33 research outputs found

    Cross-Domain information extraction from scientific articles for research knowledge graphs

    Get PDF
    Today’s scholarly communication is a document-centred process and as such, rather inefficient. Fundamental contents of research papers are not accessible by computers since they are only present in unstructured PDF files. Therefore, current research infrastructures are not able to assist scientists appropriately in their core research tasks. This thesis addresses this issue and proposes methods to automatically extract relevant information from scientific articles for Research Knowledge Graphs (RKGs) that represent scholarly knowledge structured and interlinked. First, this thesis conducts a requirements analysis for an Open Research Knowledge Graph (ORKG). We present literature-related use cases of researchers that should be supported by an ORKG-based system and their specific requirements for the underlying ontology and instance data. Based on this analysis, the identified use cases are categorised into two groups: The first group of use cases needs manual or semi-automatic approaches for knowledge graph (KG) construction since they require high correctness of the instance data. The second group requires high completeness and can tolerate noisy instance data. Thus, this group needs automatic approaches for KG population. This thesis focuses on the second group of use cases and provides contributions for machine learning tasks that aim to support them. To assess the relevance of a research paper, scientists usually skim through titles, abstracts, introductions, and conclusions. An organised presentation of the articles' essential information would make this process more time-efficient. The task of sequential sentence classification addresses this issue by classifying sentences in an article in categories like research problem, used methods, or obtained results. To address this problem, we propose a novel unified cross-domain multi-task deep learning approach that makes use of datasets from different scientific domains (e.g. biomedicine and computer graphics) and varying structures (e.g. datasets covering either only abstracts or full papers). Our approach outperforms the state of the art on full paper datasets significantly while being competitive for datasets consisting of abstracts. Moreover, our approach enables the categorisation of sentences in a domain-independent manner. Furthermore, we present the novel task of domain-independent information extraction to extract scientific concepts from research papers in a domain-independent manner. This task aims to support the use cases find related work and get recommended articles. For this purpose, we introduce a set of generic scientific concepts that are relevant over ten domains in Science, Technology, and Medicine (STM) and release an annotated dataset of 110 abstracts from these domains. Since the annotation of scientific text is costly, we suggest an active learning strategy based on a state-of-the-art deep learning approach. The proposed method enables us to nearly halve the amount of required training data. Then, we extend this domain-independent information extraction approach with the task of \textit{coreference resolution}. Coreference resolution aims to identify mentions that refer to the same concept or entity. Baseline results on our corpus with current state-of-the-art approaches for coreference resolution showed that current approaches perform poorly on scientific text. Therefore, we propose a sequential transfer learning approach that exploits annotated datasets from non-academic domains. Our experimental results demonstrate that our approach noticeably outperforms the state-of-the-art baselines. Additionally, we investigate the impact of coreference resolution on KG population. We demonstrate that coreference resolution has a small impact on the number of resulting concepts in the KG, but improved its quality significantly. Consequently, using our domain-independent information extraction approach, we populate an RKG from 55,485 abstracts of the ten investigated STM domains. We show that every domain mainly uses its own terminology and that the populated RKG contains useful concepts. Moreover, we propose a novel approach for the task of \textit{citation recommendation}. This task can help researchers improve the quality of their work by finding or recommending relevant related work. Our approach exploits RKGs that interlink research papers based on mentioned scientific concepts. Using our automatically populated RKG, we demonstrate that the combination of information from RKGs with existing state-of-the-art approaches is beneficial. Finally, we conclude the thesis and sketch possible directions of future work.Die Kommunikation von Forschungsergebnissen erfolgt heutzutage in Form von Dokumenten und ist aus verschiedenen GrĂŒnden ineffizient. Wesentliche Inhalte von Forschungsarbeiten sind fĂŒr Computer nicht zugĂ€nglich, da sie in unstrukturierten PDF-Dateien verborgen sind. Daher können derzeitige Forschungsinfrastrukturen Forschende bei ihren Kernaufgaben nicht angemessen unterstĂŒtzen. Diese Arbeit befasst sich mit