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ABSTRACT

Large language models have transformed the field of natural language processing (NLP).

Their improved performance on various NLP benchmarks makes them a promising tool—also

for the application in specialized domains. Such domains are characterized by highly trained

professionals with particular domain expertise. Since these experts are rare, improving the

efficiency of their work with automated systems is especially desirable. However, domain-

specific text resources hold various challenges for NLP systems. These challenges include

distinct language, noisy and scarce data, and a high level of variation. Further, specialized

domains present an increased need for transparent systems since they are often applied in

high stakes settings. In this dissertation, we examine whether large language models (LLMs)

can overcome some of these challenges and propose methods to effectively adapt them to

domain-specific requirements.

We first investigate the inner workings and abilities of LLMs and show how they can fill

the gaps that are present in previous NLP algorithms for specialized domains. To this end,

we explore the sources of errors produced by earlier systems to identify which of them can be

addressed by using LLMs. Following this, we take a closer look at how information is pro-

cessed within Transformer-based LLMs to better understand their capabilities. We find that

their layers encode different dimensions of the input text. Here, the contextual vector rep-

resentation, and the general language knowledge learned during pre-training are especially

beneficial for solving complex and multi-step tasks common in specialized domains.

Following this exploration, we propose solutions for further adapting LLMs to the re-

quirements of domain-specific tasks. We focus on the clinical domain, which incorporates

many typical challenges found in specialized domains. We show how to improve generaliza-

tion by integrating different domain-specific resources into our models. We further analyze

the behavior of the produced models and propose a behavioral testing framework that can

serve as a tool for communication with domain experts. Finally, we present an approach

for incorporating the benefits of LLMs while fulfilling requirements such as interpretability

and modularity. The presented solutions show improvements in performance on benchmark

datasets and in manually conducted analyses with medical professionals.

Our work provides both new insights into the inner workings of pre-trained language

models as well as multiple adaptation methods showing that LLMs can be an effective tool

for NLP in specialized domains.

Key words natural language processing, language models, text classification, domain

adaptation, explainability



ZUSAMMENFASSUNG

Große vortrainierte Sprachmodelle haben die automatisierte Sprachverarbeitung (en-

glisch: natural language processing, kurz: NLP) transformiert. Die verbesserten Leistungen

in verschiedenen NLP-Benchmarks machen sie zu einem vielversprechenden Werkzeug –

auch für den Einsatz in spezialisierten Domänen. Solche Domänen zeichnen sich durch

hochqualifizierte Experten mit besonderem Fachwissen aus. Da diese Fachkräfte rar sind,

ist es besonders erstrebenswert, die Effizienz ihrer Arbeit mit automatisierten Systemen

zu verbessern. Domänenspezifische Textressourcen stellen NLP-Systeme jedoch vor ver-

schiedene Herausforderungen. Zu diesen gehören der Gebrauch von spezifischer Fachsprache,

verrauschte und spärliche Daten sowie ein hohes Maß an Varianz. Darüber hinaus werden

in spezialisierten Domänen häufig transparente Systeme benötigt. In dieser Dissertation

untersuchen wir, ob große Sprachmodelle (englisch: large language models, kurz: LLMs) für

die Bewältigung dieser Herausforderungen geeignet sind und präsentieren Methoden, um sie

effektiv an Domänen-Anforderungen anzupassen.

Zunächst untersuchen wir die zugrundeliegende Funktionalität und die Fähigkeiten der

Modelle und zeigen, worin deren Vorteile gegenüber bisherigen NLP-Algorithmen für spezial-

isierte Domänen bestehen. Hierzu analysieren wir typische Fehlerquellen und identifizieren

mögliche Verbesserungen durch LLMs. Daraufhin werfen wir einen genaueren Blick auf die

Prozesse innerhalb Transformer-basierter Sprachmodelle, um deren Funktionsweise besser zu

verstehen. Unsere Analyse zeigt, dass die Schichten der Modelle verschiedene Dimensionen

des Inputtextes enkodieren. Die kontextualisierte Vektorrepräsentation und das generelle

Sprachwissen, das beim Vortrainieren gelernt wurde, sind dabei besonders vorteilhaft für

das Lösen komplexer mehrschrittiger Tasks, die in spezialisierten Domänen üblich sind.

Basierend auf diesen Ergebnissen schlagen wir Lösungen für die weitere Anpassung von

LLMs an domänenspezifische Anforderungen vor. Wir konzentrieren uns auf die klinische

Domäne, die viele typische Herausforderungen spezialisierter Domänen zeigt. Wir integri-

eren verschiedene domänenspezifische Ressourcen in unsere Modelle und zeigen, dass sich

hierdurch deren Generalisierbarkeit verbessert. Des Weiteren analysieren wir das Verhal-

ten der Modelle bezüglich verschiedener Inputs und führen ein Test-Framework ein, das als

Werkzeug für die Kommunikation mit Domänenexperten dienen kann. Abschließend stellen

wir einen Ansatz vor, um die Vorteile von LLMs zu nutzen und gleichzeitig Anforderungen

wie Interpretierbarkeit und Modularität zu erfüllen. Die vorgestellten Lösungen zeigen Leis-

tungsverbesserungen auf Benchmark-Datensätzen und in manuell durchgeführten Analysen

mit medizinischem Fachpersonal.

Unsere Arbeit bietet hiermit sowohl neue Einblicke in die Funktionalität von

vortrainierten Sprachmodellen als auch verschiedene Methoden zur Modellanpassung,

die zeigen, wie LLMs als effektives Werkzeug in spezialisierten Domänen genutzt

werden können.

Schlagwörter: Automatisierte Sprachverarbeitung, Sprachmodelle, Textklassifikation,

Domänenanpassung, Erklärbarkeit
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How Does BERT Answer Questions? A Layer-Wise Analysis of Trans-
former Representations. ACM International Conference on Information
and Knowledge Management (CIKM), 2019. (Full Paper) [van Aken
et al., 2019]

• Betty van Aken, Benjamin Winter, Felix A. Gers and Alexander Löser.
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Bressem, Felix Gers, Felix Biessmann, Alexander Löser. Conformal Pro-
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1
Introduction

1.1 Motivation

Natural language processing (NLP) has become a part of our daily lives: NLP systems
translate texts, search the web based on our queries, and grammar-check emails. In
recent years, particular progress has been made with systems based on Deep Learning.
Such systems learn patterns typically from a large number of data points. Since such
large datasets do not exist for many tasks and domains, recent NLP research and
application have strongly benefitted from the paradigm of Transfer Learning [Ruder
et al., 2019]. Here, the idea is to (pre-)train models on large text corpora and transfer
the learned parameters to domains or tasks with fewer available data. Since most
textual data sources are unlabeled, pre-training these models is usually done in a
self-supervised fashion by introducing auxiliary tasks. Language modeling, which is
one of these tasks, has been shown to be especially effective for Transfer Learning
[Devlin et al., 2019]. In this dissertation, we examine the abilities of the resulting
pre-trained language models and present different approaches to adapting them to
specialized domains.

The last years have shown progress in NLP in both general and domain-specific
languages. However, the application in highly specialized domains, such as the clini-
cal domain, still involves many challenges. Specialized domains are characterized by
highly trained professionals with domain expertise that far exceeds common knowl-
edge. Because these trained professionals are usually rare and their time limited,
supporting their work with automated systems that improve efficiency is highly de-
sirable. In this dissertation, we show directions on how to utilize large language
models for this purpose.

1



CHAPTER 1. INTRODUCTION 2

1.1.1 NLP for Specialized Domains

One attribute of specialized domains is their highly educated and specialized work-
force. The last two decades have shown many efforts for digitalization in domains
such as the clinical or legal domain. A large amount of this data consists of unstruc-
tured textual documents, such as patient progress notes, as part of Electronic Health
Records (EHR). The automatic processing of these documents holds great potential:
Work can be made more efficient by sharing experiences faster and more precisely
and by therefore enhancing decision-making processes.

However, domain-specific text resources are often more difficult to process due to
a number of challenges they pose to NLP systems:

1. Distinct language and vocabulary Language in specialized domains usually
follows distributions that differ strongly from those of general language. This
includes syntactical patterns but also the use of specialized vocabulary. Beyond
that, we see a difference in the semantics of used words and phrases. For
example, the phrase “information” is frequently used in general language but
has a different and specific meaning in the legal domain, where it stands for
“a formal criminal charge made by a prosecutor” (see Black’s Law Dictionary
[Garner, 2014]). These differences in syntactical and semantic distributions
make the transfer to specialized domains challenging.

2. Domain knowledge not fully represented in data One of the characteris-
tics of specialized domains is the requirement for extensive training of domain
professionals. Their knowledge and experience in the field are a substantial
part of their everyday work. Some of these are transferred into the documents
produced during their work and, therefore, learnable by automatic systems.
However, a large amount of the acquired domain knowledge is not accessible in
this way. Thus, when supporting the work of domain professionals with NLP
systems, we often need to additionally incorporate knowledge from multiple
sources beyond labeled task data. Additional data sources can also appear in
modalities different from text, such as images, tables, or audio. For example,
in the clinical domain, such data might include medical scans, audio recordings
from doctors or patients, and tabular lab results.

3. Lack of shareable data / Data silos In contrast to data in general domains,
we often see a lack of shareable data in specialized domains. This can be caused
by privacy regulations but also by the business value that companies attribute
to their collected data. However, such data silos within institutions hinder the
transferability of models and collective knowledge in many fields and pose a
challenge to NLP systems dependent on extensive and variant data sources.

4. Need for explainable solutions Models trained to solve tasks in specialized
domains are often required to learn complex patterns. For state-of-the-art mod-
els based on Deep Learning, these learned patterns are usually opaque both to
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the end user and the model creator. This poses problems to more sensitive use
cases in which decisions have a large impact. Here, higher levels of trust are
needed to ensure the models follow the correct patterns and to prevent the so-
called “Clever Hans effect” [Heinzerling, 2020] in which performance is wrongly
attributed to assumed abilities of the model. Therefore, explaining model pre-
dictions and understanding model behavior becomes very important in these
high stakes settings [Rudin, 2019].

1.1.2 Large Language Models for Adaptive Text
Representations

Today’s NLP systems are mostly based on distributed vector representations of text.
Finding text representations that incorporate syntactical and semantic meaning is at
the core of building functioning NLP systems. Following the paradigm of Transfer
Learning, recent research has shown that well-formed text representations can be
shared to solve a variety of downstream tasks [Howard and Ruder, 2018]. Most
recent and popular approaches to so-called universal text representations are based
on pre-trained large language models.

The objective of neural language modeling was first introduced by Bengio et al.
[2003]. It incorporates the idea that distributions of words, or tokens, describe essen-
tial parts of a language. By learning these distributions, language models are able to
represent both paradigmatic and syntagmatic relations [Sahlgren, 2008].

Our vision is to utilize such large language models as adaptive text representa-
tions. These representations contain information about general language and should
be shapeable to domain-specific language and different task definitions. Many of
such tasks require the incorporation of domain knowledge from multiple data sources
(e.g. ontologies). We are searching for ways to include such domain data—coming in
various shapes—into pre-trained language models without losing previously acquired
knowledge, described as catastrophic forgetting [McCloskey and Cohen, 1989].

We further need to be aware that LLMs are not always able to fully solve domain-
and task-specific requirements. In many cases, we have to understand them as build-
ing blocks for more complex systems that we can shape depending on the domain
and task at hand. Understanding how LLMs can be adapted to function as building
blocks within such systems is one objective of this dissertation.

We divide our research addressing the vision of adaptable text representations
from LLMs into two parts. First, we explore how large language models can be
beneficial in the scenario of highly domain-specific text. To achieve this, we first eval-
uate common error classes of prior approaches and then analyze how LLMs produce
text representations that can circumvent such errors. The second part considers the
adaptation of LLMs to specialized domains. In particular, we look at the clinical
domain, which incorporates many typical characteristics of specialized domains. To
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this regard, we examine how NLP systems based on LLMs can be adapted to the
clinical language and domain-specific requirements.

1.2 Research Questions

Our goal is to understand how large language models work (explore) and what is
needed to apply them to text resources within specialized domains (adapt). With
these objectives, we pose the following research questions (RQ):

RQ1: What are common errors of machine learning models in specialized
domains? How can large language models help to address them?

To understand the usefulness of LLMs in specialized domains, we first have to
analyze where previous models are failing. There is a variety of deep and shallow
machine learning approaches that can be used for text classification or further NLP
tasks in specialized domains. Since they function differently, we assume that they
have different strengths and weaknesses. Understanding the error classes that all of
these approaches share is a requirement to see the gaps that LLMs can potentially
fill to move the field forward.

RQ2: How do large language models process information throughout their
layers?

Related work (e.g. Devlin et al. [2019]) has shown that LLMs outperform previ-
ous deep learning approaches by large margins on a variety of tasks. However, before
applying them to sensitive use cases, we require a better understanding of the inner
workings of these models. Since LLMs transform input text through multiple layers
to form a final representation, we expect that those layers are responsible for different
aspects of the text representation. Analyzing how information is stored and processed
throughout the layers of LLMs helps us to understand which adaptations are required
for using these models in domain-specific scenarios.

RQ3: How can we incorporate domain-specific knowledge into LLMs in
the clinical domain?

Pre-trained LLMs follow the paradigm of Transfer Learning. We expect the infor-
mation about general language use that is encoded within these models to be beneficial
for application in specialized domains. However, since domain-specific information
is missing from most pre-training corpora, we need to find ways to incorporate such
knowledge for use in specialized domains. We require strategies that preserve the
base knowledge encoded within pre-trained models while adapting to the differences
in language and tasks of domain-specific settings. In this dissertation, we especially
focus on the clinical domain and ways to incorporate clinical knowledge from different
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sources into the models. These sources include medical ontologies and scientific arti-
cles that contain verified medical findings to complement information from individual
patient cases.

RQ4: How can we make large language models more transparent to serve
domain requirements?

As described in 1.1.1, specialized domains hold multiple challenges for NLP that
can differ depending on specific use cases. To use the benefits that large language
models provide for language processing, we need to integrate them into systems that
meet such domain-specific requirements. One requirement which is ubiquitous in
specialized domains is the transparency of models and their predictions. Since this
is not inherent to LLMs, that usually work as black boxes, we especially aim to
find ways to incorporate them into more interpretable systems. Further, we study
different ways of communicating the behavior and the abilities of LLM-based systems
to domain experts.

1.3 Contributions

In this dissertation, we approach the challenges of NLP for specialized domains by
adapting large language models to domain-specific requirements. To achieve this, we
first explore their abilities and then show how to adapt LLMs to the clinical domain.
The clinical text domain serves as a representative for specialized domains in our work
as it comprises all specified challenges of such domains. We present the outcomes
of our research through the following contributions divided into an exploration and
adaptation part:

1.3.1 Exploration

The first contributions in this dissertation address research questions 1 and 2 and
help to gain a deeper understanding of the abilities and inner workings of LLMs.

Challenges for Domain-Specific Text Representations

• We compare a range of shallow and deep learning classifiers to a domain-specific
multi-label dataset of more than 200,000 user comments. Each classifier, such
as Logistic Regression, bidirectional Recurrent Neural Networks (RNN), and
Convolutional Neural Networks (CNN) is meant to tackle specific challenges for
domain-specific text classification. We apply the same classifiers to a second
dataset of Tweets to validate our results on a different domain.

