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Abstract
Directed Steiner problems are fundamental problems in Combinatorial Optimization and Theor-
etical Computer Science. An important problem in this genre is the k-edge connected directed
Steiner tree (k-DST) problem. In this problem, we are given a directed graph G on n vertices with
edge-costs, a root vertex r, a set of h terminals T and an integer k. The goal is to find a min-cost
subgraph H ⊆ G that connects r to each terminal t ∈ T by k edge-disjoint r, t-paths. This prob-
lem includes as special cases the well-known directed Steiner tree (DST) problem (the case k = 1)
and the group Steiner tree (GST) problem. Despite having been studied and mentioned many
times in literature, e.g., by Feldman et al. [SODA’09, JCSS’12], by Cheriyan et al. [SODA’12,
TALG’14], by Laekhanukit [SODA’14] and in a survey by Kortsarz and Nutov [Handbook of
Approximation Algorithms and Metaheuristics], there was no known non-trivial approximation
algorithm for k-DST for k ≥ 2 even in a special case that an input graph is directed acyclic and
has a constant number of layers. If an input graph is not acyclic, the complexity status of k-DST
is not known even for a very strict special case that k = 2 and h = 2.

In this paper, we make a progress toward developing a non-trivial approximation algorithm for
k-DST. We present an O(D ·kD−1 · logn)-approximation algorithm for k-DST on directed acyclic
graphs (DAGs) with D layers, which can be extended to a special case of k-DST on “general
graphs” when an instance has a D-shallow optimal solution, i.e., there exist k edge-disjoint
r, t-paths, each of length at most D, for every terminal t ∈ T . For the case k = 1 (DST), our
algorithm yields an approximation ratio of O(D log h), thus implying an O(log3 h)-approximation
algorithm for DST that runs in quasi-polynomial-time (due to the height-reduction of Zelikovsky
[Algorithmica’97]). Our algorithm is based on an LP-formulation that allows us to embed a
solution to a tree-instance of GST, which does not preserve connectivity. We show, however,
that one can randomly extract a solution of k-DST from the tree-instance of GST.

Our algorithm is almost tight when k and D are constants since the case that k = 1 and
D = 3 is NP-hard to approximate to within a factor of O(log h), and our algorithm archives
the same approximation ratio for this special case. We also remark that the k1/4−ε-hardness
instance of k-DST is a DAG with 6 layers, and our algorithm gives O(k5 logn)-approximation
for this special case. Consequently, as our algorithm works for general graphs, we obtain an
O(D · kD−1 · logn)-approximation algorithm for a D-shallow instance of the k edge-connected
directed Steiner subgraph problem, where we wish to connect every pair of terminals by k edge-
disjoint paths.
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1 Introduction

Network design is an important class of problems in Combinatorial Optimization and
Theoretical Computer Science as it formulates scenarios that appear in practical settings. In
particular, we might wish to design an overlay network that connects a server to clients, and
this can be formulated as the Steiner tree problem. In a more general setting, we might have
an additional constraint that the network must be able to function after link or node failures,
leading to the formulation of the survivable network design problem. These problems are
well-studied in symmetric case where a network can be represented by an undirected graph.
However, in many practical settings, links in networks are not symmetric. For example, we
might have different upload and download bandwidths in each connection, and sometimes,
transmissions are only allowed in one direction. This motivates the study of network design
problems in directed graphs, in particular, directed Steiner problems.

One of the most well-known directed network design problem is the directed Steiner tree
problem (DST), which asks to find a minimum-cost subgraph that connects a given root vertex
to each terminal. DST is a notorious problem as there is no known polynomial-time algorithm
that gives an approximation ratio better than polynomial. A polylogarithmic approximation
can be obtained only when an algorithm is allowed to run in quasi-polynomial-time [2, 13, 6].
A natural generalization of DST, namely, the k edge-connected directed Steiner tree (k-DST)
problem, where we wish to connect a root vertex to each terminal by k edge-disjoint paths,
is even more mysterious as there is no known non-trivial approximation algorithm, despite
having been studied and mentioned many times in literature, e.g., by Feldman et al. [5], by
Cheriyan et al. [3] and by Laekhanukit [10]. The problem is also mentioned in a survey by
Kortsarz and Nutov [9] and in a later update by Nutov [12].

