47B:Z 4 §574F instead of §'74Z — 62757 1+ §374F a5 in 2, because the square of
the first coefficient appears in the proof. We have (53)2 < 6%, but 6% > §3.
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Soundness

» Lemma 16. If at most a (1 —n)-fraction of the constraints are satisfiable, then for
any signaling scheme and every signal s in the support, Alice’s maxmin payoff is at most

% ((53 -5+ (1 —Q(l))55),
Proof. On any signal, Bob chooses (vB,cB) from the same distribution that Alice uses
for (UA,CA). He draws j? uniformly at random, and picks t® and ¢” so as to minimize

se
A

E [U Al s]. Finally, for each jZ, Bob draws w® from the same distribution that Alice uses
for w
By symmetry, E [Uf | s] =0 and E [UZ,, | s| < 0. See full version for details [17]. <

5 Lying is even harder

» Theorem 17. Approzimating ZERO-SUM LYING with Alice’s payoffs in [0,1] to within an
additive (1 —27™) is NP-hard.

Construction

Consider the construction from Section 4 for the honest signaling problem. Lemmata 15

and 16 guarantee that there exists a distribution Dyongsr Of m X n zero-sum games and

constants ¢; > ¢y such that it is NP-hard to distinguish between the following;:

Completeness. If 1) is satisfiable, there exists a signaling scheme @yongst, such that for any
signal in ¢yonssr’s support, Alice’s maxmin payoff is at least ¢y /n.

Soundness. If ¢ is (1 — n)-unsatisfiable, for every signaling scheme @, psr and every signal
in the support, Alice’s maxmin payoff is at most ca/n.

For ZERO-SUM LYING, we construct a hard distribution of n x (n + 1) zero-sum games as

follows. With probability 27" Alice’s payoffs matrix is of the form:

— (1 +¢2)/2n
_AT :

HONEST . ? (4)

— (a1 +'(32) /2n

where Alice chooses a row (Bob chooses a column), and Ayongsr 18 an n X n matrix drawn
from Dyongsr- In other words, Bob has to choose between receiving payoff (¢; + ¢2) /2n, or
playing a game drawn from Dyoxgsr, but with the roles reversed.

Otherwise (with probability 1 — 27™), Alice’s payoff depends only on Bob: it is 1 if Bob
chooses any of his first n actions, and 0 otherwise; we call this the degenerate game.

Notice that we promised payoffs in [0, 1], whereas (4) has payoffs in [—1,0]. [0, 1] payoffs
can be obtained, without compromising the inapproximability guarantee, by scaling and
shifting the entries in (4) in a straightforward manner.

Completeness

» Lemma 18. If ¥ is satisfiable, there exists a dishonest signaling scheme, such that Alice’s
expected payoff is at least 1 — 27™.

Proof. We first construct ¢, peep as follows. Whenever nature samples a payoff matrix as

conditioning on j4 = j¥ (and uniformly at random if Alice never plays j4 = ;).

77:11
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When Bob observes any symbol from the support of ¢uoxest, he can guarantee a payoff
of c1/n > (¢1 + ¢2) /2n by playing a mix of his first n strategies. Therefore he only uses his
last strategy when observing the special symbol L.

Our true signaling scheme g, always outputs an (arbitrary) signal from the support
of ¢uonest, regardless of the state of nature. With probability 1 — 27", Alice and Bob are
actually playing the degenerate game, so Alice’s payoff is 1. |

Soundness

» Lemma 19. If ¢ is (1 —n)-unsatisfiable, then for any dishonest signaling scheme

(@LLLEGED, <p;{EAL), Alice’s expected payoff is negative.

Proof. Any signal in the support of go;LLEGED corresponds to a mixture of the degenerate
game, and the distribution induced by some signal s in the support of some honest signaling
scheme cp;{ONEST for Dyuoxesr- In the degenerate game, Bob always prefers to play his last
strategy. For any s’, Bob again prefers a payoff of (¢; + ¢2) /2n for playing his last strategy
over a maxmin of at most ¢3/n when playing any mixture of his first n strategies. Therefore,
Bob always plays his last strategy, regardless of the signal he receives, which guarantees him
a payoff of (¢1 + ¢) /2" n > 0. <
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