• We compare the classifiers’ predictions and show that they make different errors
measured by Pearson correlation coefficients and F1 scores. With the goal of
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creating an optimal combination of all approaches, we propose an ensemble that
outperforms all individual classifiers.

• We perform a detailed error analysis on the results of the ensemble. The analy-
sis highlights common errors in all evaluated approaches. It further shows which
characteristics of pre-trained large language models are missing from these pre-
vious approaches.

A Layer-Wise Analysis of Transformer Representations (VisBERT)

• We analyze the abilities within layers of large language models and show how
they are impacted by fine-tuning. To that end, we apply a set of NLP probing
tasks to each layer of pre-trained and fine-tuned BERT models.

• We show that the text transformations go through similar phases, even if fine-
tuned on different tasks. Information about general language properties is en-
coded in earlier layers and implicitly used to solve the downstream task at hand
in later layers.

• We further present a layer-wise visualization of token representations that re-
veals information about the internal state of the networks. We release this
visualization as an interactive online tool that allows users to identify the dif-
ferent phases of text representations within LLMs. The tool is available at
https://visbert.demo.datexis.com.

• The code to all conducted experiments is available under Apache License 2.0 at
https://github.com/bvanaken/explain-BERT-QA.

1.3.2 Adaptation

The following contributions concern the adaptation of LLMs to the domain of clinical
text. Hereby, we address research questions 3 and 4 and show how to apply and adapt
large language models to domain-specific tasks.

Language Models for Clinical Assertion Detection

• We evaluate medical language models on Assertion Detection in clinical notes
and show that they clearly outperform previous baselines. We further study the
transferability of such models to clinical text from other medical areas.

• We manually annotate 5,000 assertions for the MIMIC-III Clinical Database
[Johnson et al., 2016]. We release the annotations to the research community
to tackle the problem of label sparsity and the lack of diversity in existing data.

https://visbert.demo.datexis.com
https://github.com/bvanaken/explain-BERT-QA
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• We conduct an error analysis to understand the capabilities of the best-performing
model on the task and to reveal directions for improvement.

• We make our system publicly available as a web application to allow further
analyses at https://ehr-assertion-detection.demo.datexis.com.

• All annotations and the experimental code are available under Apache License
2.0 at https://github.com/bvanaken/clinical-assertion-data. The model weights
are released at https://huggingface.co/bvanaken/clinical-assertion-negation-bert.

CORe: Adapting LLMs to Clinical Outcome Prediction

• We present a novel task setup for clinical outcome prediction that simulates the
patient’s admission state and predicts the outcome of the current admission.

• We introduce self-supervised clinical outcome pre-training, which integrates
knowledge about patient outcomes into existing language models.

• We further propose a method that injects hierarchical signals from medical
coding ontologies into the models.

• We compare our approaches against multiple baselines and show that they im-
prove performance on four relevant outcome prediction tasks with up to 1,266
classes. We show that the models are transferable by applying them to a second
public dataset without additional fine-tuning.

• We present a detailed analysis of our model that includes a manual evaluation
of samples conducted by medical professionals.

• The strengths and weaknesses of our model are demonstrated in an online ap-
plication available at https://outcome-prediction.demo.datexis.com.

• The code to all experiments is available under Apache License 2.0 at
https://github.com/bvanaken/clinical-outcome-prediction. We further release
the model weights produced with the presented outcome pre-training approach
at https://huggingface.co/bvanaken/CORe-clinical-outcome-biobert-v1.

Behavioral Testing of Clinical Language Models

• We introduce a behavioral testing framework specifically for clinical NLP mod-
els. The framework is intended for the evaluation of LLM behavior regarding
certain patient descriptions in clinical notes.

• We present an analysis of the patient characteristics gender, age, and ethnicity
to understand the sensitivity of models regarding textual cues identifying these
groups and whether their predictions are medically plausible.

https://ehr-assertion-detection.demo.datexis.com
https://github.com/bvanaken/clinical-assertion-data
https://huggingface.co/bvanaken/clinical-assertion-negation-bert
https://outcome-prediction.demo.datexis.com
https://github.com/bvanaken/clinical-outcome-prediction
https://huggingface.co/bvanaken/CORe-clinical-outcome-biobert-v1
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• We show the results of three state-of-the-art clinical NLP models and find that
model behavior strongly varies depending on the applied pre-training. We fur-
ther show that highly optimized models tend to overestimate the effect of certain
patient characteristics leading to potentially harmful behavior.

• We release the code for applying and extending the framework to enable in-
depth evaluations by researchers and practitioners. It is available under Apache
License 2.0 at https://github.com/bvanaken/clinical-behavioral-testing.

ProtoPatient: Interpretable Diagnosis Prediction Using Prototypical Net-
works and LLMs

• We introduce a novel model architecture that enables interpretable diagnosis
prediction. The architecture is based on LLMs, prototypical networks, and
label-wise attention. The system learns relevant parts in the text and points
towards prototypical patients that have led to a certain decision.

• We compare our model against several state-of-the-art baselines and show that
it outperforms earlier approaches. Performance gains are especially visible in
rare diagnoses.

• We further evaluate the explanations provided by our model. The quantitative
results indicate that our model produces explanations that are more faithful to
its inner workings than post-hoc explanations. A manual analysis conducted by
medical doctors further shows the helpfulness of prototypical patients during
clinical decision-making.

• We publish an interactive demo application showcasing the benefits of the ex-
plainable ProtoPatient approach at https://protopatient.demo.datexis.com.

• We release the code for the model and experiments for reproducibility under
Apache License 2.0 at https://github.com/bvanaken/ProtoPatient.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2, we discuss existing work that lays the foundation for the concepts
described in this dissertation. We first give an overview of the development of text
representations that lead to today’s wide application of language models for this
purpose. Secondly, we provide an introduction to how LLMs are applied for text
classification, which is one of the fundamental tasks of NLP, and the basis for most
systems discussed in this dissertation.

https://github.com/bvanaken/clinical-behavioral-testing
https://protopatient.demo.datexis.com
https://github.com/bvanaken/ProtoPatient
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The following chapters (Chapter 3 - 8) provide detailed descriptions of our re-
search. We divide our work into two parts: exploring large language models and
adaptation to specialized domains. Besides presenting experimental details and re-
sults, we also focus on analyzing errors in the presented approaches to highlight both
strengths and weaknesses and to give suggestions for future research.

In the first part, we take a closer look at why large language models provide
a promising direction for domain-specific NLP. Chapter 3 discusses common error
classes of previous methods, while Chapter 4 analyzes the inner functionality of LLMs
and how they are able to solve some of the discussed errors.

The second part focuses on the adaptation of LLMs to the clinical domain. In
Chapter 5, we describe how domain-specific LLMs can be beneficial to the task of
clinical assertion detection. Chapter 6 then presents two novel self-supervised adap-
tation strategies for improved alignment of language models to the domain-specific
clinical outcome prediction task.

In Chapter 7, we present a framework for analyzing domain-specific characteristics
of our models. Results from applying this framework to LLMs indicate the need for
more transparent systems to fulfill domain requirements. Chapter 8 then proposes
a system that provides enhanced transparency by combining prototypical networks
with LLMs and label-wise attention. A manual analysis with medical doctors confirms
that this interpretable system is beneficial to the domain-specific use case.

Chapter 9.1 gives a summary of this dissertation and relates the results to the
research questions posed in Section 1.2.

Finally, in Chapter 9.3 we give an outlook on future work concerning the ap-
plication and adaptation of large language models. In this regard, we discuss the
integration of further modalities and languages into LLMs. We further address the
issue of resource consumption, which will become even more urgent in the coming
years, and highlight promising research directions for more efficient use of LLMs.





2
Background

In this chapter, we discuss the foundations of neural text representations, and how
large language models evolved as the leading paradigm for representing information
stored in textual documents. We further describe how large language models are ap-
plied as building blocks for text classification, an essential task for many applications
in specialized domains. Note that we introduce related background work regarding
domain-specific NLP tasks and requirements individually in the respective chapters
of this dissertation.

2.1 Evolution of Text Representations

The statistical models we use to process documents in natural language require nu-
merical inputs. Therefore, a fundamental question in NLP is how to represent words
(or tokens) as numbers. The chosen representation has a large impact on the capa-
bilities of our models, as it determines the information density of our input. The way
documents are represented in numbers has strongly shifted within the last decade.
This section will give an overview of the development of text representations leading
to the current wide use of language models.

2.1.1 Distributional Semantics

The field of distributional semantics addresses the question of how to incorporate
meaning of linguistic elements, such as words and phrases, into generalized numerical
representations [Turney and Pantel, 2010]. However, Harris [1954] points out that
there is no “single or central meaning” to these linguistic elements. In this regard,
distributional semantics is based on the idea of Wittgenstein and Anscombe [1953]
that “meaning is use” and that, therefore, the meaning of a word can be derived from
how it is used, i.e., its distribution within a language. The core of the distributional

11
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hypothesis is then based on the correlation between semantic similarity and distribu-
tional similarity described by Harris. This is further specified by Firth [1957], who
stated that a word is characterized “by the company it keeps”.

Given that we can calculate the distributional similarity of words and other lin-
guistic elements, the distributional hypothesis allows using the results to estimate
semantic similarity [Sahlgren, 2008]. In the following, we describe approaches that
use this distributional hypothesis for creating numerical representations from text.

2.1.2 Bag of Words and TF-IDF

Following the concept of distributional semantics, the bag of words (BOW) vector
space model represents text documents by their word occurrences. In the resulting
vector space, we can determine the semantic similarity of two texts by measuring the
distance between their vectors. The BOW approach uses a term-document matrix
to build vector representations from a corpus D of text documents. Each row cor-
responds to a unique term t, e.g. a word, and each column to a document d in the
corpus. The frequency f of terms in a document then determines the values of the
matrix elements. The considered terms, i.e., the vocabulary, can be chosen accord-
ing to the use case, e.g., all terms occurring in the corpus, the most common ones,
or specific words of interest. A row in the matrix then corresponds to the vector
representation of one text document.

Extensions to the BOW model use different weightings of the terms depending
on their importance in the document. The most common approach, called TF-IDF,
gives higher scores to terms that are more distinct within a corpus and are, therefore,
better representatives of a document. Here, in addition to the term frequency (TF),
we calculate the inverse term frequency (IDF) [Jones, 2004] considering the full corpus.
The document vectors are then constructed with TF-IDF values per term.

TF (t, d) =
ft,d∑

t′∈d ft′,d
(2.1)

IDF (t,D) = log
|D|

|{d ∈ D : t ∈ d}|+ 1
(2.2)

TF -IDF (t, d,D) = TF (t, d) · IDF (t,D) (2.3)

One problem with these approaches is the sparseness of the vector representations.
Since the word distribution in natural language follows Zipf’s law [Zipf, 1949], the
resulting count-based vectors from natural language documents commonly have a
large number of zero entries, or, alternatively, the used vocabulary needs to be strongly
restricted to reduce sparseness. In addition to that, both BOW and TF-IDF do not
encode information about word meanings and their relationships.
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Figure 2.1. Schema of skip-gram and CBOW algorithm. Figure from Mikolov et al.
[2013].

2.1.3 Dense Word Embeddings

The one- or multi-hot encodings of the BOW-based vector space model produce sparse
vectors. This leads to computation overhead and less efficient parameter usage in the
subsequent models. Further, the count-based representations do not encode word
meaning and therefore lack important signals about similarities and relationships.
These shortcomings lead to research towards dense word embeddings that are com-
putationally efficient and incorporate the semantics of words.

An approach that fulfills both these needs is the use of predictive embedding
models. The idea is to use a neural network to determine the embeddings of each word
based on an auxiliary prediction task. Mikolov et al. [2013] introduced Word2Vec for
calculating dense word embeddings, which has become the prevalent technique due to
its simplicity and efficiency. Word2Vec incorporates two architectures, the skip-gram
model and the continuous bag of words (CBOW) model. However, the underlying
principle is similar in that a model is trained to predict which words occur in a
certain context. The Word2Vec approach thus follows the idea of the distributional
hypothesis and translates it into training objectives for neural networks.

Given a word wt, the objective of skip-gram is to maximize the log-likelihood (L)
of all surrounding context words Ct. The context window of considered surrounding
words is variable.

Lskip-gram =
T∑
t=1

∑
c∈Ct

log p(wc|wt) (2.4)
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The CBOW architecture follows a similar objective. However, here the task is to
predict wt, given the sum (bag) of surrounding context words Ct. Figure 2.1 illustrates
both algorithms.

Mikolov et al. [2013] train a neural network with a single hidden layer on this
task. The dense word embeddings can then be retrieved from the hidden states of
the trained network. In accordance with the objective, words that occur in similar
contexts will have similar dense word embeddings, which thus encode paradigmatic
relationships.

An extension to the Word2Vec approaches was introduced by Bojanowski et al.
[2017]. Their algorithm called FastText introduced sub-words as an addition to the
word representations. Here, the full representation of a word is calculated as the
average of all of its character n-grams. This allows the incorporation of morphology
and reduces the problem of out-of-vocabulary words.

2.1.4 Contextualized Word Embeddings

Word embeddings based on pre-trained models, such as Word2Vec, presented large
improvements in representing semantic information about words in an efficient way.
However, static word embeddings that work in the manner of a lookup table also
show weaknesses:

• Ambiguous words Static word embeddings cannot handle the ambiguousness
of words because they only allow one vector for each word in a vocabulary.
Especially if one word meaning is predominant, the resulting word embedding
will mainly reflect the most frequent meaning and fail to capture others.

• Negation It is difficult to model negation in this setup. Since the representation
of the word “great” is unchanged even if there is a preceding negation, the phrase
“this is not great” will be strongly influenced by the positive representation of
the word “great”.

• Out-of-vocabulary words Words that are not part of the selected training
vocabulary are usually assigned with a generic representation. However, hu-
mans are capable of inferring some information about words from context, even
though a word is unknown. For example, the sentence “she took the [unkown]
out of the shelf and cut it into two halves” already gives clues about the seman-
tics of the unknown word.

Tackling these deficiencies, the idea of contextualized word embeddings is to incor-
porate the local and global context of words when defining their vector representation.
To this end, Peters et al. [2018] propose Embeddings from Language Models (ELMo)
to enhance word representations with document-level context information.
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Their work is built upon the concept of language modeling, first proposed by Shan-
non [1948]. Language models are trained to predict the next element of a language
sequence, which can be a character, (sub-word) token, or word. Bengio et al. [2003]
introduced neural probabilistic language modeling using neural networks. Here, the
goal was to learn distributed word representations jointly with a probability function
for sequences of words.

Peters et al. [2018] use a similar language modeling objective but extend it with a
recurrent network architecture that uses character-level input, bidirectional document
context, and multiple hidden layers. Further, they focussed their setup on the creation
of contextualized word embeddings for improving the performance of downstream
tasks. The training objective for ELMo is to maximize the log-likelihood of a token
tk within a sequence s = (t1, . . . tN) considering its left and right context.

LELMo =
N∑
k=1

(
log p(tk|t1...tk−1; Θx,ΘLSTM→,Θs)

+ log p(tk|tk+1...tN ; Θx,ΘLSTM←,Θs)
)

where param x is the jointly learned character-based token representation, Θs is the
final softmax layer, and ΘLSTM→/← describe the parameters of a Recurrent Neural
Network (RNN) with Long Short-Term Memory (LSTM) [Hochreiter and Schmid-
huber, 1997] layers going in both directions. See 3.4.2 for an introduction to LSTM
models.