The focus of this paper is in studying the approximability of k-DST. Let us formally
describe k-DST. In k-DST, we are given a directed graph G with edge-costs {ce}e∈E(G), a
root vertex r and a set of terminals T ⊆ V (G). The goal is to find a min-cost subgraph
H ⊆ G such that H has a k edge-disjoint directed r, t-paths from the root r to each terminal
t ∈ T . Thus, removing any k − 1 edges from H leaves at least one path from the root r to
each terminal t ∈ T , and DST is the case when k = 1 (i.e., we need only one path). The
complexity status of k-DST tends to be negative. It was shown by Cheriyan et al. [3] that
the problem is at least as hard as the label cover problem. Specifically, k-DST admits no
2log1−ε n-approximation, for any ε > 0, unless NP ⊆ DTIME(2polylog(n)). Laekhanukit [10],
subsequently, showed that k-DST admits no k1/4−ε-approximation unless NP = ZPP. The
integrality gap of a natural LP-relaxation for k-DST is Ω(k/ log k) which holds even for a
special case of connectivity-augmentation where we wish to increase a connectivity of a graph
by one. All the lower bound results are based on the same construction which are directed
acyclic graphs (DAGs) with diameter 5, i.e., any path in an input graph has length (number
of edges) at most 5 (we may also say that it has 6 layers). Even for a very simple variant of
k-DST, namely (1, 2)-DST, where we have two terminals, one terminal requires one path
from the root and another terminal requires 2 edge-disjoint paths, it was not known whether
the problem is NP-hard or polynomial-time solvable. To date, the only known positive result
for k-DST is an O(nkh)-time (exact) algorithm for k-DST on DAGs [3], which thus runs
in polynomial-time when kh is constant, and a folk-lore h-approximation algorithm, which
can be obtained by computing min-cost k-flow for h times, one from the root r to each
terminal t and then returning the union as a solution. We emphasize that there was no known
non-trivial approximation algorithm even when an input graph is “directed acyclic” and has
“constant number of layers”. Also, in contrast to DST in which an O(2hpoly(n))-time (exact)
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algorithm exists for general graphs, it is not known whether k-DST for k = 2 and h = 2 is
polynomial-time solvable if an input graph is not acyclic. This leaves challenging questions
whether ones can design a non-trivial approximation algorithm for k-DST on DAGs with at
most D layers, and whether ones can design a non-trivial approximation algorithm when an
input graph is not acyclic.

In this paper, we make a progress toward developing a non-trivial approximation algorithm
for k-DST. We present the first “non-trivial” approximation algorithm for k-DST on DAGs
with D layers that achieves an approximation ratio of O(D · kD−1 · logn). Our algorithm
can be extended to a special case of k-DST on “general graphs” where an instance has a
D-shallow optimal solution, i.e., there exist k edge-disjoint r, t-paths, each of length at most
D, for every terminal t ∈ T . Consequently, as our algorithm works for a general graph,
we obtain an O(D · kD−1 · logn)-approximation algorithm for a D-shallow instance of the
k edge-connected directed Steiner subgraph problem, where we wish to connect every pair
of terminals by k edge-disjoint paths, i.e., the set of terminals T is required to be k-edge
connected in the solution subgraph (there is no root vertex in this problem).

Our algorithm is almost tight when k and D are constants because the case that k = 1
and D = 3 is essentially the set cover problem, which is NP-hard to approximate to within a
factor of O(log h) [11, 4], and our algorithm achieves the same approximation ratio. We also
remark that the k1/4−ε-hardness instance of k-DST is a DAG with 6 layers, and our algorithm
gives O(k5 logn)-approximation for this special case. For k = 1, we obtain a slightly better
bound of O(D log h), thus giving an LP-based O(log3 h)-approximation algorithm for DST
as a by product.

The key idea of our algorithm is to formulate an LP-relaxation with a special property
that a fractional solution can be embedded into a tree instance of the group Steiner tree
problem (GST). Thus, we can apply the GKR Rounding algorithm in [7] for GST on trees
to round the fractional solution. However, embedding of an LP-solution to a tree instance of
GST does not preserve connectivity. Also, it does not lead to a reduction from k-DST to the
k edge-connected variant of GST, namely, k-GST. Hence, our algorithm is, although simple,
not straightforward.

1.1 Our Results
Our main result is an O(D · kD−1 · logn)-approximation algorithm for k-DST on a D-shallow
instance, which includes a special case that an input graph is directed acyclic and has at
most D layers.

I Theorem 1. Consider the k edge-connected directed Steiner tree problem. Suppose an
input instance has an optimal solution H∗ in which, for every terminal t ∈ T , H∗ has
k edge-disjoint r, t-paths such that each path has length at most D. Then there exists an
O(D · kD−1 · logn)-approximation algorithm. In particular, there is an O(D · kD−1 · logn)-
approximation algorithm for k-DST on a directed acyclic graph with D layers.

For the case k = 1, our algorithm yields a slightly better guarantee of O(D log h).
Thus, we have as by product an LP-based approximation algorithm for DST. Applying
Zelikovsky’s height-reduction theorem [14, 8], this implies an LP-based quasi-polynomial-time
O(log3 h)-approximation algorithm for DST. (The algorithm runs in time O(poly(nD) and
has approximation ratio O(h1/D ·D2 log h).)

Theorem 1 also implies an algorithm of the same (asymptotic) approximation ratio for a
D-shallow instance of the k edge-connected directed Steiner subgraph problem, where we
wish to find a subgraph H such that the set of terminals T is k-edge-connected in H. To
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74:4 Approximating Directed Steiner Problems via Tree Embedding

see this, we invoke the algorithm in Theorem 1 as follows. Take any terminal t∗ ∈ T as a
root vertex of a k-DST instance. Then we apply the algorithm for k-DST to find a subgraph
Hout such that every terminal is k edge-connected from t∗. We apply the algorithm again
to find a subgraph Hin such that every terminal is k edge-connected to t∗. Then the set of
terminals T is k-edge connected in the graph Hout ∪Hin by transitivity of edge-connectivity.
The cost incurred by this algorithm is at most twice that of the algorithm in Theorem 1.
Thus, we have the following theorem as a corollary of Theorem 1

I Theorem 2. Consider the k edge-connected directed Steiner subgraph problem. Suppose
an input instance has an optimal solution H∗ in which, for every pair of terminals s, t ∈ T ,
H∗ has k edge-disjoint s, t-paths such that each path has length at most D. Then there exists
an O(D · kD−1 · logn)-approximation algorithm.