dieser Problemstellung und untersucht Methoden zur automatischen Extraktion von relevanten Informationen aus Forschungspapieren fĂŒr Forschungswissensgraphen (Research Knowledge Graphs). Solche Graphen sollen wissenschaftliches Wissen maschinenlesbar strukturieren und verknĂŒpfen. ZunĂ€chst wird eine Anforderungsanalyse fĂŒr einen Open Research Knowledge Graph (ORKG) durchgefĂŒhrt. Wir stellen literaturbezogene AnwendungsfĂ€lle von Forschenden vor, die durch ein ORKG-basiertes System unterstĂŒtzt werden sollten, und deren spezifische Anforderungen an die zugrundeliegende Ontologie und die Instanzdaten. Darauf aufbauend werden die identifizierten AnwendungsfĂ€lle in zwei Gruppen eingeteilt: Die erste Gruppe von AnwendungsfĂ€llen benötigt manuelle oder halbautomatische AnsĂ€tze fĂŒr die Konstruktion eines ORKG, da sie eine hohe Korrektheit der Instanzdaten erfordern. Die zweite Gruppe benötigt eine hohe VollstĂ€ndigkeit der Instanzdaten und kann fehlerhafte Daten tolerieren. Daher erfordert diese Gruppe automatische AnsĂ€tze fĂŒr die Konstruktion des ORKG. Diese Arbeit fokussiert sich auf die zweite Gruppe von AnwendungsfĂ€llen und schlĂ€gt Methoden fĂŒr maschinelle Aufgabenstellungen vor, die diese AnwendungsfĂ€lle unterstĂŒtzen können. Um die Relevanz eines Forschungsartikels effizient beurteilen zu können, schauen sich Forschende in der Regel die Titel, Zusammenfassungen, Einleitungen und Schlussfolgerungen an. Durch eine strukturierte Darstellung von wesentlichen Informationen des Artikels könnte dieser Prozess zeitsparender gestaltet werden. Die Aufgabenstellung der sequenziellen Satzklassifikation befasst sich mit diesem Problem, indem SĂ€tze eines Artikels in Kategorien wie Forschungsproblem, verwendete Methoden oder erzielte Ergebnisse automatisch klassifiziert werden. In dieser Arbeit wird fĂŒr diese Aufgabenstellung ein neuer vereinheitlichter Multi-Task Deep-Learning-Ansatz vorgeschlagen, der DatensĂ€tze aus verschiedenen wissenschaftlichen Bereichen (z. B. Biomedizin und Computergrafik) mit unterschiedlichen Strukturen (z. B. DatensĂ€tze bestehend aus Zusammenfassungen oder vollstĂ€ndigen Artikeln) nutzt. Unser Ansatz ĂŒbertrifft State-of-the-Art-Verfahren der Literatur auf Benchmark-DatensĂ€tzen bestehend aus vollstĂ€ndigen Forschungsartikeln. Außerdem ermöglicht unser Ansatz die Klassifizierung von SĂ€tzen auf eine domĂ€nenunabhĂ€ngige Weise. DarĂŒber hinaus stellen wir die neue Aufgabenstellung domĂ€nenĂŒbergreifende Informationsextraktion vor. Hierbei werden, unabhĂ€ngig vom behandelten wissenschaftlichen Fachgebiet, inhaltliche Konzepte aus Forschungspapieren extrahiert. Damit sollen die AnwendungsfĂ€lle Finden von verwandten Arbeiten und Empfehlung von Artikeln unterstĂŒtzt werden. Zu diesem Zweck fĂŒhren wir eine Reihe von generischen wissenschaftlichen Konzepten ein, die in zehn Bereichen der Wissenschaft, Technologie und Medizin (STM) relevant sind, und veröffentlichen einen annotierten Datensatz von 110 Zusammenfassungen aus diesen Bereichen. Da die Annotation wissenschaftlicher Texte aufwĂ€ndig ist, kombinieren wir ein Active-Learning-Verfahren mit einem aktuellen Deep-Learning-Ansatz, um die notwendigen Trainingsdaten zu reduzieren. Die vorgeschlagene Methode ermöglicht es uns, die Menge der erforderlichen Trainingsdaten nahezu zu halbieren. Anschließend erweitern wir unseren domĂ€nenunabhĂ€ngigen Ansatz zur Informationsextraktion um die Aufgabe der Koreferenzauflösung. Die Auflösung von Koreferenzen zielt darauf ab, ErwĂ€hnungen zu identifizieren, die sich auf dasselbe Konzept oder dieselbe EntitĂ€t beziehen. Experimentelle Ergebnisse auf unserem Korpus mit aktuellen AnsĂ€tzen zur Koreferenzauflösung haben gezeigt, dass diese bei wissenschaftlichen Texten unzureichend abschneiden. Daher schlagen wir eine Transfer-Learning-Methode vor, die annotierte DatensĂ€tze aus nicht-akademischen Bereichen nutzt. Die experimentellen Ergebnisse zeigen, dass unser Ansatz deutlich besser abschneidet als die bisherigen AnsĂ€tze. DarĂŒber hinaus untersuchen wir den Einfluss der Koreferenzauflösung auf die Erstellung von Wissensgraphen. Wir zeigen, dass diese einen geringen Einfluss auf die Anzahl der resultierenden Konzepte in dem Wissensgraphen hat, aber die QualitĂ€t des Wissensgraphen deutlich verbessert. Mithilfe unseres domĂ€nenunabhĂ€ngigen Ansatzes zur Informationsextraktion haben wir aus 55.485 Zusammenfassungen der zehn untersuchten STM-DomĂ€nen einen Forschungswissensgraphen erstellt. Unsere Analyse zeigt, dass jede DomĂ€ne hauptsĂ€chlich ihre eigene Terminologie verwendet und dass der erstellte Wissensgraph nĂŒtzliche Konzepte enthĂ€lt. Schließlich schlagen wir einen Ansatz fĂŒr die Empfehlung von passenden Referenzen vor. Damit können Forschende einfacher relevante verwandte Arbeiten finden oder passende Empfehlungen erhalten. Unser Ansatz nutzt Forschungswissensgraphen, die Forschungsarbeiten mit in ihnen erwĂ€hnten wissenschaftlichen Konzepten verknĂŒpfen. Wir zeigen, dass aktuelle Verfahren zur Empfehlung von Referenzen von zusĂ€tzlichen Informationen aus einem automatisch erstellten Wissensgraphen profitieren. Zum Schluss wird ein Fazit gezogen und ein Ausblick fĂŒr mögliche zukĂŒnftige Arbeiten gegeben