The resulting contextualized word embeddings are then calculated using the hid-
den states h of the RNN with task-specific weights γ and s.

ELMotaskk = γtask
∑
j=1

staskj hk,j (2.5)

where k is the token index, and j is the hidden layer index. After training, the
parameters of the model are frozen and can be used to produce contextualized em-
beddings. This is done by placing ELMo layers underneath common neural network
architectures, replacing static word embeddings such as those produced by Word2Vec.
In contrast to static embeddings, ELMo vectors cannot be pre-computed due to their
context dependency and are calculated individually for each input. This computa-
tional overhead is, however, compensated by significant performance improvements
on various downstream tasks such as Question Answering, Semantic Role Labeling,
and Named Entity Extraction.

The RNN-based architecture of ELMo has the disadvantage of sequential com-
putation, which precludes parallelization. Therefore, the Transformer architecture,
mostly composed of attention modules and introduced by Vaswani et al. [2017] has
replaced RNN-based language models in recent years. We give an overview of the
Transformer architecture in Section 2.2.1.
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Figure 2.2. Training steps in ULMFit. Figure from Howard and Ruder [2018].

2.1.5 Pre-trained Language Models

The idea to use neural networks for transferring knowledge from a source (usually a
large unlabeled corpus) to a target task is known as Neural Transfer Learning [Ruder
et al., 2019]. While Word2Vec and ELMo are also based on this paradigm, their
focus was mainly on the creation of word embeddings. Howard and Ruder [2018]
introduced a more extensive setting in which all network parameters are used to
transfer knowledge. They proposed a three-staged setup (see Figure 2.2):

1. LM pre-training: A model is pre-trained on general-domain text with a lan-
guage modeling objective.

2. LM fine-tuning: The model is further trained on language modeling on
domain- or task-specific data.

3. Classifier fine-tuning: A classification head is added to the pre-trained model.
The parameters of the classifier are fine-tuned jointly with gradually unfrozen
parameters of the language model layers. This final fine-tuning step is done on
labeled data from the downstream task.

They showed that this setup outperforms state-of-the-art approaches on multiple
text classification tasks and especially reduces the number of required labeled training
samples.

The concept of sequential transfer learning was picked up by Devlin et al. [2019],
who introduced Bidirectional Encoder Representations from Transformers (BERT).
Instead of the left-to-right approach of language modeling used in previous work [Pe-
ters et al., 2018, Brown et al., 2020], they introduced masked language modeling as
pre-training objective, which allows bidirectional language modeling. They addition-
ally use a next sentence prediction task for pre-training.

With BERT, the authors presented a pre-trained language model producing con-
textualized document encodings that showed to be beneficial to a large number of
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Model Parameters Dataset Size

BERT [Devlin et al., 2019] 3.4E+0.8 16GB
DistilBERT [Sanh et al., 2019] 6.60E+07 16GB
ALBERT [Lan et al., 2020] 2.23E+08 16GB
XLNet (Large) [Yang et al., 2019] 3.40E+08 126GB
RoBERTa (Large) [Liu et al., 2019c] 3.55E+08 161GB
MegatronLM [Shoeybi et al., 2019] 8.30E+09 174GB
T5-11B [Raffel et al., 2020] 1.10E+10 745GB
Turing-NLG [Rosset, 2020] 1.70E+10 174GB
GPT-3 [Brown et al., 2020] 1.75E+11 570GB
GShard [Lepikhin et al., 2021] 6.00E+11 -
Switch-C [Fedus et al., 2022] 1.57E+12 745GB
OPT-175B [Zhang et al., 2022] 1.75E+11 800 GB
BLOOM [Scao et al., 2022] 1.76E+11 1.6TB
PaLM [Chowdhery et al., 2022] 5.40E+11 3.5TB

Table 2.1. Recent large language models with increasing scale regarding parameters
and dataset size. Table adapted from [Bender et al., 2021].

NLP tasks. Due to these performance improvements and its accessibility (the model
is publicly available, and application to new tasks is straightforward), BERT quickly
became state-of-the-art in many NLP domains and tasks.

The past years have also shown a multitude of BERT variants pre-trained on
different domains such as the biomedical [Lee et al., 2020], the legal [Chalkidis et al.,
2020], and financial [Araci, 2019]. These domain-specific models usually achieve better
results in related tasks than the base model, this appears to be amplified when the
models use domain-specific tokenization [Gu et al., 2022]. The cross-institutional
sharing of pre-trained BERT-based models through projects such as the Hugging Face
model hub1 was especially important for specialized domains in which the number of
labeled data points is often restricted, making pre-trained language models especially
beneficial.

2.1.6 Scaling Language Models

Devlin et al. [2019] showed that scaling up the BERT model leads to significant
performance improvements also for small-scale tasks. While increasing the number
of model parameters of LSTM-based models did not lead to steady performance in-
creases [Melamud et al., 2016], language models based on the Transformer architecture
were found to widely share this characteristic (e.g. [Devlin et al., 2019, Brown et al.,

1URL to Hugging Face model hub: https://huggingface.co/models

https://huggingface.co/models
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2020, Shoeybi et al., 2019]). Following these findings, the last years have produced a
number of Transformer-based BERT successors with ever-growing scale.

Scaling in these scenarios can refer to different variables but often include both the
size of the models, usually measured in the number of learnable parameters, and the
amount of training data used. Since more parameters require more data for successful
training [Zhang et al., 2021a], scaling often considers both the increase of parameters
and training data. This is shown in Table 2.1, which lists a number of recent language
model releases with a growing number of parameters and dataset sizes.

While scaling language models leads to performance increases on many NLP
benchmarks (e.g. the GLUE benchmark [Wang et al., 2019]), there are also down-
sides to the constant increase in scale. Those include increasing environmental costs
[Strubell et al., 2019, Schwartz et al., 2020] and the exclusion of research groups that
are equipped with fewer resources. Datasets can also become too large for proper
curation leading to the reproduction of harmful content and biases [Bender et al.,
2021]. In Chapter 9.3.2 we discuss directions for the efficient use of large language
models, which might counteract some of these problems.

Recent developments of generative models that produce coherent text, such as
GPT-3 [Brown et al., 2020] and ChatGPT [OpenAI, 2022], bring a new spotlight to
extremely large language models. In this dissertation, we focus on language models
applied to text classification setups since they currently play a more important role
for the use in specialized domains. However, in the coming years, generative models
might become more prevalent in typical classification settings (see e.g. [Puri and
Catanzaro, 2019]).

2.2 Text Classification Using Large Language

Models (LLMs)

In this section, we give an introduction to text classification with large language mod-
els, in particular with Transformer-based LLMs, which have shown to be successful for
various downstream tasks. We first describe the architecture of Transformer encoders
and how they incorporate document-wise context into their encodings. Secondly, we
discuss task-specific fine-tuning, which is an essential part of the language model
adaptations we later examine in this dissertation.

2.2.1 Transformer Encoders

The original Transformer architecture, as proposed by Vaswani et al. [2017], consists of
an encoder and a decoder component. This allows for modeling sequence-to-sequence
tasks such as translation. For text classification, as Devlin et al. [2019] show, only
the encoder part of the Transformer is required. We follow this setup in the majority
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Figure 2.3. Schematic view of the Transformer encoder. Figure from Vaswani et al.
[2017].

of work presented in this dissertation and introduce its details in the following.

The Transformer encoder, illustrated in Figure 2.3, is composed of N layers (De-
vlin et al. [2019] choose N = 6 for BERT base and N = 12 for BERT large). Each
layer contains a multi-head self-attention block and a feed-forward network, with
residual connections [He et al., 2016] and layer normalization [Ba et al., 2016] after
each part.

Self-attention block. The Transformer does not use recurrent connections as
found in LSTMs [Hochreiter and Schmidhuber, 1997] and other recurrent neural net-
works. Instead, it models relationships between tokens in a pairwise manner via
self-attention. The concept of Attention was introduced by Bahdanau et al. [2015]
for the task of Neural Machine Translation and introduces alignment weights between
tokens of a source and a target sequence. These weights determine how much the
source tokens contribute to the representation of each target token. Self-attention
applies a similar concept to tokens within the same sequence [Parikh et al., 2016, Lin
et al., 2017]. Vaswani et al. [2017] formulated their self-attention variation as a map-
ping of queries and a set of key-value pairs to an output. The output is a weighted
sum of the values, where the weights are defined by a compatibility function of the
queries and keys. They choose a scaled dot-product as the compatibility function, so
that

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.6)

where Q, K and V are matrices of queries, keys, and values respectively and 1√
dk
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denotes the scaling factor. In the Transformer encoder Q, K and V are all constructed
from the output of the previous layer.

They further found that performing the attention mechanism multiple times in
parallel with differing linear projections allows the model to attend to information
from different representation subspaces. Therefore, they introduce multi-head at-
tention, where queries, keys, and values are constructed for each head i = 1, ..., h
individually using linear projection matrices WQ

i , WK
i , and W V

i .

Qi = WQ
i xinput (2.7)

Ki = WK
i xinput (2.8)

Vi = W V
i xinput (2.9)

headi = Attention(Qi, Ki, Vi) (2.10)

The output representations from all heads are then concatenated and multiplied
with another parameterized projection matrix WO.

MultiHeadAttention = Concat(head1, ..., headh)W
O (2.11)

Input representation. The input text for the Transformer encoder is first tok-
enized and then converted into vectors via word embeddings that are learned end-
to-end during training. For tokenization, Devlin et al. [2019] use the WordPiece
tokenizer [Schuster and Nakajima, 2012, Wu et al., 2016] which is therefore one of
the most commonly applied tokenizers for LLMs. However, there are other frequently
used tokenization methods such as Byte Pair Encoding [Sennrich et al., 2016] which is
applied for popular LLMs such as RoBERTa [Liu et al., 2019c] and GPT-2 [Radford
et al., 2019].

For applying their BERT model to different text classification tasks, Devlin et al.
[2019] propose the use of special tokens. Most importantly, they introduce [CLS]

as a special token for classifications. It is the first token of each input sequence to
BERT. The token’s final hidden state is then used as the sequence representation
for document-level classification. They further introduce the separator token ([SEP])
which indicates a separation between two parts of the text. This is required for tasks
that rely on the differentiation between parts of a text, such as Question Answering,
in which context and question are denoted using the separator token.

Transformer models do not process input text sequentially but in parallel. There-
fore, Vaswani et al. [2017] propose an additional positional encoding to preserve in-
formation on token positions within a sequence. From multiple options for positional
encodings, they choose a sinusoid function that assigns vectors to tokens depending
on their position and is shared across all samples. The positional encoding is then
added to the token embeddings as an input to the model layers. Devlin et al. [2019]
adopt the positional encoding and enhance it with segment embeddings that identify
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Figure 2.4. Illustration of the input representation for the BERT model. Figure from
Devlin et al. [2019].

two parts of an input text (as separated by the [SEP] token). The full input to their
BERT model is illustrated in Figure 2.4.

2.2.2 Task-specific Fine-tuning

Fine-tuning describes the process of adjusting a pre-trained model to a specific task
or domain. As proposed by Howard and Ruder [2018], this is done using a learning
rate that is significantly smaller than the one used during the pre-training phase in
order to prevent catastrophic forgetting [McCloskey and Cohen, 1989]. When fine-
tuning a model on a new task, such as text classification, the common approach is to
add a classification head on top of the Transformer encoder layers. The only weights
that are added are weights for the classification head. However, instead of adding
a classification head, as Devlin et al. [2019] propose, the encoder layers can also be
succeeded by more complex architectures. See our proposed ProtoPatient architec-
ture in Chapter 8 for an example of using the Transformer layers as a text encoder
building block followed by a prototypical network architecture. In both scenarios,
fine-tuning of the Transformer block is done jointly with the learning of the addi-
tional weights. Compared to pre-training, fine-tuning is relatively inexpensive since
most of the model parameters are already well-adjusted to encode syntactical and
semantic information from the input text. This makes fine-tuning of language models
on different downstream tasks (e.g. in specialized domains) especially attractive as it
allows to efficiently reuse the parameters learned during pre-training.

Prompt engineering. The scaling of recent large language models has led to their
development towards few- and zero-shot learners [Brown et al., 2020, Wei et al.,
2022]. Kojima et al. [2022], Radford et al. [2019] argue, that many tasks are inher-
ently learned by the models from the large amounts of training data they are exposed
to, which makes fine-tuning obsolete. Instead of fine-tuning models to specific tasks,
information already stored in the models can, thus, be extracted by using specific
prompts, i.e. input sequences causing the model to output results for the requested
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task. These findings have stirred a new direction of research concerning the engineer-
ing of input prompts to fulfill downstream tasks [Liu et al., 2023]. Since the involved
large language models must have a very large number of parameters to perform well
without fine-tuning, their use in specialized domains is currently limited by their re-
source consumption in addition to their black box nature and the corresponding risks
in application.

2.3 Chapter Summary

In this chapter, we introduced different approaches for representing natural language
text with numerical values. The concept of distributional semantics is leading the
efforts of the last decades towards comprehensive representations of textual informa-
tion. The incorporation of document-wide context into vector embeddings of words
and sequences significantly enhanced their expressivity. Language modeling has be-
come the state-of-the-art pre-training paradigm for the creation of such contextualized
representations. Especially when pre-trained on a large amount of textual data, the
ability of language models to efficiently encode and store information in their pa-
rameters makes them useful building blocks for tasks in specialized domains that are
often impeded by data sparsity. In the remaining of this dissertation, we explore
the abilities of such language models for different domains and tasks. We further
show how they can be adapted by task-specific fine-tuning and beyond to address
domain-specific challenges and requirements.



Part I

Exploring Large Language Models
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3
Challenges for Domain-Specific Text

Representations

As discussed in Chapter 2, the wide use of pre-trained large language models has only
evolved within the last years. The release of BERT by Devlin et al. [2019] acceler-
ated the wide adoption of this paradigm due to significant performance increases in
many downstream NLP tasks. However, since LLMs commonly work as black box
models, their underlying mechanisms and capabilities are yet to be fully understood.
This understanding is crucial for further improvement and adaptation of these mod-
els, particularly in specialized domains and for high stakes use cases. The efforts
towards analyzing abilities and inner workings of Transformer-based LLMs has been
summarized under the term BERTology [Rogers et al., 2020]. In the first part of
this dissertation, we present our contributions to this line of research with a focus on
specialized domains.

In this chapter, we start by presenting an ensemble-based method for analyzing
errors of previous state-of-the-art methods. We use this approach to highlight which
challenges are commonly faced when using pre-LLM models in specialized domains
and, thus, address research question 1: What are common errors of machine learn-
ing models in specialized domains? To this end, we take a look at the domain of
online conversations and examine automated approaches for moderation support by
detecting potentially toxic user comments.