1.1.0.1 Overview of our algorithm

The key idea of our algorithm is to embed an LP solution for k-DST to a standard LP of
GST on a tree. (We emphasize that we embed the LP solution of k-DST to that of GST not
k-GST.) At first glance, a reduction from k-DST to GST on trees is unlikely to exist because
any such reduction would destroy all the connectivity information. We show, however, that
such tree-embedding exists, but we have to sacrifice running-time and cost to obtain such
embedding.

The reduction is indeed the same as a folk-lore reduction from DST to GST on trees.
That is, we list all rooted-paths (paths that start from the root vertex) of length at most
D in an input graph and form a suffix tree. In the case of DST, if there is an optimal
solution which is a tree of height D, then it gives an approximation preserving reduction
from GST to DST which blows up the size (and thus the running time) of the instance to
O(nD). Unfortunately, for the case of k-DST with k > 1, this reduction does not give an
equivalent reduction from k-DST to k-GST on trees. The reduction is valid in one direction,
i.e., any feasible solution to k-DST has a corresponding feasible solution to the tree-instance
of k-GST. However, the converse is not true as a feasible solution to the tree-instance of
k-GST might not give a feasible solution to k-DST. Thus, our reduction is indeed an “invalid”
reduction from k-DST to a tree instance of “GST” (the case k = 1).

To circumvent this problem, we formulate an LP that provides a connection between
an LP solution on an input k-DST instance and an LP solution of a tree-instance of GST.
Thus, we can embed an LP solution to an LP-solution of GST on a (very large) tree. We
then round the LP solution using the GKR Rounding algorithm for GST on trees [7]. This
algorithm, again, does not give a feasible solution to k-DST as each integral solution we
obtain only has “connectivity one” and thus is only feasible to DST. We cope with this
issue by using a technique developed by Chalermsook et al. in [1]. Specifically, we sample a
sufficiently large number of DST solutions and show that the union of all these solutions is
feasible to k-DST using cut-arguments.

Each step of our algorithm and the proofs are mostly standard, but ones need to be
careful in combining each step. Otherwise, the resulting graph would not be feasible to
k-DST.

Organization. We provide definitions and notations in Section 2. We start our discussion
by presenting a reduction from DST to GST in Section 3. Then we discuss properties of
minimal solutions for k-DST in Section 4. We present standard LPs for k-DST and GST in
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Section 5 and formulate a stronger LP-relaxation for k-DST in Section 6. Then we proceed
to present our algorithm in Section 7. Finally, we provide some discussions in Section 8.

2 Preliminaries

We use standard graph terminologies. We refer to a directed edge (u, v), shortly, by uv (i.e.,
u and v are head and tail of uv, respectively), and we refer to an undirected edge by {u, v}.
For a (directed or undirected) graph G, we denote by V (G) and E(G) the sets of vertices
and edges of G, respectively. If a graph G is associated with edge-costs {ce}e∈E(G), then
we denote the cost of any subgraph H ⊆ G by cost(H) =

∑
e∈E(H) ce. For any path P , we

use length to mean the number of edges in a path P and use cost to mean the total costs of
edges in P .

In the directed Steiner tree problem (DST), we are given a directed graph G with edge-
costs {ce}e∈E(G), a root vertex r and a set of terminals T ⊆ V (G). The goal is to find a
min-cost subgraph H ⊆ G such that H has a directed path from the root r to each terminal
t ∈ T . A generalization of DST is the k edge-connected directed Steiner tree problem (k-DST).
In k-DST, we are given the same input as in DST plus an integer k. The goal is to find a
min-cost subgraph H that has k edge-disjoint paths from the root r to each terminal t ∈ T .
The k edge-connected directed Steiner subgraph problem is a variant of k-DST, where there is
no root vertex, and the goal is to find a min-cost subgraph H such that the set of terminals
T is k edge-connected in H.

The problems on undirected graphs that are closely related to of DST and k-DST are
the group Steiner tree problem (GST) and the k edge-connected group Steiner tree problem
(k-GST). In GST, we are given an undirected graph G with edge-costs {ce}e∈E(G), a root
vertex r and a collection of subset of vertices {Ti}hi=1 called groups. The goal is to find a
a min-cost subgraph H that connects r to each group Ti. In k-GST, the input consists of
an additional integer k, and the goal is to find a min-cost subgraph H with k edge-disjoint
r, Ti-paths for every group Ti.

Consider an instance of DST (resp., k-DST). We denote by Q the set of all paths in
G that start from the root r. The set of paths in Q that end with a particular pattern,
say σ = (v1, . . . , vq), is denoted by Q(σ). This pattern σ can be a vertex v, an edge e
or a path σ = (v1, . . . , vq) in G. For example, Q(u, v, w) consists of paths P of the form
P = (r, . . . , u, v, w). We say that a path P ends in a vertex v (resp., an edge e) if v (resp., e)
is the last vertex (resp., edge) of P .

We may consider only paths with particular length, say D. We denote by QD the set of
paths that start at r and has length at most D. The notation for QD is analogous to Q, e.g.,
QD(uv) ⊆ QD is the set of paths in QD that end in an edge uv. A concatenation of a path
p with an edge e or a vertex v are denoted by p+ e and p+ v, respectively. For example,
(u1, . . . , u`) + vw = (u1, . . . , u`, v, w).