    Exploration and adaptation of large language models for specialized domains

    Get PDF
    Large language models have transformed the field of natural language processing (NLP). Their improved performance on various NLP benchmarks makes them a promising tool—also for the application in specialized domains. Such domains are characterized by highly trained professionals with particular domain expertise. Since these experts are rare, improving the efficiency of their work with automated systems is especially desirable. However, domain-specific text resources hold various challenges for NLP systems. These challenges include distinct language, noisy and scarce data, and a high level of variation. Further, specialized domains present an increased need for transparent systems since they are often applied in high stakes settings. In this dissertation, we examine whether large language models (LLMs) can overcome some of these challenges and propose methods to effectively adapt them to domain-specific requirements. We first investigate the inner workings and abilities of LLMs and show how they can fill the gaps that are present in previous NLP algorithms for specialized domains. To this end, we explore the sources of errors produced by earlier systems to identify which of them can be addressed by using LLMs. Following this, we take a closer look at how information is processed within Transformer-based LLMs to better understand their capabilities. We find that their layers encode different dimensions of the input text. Here, the contextual vector representation, and the general language knowledge learned during pre-training are especially beneficial for solving complex and multi-step tasks common in specialized domains. Following this exploration, we propose solutions for further adapting LLMs to the requirements of domain-specific tasks. We focus on the clinical domain, which incorporates many typical challenges found in specialized domains. We show how to improve generalization by integrating different domain-specific resources into our models. We further analyze the behavior of the produced models and propose a behavioral testing framework that can serve as a tool for communication with domain experts. Finally, we present an approach for incorporating the benefits of LLMs while fulfilling requirements such as interpretability and modularity. The presented solutions show improvements in performance on benchmark datasets and in manually conducted analyses with medical professionals. Our work provides both new insights into the inner workings of pre-trained language models as well as multiple adaptation methods showing that LLMs can be an effective tool for NLP in specialized domains