3.1 Introduction

Keeping online conversations constructive and inclusive is a crucial task for platform
providers. Automatic classification of toxic comments, such as hate speech, threats,
and insults, can help in keeping discussions fruitful. In addition, new regulations in
certain European countries have been established enforcing to delete illegal content

24



25 3.2. RELATED WORK

within a certain time span.1

Research on the topic deals with common NLP challenges, such as long-range
dependencies or misspelled and uncommon words. Proposed solutions prior to the use
of LLMs include bidirectional Recurrent Neural Networks with attention [Pavlopoulos
et al., 2017] and the use of pre-trained static word embeddings [Badjatiya et al.,
2017]. However, most pre-existing classifiers tend to fail on the long tail of real world
data [Zhang and Luo, 2019]. For understanding the benefits of LLMs for specialized
domains, it is essential to know which challenges are already addressed by previous
state-of-the-art classifiers and for which they are error-prone.

We take two datasets into account to investigate these errors: comments on
Wikipedia Talk Pages presented by Google Jigsaw during Kaggle’s Toxic Comment
Classification Challenge2 and a Twitter dataset by Davidson et al. [2017]. These sets
include common difficulties in datasets for the task: They are labeled based on differ-
ent definitions; they include diverse language from user comments and Tweets; and
they present a multi-class and a multi-label classification task respectively.

On these datasets, we propose an ensemble of different classifiers. By analyzing
false negatives and false positives of the ensemble we collect insights about open
challenges that all of the pre-LLM approaches share.

3.2 Related Work

Task definitions. Toxic comment classification is not clearly distinguishable from
its related tasks. Besides looking at toxicity of online comments [Wulczyn et al., 2017,
Georgakopoulos et al., 2018], related research includes the investigation of hate speech
[Badjatiya et al., 2017, Burnap and Williams, 2016, Davidson et al., 2017, Gambäck
and Sikdar, 2017, Njagi et al., 2015, Schmidt and Wiegand, 2017, Vigna et al., 2017,
Warner and Hirschberg, 2012], online harassment [Yin and Davison, 2009, Golbeck
et al., 2017], abusive language [Mehdad and Tetreault, 2016, Park and Fung, 2017],
cyberbullying [Dadvar et al., 2013, Dinakar et al., 2012, Hee et al., 2015, Zhong et al.,
2016] and offensive language [Chen et al., 2012, Xiang et al., 2012]. Each field uses
different definitions for their classification, still similar methods can often be applied
to different tasks. In our work, we focus on toxic comment detection and show that
the same method can effectively be applied to a hate speech detection task.

Multi-class approaches. Besides traditional binary classification tasks, related
work considers different aspects of toxic language, such as racism [Greevy and Smeaton,
2004, Waseem, 2016, Kwok and Wang, 2013] and sexism [Waseem and Hovy, 2016,
Jha and Mamidi, 2017], or the severity of toxicity [Davidson et al., 2017, Sharma

1https://www.bbc.com/news/technology-42510868
2https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

https://www.bbc.com/news/technology-42510868
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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et al., 2018]. These tasks are framed as multi-class problems, where each sample is
labeled with exactly one class out of a set of multiple classes. The great majority of
related research considers only multi-class problems. This is remarkable, considering
that in real-world scenarios toxic comment classification can often be seen as a multi-
label problem, with user comments fulfilling different predefined criteria at the same
time. We, therefore, investigate both a multi-label dataset containing six different
forms of toxic language and a multi-class dataset containing three mutually exclusive
classes of toxic language.

Shallow classification and neural networks. Toxic comment identification is a
supervised classification task and approached by either methods including manual fea-
ture engineering [Burnap and Williams, 2015, Mehdad and Tetreault, 2016, Waseem,
2016, Davidson et al., 2017, Nobata et al., 2016, Kennedy et al., 2017, Samghabadi
et al., 2017, Robinson et al., 2018] or the use of (deep) neural networks [Ptaszynski
et al., 2017, Pavlopoulos et al., 2017, Badjatiya et al., 2017, Vigna et al., 2017, Park
and Fung, 2017, Gambäck and Sikdar, 2017]. While in the first case manually selected
features are combined into input vectors and directly used for classification, neural
network approaches are supposed to automatically learn abstract features above these
input features. Neural network approaches appear to be more effective for learning
complex patterns [Zhang and Luo, 2019], while feature-based approaches preserve
some sort of explainability. In this study, we focus on pre-LLM baselines using both
deep neural networks and shallow learners.

Ensemble learning. Burnap and Williams [2015] studied advantages of ensembles
of different classifiers. They combined results from three feature-based classifiers.
Further, the combination of results from Logistic Regression and a Neural Network has
been studied by Gao and Huang [2017], Risch and Krestel [2018]. Zimmerman et al.
[2018] investigated ensemble models with different hyper-parameters. In contrast to
their work, we combine various model architectures and different word embeddings
to understand joint errors of all approaches.

3.3 Datasets and Tasks

The task of toxic comment classification lacks a consistently labeled standard dataset
for comparative evaluation [Schmidt and Wiegand, 2017]. While there are a number
of annotated public datasets in adjacent fields, such as hate speech [Ross et al., 2017,
Gao and Huang, 2017], racism/sexism [Waseem, 2016, Waseem and Hovy, 2016] or
harassment [Golbeck et al., 2017] detection, most of them follow different definitions
for labeling and therefore often constitute different problems.
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Class # of occurrences

Clean 201,081
Toxic 21,384
Obscene 12,140
Insult 11,304
Identity Hate 2,117
Severe Toxic 1,962
Threat 689

Table 3.1. Class distribution of Wikipedia dataset. The distribution shows a strong
class imbalance.

Class # of occurrences

Offensive 19,190
Clean 4,163
Hate 1,430

Table 3.2. Class distribution of Twitter dataset. The majority class of the dataset
consists of offensive Tweets.

3.3.1 Wikipedia Talk Pages Dataset

We analyze a dataset published by Google Jigsaw in December 2017 over the course
of the Toxic Comment Classification Challenge on Kaggle. It includes 223,549 anno-
tated user comments collected from Wikipedia Talk Pages and is the largest publicly
available dataset for the task. The comments were annotated by human raters with
the six labels toxic, severe toxic, insult, threat, obscene and identity hate. Comments
can be associated with multiple classes at once, which frames the task as a multi-label
classification problem. Jigsaw has not published official definitions for the six classes,
but they do state that they defined a toxic comment as “a rude, disrespectful, or
unreasonable comment that is likely to make you leave a discussion”.3

The dataset features an unbalanced class distribution, shown in Table 3.1. 201,081
samples fall under the majority class clear matching none of the six categories,
whereas 22,468 samples belong to at least one of the other classes. While the toxic
class includes 9.6% of the samples, only 0.3% are labeled as threat, marking the
smallest class.

Comments were collected from the English Wikipedia and are mostly written in
English with some outliers, e.g., in Arabic, Chinese or German language. The domain

3https://www.perspectiveapi.com

https://www.perspectiveapi.com
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covered is not strictly locatable, due to various article topics being discussed. Still it
is possible to apply a simple categorization of comments, as follows4:

1. Community-related

Example:
“If you continue to vandalize Wikipedia, you will be blocked from editing.”

2. Article-related

Example:
“Dark Jedi Miraluka from the Mid-Rim world of Katarr, Visas Marr is the
lone surviving member of her species.”

3. Off-topic

Example:
“== I hate how my life goes today == Just kill me now. . . .”

3.3.2 Twitter Dataset

Additionally, we investigate a dataset introduced by Davidson et al. [2017]. It contains
24,783 Tweets fetched using the Twitter API and annotated by CrowdFlower workers
with the labels hate speech, offensive but not hate speech and neither offensive nor
hate speech. Table 3.2 shows the class distribution. We observe a strong bias towards
the offensive class making up 77.4% of the comments caused by sampling Tweets by
seed keywords from Hatebase.org. We choose this dataset to show that our method is
also applicable to multi-class problems and works with Tweets, which usually have a
different structure than other online user comments due to their character limitation.

3.3.3 Common Challenges

We observe three common challenges for natural language processing in both datasets:

• Long-range dependencies The toxicity of a comment often depends on ex-
pressions made in early parts of the comment. This is especially problematic
for longer comments (>50 words) where the influence of earlier parts on the
result can vanish.

• Multi-word phrases We see many occurrences of multi-word phrases in both
datasets. Our algorithms can detect their toxicity only if they can recognize
multiple words as a single (typical) hateful phrase.

4Disclaimer: This chapter contains examples that may be considered profane, vulgar, or offensive.
These contents do not reflect the views of the authors and exclusively serve to explain linguistic
research challenges.
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• Out-of-vocabulary words A common problem for the task—and in special-
ized domains in general—is the occurrence of words that are not present in the
training data. These words include slang or misspellings, but also intentionally
obfuscated content.

3.4 Methods and Ensemble

In this section, we introduce pre-LLM baseline methods which we choose with regard
to the previously introduced common challenges. We further propose our ensemble
learning approach. Its goal is to minimize errors by detecting optimal methods for a
given comment.

3.4.1 Logistic Regression

The Logistic Regression (LR) [Cox, 1958] algorithm is widely used for binary classi-
fication tasks. Unlike deep learning models, it requires manual feature engineering.
On the other hand, LR permits obtaining insights about the model, such as observed
coefficients. Previous research has investigated different features used with LR and
found that n-grams of characters and words are highly indicative features for hate
speech detection [Waseem and Hovy, 2016]. Following these findings, we choose word
and character n-grams as features for the LR models in our analysis.

3.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) interpret a document as a sequence of words or
character n-grams. Through recurrent connections the networks can obtain a memory
of previous inputs so that the output can be influenced by all prior time steps [Graves,
2012]. Training is done by using the backpropagation through time (BPTT) algorithm
[Werbos, 1990].

We use four different RNN architectures: A Long Short-Term Memory (LSTM)
[Hochreiter and Schmidhuber, 1997] model, a bidirectional LSTM, a bidirectional
Gated Recurrent Unit (GRU) [Cho et al., 2014] architecture and a bidirectional GRU
with an additional attention layer. We briefly introduce these architectures in the
following.

LSTM. A common problem faced when using RNN models is the vanishing gradient
problem [Hochreiter et al., 2001], which makes it difficult to incorporate context over
long sequences. The LSTM architecture introduced by Hochreiter and Schmidhuber
[1997] meets this problem by using multiple gating mechanisms within the units of
a network. This way, information from previous time steps can be stored, accessed,
and forgotten in a flexible way, which diminishes the problem of vanishing gradients.
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In our experiments, we use an LSTM model that takes a sequence of words as
input. The words are one-hot encoded and then fed into an embedding layer to get
dense vector representations. To increase the robustness of the model, we further
add a spatial dropout which randomly masks 10% of the input. The sequence of
word embeddings is then processed by an LSTM layer with 128 neurons, followed by
another 10% dropout. The output is fed into a dense classification layer. For the
multi-label task, this layer uses a sigmoid activation, and for the multi-class task, it
uses a softmax activation.

Bidirectional LSTM. While a standard LSTM model processes text from left
to right, bidirectional LSTMs consist of two LSTM layers that process the input
sequence in both directions—the original sequence of words and the reversed order.
The outputs of these two layers are then averaged. This way, bidirectional RNNs can
often compensate errors caused by long range dependencies.

Bidirectional GRU. Similar to LSTMs, Gated Recurrent Units [Cho et al., 2014]
were introduced to meet the problem of vanishing gradients in RNN models. Since
GRUs are made up of only two internal gates controlling the information flow (reset
and update), the authors describe them as a simpler alternative to LSTMs.

In addition to using a bidirectional LSTM network, we include a bidirectional
network using GRUs into our study to understand how these two conceptually related
approaches differ for the task. As the size for the bidirectional layers we choose 64
neurons and adopt all other parts for the GRU model from our standard LSTM.

Bidirectional GRU with attention layer. The concept of attention in combi-
nation with RNNs was introduced by Bahdanau et al. [2015]. Attention weights are
meant to learn which parts of a sequence to focus on for building an output rep-
resentation. Gao and Huang [2017] phrase that “attention mechanisms are suitable
for identifying specific small regions indicating hatefulness in long comments”. In
order to detect these small regions in our comments, we add an attention layer to our
bidirectional GRU-based network following the work of Yang et al. [2016].

3.4.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), initially used for computer vision [LeCun
et al., 1998], are made up of layers of convolution filters sliding over local features
such as words or characters. They have shown to be an effective approach for text
classification tasks [Collobert et al., 2011]. By intuition, they can detect specific
combinations of features, while RNNs can extract orderly information [Zhang and
Luo, 2019]. On character level, CNNs can potentially deal with obfuscation of words.
For our model, we choose an architecture comparable to the approach of Kim [2014].
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3.4.4 (Sub-)Word Embeddings

As described in 2.1.3 and confirmed by Zhang and Luo [2019] for the task of hate
speech detection, using word embeddings trained on large corpora can be helpful in
order to capture information that is missing from the training data.

Therefore, we apply GloVe embeddings released by [Pennington et al., 2014], that
belong to the group of pre-trained dense word embeddings, trained on a corpus of two
billion Tweets. In addition, we use sub-word embeddings as introduced by Bojanowski
et al. [2017] with the FastText tool. The approach considers substrings of a word to
infer its embedding. This is important for learning representations for misspelled,
obfuscated or abbreviated words, which are often present in online comments. We
train FastText embeddings on 95 million comments from Wikipedia Talk Pages5. To
that end, we apply the skip-gram method with a context window size of 5 and train
for 5 epochs.

3.4.5 Ensemble Learning

We expect that each of the chosen classification approaches has specific strengths
and weaknesses. We hypothesize that the networks based on LSTM and GRU layers
work well for capturing multi-word phrases and short-range contextual information,
but miss dependencies ranging over very long sentences. Bidirectionality and the
addition of attention layers can compensate such errors to a certain extent, but could
have more problems with very rare patterns. CNNs, on the contrary, might be able
to better recognize misspelled words while missing some contextual information.

For these reasons, we propose an ensemble approach, which can learn to choose
a combination of classifiers that are most capable for a specific kind of input text.
We select a number of features to distinguish different kinds of input, namely length
of text, ratio of upper cased characters, non-alphabetical characters, exclamation
marks and out-of-vocabulary words (using the GloVe vocabulary as reference). These
features are closely related to the characteristics of online user comments.

We then use the set of out-of-fold predictions from the various approaches and
train an ensemble classifier with gradient boosting decision trees [Friedman, 2001].
We perform 5-fold cross-validation on the whole setup and use the average of the
ensemble predictions on our test set for the final results.

3.5 Experimental Study

We aim to train an ensemble that chooses an optimal combination of classifiers based
on a set of comment features. Because the classifiers have different strengths and
weaknesses, we expect the ensemble to outperform each individual classifier. Based on

5https://figshare.com/articles/Wikipedia Talk Corpus/4264973

https://figshare.com/articles/Wikipedia_Talk_Corpus/4264973
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Model Wikipedia Twitter

P R F1 AUROC P R F1 AUROC
CNN (FastText) .73 .86 .776 .981 .73 .83 .775 .948
CNN (GloVe) .70 .85 .748 .979 .72 .82 .769 .945
LSTM (FastText) .71 .85 .752 .978 .73 .83 .778 .955
LSTM (GloVe) .74 .84 .777 .980 .74 .82 .781 .953
Bidirectional LSTM (FastText) .71 .86 .755 .979 .72 .84 .775 .954
Bidirectional LSTM (GloVe) .74 .84 .777 .981 .73 .85 .783 .953
Bidirectional GRU (FastText) .72 .86 .765 .981 .72 .83 .773 .955
Bidirectional GRU (GloVe) .73 .85 .772 .981 .76 .81 .784 .955
Bidirectional GRU Attention (FastText) .74 .87 .783 .983 .74 .83 .791 .958
Bidirectional GRU Attention (GloVe) .73 .87 .779 .983 .77 .82 .790 .952
Logistic Regression (char-ngrams) .74 .84 .776 .975 .73 .81 .764 .937
Logistic Regression (word-ngrams) .70 .83 .747 .962 .71 .80 .746 .933

Ensemble .74 .88 .791 .983 .76 .83 .793 .953

Table 3.3. Comparison of precision, recall, F1-measure, and AUROC on two datasets.
The results show that the ensemble outperforms the individual classifiers in F1-
measure. The strongest individual classifier on both datasets is a bidirectional GRU
network with attention layer.

results from previous experiments mentioned in Section 3.2 we expect that the state-
of-the-art models have a comparable performance and none outperforms the others
significantly. This is important because otherwise the ensemble learner constantly
prioritizes the outperforming classifier. We test the resulting ensemble on both online
comments and Tweets to understand its effectiveness regarding differing language
characteristics such as comment length and use of slang words.