Given a subset of vertices S, the set of edges entering S is denoted by

δ−(S) = {uv ∈ E : u ∈ S, v 6∈ S}

The indegree of S is denoted by indeg(S) = |δ−(S)|. Analogously, we use δ+(S) and outdeg(S)
for the set of edges leaving S. For undirected graphs, we simply use the notations δ(S) and
deg(S).

We say that a feasible solution H to k-DST is D-shallow if, for every terminal t ∈ T ,
there exists a set of k edge-disjoint r, t-paths in H such that every path has length at most D.
An instance of k-DST that has an optimal D-shallow solution is called a D-shallow instance.

ICALP 2016
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We also use the term D-shallow analogously for k-GST and the k edge-connected Steiner
subgraph problem.

To distinguish between the input of k-DST (which is a directed graph) and k-GST (which
is an undirected graph), we use script fonts, e.g., G, to denote the input of k-GST. Also, we
use Q to denote the set of all paths from the root r to any vertex v in the graph G. The cost
of a set of edges F (or a graph) is defined by a function cost(F ) =

∑
e∈F ce. At each point,

we consider only one instance of k-DST (respectively, k-GST). So, we denote the cost of the
optimal solution to k-DST by optkDST (respectively, optkGST ).

3 Reduction from Directed Steiner Tree to Group Steiner Tree

In this section, we describe a reduction R from DST to GST. We recall that Q denotes all
the r, v-paths in a DST instance G. The reduction is by simply listing paths in the directed
graph G as vertices in a tree G = R(G) and joining each path p to p+ e if p+ e is a path in
G. In fact, R(G) is a suffix tree of paths in Q. To be precise,

V (G) = {p : p is an r, v-path in G}
E(G) = {{p, p+ e} : both p and p+ e are paths in G starting at r}

We set the cost of edges of G to be c{p,p+e} = ce. Since the root r has no incoming edges
in G, r maps to a unique vertex (r) ∈ G, and we define (r) as the root vertex of the GST
instance. We will abuse r to mean both the root of DST and its corresponding vertex of
GST. For each terminal ti ∈ T , define a group of the GST instance as

Ti := Q(ti) = {p ⊆ G : p is an r, ti-path in G}

It is easy to see that the reduction R produces a tree, and there is a one-to-one mapping
between a path in the tree G = R(G) and a path in the original graph G. Thus, any tree in
G corresponds to a subtree of R(G) (but not vice versa), which implies that the reduction
R is approximation-preserving (i.e., optDST = optGST ). Note, however, that the size of the
instance blows up from O(n+m) to O(nD), where D is the length of the longest path in
G. The reduction holds for general graphs, but it is approximation-preserving only if the
DST instance is D-shallow, i.e., it has an optimal solution H∗ such that any r, ti-path in H∗
has length at most D, for all terminals ti ∈ T . However, Zelikovsky [14, 8] showed that the
metric completion of G always contains a D-shallow solution with cost at most D|V (G)|1/D
of an optimal solution to DST. (This is now known as Zelikovsky’s height reduction theorem.)
Thus, we may list only paths of length at most D from the metric completion. We denote
the reduction that lists only paths of length at most D by RD.

4 Properties of Minimal Solutions to k-DST

In this section, we provide structural lemmas which are building blocks in formulating a
strong LP-relaxation for k-DST. These lemmas characterize properties of a minimal solution
to k-DST.

I Lemma 3. Let H be any minimal solution to k-DST. Then H has at most k edge-disjoint
r, v-paths, for any vertex v ∈ V (H).

Proof. Suppose to a contrary that H has k + 1 edge-disjoint r, v-paths, for some vertex
v ∈ V (H). Then v must have indegree at least k + 1 in H. We take one of the k − 1 edges
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entering v, namely, uv. By minimality of H, removing uv results in a graph H ′ = H−uv that
has less than k edge-disjoint r, ti-paths for some terminal ti ∈ T . Thus, by Menger’s theorem,
there must be a subset of vertices S ⊆ V such that ti ∈ S, r ∈ V −S and indegH′(S) ≤ k− 1.
Observe that we must have uv in δ−H(S) because H is a feasible solution to k-DST, which
means that v ∈ S. Since we remove only one edge uv from H, the graph H ′ must have k
edge-disjoint r, v-paths. But, this implies that indegH′(S) ≥ k, a contradiction. J

I Lemma 4. Let H be any minimal solution to k-DST. Any vertex v ∈ V (H) has indegree
exactly λ(v), where λ(v) is the maximum number of edge-disjoint r, v-paths in H.

Proof. The proof follows a standard uncrossing argument. Assume a contradiction that
v has indegree at least λ(v) + 1 in H. By Menger’s theorem, there is a subset of vertices
U ⊆ V such that indegH(U) = λ(v), v ∈ U and r 6∈ U that separates v from r. We assume
that U is a minimum such set. Since indegH(v) > λ(v), there is an edge uv ∈ E(H) that is
not contained in δ−H(U), i.e., u, v ∈ U .

By minimality of H, removing uv results in the graph H ′ = H − uv such that H ′ has
less than k edge-disjoint r, ti-paths for some terminal ti ∈ T . Thus, by Menger’s theorem,
there is a subset of vertices W such that ti ∈W , r 6∈W , uv ∈ δ−H(W ) and indegH(W ) = k.
(The latter is because H is a feasible solution to k-DST.)