    Data-efficient methods for information extraction

    Get PDF
    Strukturierte WissensreprĂ€sentationssysteme wie Wissensdatenbanken oder Wissensgraphen bieten Einblicke in EntitĂ€ten und Beziehungen zwischen diesen EntitĂ€ten in der realen Welt. Solche WissensreprĂ€sentationssysteme können in verschiedenen Anwendungen der natĂŒrlichen Sprachverarbeitung eingesetzt werden, z. B. bei der semantischen Suche, der Beantwortung von Fragen und der Textzusammenfassung. Es ist nicht praktikabel und ineffizient, diese WissensreprĂ€sentationssysteme manuell zu befĂŒllen. In dieser Arbeit entwickeln wir Methoden, um automatisch benannte EntitĂ€ten und Beziehungen zwischen den EntitĂ€ten aus Klartext zu extrahieren. Unsere Methoden können daher verwendet werden, um entweder die bestehenden unvollstĂ€ndigen WissensreprĂ€sentationssysteme zu vervollstĂ€ndigen oder ein neues strukturiertes WissensreprĂ€sentationssystem von Grund auf zu erstellen. Im Gegensatz zu den gĂ€ngigen ĂŒberwachten Methoden zur Informationsextraktion konzentrieren sich unsere Methoden auf das Szenario mit wenigen Daten und erfordern keine große Menge an kommentierten Daten. Im ersten Teil der Arbeit haben wir uns auf das Problem der Erkennung von benannten EntitĂ€ten konzentriert. Wir haben an der gemeinsamen Aufgabe von Bacteria Biotope 2019 teilgenommen. Die gemeinsame Aufgabe besteht darin, biomedizinische EntitĂ€tserwĂ€hnungen zu erkennen und zu normalisieren. Unser linguistically informed Named-Entity-Recognition-System besteht aus einem Deep-Learning-basierten Modell, das sowohl verschachtelte als auch flache EntitĂ€ten extrahieren kann; unser Modell verwendet mehrere linguistische Merkmale und zusĂ€tzliche Trainingsziele, um effizientes Lernen in datenarmen Szenarien zu ermöglichen. Unser System zur EntitĂ€tsnormalisierung verwendet String-Match, Fuzzy-Suche und semantische Suche, um die extrahierten benannten EntitĂ€ten mit den biomedizinischen Datenbanken zu verknĂŒpfen. Unser System zur Erkennung von benannten EntitĂ€ten und zur EntitĂ€tsnormalisierung erreichte die niedrigste Slot-Fehlerrate von 0,715 und belegte den ersten Platz in der gemeinsamen Aufgabe. Wir haben auch an zwei gemeinsamen Aufgaben teilgenommen: Adverse Drug Effect Span Detection (Englisch) und Profession Span Detection (Spanisch); beide Aufgaben sammeln Daten von der Social Media Plattform Twitter. Wir haben ein Named-Entity-Recognition-Modell entwickelt, das die Eingabedarstellung des Modells durch das Stapeln heterogener Einbettungen aus verschiedenen DomĂ€nen verbessern kann; unsere empirischen Ergebnisse zeigen komplementĂ€res Lernen aus diesen heterogenen Einbettungen. Unser Beitrag belegte den 3. Platz in den beiden gemeinsamen Aufgaben. Im zweiten Teil der Arbeit untersuchten wir Strategien zur Erweiterung synthetischer Daten, um ressourcenarme Informationsextraktion in spezialisierten DomĂ€nen zu ermöglichen. Insbesondere haben wir backtranslation an die Aufgabe der Erkennung von benannten EntitĂ€ten auf Token-Ebene und der Extraktion von Beziehungen auf Satzebene angepasst. Wir zeigen, dass die RĂŒckĂŒbersetzung sprachlich vielfĂ€ltige und grammatikalisch kohĂ€rente synthetische SĂ€tze erzeugen kann und als wettbewerbsfĂ€hige Erweiterungsstrategie fĂŒr die Aufgaben der Erkennung von benannten EntitĂ€ten und der Extraktion von Beziehungen dient. Bei den meisten realen Aufgaben zur Extraktion von Beziehungen stehen keine kommentierten Daten zur VerfĂŒgung, jedoch ist hĂ€ufig ein großer unkommentierter Textkorpus vorhanden. Bootstrapping-Methoden zur Beziehungsextraktion können mit diesem großen Korpus arbeiten, da sie nur eine Handvoll Startinstanzen benötigen. Bootstrapping-Methoden neigen jedoch dazu, im Laufe der Zeit Rauschen zu akkumulieren (bekannt als semantische Drift), und dieses PhĂ€nomen hat einen drastischen negativen Einfluss auf die endgĂŒltige Genauigkeit der Extraktionen. Wir entwickeln zwei Methoden zur EinschrĂ€nkung des Bootstrapping-Prozesses, um die semantische Drift bei der Extraktion von Beziehungen zu minimieren. Unsere Methoden nutzen die Graphentheorie und vortrainierte Sprachmodelle, um verrauschte Extraktionsmuster explizit zu identifizieren und zu entfernen. Wir berichten ĂŒber die experimentellen Ergebnisse auf dem TACRED-Datensatz fĂŒr vier Relationen. Im letzten Teil der Arbeit demonstrieren wir die Anwendung der DomĂ€nenanpassung auf die anspruchsvolle Aufgabe der mehrsprachigen Akronymextraktion. Unsere Experimente zeigen, dass die DomĂ€nenanpassung die Akronymextraktion in wissenschaftlichen und juristischen Bereichen in sechs Sprachen verbessern kann, darunter auch Sprachen mit geringen Ressourcen wie Persisch und Vietnamesisch.The structured knowledge representation systems such as knowledge base or knowledge graph can provide insights regarding entities and relationship(s) among these entities in the real-world, such knowledge representation systems can be employed in various natural language processing applications such as semantic search, question answering and text summarization. It is infeasible and inefficient to manually populate these knowledge representation systems. In this work, we develop methods to automatically extract named entities and relationships among the entities from plain text and hence our methods can be used to either complete the existing incomplete knowledge representation systems to create a new structured knowledge representation system from scratch. Unlike mainstream supervised methods for information extraction, our methods focus on the low-data scenario and do not require a large amount of annotated data. In the first part of the thesis, we focused on the problem of named entity recognition. We participated in the shared task of Bacteria Biotope 2019, the shared task consists of recognizing and normalizing the biomedical entity mentions. Our linguistically informed named entity recognition system consists of a deep learning based model which can extract both nested and flat entities; our model employed several linguistic features and auxiliary training objectives to enable efficient learning in data-scarce scenarios. Our entity normalization system employed string match, fuzzy search and semantic search to link the extracted named entities to the biomedical databases. Our named entity recognition and entity normalization system achieved the lowest slot error rate of 0.715 and ranked first in the shared task. We also participated in two shared tasks of Adverse Drug Effect Span detection (English) and Profession Span Detection (Spanish); both of these tasks collect data from the social media platform Twitter. We developed a named entity recognition model which can improve the input representation of the model by stacking heterogeneous embeddings from a diverse domain(s); our empirical results demonstrate complementary learning from these heterogeneous embeddings. Our submission ranked 3rd in both of the shared tasks. In the second part of the thesis, we explored synthetic data augmentation strategies to address low-resource information extraction in specialized domains. Specifically, we adapted backtranslation to the token-level task of named entity recognition and sentence-level task of relation extraction. We demonstrate that backtranslation can generate linguistically diverse and grammatically coherent synthetic sentences and serve as a competitive augmentation strategy for the task of named entity recognition and relation extraction. In most of the real-world relation extraction tasks, the annotated data is not available, however, quite often a large unannotated text corpus is available. Bootstrapping methods for relation extraction can operate on this large corpus as they only require a handful of seed instances. However, bootstrapping methods tend to accumulate noise over time (known as semantic drift) and this phenomenon has a drastic negative impact on the final precision of the extractions. We develop two methods to constrain the bootstrapping process to minimise semantic drift for relation extraction; our methods leverage graph theory and pre-trained language models to explicitly identify and remove noisy extraction patterns. We report the experimental results on the TACRED dataset for four relations. In the last part of the thesis, we demonstrate the application of domain adaptation to the challenging task of multi-lingual acronym extraction. Our experiments demonstrate that domain adaptation can improve acronym extraction within scientific and legal domains in 6 languages including low-resource languages such as Persian and Vietnamese