3.5.1 Setup

To evaluate the performance of pre-LLM approaches on detecting toxic language, we
use the following setup: We compare six methods from Section 3.4. For the neural
network approaches we apply two different word embeddings each and for LR we use
character and word n-grams as features.

We need binary predictions to calculate precision, recall and the resulting F1-
measure. To translate the continuous sigmoid output for the multi-label task (Wikipedia
dataset) into binary labels we estimate appropriate threshold values per class. For
this purpose we perform a parameter search for the threshold to optimize the F1-
measure using the whole training set as validation. In case of the multi-class task
(Twitter dataset) the softmax layer makes the parameter search needless, because we
can simply take the label with the highest value as the predicted one.

We choose the macro-average F1 measure since it is more indicative than the
micro-average F1 for strongly unbalanced datasets [Zhang and Luo, 2019]. For the
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multi-label classification we measure macro-precision and -recall for each class sepa-
rately and average their results to get the F1-measure per classifier. The Area under
the Receiver Operating Curve (AUROC) gives us a measurement of classifier per-
formance without the need for a specific threshold. We add it to provide additional
comparability of the results.

3.5.2 Correlation Analysis

The ensemble can only be effective when models with comparable performance pro-
duce uncorrelated predictions. We, thus, measure the correlation of the predictions
of different classifiers. We look at a set of combinations, such as shallow learner
combined with a neural net, and inspect their potential for improving the overall
prediction. For measuring the disparity of two models we use the Pearson correlation
coefficient. The results are shown in Table 3.4.

3.5.3 Experimental Results

As shown in Table 3.3, our ensemble outperforms the strongest individual method on
the Wikipedia dataset by approximately one percent F1-measure. We also observe
that on both datasets the bidirectional GRU with attention approach outperforms
the other individual classifiers. This indicates that the contextualization from the
bidirectional layers amplified by the attention layer helps in detecting toxicity in user
comments.

We see that the difference in F1 between the best individual classifier and the
ensemble is higher on the Wikipedia dataset as on the Twitter dataset. This finding is
accompanied by the results in Table 3.4 which show that most classifier combinations
present a high correlation on the Twitter dataset and are, therefore, less effective on
the ensemble. An explanation for this effect is that the text sequences within the
Twitter set show less variance than the ones in the Wikipedia dataset. This might be
due to the sampling strategy based on a list of terms, the smaller size of the dataset,
and the fewer number of classes. With less variant data one selected classifier for a
type of text can be sufficient and even more efficient than an ensemble approach.

As the results in Table 3.4 show, ensembling is especially effective on the sparse
classes threat (Wikipedia) and hate (Twitter). The predictions for these two classes
have the weakest correlation. This can be especially useful for strongly imbalanced
datasets, which are common in toxic comment classification and related tasks. The
results give us further indicators for useful combinations of classifiers. Combining
the shallow learner approach with neural networks is highly effective. Contrary to
that we see that the different word embeddings used do not lead to strongly differing
predictions.
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Class F1 Pearson

Different word embeddings
GRU+G GRU+FT

W avg. .78 .78 .95
W threat .70 .69 .92
T avg. .79 .79 .96
T hate .53 .54 .94

CNN+G CNN+FT
W avg. .75 .78 .91
W threat .67 .73 .82
T avg. .77 .78 .94
T hate .49 .53 .90

Different NN architectures
CNN BiGRU Att

W avg. .78 .78 .85
W threat .73 .71 .65
T avg. .78 .79 .96
T hate .50 .49 .93

Shallow learner and NN
CNN LR char

W avg. .78 .78 .86
W threat .73 .74 .78
T avg. .78 .76 .92
T hate .50 .51 .86

BiGRU Att LR char
W avg. .78 .78 .84
W threat .71 .74 .67
T avg. .79 .76 .92
T hate .49 .51 .88

Character- and word-ngrams
LR word LR char

W avg. .75 .78 .83
W threat .70 .74 .69
T avg. .75 .77 .94
T hate .50 .51 .91

Table 3.4. F1-measures and Pearson correlations of different combinations of classi-
fiers. When the pearson score is low and F1 is similar, an ensemble performs best.
We see that this appears mostly on the Wikipedia dataset and on the respective mi-
nority classes threat and hate. W: Wikipedia dataset; T: Twitter dataset; G: GloVe
embeddings; FT: FastText embeddings; avg.: averaged; NN: Neural Networks.
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3.6 Detailed Error Analysis

The ensemble of pre-LLM classifiers still fails to reach F1 scores higher than 0.8. To
find out the remaining problems, we perform an extensive error analysis on the result
of the ensemble. This way, we can identify potential opportunities for improvements
by using LLMs.

We analyse common error classes of our ensemble based on research from Zhang
and Luo [2019], Zhang et al. [2018], Qian et al. [2018], Davidson et al. [2017], Schmidt
and Wiegand [2017], Nobata et al. [2016]. Moreover, we add additional error classes
we encountered during our manual analysis. To address deficits in both precision and
recall we inspect false negative and false positive classifications. We focus on error
classes with the highest frequency in the observed samples. The occurrence of an
error class within a comment is taken to be binary (occurs in comment or not).

We present the results on the toxic class of the Wikipedia dataset and the hate
class of the Twitter dataset. Both classes are of high significance for the task of user
comment moderation. Our ensemble results in 1794 false negatives and 1581 false
positives for the Wikipedia dataset. We choose 200 random samples out of each set
as representatives. For the smaller Twitter dataset we get 55 false negatives and 58
false positives. We perform our analysis on all of these samples.

3.6.1 Error Classes of False Negatives

Doubtful labels. We observe a high number of comments for which we question
the original label when taking the respective class definition into account. A common
occurrence is actual toxic or hateful content that is cited by the comment’s author.
Another pattern is the use of potentially toxic words within an explanation or self
reproach.

Example:
“No matter how upset you may be there is never a reason to refer to another editor
as ‘an idiot’ ”

We find that 23% of sampled comments in the false negatives of the Wikipedia
dataset do not fulfill the toxic definition in our view. Taking the hate speech definition
of the authors into account, we question 9% of the Twitter dataset samples. For the
remaining error classes we only include the comments with undoubtful labels.

Toxicity without swear words. Davidson et al. [2017] phrase the problem that
hate speech may not contain hate or swear words at all.

Example:
“she looks like a horse”
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50% of Wikipedia dataset samples have no common hate or swear word in them.
This makes it the largest error class for the Wikipedia dataset and shows that our
classifiers often fail when there are no obvious hateful words present. We observe this
in 18% of hate speech comments from the Twitter dataset. It is important to notice
that the frequency of swear words is naturally higher within this dataset, because of
its sampling method with hateful words as seeds. In many cases the problem is a lack
of paradigmatic context. Hence, improved semantic embeddings could mitigate the
problem by improving the distinction between different contexts.

Misspelled and rare words. Errors caused by rare or unknown words are reported
by Nobata et al. [2016], Zhang and Luo [2019], Qian et al. [2018]. From our obser-
vation, they include misspellings, neologisms, obfuscations, abbreviations, and slang
words. Even though some of these words appear in the embedding, their frequency
may be too low to correctly detect their meaning from the word embeddings.

Example:
“fucc nicca yu pose to be pullin up”

We find rare or unknown words in 30% of examined false negatives from the
Wikipedia dataset and in 43% of Twitter dataset samples. This also reflects the
common language on Twitter with many slang words, abbreviations and misspellings.
One option to circumvent this problem is to train embeddings on larger corpora with
even more variant language. However, since online language changes frequently, the
incorporation of context could be even more important to identify such cases.

Rhetorical questions. As pointed out by Schmidt and Wiegand [2017], it is com-
mon practice to wrap toxic statements online within rhetorical or suggestive questions.
We find a number of such comments within the false negatives.

Example:
“have you no brain?!?!”

21% of Wikipedia dataset samples and 10% of Twitter dataset samples contain
a rhetorical or suggestive question. Improved contextualization can again help to
identify this kind of comments, when signals such as the existence of question words
or exclamation marks are taken into account.

Metaphors and comparisons. Subtle metaphors and comparisons often require
understanding of implications of language or additional world knowledge. Zhang and
Luo [2019] and Schmidt and Wiegand [2017] also report this common error class.

Example:
“Who are you a sockpuppet for?”
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We only see this problem in the Wikipedia dataset samples with 16% of false
negatives impacted.

Sarcasm and irony. Nobata et al. [2016] and Qian et al. [2018] report the problem
of sarcasm for hate speech detection. As sarcasm and irony detection is a hard task
itself, it also increases difficulty of toxic comment classification, because the texts
usually state the opposite of what is really meant.

Example:
“hope you’re proud of yourself. Another milestone in idiocy.”

Sarcasm or irony appears in 11% of Wikipedia dataset samples, but in none of the
Twitter dataset samples. This error class requires a model that can learn complex
patterns since sarcasm and irony can even be misinterpreted by human readers.

3.6.2 Error Classes of False Positives

Doubtful labels. We find that 53% of false positive samples from the Wikipedia
dataset actually fall under the definition of toxic in our view, even though they are
labeled as non-toxic. Most of them contain strong hateful expressions or spam. We
identify 10% of the Twitter dataset samples to have questionable labels.

Example:
“IF YOU LOOK THIS UP UR A DUMB RUSSIAN”

The analysis shows that doubtful labels belong to one of the main reasons for a
false classification on the Wikipedia dataset, especially for false positives. The results
emphasize the importance of taking labeler agreement into account when creating a
dataset to train machine learning models. It also shows the need for clear definitions
especially for classes with high variance like toxicity. Besides that, a deficient selection
of annotators can amplify such problems as Waseem et al. [2018] point out.

Usage of swear words in false positives. Classifiers often learn that swear words
are strong indicators for toxicity in comments. This can be problematic when non-
toxic comments contain such terms. Zhang and Luo [2019] describe this problem as
dealing with non distinctive features.

Example:
“Oh, I feel like such an asshole now. Sorry, bud.”

60% of false positive Wikipedia dataset samples and 77% of Twitter dataset sam-
ples contain swear words. In this case, the context is not successfully incorporated
into the classification decision. Hence, the classifier overrates signals from the trigger
word (a swear word), rather than reacting to signals from the context, in this case, a
first person statement addressing the author themself.
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Quotations or references. We observe many cases of references to toxic or hateful
language in actual non-hateful comments.

Example:
“I deleted the Jews are dumb comment.”

In the Wikipedia dataset samples, this appears in 17% and in the Twitter dataset
in 8% of comments. Again, the classifier could not recognize the additional context
referring to typical actions within an online community, explicitly expressed with the
words “I deleted the . . . comment” in the example.

Misspelled and rare words. Rare or idiosyncratic words in non-toxic or non-
hateful comments cause problems when the classifier misinterprets their meaning or
when they are slang that is often used in toxic language.

Example:
“WTF man. Dan Whyte is Scottish”

8% of Wikipedia dataset samples include rare words. In the Twitter dataset
sample the frequency is higher with 17%, but also influenced by common Twitter
language. For this error class, our models would both benefit from additional world
knowledge and stronger contextualization.

3.6.3 Summary of Open Challenges

The error analysis on the ensemble of methods revealed open challenges for user
comment classification. We summarize them in the following and describe how they
could be met by the use of pre-trained large language models.

• Missing world knowledge The signals from the training data is oftentimes
not sufficient to encode required world knowledge into the model parameters.
This hinders the models to correctly interpret more subtle toxicity. Through
their cross-domain pre-training and the large number of parameters, LLMs
incorporate much more world knowledge than the evaluated baseline models,
which could be beneficial for these types of errors.

• Lack of context incorporation Although most of the evaluated models have
mechanisms to include sequence context into their classification, we observe
that this context is not always properly incorporated leading to misclassifica-
tions. Transformer-based LLMs use self-attention so that each context token
can influence any other token regardless of their distance in the text. Through
multiple self-attention layers, the contextuality of the final document represen-
tation exceeds those of previous models. In Chapter 4, we analyze these layers
in detail.
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• Inconsistent annotations A major problem in user comment classification
and many other specialized domains is the inconsistency of annotations. One
reason is a lack of quality of annotations, e.g. when annotations are crowd
sourced and the annotators are not properly trained. The second reason is
the subjectivity of labels. Whether annotators judge a comment as toxic or
not depends highly on their personal background. We see similar issues in
other specialized domains, such as the clinical, as discussed in 6.6.2. While the
training of LLMs also suffers from inconsistent annotations, the large amount
of pre-training data increases robustness towards single inconsistent data points
due to increased generalization abilities.

3.7 Chapter Summary

In this chapter, we presented multiple neural and statistical approaches for toxic com-
ment classification, presenting the state-of-the-art before pre-trained large language
models were introduced. We showed that the approaches make different errors and
can be combined into an ensemble with improved performance. The ensemble per-
forms particularly well when there is high variance within the data and on classes
with few examples. Some combinations such as shallow learners with deep neural
networks are especially effective.

Our error analysis on results of the ensemble identified difficult subtasks of toxic
comment classification from which many are transferable to other specialized do-
mains. We find that a large source of errors is the lack of consistent quality of labels.
This is especially challenging due to the relatively small amount of available data.
Additionally, most of the unsolved challenges occur due to missing context and world
knowledge in the evaluated models. This is accompanied with misspelled or rare
vocabulary which the models fail to encode into the correct contexts.

Our results show that there is a large potential for the use of pre-trained large
language models for toxic comment classification. Recent research confirms this by
producing improved results on the task with different LLMs [Zhao et al., 2021b].
Our analysis revealed some of the reasons behind this improvement. Large language
models pre-trained on general domain text can complement some of the world knowl-
edge that is missing from the in-domain data. Further, the highly contextualized
nature of Transformer-based LLMs leads to improved context incorporation, which
caused many errors in previous models. Additional domain-specific pre-training and
fine-tuning of LLMs can reduce the influence of inconsistent data points and deliver
supplemental signals for rare vocabulary, which is especially useful for specialized
domains.

In the next chapter, we investigate in detail how language models are processing
and storing the contextual general and task-specific information learned during pre-
training and fine-tuning in the parameters of each layer.