Now we apply an uncrossing argument to U and W . By submodularity of indegH , we
have indegH(U) + indegH(W ) ≥ degH(U ∩W ) + degH(U ∪W ). Observe that v ∈ U ∩W ,
t ∈ U ∪W and r 6∈ S ∪ S′. So, by the edge-connectivity of v and t,

indegH(U ∩W ) ≥ λ(v) and indegH(U ∪W ) ≥ k (1)

The sum of the left-hand side of Eq (1) is indegH(U) + indegH(W ) = k + λ(v). So, we
conclude that indegH(U ∩W ) = λ(v) and indegH(U ∪W ) = k. Consequently, we have the
set U ′ = U ∩W such that indegH(U ′) = λ(v), v ∈ U ′ and r 6∈ U ′ that separates v from r.
Since u 6∈W , we know that U ′ is strictly smaller than U . This contradicts to the minimality
of U . J

The following is a corollary of Lemma 3 and Lemma 4

I Corollary 5. Let H be a minimal solution to k-DST. Then any vertex v ∈ V (H) has
indegree at most k.

The next lemma follows from Corollary 5.

I Lemma 6. Consider any minimal solution H to k-DST (which is a simple graph). For
any edge e ∈ E(H) and ` ≥ 2, there are at most k`−2 paths in H with length at most ` that
start at the root r and ends in e. That is, |QH` (e)| ≤ k`−2 for all e ∈ E(H), where QH` (e) is
the set of r, v-paths of length ` in H.

Proof. We prove by induction. The base case ` = 2 is trivial because any rooted path of
length at most 2 cannot have a common edge.

Assume, inductively, that |QH`−1(e)| ≤ k`−3 for some ` ≥ 3. Consider any edge vw ∈ E(H).
By Corollary 5, v has indegree at most k. Thus, there are at most k edges entering v, namely,
u1v, . . . , udv, where d = indeg(v). By the induction hypothesis, each edge is the last edge of
at most k`−3 paths in QH`−1. Thus, we have at most d · k`−3 ≤ k`−2 paths that end in uv.
That is,

|QH` (vw)| ≤
d∑
i=1
|QH`−1(udv)| ≤

d∑
i=1

k`−3 = d · k`−3 ≤ k`−2.

J
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5 Standard LPs for k-DST and GST

In this section, we describe standard LPs for k-DST and GST. Each LP consists of two sets
of variables, a variable xe on each edge e and a variable f ip on each path p and a terminal ti.
The variable xe indicates whether we choose an edge e in a solution. The variable f ip is a
flow-variable on each path and thus can be written in a compact form using a standard flow
formulation.

LP-k-DST



min
∑
e∈E(G) cexe

s.t.
∑
p∈Q(ti):e∈E(p) f

i
p ≤ xe ∀e ∈ E(G),∀ti ∈ T∑

p∈Q(ti) f
i
p ≥ k ∀ti ∈ T
xe ≤ 1 ∀e ∈ E(G)
xe ≥ 0 ∀e ∈ E(G)
f ip ≥ 0 ∀p ∈ Q(ti),∀ti ∈ T.

The standard LP for GST is similar to LP-k-DST.

LP-GST



min
∑
e∈E(G) cexe

s.t.
∑
v∈Ti

∑
p∈Q(v):e∈E(p) f

i
p ≤ xe ∀e ∈ E(G),∀i = 1, 2, . . . , h∑

v∈Ti
∑
p∈Q(v) f

i
p ≥ 1 ∀i = 1, 2, . . . , h
xe ≤ 1 ∀e ∈ E(G)
xe ≥ 0 ∀e ∈ E(G)
f ip ≥ 0 ∀p ∈ Q,∀i = 1, 2, . . . , h

6 A Strong LP-relaxation for for k-DST

In this section, we formulate a strong LP-relaxation for k-DST that allows us to embed a
fractional solution into an LP solution of LP-GST on a tree.

LP-k-DST*



min
∑
e∈E cexe

s.t.
∑
p∈Q(ti):e∈E(p) f

i
p ≤ xe ∀e ∈ E(G),∀ti ∈ T∑

p∈Q(ti) f
i
p ≥ k ∀ti ∈ T∑

p∈Q(ti):q⊆p f
i
p ≤ yq ∀q ∈ Q,∀ti ∈ T

(Subflow Capacity)∑
p∈Q`(e) yp ≤ max{1, k`−2} · xe ∀e ∈ E,∀` ≥ 1

(Aggregating k-Flow)
xe ≤ 1 ∀e ∈ E(G)
xe ≥ 0 ∀e ∈ E(G)
f ip ≥ 0 ∀p ∈ Q(ti),∀ti ∈ T
yp ≥ 0 ∀p ∈ Q

For D-shallow instances of k-DST, we replace Q by QD to restrict length of paths to be
at most D. The next lemma shows that LP-k-DST* is an LP-relaxation for k-DST.

I Lemma 7. LP-k-DST* is an LP-relaxation for k-DST. Moreover, replacing Q by QD gives
an LP-relaxation for k-DST on D-shallow instances.