    Text Summarization Across High and Low-Resource Settings

    Get PDF
    Natural language processing aims to build automated systems that can both understand and generate natural language textual data. As the amount of textual data available online has increased exponentially, so has the need for intelligence systems to comprehend and present it to the world. As a result, automatic text summarization, the process by which a text\u27s salient content is automatically distilled into a concise form, has become a necessary tool. Automatic text summarization approaches and applications vary based on the input summarized, which may constitute single or multiple documents of different genres. Furthermore, the desired output style may consist of a sentence or sub-sentential units chosen directly from the input in extractive summarization or a fusion and paraphrase of the input document in abstractive summarization. Despite differences in the above use-cases, specific themes, such as the role of large-scale data for training these models, the application of summarization models in real-world scenarios, and the need for adequately evaluating and comparing summaries, are common across these settings. This dissertation presents novel data and modeling techniques for deep neural network-based summarization models trained across high-resource (thousands of supervised training examples) and low-resource (zero to hundreds of supervised training examples) data settings and a comprehensive evaluation of the model and metric progress in the field. We examine both Recurrent Neural Network (RNN)-based and Transformer-based models to extract and generate summaries from the input. To facilitate the training of large-scale networks, we introduce datasets applicable for multi-document summarization (MDS) for pedagogical applications and for news summarization. While the high-resource settings allow models to advance state-of-the-art performance, the failure of such models to adapt to settings outside of that in which it was initially trained requires smarter use of labeled data and motivates work in low-resource summarization. To this end, we propose unsupervised learning techniques for both extractive summarization in question answering, abstractive summarization on distantly-supervised data for summarization of community question answering forums, and abstractive zero and few-shot summarization across several domains. To measure the progress made along these axes, we revisit the evaluation of current summarization models. In particular, this dissertation addresses the following research objectives: 1) High-resource Summarization. We introduce datasets for multi-document summarization, focusing on pedagogical applications for NLP, news summarization, and Wikipedia topic summarization. Large-scale datasets allow models to achieve state-of-the-art performance on these tasks compared to prior modeling techniques, and we introduce a novel model to reduce redundancy. However, we also examine how models trained on these large-scale datasets fare when applied to new settings, showing the need for more generalizable models. 2) Low-resource Summarization. While high-resource summarization improves model performance, for practical applications, data-efficient models are necessary. We propose a pipeline for creating synthetic training data for training extractive question-answering models, a form of query-based extractive summarization with short-phrase summaries. In other work, we propose an automatic pipeline for training a multi-document summarizer in answer summarization on community question-answering forums without labeled data. Finally, we push the boundaries of abstractive summarization model performance when little or no training data is available across several domains. 3) Automatic Summarization Evaluation. To understand the extent of progress made across recent modeling techniques and better understand the current evaluation protocols, we examine the current metrics used to compare summarization output quality across 12 metrics across 23 deep neural network models and propose better-motivated summarization evaluation guidelines as well as point to open problems in summarization evaluation