4
A Layer-Wise Analysis of Transformer

Representations

Large language models based on Transformers are composed of multiple deep network
layers that transform inputs into contextualized representations. What these trans-
formations look like and which knowledge is encoded in the learned parameters is,
however, an open question, which needs to be investigated in order to understand the
possibilities of LLM adaptation. This chapter addresses research question 2: How do
large language models process information throughout their layers? We approach this
question by analyzing models trained on Question Answering, an information-rich
task that often requires multiple reasoning steps.

4.1 Introduction

Explainability and model transparency are two important concepts, the absence of
which can and should impede the application of neural networks to real-world prob-
lems. At the same time, they are difficult to incorporate into the large, black box
LLMs that achieve state-of-the-art results in a multitude of NLP tasks. Bidirectional
Encoder Representations from Transformers (BERT) [Devlin et al., 2019] is one such
black box model and the first to display significant improvements over previous state-
of-the-art models in a number of different benchmarks and tasks. It has become a
staple architecture to solve many different NLP tasks and has inspired a number of
related Transformer models. Understanding how these models draw conclusions is
crucial for both their improvement and application—not only in specialized domains.

Understanding black box models is also an increasingly prominent area of research
[Danilevsky et al., 2020]. While the performance of neural networks has been steadily
improving in nearly every domain, our ability to understand how they work, and how
they come to the conclusions they draw is only improving slowly. In order for LLMs
to be confidently deployed in safety-critical applications, features like transparency,
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interpretability and explainability are paramount.

While the inherent attention mechanisms within Transformer models offer an av-
enue for explainability, Jain and Wallace [2019] argue that attention in fact is not
ideal for these purposes, or should at least not be fully relied upon. We take this as
motivation to investigate an approach that might add complementary information.
Instead of the attention values, we probe and visualize the hidden states after each
Transformer encoder layer. This way, we can analyze how the token representations
are transformed throughout the network.

The goal of our analysis is to answer the following questions:

1. How are input information processed throughout the layers of Transformer-
based LLMs?

2. Are specific layers responsible for encoding different levels of information?

3. What kind of knowledge is encoded in the network during pre-training and
during fine-tuning?

4. Can we recognize prediction failure in early layers of the model?

We approach these questions by analyzing pre-trained models that we fine-tune
on three Question Answering (QA) datasets. Question Answering is a downstream
task that often requires solving multiple other natural language processing tasks step-
by-step. These can include Entity Recognition, Coreference Resolution and Relation
Extraction. The finding that other NLP tasks can be framed as QA tasks aswell
(e.g. shown by McCann et al. [2018]) further extends the possibilities using this
setup. Our layer-wise analysis includes a quantitative and a qualitative part. We first
apply probing tasks to quantify information encoded in BERT’s layers and then use
dimensionality reduction to qualitatively study the change in token representations
after each layer.

Interactive web demo. To make the findings presented in the following sections
more accessible and reproducible, we release VisBERT (https://visbert.demo.datexis.
com), an interactive web tool that allows an interpretable visualization of the token
representations within BERT-based models trained on the three QA datasets used in
this chapter.

4.2 Related Work

There are many different approaches to explaining deep neural models and Transformer-
based LLMs, in particular, as surveyed by Lipton [2018], Guidotti et al. [2019],
Dosilovic et al. [2018], Rogers et al. [2020] among others. In the following, we focus

https://visbert.demo.datexis.com
https://visbert.demo.datexis.com
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on the publications most closely related to our work, using probing and visualizations
for this purpose.

Probing Transformer-based LLMs. Probing neural models is a well-established
method to gain an understanding of what information is encoded within their param-
eters. There have been several studies applying probing tasks to such models [Shi
et al., 2016, Belinkov et al., 2017, Conneau and Kiela, 2018]. Language models, in
particular, have been probed by Tenney et al. [2019], who introduce an edge-probing
framework allowing to probe multiple NLP tasks in a unified setup. The framework
includes nine different tasks, which are applied to token representations contextu-
alized by ELMo, BERT, and GPT-1. We base our work on their framework, but
instead of only studying the pre-trained models, we apply the probing tasks to both
fine-tuned and not fine-tuned (but pre-trained) model variants.

Further studies probing BERT-based models are proposed by Goldberg [2019],
adding further probing tasks, and Qiao et al. [2019a] focussing on BERT used in a
ranking scenario. Similar to Tenney et al. [2019], they analyze pre-trained models
only. Liu et al. [2019b] propose a layer-wise analysis of token representations similar
to our work. However, the authors do not consider downstream tasks like Question
Answering, which allows us to understand the internal phases of solving a complex
reasoning task in this work.

Explaining models through visualizations. Another line of research studies the
characteristics of deep neural networks qualitatively through visual analysis. Zhang
and Zhu [2018] presents an overview of a multitude of methods following this ap-
proach. However, their survey is limited to Convolutional Neural Networks. Li et al.
[2016] analyze word embeddings and the impact of certain dimensions on the perfor-
mance regarding sequence tagging and classification tasks. Many approaches using
visualizations further focus on visualizing the attention values within Transformer-
based models [Vig, 2019]. While this approach can generally lead to insights, Jain
and Wallace [2019] show in their work that explanations based on attention values
can also be contradictory and sometimes misleading. Their study motivates our work
towards the visualization of hidden states instead of attention values.

4.3 Datasets and Models

4.3.1 Datasets

Our aim is to understand how BERT works on complex downstream tasks. Question
Answering (QA) is one of such tasks that require a combination of multiple simpler
tasks such as Coreference Resolution and Relation Modeling to arrive at the correct
answer. We take three current Question Answering datasets into account, namely
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SQuAD HotpotQA Distr. HotpotQA SP bAbI

Baseline 77.2 66.0 66.0 42.0
BERT 87.9 56.8 80.4 93.4
GPT-2 74.9 54.0 64.6 99.9

Table 4.1. Fine-tuning results on the three Question Answering tasks in macro-
averaged F1. We compare BERT against GPT-2 and baselines proposed by the task
authors: BIDAF [Seo et al., 2017] for SQuAD, an LSTM-based model from [Weston
et al., 2016] for bAbI, and the HotpotQA baseline proposed by [Yang et al., 2018].

SQuAD [Rajpurkar et al., 2016], bAbI [Weston et al., 2016] and HotpotQA [Yang
et al., 2018]. We intentionally choose three very different datasets to diversify the
results of our analysis.

SQuAD. As one of the most popular QA tasks, the SQuAD dataset contains around
100,000 natural question-answer pairs on more than 500 Wikipedia articles. A new
version of the dataset called SQuAD 2.0 [Rajpurkar et al., 2018] additionally includes
unanswerable questions. We use the previous version SQuAD 1.1 for our experiments
to concentrate on the base task of span prediction. The dataset is characterised by
questions that mainly require to resolve lexical and syntactic variations.

HotpotQA. This multihop QA task contains about 112,000 natural question-answer
pairs. The questions are especially designed to combine information from multiple
parts of a context. We focus on the distractor -task of HotpotQA, in which the con-
text is composed of both supporting and distracting facts with an average size of 900
words. As the pre-trained BERT model is restricted to an input size of 512 tokens, we
reduce the amount of distracting facts by a factor of 2.7 to not exceed the context size.
We also add a second task setup which we call support only (SP). Here, we only use
the supporting facts, i.e. the sentences required to answer the question, as context.
This makes the task easier, but also allows to closer analyze the internal processes
within the fine-tuned model. In both setups, we leave out yes/no-questions (7% of
questions) as they require an additional specific architecture, diluting our analysis.

bAbI. The QA bAbI tasks are a set of artificial toy tasks developed to further
understand the abilities of neural models. The 20 tasks require reasoning over multiple
sentences (multihop QA) and are modeled to include positional reasoning, argument
relation extraction and resolution of coreferences. The tasks strongly differ from the
other QA tasks in their simplicity (e.g. vocabulary size of less than 250 and short
contexts) and the artificial nature of sentences.
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4.3.2 Experimental Setup

Models. For both the probing and the visualization of hidden states, we use the
publicly available BERT implementations and models published by Wolf et al. [2020].
More specifically, we use the two English models bert-base-uncased and bert-large-
uncased. For bAbI and SQuAD, the base version of the model reaches state-of-the-
art results, while the more complex HotpotQA task requires the larger version of the
model. The context lengths of bAbI and SQuAD are also shorter than for HotpotQA,
so we fix their input length to 384 tokens, while using 512 tokens for the two HotpotQA
task setups corresponding to the maximum input size for the BERT model.

Training. For fine-tuning, we base our setup on the pre-trained models and add
randomly initialized classification heads on top of their encoder blocks. For the bAbI
dataset, we use a sequence classification head and for the other two datasets, we
use span prediction heads, as required by the task specifications. We tune all models
regarding the hyperparameters learning rate (+ scheduling) and batch size with a grid
search approach. For our analysis, we use the resulting best-performing models. For
the bAbI tasks, we evaluate models fine-tuned separately per task and additionally
evaluate a multitask model trained on all 20 bAbI tasks jointly.

Probing. Figure 4.1 shows our probing setup. Question and context tokens are
processed by N encoder blocks with a positional embedding added beforehand. The
output of the last layer is fed into a prediction head consisting of a linear layer and
a softmax. We use the hidden states of each layer as input to a set of probing tasks
to examine the encoded information.

4.4 Layer-wise Analysis of Hidden States

We want to understand how information is processed internally by BERT’s encoder
layers. Towards this goal, we use both a quantitative and a qualitative approach. We
first apply a probing setup to measure the degree of language-specific information
within each layer output for the quantitative analysis and then observe the relative
position of tokens in vector space after each layer for a qualitative analysis of the
transformations happening within the model.

4.4.1 Probing BERT’s Layers

Our goal is to understand the abilities of the model after each input transformation.
We, therefore, apply a set of semantic probing tasks to analyze which information is
stored within the transformed tokens after each layer. We want to find out whether
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Figure 4.1. Schematic overview of the BERT architecture and our probing setup.

specific layers are reserved for specific tasks and how language information is main-
tained or forgotten by the model.

We use the principle of Edge Probing introduced by Tenney et al. [2019]. Edge
Probing translates core NLP tasks into classification tasks by focusing solely on their
labeling part. This enables a standardized probing mechanism over a wide range
of tasks. We adopt the tasks Named Entity Labeling, Coreference Resolution and
Relation Classification from the original paper as they are prerequisites for language
understanding and reasoning [Weston et al., 2016]. We add the tasks of Question
Type Classification and Supporting Fact Identification due to their importance for
Question Answering in particular.1 We introduce the applied probing tasks in the
following.

Named Entity Labeling (NEL). Given a span of tokens the model has to pre-
dict the correct entity category. This is based on Named Entity Recognition but
formulated as a classification problem. The task was modeled by [Tenney et al.,
2019], annotations are based on the OntoNotes 5.0 corpus [Weischedel et al., 2011]
and contain 18 entity categories.

Coreference Resolution (COREF). The Coreference Resolution task requires
the model to predict whether two mentions within a text refer to the same entity.

1The source code is available at https://github.com/bvanaken/explain-BERT-QA.

https://github.com/bvanaken/explain-BERT-QA
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The task was built from the OntoNotes corpus and enhanced with negative samples
by [Tenney et al., 2019].

Relation Classification (REL). In Relation Classification, the model has to pre-
dict which relation type connects two known entities. The task was constructed
by Tenney et al. [2019] with samples taken from the SemEval 2010 Task 8 dataset
consisting of English web text and nine directional relation types.

Question Type Classification. A fundamental part of answering a question is to
correctly identify its question type. For this Edge Probing task we use the Question
Classification dataset constructed by Li and Roth [2002] based on the TREC-10 QA
dataset [Voorhees, 2001]. It includes 500 fine-grained types of questions within the
larger groups of abbreviation, entity, description, human, location and numeric value.
We use the whole question as input to the model with its question type as label.

Supporting Facts Identification. The extraction of supporting facts is essential
for Question Answering tasks, especially in the multi-hop case. We examine what
BERT’s token transformations can tell us about the mechanism behind identifying
important context parts. To understand at which stage this distinction is done, we
construct a probing task for identifying supporting facts. The model has to predict
whether a sentence contains supporting facts regarding a specific question or whether
it is irrelevant. Through this task we test the hypothesis that token representations
contain information about their significance to the question.

Both HotpotQA and bAbI contain information about sentence-wise supporting
facts for each question. SQuAD does not require multi-hop reasoning, we thus con-
sider the sentence containing the answer phrase the supporting fact. We also exclude
all QA-pairs that only contain one context sentence. We construct a different probing
task for each dataset in order to check their task-specific ability to recognize relevant
parts. All samples are labeled sentence-wise with true if they are a supporting fact
or false otherwise.

Probing setup. Analogue to [Tenney et al., 2019], we embed input tokens for each
probing task sample with our fine-tuned BERT model. Contrary to previous work,
we do this for all layers (N = 12 for BERT-base and N = 24 for BERT-large),
using only the output embedding from n-th layer at step n. The concept of Edge
Probing defines that only tokens of labeled edges (e.g. tokens of two related entities
for Relation Classification) within a sample are considered for classification. These
tokens are first pooled for a fixed-length representation and afterwards fed into a
two-layer Multi-layer Perceptron (MLP) classifier, that predicts label-wise probability
scores (e.g. for each type of relation). A schematic overview of this setting is shown
in Figure 4.1. We perform the same steps on pre-trained BERT-base and BERT-large
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models without any fine-tuning. This enables us to identify which abilities the model
learns during pre-training and fine-tuning.

4.4.2 Visualization of Transformed Tokens in Vector Space

In Transformer-based networks, each input token is being transformed multiple times
into a final contextualized representation. While this representation is strongly af-
fected by the surrounding tokens, it is still relatable to its original input token. This
allows us to directly follow and analyze the transformation of single tokens through
the network layers by observing how token vectors change after each layer.

In contrast to analyzing the single attention weights within BERT’s attention
heads, this method allows us to observe the actual outcomes of the whole encoder
module in each layer. Since each layer of BERT outputs a different distribution of

HotpotQA
Question What government position was held by the woman who portrayed Corliss Archer

in the film Kiss and Tell?
Answer United States ambassador

Context

Kiss and Tell (1945 film):
Kiss and Tell is a 1945 American comedy film starring then 17-year-
old Shirley Temple as Corliss Archer. In the film, two teenage girls cause
their respective parents much concern when they start to become interested in
boys. The parents’ bickering about which girl is the worse influence causes more
problems than it solves.
Meet Corliss Archer:
Meet Corliss Archer, a program from radio’s Golden Age, ran from January 7,
1943 to September 30, 1956. Although it was CBS’s answer to NBC’s popular ”A
Date with Judy”, it was also broadcast by NBC in 1948 as a summer replacement
for ”The Bob Hope Show”. From October 3, 1952 to June 26, 1953, it aired on
ABC, finally returning to CBS. Despite the program’s long run, fewer than 24
episodes are known to exist.
Shirley Temple:
Shirley Temple Black (April 23, 1928 - 2013 February 10, 2014) was an American
actress, singer, dancer, businesswoman, and diplomat who was Hollywood’s num-
ber one box-office draw as a child actress from 1935 to 1938. As an adult, she
was named United States ambassador to Ghana and to Czechoslovakia
and also served as Chief of Protocol of the United States.
Janet Waldo:
Janet Marie Waldo (February 4, 1920 - 2013 June 12, 2016) was an American
radio and voice actress. She is best known in animation for voicing Judy Jetson,
Nancy in ”Shazzan”, Penelope Pitstop, and Josie in ”Josie and the Pussycats”,
and on radio as the title character in ”Meet Corliss Archer”

Table 4.2. Sample from HotpotQA dataset. Supporting facts are printed in bold. The
context includes distracting facts, which contain words that intentionally overlap with
the words in the question.
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token vectors and we do not have a reference for semantic meanings of positions
within these vector spaces, we consider distances between token vectors as indication
for semantic relations.