Proof. LP-k-DST* is, in fact, obtained from LP-k-DST (which is a standard LP) by adding
a new variable yp and two constraints.
1. Subflow-Capacity:

∑
p∈Q(ti):q⊆p

f ip ≤ yq,∀q ∈ Q,∀ti ∈ T .
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2. Aggregating k-Flow:
∑

p∈Q`(e)

yp ≤ max{1, k`−2} · xe,∀e ∈ E,∀` ≥ 1.

To show that these two constraints are valid for k-DST, we take a minimal feasible
(D-shallow) solution H of k-DST. We define a solution (x, f, y) to LP-k-DST as below.

xe =
{

1 if e ∈ E(H)
0 otherwise yp =

{
1 if p ⊆ H ∧ p ∈ Q
0 otherwise

f ip =
{

1 if p ⊆ H ∧ p ∈ Q(ti)
0 otherwise

By construction, f ip = 1 implies that yp = 1. Thus, (x, f, y) satisfies the Subflow-Capacity
constraint. By minimality of H, Corollary 6 implies that even if we list all the paths of
length ` ≥ 2 in H, at most k`−2 of them end in the same edge, and we know that rooted
paths of length one share no edge (given that H is a simple graph). Thus, (x, f, y) satisfies
the Aggregating k-Flow constraint. Consequently, these two constraints are valid for k-DST.

On the other hand, any integral solution that is not feasible to k-DST could not satisfy the
constraints of LP-k-DST* simply because LP-k-DST* contains the constraints of LP-k-DST,
which is a standard LP for k-DST. Thus, LP-k-DST* is an LP-relaxation for k-DST.

The proof for the case of D-shallow instances is the same as above except that we take
H as a minimal D-shallow solution and replace Q by QD. J

7 An Approximation Algorithm for k-DST

In this section, we present an approximation algorithm for k-DST on a D-shallow instance.
Our algorithm is simple. We solve LP-k-DST* on an input graph G and then embed an
optimal fractional solution (x, f, y) to an LP-solution (x̂, f̂) of LP-GST on the tree R(G). We
lose a factor of O(kD−2) in this process. As we now have a tree-embedding of an LP-solution,
we can invoke the GKR Rounding algorithm [7] to round an LP-solution on the tree R(G).
Our embedding guarantees that any edge-set of size k− 1 in the original graph G never maps
to an edge-set in the tree G = R(G) that separates r and Ti = Q(ti) in G. So, the rounding
algorithm still outputs a feasible solution to GST with constant probability even if we remove
edges in the tree G that correspond to a subset of k − 1 edges in G. Consequently, we only
need to run the algorithm for O(D ·k · logn) times to boost the probability of success so that,
for any subset of k − 1 edges and any terminal ti ∈ T , we have at least one solution that
contains an r, ti-path using none of these k − 1 edges. In other words, the union of all the
solutions satisfies the connectivity requirement. Our algorithm is described in Algorithm 1.

Algorithm 1 Algorithm for k-DST
Solve LP-k-DST* and obtain an optimal solution (x, f, y).
Map (x, f, y) to a solution (x̂, f̂) to LP-GST on G = R(G).
for i = 1 to 2Dk log2 n do
Run GKR Rounding on (x̂, f̂) to get a solution Zi.
Map Zi back to a subgraph Zi of G.

end for
return H =

⋃
i Zi as a solution to k-DST.

We map a solution (x, f, y) of LP-k-DST* on G to a solution (x̂, f̂) of LP-GST on the
tree G = R(G) as below. Note that there is a one-to-one mapping between a path in G and
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a path in the tree G.

x̂{p,p+e} := yp+e for all p+ e ∈ Q
f̂ ip := f ip for all p ∈ Q and for all ti ∈ T

7.1 Cost Analysis
We show that cost(x̂, f̂) ≤ kD−2 · cost(x, f, y).

I Lemma 8. Consider a solution (x̂, f̂) to LP-GST, which is mapped from a solution (x, f)
of LP-k-DST* when an input k-DST instance is D-shallow, for D ≥ 2. The cost of (x̂, f̂) is
at most cost(x̂, f̂) ≤ kD−2 · cost(x, f).

Proof. By the constraint
∑
p∈Q`(e) fp ≤ max{1, k`−2} · xe, we have that

cost(x̂, f̂) =
∑
e′∈E(G) ce′ x̂e′ =

∑
e∈E(G)

∑
{p,p+e}∈E(G) cex̂{p,p+e}

=
∑
e∈E(G)

∑
p+e∈Q cefp+e =

∑
e∈E(G)

∑
p∈Q(e) cefp

=
∑
e∈E(G)

(
ce ·

∑
p∈Q(e) fp

)
≤
∑
e∈E(G) ce · kD−2 · xe

= kD−2 · cost(x, f).
J

It can be seen from Algorithm 1 and Lemma 8 that the algorithm outputs a solution H
with cost at most O(DkD−1 logn) · cost(x, f). Thus, H is an O(DkD−1 logn)-approximate
solution. It remains to show that H is feasible to k-DST.

7.2 Feasibility Analysis
Now we show that H is feasible to k-DST with high probability. To be formal, consider any
subset F ⊆ E(G) of k − 1 edges. We map F to their corresponding edges F in the tree G.
Thus, F := {{P, P + e} : P + e ∈ Q ∧ e ∈ F}.

Observe that no vertices in G − F correspond to paths that contain an edge in F . Thus,
we can define an LP solution (yF , zF ) for LP-GST on the graph G − F as follows.

yFe =
{
x̂e if e 6∈ F
0 otherwise zF,ip =

{
f̂ ip if E(p) ∩ F = ∅
0 otherwise

We show that (yF , zF ) is feasible to LP-GST on G − F .