    Entities with quantities : extraction, search, and ranking

    Get PDF
    Quantities are more than numeric values. They denote measures of the world’s entities such as heights of buildings, running times of athletes, energy efficiency of car models or energy production of power plants, all expressed in numbers with associated units. Entity-centric search and question answering (QA) are well supported by modern search engines. However, they do not work well when the queries involve quantity filters, such as searching for athletes who ran 200m under 20 seconds or companies with quarterly revenue above $2 Billion. State-of-the-art systems fail to understand the quantities, including the condition (less than, above, etc.), the unit of interest (seconds, dollar, etc.), and the context of the quantity (200m race, quarterly revenue, etc.). QA systems based on structured knowledge bases (KBs) also fail as quantities are poorly covered by state-of-the-art KBs. In this dissertation, we developed new methods to advance the state-of-the-art on quantity knowledge extraction and search.Zahlen sind mehr als nur numerische Werte. Sie beschreiben Maße von EntitĂ€ten wie die Höhe von GebĂ€uden, die Laufzeit von Sportlern, die Energieeffizienz von Automodellen oder die Energieerzeugung von Kraftwerken - jeweils ausgedrĂŒckt durch Zahlen mit zugehörigen Einheiten. EntitĂ€tszentriete Anfragen und direktes Question-Answering werden von Suchmaschinen hĂ€ufig gut unterstĂŒtzt. Sie funktionieren jedoch nicht gut, wenn die Fragen Zahlenfilter beinhalten, wie z. B. die Suche nach Sportlern, die 200m unter 20 Sekunden gelaufen sind, oder nach Unternehmen mit einem Quartalsumsatz von ĂŒber 2 Milliarden US-Dollar. Selbst moderne Systeme schaffen es nicht, QuantitĂ€ten, einschließlich der genannten Bedingungen (weniger als, ĂŒber, etc.), der Maßeinheiten (Sekunden, Dollar, etc.) und des Kontexts (200-Meter-Rennen, Quartalsumsatz usw.), zu verstehen. Auch QA-Systeme, die auf strukturierten Wissensbanken (“Knowledge Bases”, KBs) aufgebaut sind, versagen, da quantitative Eigenschaften von modernen KBs kaum erfasst werden. In dieser Dissertation werden neue Methoden entwickelt, um den Stand der Technik zur Wissensextraktion und -suche von QuantitĂ€ten voranzutreiben. Unsere HauptbeitrĂ€ge sind die folgenden: ‱ ZunĂ€chst prĂ€sentieren wir Qsearch [Ho et al., 2019, Ho et al., 2020] – ein System, das mit erweiterten Fragen mit QuantitĂ€tsfiltern umgehen kann, indem es Hinweise verwendet, die sowohl in der Frage als auch in den Textquellen vorhanden sind. Qsearch umfasst zwei HauptbeitrĂ€ge. Der erste Beitrag ist ein tiefes neuronales Netzwerkmodell, das fĂŒr die Extraktion quantitĂ€tszentrierter Tupel aus Textquellen entwickelt wurde. Der zweite Beitrag ist ein neuartiges Query-Matching-Modell zum Finden und zur Reihung passender Tupel. ‱ Zweitens, um beim Vorgang heterogene Tabellen einzubinden, stellen wir QuTE [Ho et al., 2021a, Ho et al., 2021b] vor – ein System zum Extrahieren von QuantitĂ€tsinformationen aus Webquellen, insbesondere Ad-hoc Webtabellen in HTML-Seiten. Der Beitrag von QuTE umfasst eine Methode zur VerknĂŒpfung von QuantitĂ€ts- und EntitĂ€tsspalten, fĂŒr die externe Textquellen genutzt werden. Zur Beantwortung von Fragen kontextualisieren wir die extrahierten EntitĂ€ts-QuantitĂ€ts-Paare mit informativen Hinweisen aus der Tabelle und stellen eine neue Methode zur Konsolidierung und verbesserteer Reihung von Antwortkandidaten durch Inter-Fakten-Konsistenz vor. ‱ Drittens stellen wir QL [Ho et al., 2022] vor – eine Recall-orientierte Methode zur Anreicherung von Knowledge Bases (KBs) mit quantitativen Fakten. Moderne KBs wie Wikidata oder YAGO decken viele EntitĂ€ten und ihre relevanten Informationen ab, ĂŒbersehen aber oft wichtige quantitative Eigenschaften. QL ist frage-gesteuert und basiert auf iterativem Lernen mit zwei HauptbeitrĂ€gen, um die KB-Abdeckung zu verbessern. Der erste Beitrag ist eine Methode zur Expansion von Fragen, um einen grĂ¶ĂŸeren Pool an Faktenkandidaten zu erfassen. Der zweite Beitrag ist eine Technik zur Selbstkonsistenz durch BerĂŒcksichtigung der Werteverteilungen von QuantitĂ€ten