Processing BERT’s hidden states For a given input QA sample we collect the
hidden states from each layer while removing any padding. We then visualize the
input on a token-by-token basis. To that end, we use the hidden states after each
Transformer encoder block, which contains a vector for each token with a dimen-
sionality of 768 (BERT-base) or 1024 (BERT-large). Since these high dimensional
vectors are not directly interpretable we apply dimensionality reduction, mapping
the vectors into a two-dimensional space. We evaluate the dimensionality reduction
techniques T-distributed Stochastic Neighbor Embedding (t-SNE) [van der Maaten,
2009], Principal Component Analysis (PCA) [F.R.S., 1901] and Independent Com-
ponent Analysis (ICA) [Comon, 1994] and find that PCA is most suitable for this
scenario as it reveals clusters that correspond to those observed by k-Means clustering
[Lloyd, 1982]. We thus use PCA for the qualitative analysis and the VisBERT tool.

The dimensionality reduction result is a 2D representation of each token through-
out the model’s layers. We further categorize the tokens based on affiliation to ques-
tion, supporting facts (facts that are necessary to answer the question) or predicted
answer in order to facilitate interpretability.

4.5 Results and Discussion

Training results. Table 4.1 shows the evaluation results of our best models. Ac-
curacy on the SQuAD task is close to human performance, indicating that the model
can fulfill all sub-tasks required to answer SQuAD’s questions. As expected, the tasks
derived from HotpotQA prove much more challenging, with the distractor setting be-
ing the most difficult to solve. Unsurprisingly too, bAbI was easily solved by both
BERT and GPT-2. While GPT-2 performs significantly worse in the more difficult
tasks of SQuAD and HotpotQA, it does considerably better on bAbi reducing the
validation error to nearly 0. Most of BERT’s error in the bAbI multi-task setting
comes from tasks 17 and 19. Both of these tasks require positional or geometric rea-
soning, thus, we can assume that this is a skill in which GPT-2 improves on BERT’s
reasoning capabilities.

Presentation of analysis results. The qualitative analysis of vector transforma-
tions reveals a range of recurring patterns. In the following, we present these patterns
by a representative sample from the HotpotQA dataset showed in Table 4.2. As ex-
plained in 4.3, we split the HotpotQA task into the two separate tasks distractor and
support only (SP). We present results on both tasks. While BERT’s performance is
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Figure 4.2. Probing task results of BERT-base models in macro averaged F1 (Y-
axis) over all layers (X-axis). Fine-tuning barely affects accuracy on NEL, COREF
and REL indicating that those tasks are already sufficiently covered by pre-training.
Performances on the Question Type task shows its relevancy for solving SQuAD,
whereas it is not required for the bAbI tasks and the information is dropped.

Figure 4.3. Probing task results of BERT-large models in macro averaged F1 (Y-axis)
over all layers (X-axis). Performance of the HotpotQA model is mostly equal to the
model without fine-tuning, but information is dropped in last layers in order to fit
the answer selection task.

notably better at the SP task, we can observe similar patterns within both vector
representations.

Further examples from the SQuAD and bAbI dataset can be found in the inter-
active VisBERT demo application.
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Results from probing tasks are displayed in Figures 4.2 and 4.3. We compare
results in macro-averaged F1 over all network layers. Figure 4.2 shows results from
three models of BERT-base with twelve layers: Fine-tuned on SQuAD, on bAbI tasks
and without fine-tuning. Figure 4.3 reports results of two models based on BERT-
large with 24 layers: Fine-tuned on HotpotQA and without fine-tuning.

(a) HotpotQA SP phase 1: Topical clustering. (b) HotpotQA SP phase 2: Connecting entities.

(c) HotpotQA SP phase 3: Matching questions
with supporting facts.

(d) HotpotQA SP phase 4: Answer extraction.

Figure 4.4. BERT’s transformation phases for the HotpotQA SP example from Table
4.2. Answer token: Red diamond-shaped. Question tokens: Orange star-shaped.
Supporting fact tokens: Dark cyan and light green. Prominent clusters are circled.
Compared to the distractor task, we see that there is a clearer separation between
clusters due to the lack of distracting tokens.
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Figure 4.5. HotpotQA distractor first and second phase: Topical clustering (top) and
connecting entities (bottom).
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Figure 4.6. HotpotQA distractor third and fourth phase: Matching questions with
supporting facts (top) and answer extraction (bottom).
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4.5.1 Phases of BERT’s Inference

The quantitative and qualitative analysis we conducted reveal that BERT models
pass multiple phases while answering a question. These phases can be observed
throughout the three analyzed QA tasks despite their differences. We describe the
observed phases in the following, refering to the results of the probing tasks (Figure
4.2 and Figure 4.3) and the qualitative analysis of vector representations (presented
in Figure 4.4 - 4.6).

1. Topical clustering In the first layers, we see that tokens are clustered based
on topical similarities, comparable to a static word embeddings like Word2Vec
[Mikolov et al., 2013]. For example, Figure 4.5 shows tokens clustered by topical
groups such as names and dates. The tokens show no task-specific or contextual
relations in the first layers. This corresponds to a low F1 score on probing tasks
that require semantic and contextual information such as Relation Classification
(REL) as shown in Figure 4.2 and 4.3.

2. Connecting entities with mentions and attributes Middle layers tend to
cluster tokens based on their relation in the specific context. We see multi-token
entities clustered together, since their tokens share one semantic meaning. We
can also observe clusters of entities with their specific attributes. In Figure 4.5,
we see that the entity Shirley Temple got matched with Corliss Archer and
the two programmes she starred in, namely Kiss and Tell and Meet Corliss
Archer. The probing results show similar patterns: Information about named
entities (NEL) and their mentions (COREF) are increasingly encoded in the
token vectors until the higher layers of the network. In the second phase, com-
plex relations (REL task) are not yet fully encoded in the vectors of both BERT
base and BERT large.

3. Matching questions with supporting facts In the third quarter of BERT
layers, we can see that the question tokens form clusters with the tokens of
supporting facts. In multi-hop questions, we even observe clusters for each
hop that the question contains. Figure 4.6 shows that the question tokens are
clustered towards the supporting fact tokens. We see this in the majority of
HotpotQA samples, in which the questions are usually build up by two or three
individual questions. BERT recognizes this split and can, as we see in phase
4, distinguish the question part that points towards the answer (in this case
Which government position was held...? ). The scores of the probing tasks peak
in these layers showing that most semantic and contextual information is stored
in the vector representations at this phase.

4. Answer extraction In the last layers, the answer tokens are separated from
all other tokens. Earlier semantic clusters are dissolved. Based on the certainty
of the decision, there might be other potential candidate tokens separated from
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the rest as well, with the furthest answer tokens being chosen as final predic-
tion. For instance, in Figure 4.6, we see that the tokens Chief of Protocol were
also considered answer candidates. In Figure 4.4d we additionally see how the
question tokens are extracted from the rest of the context. This shows that the
positional embedding is still maintained within the vector representations and
that the model has learned that the answer token is never found in the ques-
tion, and, thus, separates question tokens from answer candidates. The final
layers of the network show the highest task specificity and the probing results
even indicate that general language information is dropped from the final token
representation, e.g. information about named entities and coreferences.

4.5.2 Additional Findings

Failure states. Decision legitimization is an important aspect of neural network
explainability. If a network predicts an answer, it is useful to know why, in order to
both improve the network and to understand its limits. The visualizations of tokens
show signs of wrong predictions not only in the last layers, even early phases can be
helpful in analyzing errors. For example, in cases for which a wrong prediction has the
same type as the ground truth answer, the problem is often that the wrong supporting
fact was selected. This is clearly visible in layers of phase 3, when the question is
matched with a wrong fact. For predictions that are completely wrong (not even of
the same type as the answer) the phases often degenerate completely. This results
in all layers looking either like a mostly homogeneous cloud of tokens or keep in a
mainly topical non-contextual clustering as in phase 1. Lastly, the network’s general
confidence can be estimated by looking at the clusters in each layer. For samples for
which BERT is very confident, the clusters and phases are distinct. The lower the
confidence, the more blurry and indistinct the clusters become.

Impact of fine-tuning. In Figure 4.2 and 4.3, we compare the probing scores of
the vanilla pre-trained BERT models with the BERT models trained on QA tasks.
We can see that fine-tuning has a small impact on the general language abilities of
the models. By pre-training the models, we already enable them to encode sufficient
information about entities, their mentions and relations in the text. This highlights
the importance of effective pre-training and explains the advantage of pre-trained
LLMs towards models trained from scratch: Less fine-tuning data is needed for general
language understanding abilities and for the encoding of world knowledge (such as
common relations between tokens), which enables the fine-tuning to only focus on
the requirements of the specific task. This can then be achieved by fewer changes
in model weights, which leads to more efficient training with improved results on
downstream tasks.
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4.6 Chapter Summary

This part of the dissertation aimed towards revealing some of the internal processes
within Transformer-based LLMs. We found that analyzing how the input tokens are
transformed throughout the BERT model by looking at the intermediate hidden states
reveal information about general model capabilities and can even help to explain
individual predictions.

Our findings further indicate that the benefits of large language models in relation
to previous neural network approaches are related to their highly contextual text
representation, and the world and language knowledge learned during pre-training.
Through qualitative and quantitative analyses, we gained a clearer understanding of
how this information is stored within the models. The lower layers encode the base
knowledge built up during pre-training, while the upper layers focus on task-specific
representations, mostly learned during fine-tuning.

This way, LLMs for specialized domains can benefit from general (language)
knowledge encoded in lower layers, while being able to store highly domain-specific
knowledge in the weights of upper layers. We will use the findings of this explo-
ration of Transformer-based LLMs in the second part of this dissertation to introduce
techniques for domain-specific model adaptation.
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5
Language Models for Clinical Assertion Detection

After exploring the abilities and functionality of large language models in the first part
of this dissertation, we focus on different techniques and use cases for the adaptation
to specialized domains in the following second part. Pre-trained LLMs are typically
adapted to domains and downstream tasks by fine-tuning them on domain-specific
data (see 2.2.2 for details). However, due to varying requirements in domain-specific
use cases, model adaptation further incorporates the adjustment of tasks to align
with these requirements. Additionally, the domain knowledge found in fine-tuning
data is often not sufficient to learn all required patterns and relations and must be
augmented with additional domain data. Finally, adapting language models to needs
of domain experts is another requirement not covered by simple LLM fine-tuning,
which we will address in this part of the dissertation.

In the following, we present methods for domain adaptation to the clinical domain,
since it incorporates the typical characteristics and challenges of specialized domains,
as introduced in 1.1.1. In this chapter, we introduce a common clinical information
extraction task from discharge summaries. We show how the task can be formulated
to be solved by LLMs and present how different pre-training affects performance and
transferability. An error analysis on the best performing model shows the limits of
generalization due to a tendency to overfit on simple patterns within the data which
lacks the required variety.

5.1 Introduction

The clinical information stored within narrative reports is difficult for humans to
access for clinical, teaching, or research purposes [Perera et al., 2013]. To provide
high-quality patient care, health professionals need to have better and faster access
to crucial information in a summarized and interpretable format. In this chapter, we
focus on the task of Assertion Detection as a way towards achieving such format via
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information extraction. We study English discharge summaries and the classification
of clinical information as demonstrated in Figure 5.1.

Given a piece of text, we need to identify two pieces of information – a medical en-
tity and textual cues indicating the presence or absence of that entity. Medical entity
extraction has been studied extensively [Lewis et al., 2020b], we thus focus our work
on the task of predicting the present / possible / absent class over a medical entity,
addressing an important information need of health professionals. This setting is re-
flected in the dataset released by the 2010 i2b2 Challenge Assertions Task [de Bruijn
et al., 2011], on which we base our main evaluation.

Figure 5.1. Sample output of our demo system. Detected entities are highlighted in
red, yellow, and green to indicate present, possible, and absent.

Clinical Assertion Detection is known to be a difficult task [Chen, 2019] due to
the free-text format of considered clinical notes. Detecting possible assertions is par-
ticularly challenging, because they are often vaguely expressed, and they occur far
less frequently than present and absent assertions. Language models pre-trained on
medical data have shown to create useful representations for a multitude of tasks in
the domain [Peng et al., 2019]. We apply them to our setup of Assertion Detection
to evaluate whether they can increase performance (especially on the minority class)
and where they still need improvement.

We argue that Clinical Assertion Detection models must be transferable to data
that differs from the training data, e.g. due to different writing styles of health
professionals from other clinics or from other medical fields. As existing datasets do
not represent such diversity, we manually annotate 5,000 assertions in clinical notes
from several fields in the publicly available MIMIC-III dataset. We then use these
annotated notes as an additional evaluation set to test the transferability of the best
performing model.

5.2 Related Work

One of the earliest approaches to Assertion Detection is NegEx [Chapman et al., 2001],
where hand-crafted word patterns are used to extract the absent category of assertions
in discharge summaries. In 2010, the i2b2 Challenge Assertions task [de Bruijn et al.,
2011] was introduced, and an accompanying corpus was released.

There is a variety of prior work focused on scope resolution for assertions, which
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present possible absent
2010 i2b2 Challenge
Assertion Task

discharge
summaries

21,064 1,418 6,144

BioScope scientific
publications

– 3,474 2,161

MIMIC-III Clinical Database

discharge
summaries

2,610 250 980

physician letters 204 34 66
nurse letters 293 14 59
radiology reports 249 40 130

Table 5.1. Distribution of text types and classes in the three employed datasets.
Note that possible is a minority class across datasets as well as text types. In the
i2b2 dataset, for instance, only 5% of all labels are possible.

differs from our setting in that it does not consider medical concepts but scopes of a
certain assertion cue. Representative current approaches for this task setup include
a CNN-based (Convolutional Neural Network) one by Qian et al. [2016], reaching an
F1 of 0.858 on the more challenging possible category. Sergeeva et al. [2019] propose
a LSTM-based (Long Short-Term Memory) approach to detect only absent scopes.
When “gold negation cues” are made available to the model and synthetic features
are applied, an F1 of 0.926 is reached. NegBert [Khandelwal and Sawant, 2020] is
another approach to detect absent scopes. As its name suggests, it is BERT-based
and reaches an F1 of 0.957 on BioScope abstracts.

In contrast to these approaches we focus our work on entity-specific Assertion
Detection, the results of which are of more practical help for supporting health pro-
fessionals. Bhatia et al. [2019] explored extracting entities and negations in a joint
setting, whereas the work of Harkema et al. [2009], Chen [2019] and de Bruijn et al.
[2011] is the closest to our task setup, i.e. labeling entities with an assertion class.
Harkema et al. [2009] extended the NexEx algorithm with contextual properties.
de Bruijn et al. [2011] use a simple SVM classifier and Chen [2019] apply a bidirec-
tional LSTM model with attention to the task and evaluate it on the i2b2 corpus.
While these models reach F1-scores above 0.9 on the majority classes, the challeng-
ing possible class does not surpass 0.65. We show that medical language models
outperform these scores especially regarding the minority class.