I Lemma 9. For any subset of edges F ⊆ E(G), define (yF , zF ) from (x̂, f̂) as above. Then
(yF , zF ) is feasible to LP-GST on G − F .

Proof. First, observe that zF,ip > 0 only if a path p contains no edges in F . So, by construction,
(yF , zF ) satisfies zF,ip = f̂ ip ≤ x̂e = yFe for all e ∈ E(p). Hence, (yF , zF ) satisfies the capacity
constraint.

Next we show that (yF , zF ) satisfies the connectivity constraint. Consider the solution
(x, f, y) to LP-k-DST*. By the feasibility of (x, f, y) and the Max-Flow-Min-Cut theorem,
the graph G− F with capacities {xe}e∈G−F can support a flow of value one from r to any
terminal ti. This implies that

∑
p∈Q(ti):E(p)∩F=∅ f

i
p ≥ 1. Consequently, we have∑

p∈Q(ti):E(p)∩F=∅ f
i
p =

∑
p∈Ti:E(p)∩F=∅

∑
p′∈Q(v) f̂

i
p′

=
∑
v∈Ti

∑
p′∈Q(v):E(p′)∩F=∅ f̂

i
p′

=
∑
v∈Ti

∑
p′∈Q(v):E(p′)∩F=∅ z

F,i
p′

=
∑
v∈Ti

∑
p′∈Q(v) z

F,i
p′

≥ 1.
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All the other constraints are satisfied because (yF , zF ) is constructed from (x̂, f̂). Thus,
(yF , zF ) is feasible to LP-GST on G − F . J

Lemma 9 implies that we can run the GKR Rounding algorithm on (yF , zF ). The
following is the property of GKR Rounding.

I Lemma 10 ([7]). There exists a randomized algorithm such that, given a solution (x̂, f̂)
to LP-GST on a tree G with height D, the algorithm outputs a subgraph H ⊆ G so that the
probability that any subset of vertices U ⊆ V (G) is connected to the root is at least

Pr[H has an r, U -path.] ≥
∑
v∈U

∑
p∈Q(v) f̂

i
p

O(D)

Moreover, the probability that each edge is chosen is at most x̂e. That is, E[cost(H)] =
cost(x̂, f̂). The running time of the algorithm is O(|E(G)|+ |V (G)|).

Since (yF , zF ) ≤ (x̂, f̂) (coordinate-wise), we can show that running GKR Rounding on
(x̂, f̂) simulates the runs on (yF , zF ) for all F ⊆ E(G) with |F | ≤ k − 1, simultaneously.

I Lemma 11. Let H be a subgraph of G obtained by running GKR Rounding on (x̂, f̂), and
let H be a subgraph of G corresponding to H. Then, for any subset of edges F ⊆ E(G) with
|F | ≤ k − 1 and for any terminal ti ∈ T ,

Pr[H − F has an r, ti-path] ≥ 1
O(D) .

Proof. Let us briefly describe the work of GKR Rounding. The algorithm marks each edge
e in the tree with probability xe/x%(e), where %(e) is the parent of an edge e in G, which
is unique. Then the algorithm picks an edge e if all of its ancestors are marked. Clearly,
removing any set of edges F from G only affects paths that contain an edge in F .

Let (yF , zF ) be defined from (x̂, f̂) as above. This LP solution is defined on a graph
G − F . Thus, the probability of success is not affected by removing F from the graph. By
Lemma 9, we can run GKR Rounding on (yF , zF ) and obtain a subgraph HF of G − F .
Since zFp ≤ f̂p for all paths p ∈ Q and zFp = 0 for all p ∈ Q : E(p) ∩ F 6= ∅, we have from
Lemma 10 and Lemma 9 that

Pr[H − F has an r, ti-path] = Pr[H−F has an r, Ti-path]
≥ Pr[HF has an r, Ti-path]

≥
∑

v∈Ti

∑
p∈Q(v)

zFp

O(D)
≥ 1

O(D) .

J

Finally, we recall that Algorithm 1 employs GKR Rounding on (x̂, f̂) for 2Dk log2 n

times. So, for any subset of k − 1 edges F ⊆ E(G) and for any terminal ti ∈ T , there exists
one subgraph that has an r, ti-path that contains no edge in F with large probability. In
particular, the union is a feasible solution to k-DST with high probability.

I Lemma 12. Consider the run of Algorithm 1. The solution subgraph H =
⋃
i Zi is a

feasible solution to k-DST with probability at least 1/n.

Proof. For i = 1, 2, . . . , 2Dk log2 n, let Zi be a subgraph of G obtained by running GKR
Rounding on (x̂, f̂) and mapping the solution back to a subgraph of G as in Algorithm 1.
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By Lemma 11, Zi − F has an r, ti-path with probability Ω(1/D). Since each Zi is sampled
independently, we have

Pr[∀i Zi − F has no r, ti-path] ≤
(

1− 1
O(D)

)2Dk log2 n

≤
(

1
e

)2k log2 n

≤ n−2k.