    Combating Misinformation in the Age of LLMs: Opportunities and Challenges

    Full text link
    Misinformation such as fake news and rumors is a serious threat on information ecosystems and public trust. The emergence of Large Language Models (LLMs) has great potential to reshape the landscape of combating misinformation. Generally, LLMs can be a double-edged sword in the fight. On the one hand, LLMs bring promising opportunities for combating misinformation due to their profound world knowledge and strong reasoning abilities. Thus, one emergent question is: how to utilize LLMs to combat misinformation? On the other hand, the critical challenge is that LLMs can be easily leveraged to generate deceptive misinformation at scale. Then, another important question is: how to combat LLM-generated misinformation? In this paper, we first systematically review the history of combating misinformation before the advent of LLMs. Then we illustrate the current efforts and present an outlook for these two fundamental questions respectively. The goal of this survey paper is to facilitate the progress of utilizing LLMs for fighting misinformation and call for interdisciplinary efforts from different stakeholders for combating LLM-generated misinformation.Comment: 9 pages for the main paper, 35 pages including 656 references, more resources on "LLMs Meet Misinformation" are on the website: https://llm-misinformation.github.io

    Robust input representations for low-resource information extraction

    Get PDF
    Recent advances in the field of natural language processing were achieved with deep learning models. This led to a wide range of new research questions concerning the stability of such large-scale systems and their applicability beyond well-studied tasks and datasets, such as information extraction in non-standard domains and languages, in particular, in low-resource environments. In this work, we address these challenges and make important contributions across fields such as representation learning and transfer learning by proposing novel model architectures and training strategies to overcome existing limitations, including a lack of training resources, domain mismatches and language barriers. In particular, we propose solutions to close the domain gap between representation models by, e.g., domain-adaptive pre-training or our novel meta-embedding architecture for creating a joint representations of multiple embedding methods. Our broad set of experiments demonstrates state-of-the-art performance of our methods for various sequence tagging and classification tasks and highlight their robustness in challenging low-resource settings across languages and domains.Die jĂŒngsten Fortschritte auf dem Gebiet der Verarbeitung natĂŒrlicher Sprache wurden mit Deep-Learning-Modellen erzielt. Dies fĂŒhrte zu einer Vielzahl neuer Forschungsfragen bezĂŒglich der StabilitĂ€t solcher großen Systeme und ihrer Anwendbarkeit ĂŒber gut untersuchte Aufgaben und DatensĂ€tze hinaus, wie z. B. die Informationsextraktion fĂŒr Nicht-Standardsprachen, aber auch TextdomĂ€nen und Aufgaben, fĂŒr die selbst im Englischen nur wenige Trainingsdaten zur VerfĂŒgung stehen. In dieser Arbeit gehen wir auf diese Herausforderungen ein und leisten wichtige BeitrĂ€ge in Bereichen wie ReprĂ€sentationslernen und Transferlernen, indem wir neuartige Modellarchitekturen und Trainingsstrategien vorschlagen, um bestehende BeschrĂ€nkungen zu ĂŒberwinden, darunter fehlende Trainingsressourcen, ungesehene DomĂ€nen und Sprachbarrieren. Insbesondere schlagen wir Lösungen vor, um die DomĂ€nenlĂŒcke zwischen ReprĂ€sentationsmodellen zu schließen, z.B. durch domĂ€nenadaptives Vortrainieren oder unsere neuartige Meta-Embedding-Architektur zur Erstellung einer gemeinsamen ReprĂ€sentation mehrerer Embeddingmethoden. Unsere umfassende Evaluierung demonstriert die LeistungsfĂ€higkeit unserer Methoden fĂŒr verschiedene Klassifizierungsaufgaben auf Word und Satzebene und unterstreicht ihre Robustheit in anspruchsvollen, ressourcenarmen Umgebungen in verschiedenen Sprachen und DomĂ€nen