We have at most |E(G)|k−1 ≤ n2(k−1) such sets F and at most h ≤ n terminals. So, there
are at most n2k−1 bad events where there exists an edge-set of size k − 1 that separates the
root r and some terminal ti ∈ T . Therefore, by union bound, H =

⋃
i Zi is a feasible solution

to k-DST with probability at least 1/n. J

This completes the proof of Theorem 1. Note that, for the case of DST (k = 1), we only
need to run GKR Rounding for O(D log h) times, thus implying an approximation ratio of
O(D log h).

8 Conclusion and Discussion

We presented the first non-trivial approximation algorithm for k-DST in a special case of
a D-shallow instance, which exploits the reduction from DST to GST. We hope that our
techniques will shed some light in designing an approximation algorithm for k-DST in general
case and perhaps lead to a bi-criteria approximation algorithm in the same manner as in [1].

One obstruction in designing an approximation algorithm in directed graphs is that there
is no “true” (perhaps, probabilistic) tree-embedding for directed graphs. Both devising a
tree-embedding for directed graphs and designing an approximation algorithm for k-DST
with k ≥ 2 are big open problems in the area. Another open problem, which is considered
as the most challenging one by many experts, is whether there exists a polynomial-time
algorithm for DST that yields a sub-polynomial approximation ratio.
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stad et al. [6] and by discussions with Joseph Cheriyan and Lap Chi Lau. We also thank
Zachary Friggstad for useful discussions and anonymous referees for valuable comments.

References
1 Parinya Chalermsook, Fabrizio Grandoni, and Bundit Laekhanukit. On survivable set con-

nectivity. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 25–36, 2015.
doi:10.1137/1.9781611973730.3.

2 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation algorithms for directed steiner problems. J. Algorithms,
33(1):73–91, 1999. doi:10.1006/jagm.1999.1042.

3 Joseph Cheriyan, Bundit Laekhanukit, Guyslain Naves, and Adrian Vetta. Approximating
rooted steiner networks. ACM Transactions on Algorithms, 11(2):8:1–8:22, 2014. doi:
10.1145/2650183.

4 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

5 Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation algorithms for
directed steiner forest. J. Comput. Syst. Sci., 78(1):279–292, 2012. doi:10.1016/j.jcss.
2011.05.009.

http://dx.doi.org/10.1137/1.9781611973730.3
http://dx.doi.org/10.1006/jagm.1999.1042
http://dx.doi.org/10.1145/2650183
http://dx.doi.org/10.1145/2650183
http://dx.doi.org/10.1145/285055.285059
http://dx.doi.org/10.1016/j.jcss.2011.05.009
http://dx.doi.org/10.1016/j.jcss.2011.05.009


B. Laekhanukit 74:13

6 Zachary Friggstad, Jochen Könemann, Young Kun-Ko, Anand Louis, Mohammad Shad-
ravan, and Madhur Tulsiani. Linear programming hierarchies suffice for directed steiner
tree. In Integer Programming and Combinatorial Optimization – 17th International Con-
ference, IPCO 2014, Bonn, Germany, June 23-25, 2014. Proceedings, pages 285–296, 2014.
doi:10.1007/978-3-319-07557-0_24.

7 Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm
for the group steiner tree problem. J. Algorithms, 37(1):66–84, 2000. doi:10.1006/jagm.
2000.1096.

8 Christopher S. Helvig, Gabriel Robins, and Alexander Zelikovsky. An improved ap-
proximation scheme for the group steiner problem. Networks, 37(1):8–20, 2001. doi:
10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.CO;2-R.

9 Guy Kortsarz and Zeev Nutov. Approximating minimum-cost connectivity problems. In
Teofilo F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics.
Chapman and Hall/CRC, 2007. doi:10.1201/9781420010749.ch58.

10 Bundit Laekhanukit. Parameters of two-prover-one-round game and the hardness of con-
nectivity problems. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
1626–1643, 2014. doi:10.1137/1.9781611973402.118.

11 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41(5):960–981, 1994. doi:10.1145/185675.306789.

12 Zeev Nutov. Approximability status of survivable network problems. Preprint available at
http://www.openu.ac.il/home/nutov/Survivable-Network.pdf.

13 Thomas Rothvoß. Directed steiner tree and the lasserre hierarchy. CoRR, abs/1111.5473,
2011. URL: http://arxiv.org/abs/1111.5473.

14 Alexander Zelikovsky. A series of approximation algorithms for the acyclic directed steiner
tree problem. Algorithmica, 18(1):99–110, 1997. doi:10.1007/BF02523690.

ICALP 2016

http://dx.doi.org/10.1007/978-3-319-07557-0_24
http://dx.doi.org/10.1006/jagm.2000.1096
http://dx.doi.org/10.1006/jagm.2000.1096
http://dx.doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.CO;2-R
http://dx.doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.CO;2-R
http://dx.doi.org/10.1201/9781420010749.ch58
http://dx.doi.org/10.1137/1.9781611973402.118
http://dx.doi.org/10.1145/185675.306789
http://www.openu.ac.il/home/nutov/Survivable-Network.pdf
http://arxiv.org/abs/1111.5473
http://dx.doi.org/10.1007/BF02523690

	Introduction
	Our Results

	Preliminaries
	Reduction from Directed Steiner Tree to Group Steiner Tree
	Properties of Minimal Solutions to k-DST
	Standard LPs for k-DST and GST
	A Strong LP-relaxation for for k-DST
	An Approximation Algorithm for k-DST
	Cost Analysis
	Feasibility Analysis

	Conclusion and Discussion