    Low-Resource Event Extraction

    Get PDF
    The last decade has seen the extraordinary evolution of deep learning in natural language processing leading to the rapid deployment of many natural language processing applications. However, the field of event extraction did not witness a parallel success story due to the inherent challenges associated with its scalability. The task itself is much more complex than other NLP tasks due to the dependency among its subtasks. This interlocking system of tasks requires a full adaptation whenever one attempts to scale to another domain or language, which is too expensive to scale to thousands of domains and languages. This dissertation introduces a holistic method for expanding event extraction to other domains and languages within the limited available tools and resources. First, this study focuses on designing neural network architecture that enables the integration of external syntactic and graph features as well as external knowledge bases to enrich the hidden representations of the events. Second, this study presents network architecture and training methods for efficient learning under minimal supervision. Third, we created brand new multilingual corpora for event relation extraction to facilitate the research of event extraction in low-resource languages. We also introduce a language-agnostic method to tackle multilingual event relation extraction. Our extensive experiment shows the effectiveness of these methods which will significantly speed up the advance of the event extraction field. We anticipate that this research will stimulate the growth of the event detection field in unexplored domains and languages, ultimately leading to the expansion of language technologies into a more extensive range of diaspora

    Bridging the data gap in neural machine translation

    Get PDF
    Neural machine translation (NMT) has completely revolutionized the field, leading to many breakthroughs and significantly improving translation quality. Despite these advancements, a common limitation of existing NMT architectures is that they rely heavily on large amounts of high-quality parallel corpora. However, this requirement is met by only a few high-resource languages, whereas sufficient parallel data is scarce for most of the world's languages. This thesis proposes solutions to this challenge by exploiting two alternative data sources: monolingual data and parallel data from other (related) languages. The first half of the thesis explores how monolingual data can compensate for the lack of parallel data in two distinct ways. We first explore how to effectively exploit the knowledge of language models (LMs) trained on target-side monolingual data. We propose a method that uses an LM as a prior that simultaneously mitigates overfitting and distills the knowledge of the LM into the NMT model. This is achieved by adding a regularization term, which pushes the output distributions of the NMT model to be probable under the LM prior. This improves low-resource translation and outperforms related LM-fusion methods. Next, inspired by advancements in transfer learning, we study how to effectively use monolingual data by pretraining the entire NMT model. We focus on the role of different denoising autoencoding (DAE) objectives and explore noising methods that create samples resembling real sentences. Our analysis reveals that different objectives produce models that encode and use information differently, and our experiments show a strong variation in unsupervised NMT, unlike semi- and supervised NMT. The next part of the thesis focuses on exploiting related parallel data via multilingual machine translation (MMT). Initially, we investigate how to efficiently balance the trade-off between transfer and interference in MMT. Instead of increasing model capacity, which incurs a large computational cost, or using separate language-specific parameters, which prevent cross-lingual transfer, we achieve the best of both by incorporating language-specific layers generated from a language-aware hyper-network. Then, we unify all our previous efforts and study how to optimally combine monolingual and related parallel data in MMT. Motivated by promising and conflicting results in the literature, we systematically analyze jointly training MMT with DAE or back-translation (BT). Using a comprehensive evaluation across monolingual splits and multilingual test sets, we discover that all methods are surprisingly brittle to domain mismatches. We also analyze the role of the model scale (from 90M to 1.6B parameters) and find it critical for effectively using monolingual data and capable of completely changing the ranking across models, with surprisingly strong effects on DAE. The goal of this thesis is to contribute both new methods and new insights. One half presents novel methods for exploiting data sources beyond the parallel corpora of a given language pair, by addressing the limitations of existing methods. The other half presents systematic analyses of how state-of-the-art methods work, by using comprehensive evaluation with controlled experiments, that aims to advance our understanding of these methods and drive future research
    corecore