Furthermore, Wu et al. [2014] compared then state-of-the-art approaches for nega-
tion detection and found a lack of generalization to arbitrary clinical text. We thus
want to examine the transfer capabilities of recent language models to understand
whether they can mitigate the phenomenon.
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5.3 Method

We want to understand the abilities of language models adapted to the clinical domain
on the task of Assertion Detection. We hence fine-tune various pre-trained language
models on the i2b2 corpus described below. We further apply the best performing
model to the BioScope dataset and our newly introduced MIMIC-III assertion dataset
without further fine-tuning to test their performance on unseen medical data.

5.3.1 Datasets

The 2010 i2b2 Assertion task [de Bruijn et al., 2011] provides a corpus of assertions
in clinical discharge summaries. The task is split into six classes, namely present,
possible, absent, hypothetical, conditional and associated with someone else. However,
the distribution is highly skewed, such that only 6% of the assertions belong to the
latter three classes. Hence we only use the present, possible, and absent assertions for
our evaluation as they present the most important information for doctors.

BioScope [Vincze et al., 2008] is a corpus of assertions in biomedical publications.
It was specifically curated for the study of negation and speculation (or absent and
possible in this work) scope and does not contain present annotations. As mentioned
before, the BioScope dataset does not completely match the information need of
health professionals and the i2b2 corpus lacks varied medical text types. We thus
introduce a new set of labeled assertions to complement existing data.

The MIMIC-III Clinical Database [Johnson et al., 2016] provides texts from
discharge summaries as well as other clinical notes (physician letters, nurse letters,
and radiology reports) representing a promising source of varied medical text. There-
fore, two annotators followed the annotation guidelines from the i2b2 challenge,
and labeled 5,000 assertions, i.e. word spans of entities and their corresponding
present / possible / absent class. The inter-annotator agreement as Cohen’s kappa co-
efficient is 0.847, which indicates a strong level of agreement. The annotations were
further verified by a medical doctor, who provided feedback to correct a small num-
ber of labels, and confirmed that the end results were satisfactory. We publish the
annotations to encourage future research on Clinical Assertion Detection1.

It is important to note that even though the newly annotated data from MIMIC-
III adds variation to the existing corpora, the dataset has its own limitations. The
clinical notes are collected from a single institution (with a mostly White patient
population) and from Intensive Care Unit patients only. We therefore argue that
progress in assertion detection requires further initiatives for releasing more diverse
sets of clinical notes.

Table 5.1 summarizes the assertion distribution in the introduced datasets and
shows the unbalanced nature of the data.

1The annotations are published at https://github.com/bvanaken/clinical-assertion-data.

https://github.com/bvanaken/clinical-assertion-data
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5.3.2 Data Preprocessing

We make predictions about assertions on a per-entity level. However, we want our
models to consider the context of an entity. We, therefore, pass the whole sentence
to the models and surround the entity tokens with special indicator tokens [entity]
whose embeddings are randomly initialized. A sample input sequence thus looks as
follows: [CLS] test results were negative for [entity] COVID-19 [entity]. We
apply the same pre-processing to all three datasets.

5.3.3 Fine-tuning Medical Language Models

There are various pre-trained (bio-)medical and clinical language models available
to evaluate on the Assertion Detection task. We select the most prevalent ones and
describe them in short below:

BERT [Devlin et al., 2019] was pre-trained on non-medical data and serves as a base-
line for Transformer-based pre-trained language models. BioBERT [Lee et al., 2020]
is a standard model for medical NLP tasks and is pre-trained on bio-medical publi-
cations. Bio+Clinical BERT and Bio+Discharge Summary BERT [Alsentzer
et al., 2019] are built upon BioBERT with additional pre-training on clinical notes
and discharge summaries respectively. TheCORemodel [van Aken et al., 2021a] uses
BioBERT and adds a specialized clinical outcome pre-training as further described
in 6.4. Biomed RoBERTA [Gururangan et al., 2020] is based on the RoBERTA
model [Liu et al., 2019c] and pre-trained on bio-medical publications. After an initial
grid search we fix our hyperparameters to a learning rate of 1e-5, batch size of 32,
and 2 epochs of training.

Model
F1 for

present possible absent
Earlier approaches

SVM Classifier [de Bruijn et al., 2011] 0.959 0.643 0.939
Conditional Softmax Shared Decoder [Bhatia et al., 2019] – – 0.905
Bidirectional LSTM with Attention [Chen, 2019] 0.950 0.637 0.927

Language models under evaluation
BERT Base [Devlin et al., 2019] 0.968 0.704 0.943
BioBERT Base [Lee et al., 2020] 0.976 0.759 0.963
Bio+Clinical BERT [Alsentzer et al., 2019] 0.977 0.775 0.966
Bio+Discharge Summary BERT [Alsentzer et al., 2019] 0.979 0.786 0.972
Bio+Clinical Outcome Representations (CORe) [van Aken et al., 2021a] 0.975 0.761 0.965
Biomed RoBERTa Base [Gururangan et al., 2020] 0.976 0.723 0.967

Table 5.2. Results of baseline approaches and (medical) language models on the
i2b2 Assertions task. Pre-trained medical language models outperform all earlier
approaches—with a large margin on the possible class. Note that Bhatia et al. [2019]
only evaluated their model on negation detection.
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present possible absent
BioScope
scientific pub. – 0.593 0.845
MIMIC-III
discharge sum. 0.951 0.663 0.939
phys. letters 0.929 0.593 0.892
nurse letters 0.967 0.710 0.900
radio. reports 0.950 0.691 0.977

Table 5.3. Experimental results (in F1) for the best performing Bio+Discharge Sum-
mary BERT model on two further assertion datasets and their different text types.
Both datasets were not seen during training. Note that the number of evaluation
samples is very low for some text types (i.e. possible class in nurse letters), which
impairs the expressiveness of these results.

5.4 Evaluation and Discussion

We start by evaluating the mentioned models on the i2b2 corpus. We use training and
test data as defined by in the i2b2 challenge and compare our results to previous state-
of-the-art approaches in Table 5.2. Next, we apply the best performing Bio+Discharge
Summary BERT to the BioScope and MIMIC-III corpora without additional fine-
tuning (Table 8.1). This way we can see the model’s performance on medical text
from unseen sources.

5.4.1 Results

Language models outperform baselines. Table 5.2 shows that all evaluated
medical language models are able to increase F1-scores on all three classes. On the
most challenging possible class the improvement is the clearest with up to ∼15pp,
which shows that the models are better in handling sparse occurrences coupled with
vague expressions.

Medical pre-training is important. The vanilla BERT baseline is the weakest of
our evaluated models, which shows that models specialized on the medical domain are
not only effective for more complex medical tasks but also for Assertion Detection,
which is in line with the claim by Gururangan et al. [2020] that domain-specific
pre-training is almost always of use. Bio+Discharge Summary BERT is the best
model—probably because it was trained on text very similar to the i2b2 corpus.

Text style matters. Table 8.1 shows the ability of the Bio+Discharge Summary
BERT language model to transfer to other text styles. The assertions in the BioScope
corpus are difficult to identify by the model as they clearly differ from the ones used
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by doctors in clinical notes. The text style in MIMIC-III data is more similar to the
originally learned data which is reflected in the results.2 However, physician letters
appear to contain more specialized expressions and, therefore, evoke more errors.
This points towards a lack of generalization possibly caused by the limited variety of
assertion cues in the training data.

5.4.2 Error Analysis

We analyze all errors made by the best performing model Bio+Discharge Summary
BERT to identify main sources of errors and to point towards open challenges for
further model adaptations.

Inconsistent data. Inconsistent data in pre-existing datasets account for roughly
45% of errors. This includes obvious labeling mistakes, but also disagreements among
annotators. For example, phrases such as “appeared to be,” “concerning for” and
“consistent with” are labeled differently, as present or as possible.

Long range dependencies. 20% of all errors are found in samples in which entities
and their cues have dependencies longer than a few tokens apart. While the model’s
attention mechanism could easily detect distant tokens, the model might have learned
to only consider close assertion cues. The following is an example of a distant cue
indicating the absent class which was missed by the model:

His rash on the right hand was examined further and is now resolved.

Lists of assertions. 8% of error samples contain lists of assertions. Here the
assertion is not directly coupled to an entity but must be inferred by the way it is
listed. Such somewhat ambiguous cases are usually easily understood by humans,
but difficult for our models.

No hydrocephalus, subarachnoid hemorrhage, no fracture.

Misspellings. Misspelled words account for 5% of all observed errors, but they
reveal a critical yet surprising limitation. For instance, the cues “appeas” and
“probalbe” that indicate possible instances, are missed. While Transformer-based
models are generally capable of dealing with misspellings due to subword tokeniza-
tion, the missing variety of expressions in the data appears to let the models focus on
a specific set of textual cues without generalizing to new phrases or even misspellings.

2Note that the model’s pre-training is based on MIMIC-III and it was thus to an extent exposed
to the test data. Due to the difference of the target task and the amount of total pre-training data,
this influence should be negligible.
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5.5 Chapter Summary

In this chapter, we presented an evaluation on language models to detect assertions
in clinical documents. Our experimental results show that language models adapted
to the clinical domain via fine-tuning on clinical text outperform baseline approaches.
We further provided a new corpus of assertion annotations on the MIMIC-III dataset
that will augment existing data collections and shows the model’s capability to be
transferred to other sources—if the text styles do not strongly differ.

With an error analysis, we identified problems arising from fine-tuning data that
lacks variety. We thus see a need to further investigate generalization to unseen data
and expressions. Since gathering additional (and more varied) fine-tuning data is
not always a feasible option, we examine alternative options for integrating further
domain knowledge into the models in the following chapters.





6
CORe: Adapting LLMs to Clinical Outcome

Prediction

This chapter addresses a domain-specific information need that is more complex than
the information extraction scenario in the last chapter. We examine the task of clinical
outcome prediction, which belongs to clinical decision support, and is designed to
prevent doctors from overlooking possible risks and help hospitals to plan capacities.
In this scenario, we introduce a novel admission to discharge task with four common
outcome prediction targets: Diagnoses at discharge, procedures performed, in-hospital
mortality and length-of-stay prediction. The ideal system should infer outcomes based
on symptoms, pre-conditions and multiple other risk factors of a patient.

We evaluate the effectiveness of large language models to handle this scenario and
propose clinical outcome pre-training to integrate knowledge about patient outcomes
from multiple public sources. We further present a simple method to incorporate
hierarchies of ICD codes, a medical classification system, into the models. This way,
we address research question 3: How can we incorporate domain-specific knowledge
into LLMs in the clinical domain? A detailed analysis further reveals strengths of the
model, including transferability, but also weaknesses such as handling of vital values
in the text and inconsistencies in the data.

6.1 Introduction

Clinical professionals make decisions about patients under strong time constraints.
The patient information at hand is often unstructured, e.g. in the form of clinical
notes written by other medical personnel in limited time. Clinical decision support
(CDS) systems can help in these scenarios by pointing towards related cases or certain
risks. Clinical outcome prediction is a fundamental task of CDS systems, in which
the patient’s development is predicted based on data from their Electronic Health
Record (EHR).

67
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PRESENT ILLNESS: 58yo man w/ hx of hypertension, 
AFib on coumadin and NIDDM presented to ED with the
worst headache of his life. He had a syncopal episode
and was intubated by EMS. Medication on admission: 
1mg IV ativan x 1.

PHYSICAL EXAM: Vitals: P: 92 R: 13 BP: 151/72
SaO2: 99% intubated. GCS  E: 3   V:2  M:5
HEENT:atraumatic, normocephalic Pupils: 4-3mm [...]

FAMILY HISTORY: Mother had stroke at age 82.
Father unknown.

SOCIAL HISTORY: Lives with wife. 25py. No EtOH

DIAGNOSES:
430 Subarachnoid Hemorrhage
401 Essential Hypertension
250 Diabetes Mellitus [...]

PROCEDURES:
397 Endovascular Repair of Vessel
967 Continous Invasive Mechanical Ventilation [...]

IN-HOSPITAL MORTALITY:
Not deceased

LENGTH OF STAY:
> 14 days

 Symptoms & Vitals 

 General Risk Factors 
 Medications 
 Pre-Conditions 

ADMISSION DISCHARGE

Figure 6.1. Admission to discharge sample that demonstrates the outcome prediction
task. The model has to extract patient variables and learn complex relations between
them in order to predict the clinical outcome.

In this chapter, we focus on textual EHR data available at admission time. Figure
6.1 shows a sample admission note with highlighted parts that – according to medical
doctors – must be considered when evaluating a patient.

Encoding clinical notes with pre-trained language models. Neural models
need to extract relevant facts from such notes and learn complex relations between
them in order to associate certain clinical outcomes. Pre-trained language models
such as BERT [Devlin et al., 2019] have shown to be able to both extract information
from noisy text and to capture task-specific relations in an end-to-end fashion [Tenney
et al., 2019, van Aken et al., 2019]. We thus base our work on these models and pose
the following questions:

• Can pre-trained language models learn to predict patient outcomes from their
admission information only?

• How can we integrate knowledge about outcomes that doctors gain from medical
literature and previous patients?

• How well would these models work in clinical practice? Are they able to inter-
pret common risk factors? Where are they failing?

Simulating patients at admission time. Existing work on text-based outcome
prediction focuses on progress notes after a certain time of a patient’s hospitalization
[Huang et al., 2019]. This is mostly due to a lack of publicly available admission
notes and poses some problems: 1) Doctors might miss specific outcome risks early in
admission and 2) progress notes already contain information about clinical decisions
made on admission time [Boag et al., 2018]. We propose to simulate newly arrived
patients by extracting admission notes from MIMIC-III discharge summaries. We are
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thus able to give doctors hints towards possible outcomes from the very beginning of
an admission and can potentially prevent early mistakes. We can also help hospitals
in planning resources by indicating how long a patient might stay hospitalized.

Integrating knowledge with specialized outcome pre-training. Gururangan
et al. [2020] recently emphasized the importance of domain- and task-specific pre-
training for deep neural models. Consequently, we propose to enhance language
models pre-trained on the medical domain with a task-specific clinical outcome pre-
training. Besides processing clinical language with distinct and specialized terms,
our models are thus able to learn about patient trajectories and symptom-disease
associations in a self-supervised manner. We derive this knowledge from two main
sources: 1) Previously admitted patients and their outcomes. This knowledge is
usually stored by hospitals in unlabeled clinical notes and 2) Scientific case reports and
knowledge bases that describe diseases, their presentations in patients and prognoses.
We introduce a method for incorporating these sources by creating a suitable pre-
training objective from publicly available data.

6.2 Related Work

Using clinical notes for outcome prediction. Boag et al. [2018] studied the
predictive value of clinical notes with simple approaches such as bag of words. Recent
work increasingly applies neural models to compensate for the noisy nature of the data
and the complexity of patterns. Hashir and Sawhney [2020] used both convolutional
and recurrent layers for outcome prediction, while Jain et al. [2019] and Qiao et al.
[2019b] proposed attention-based approaches. Dligach et al. [2019] explored pre-
training as a strategy to mitigate data sparsity in clinical setups. Si and Roberts
[2019] and Suresh et al. [2018] further showed that outcome prediction benefits from
a multitask setup. In contrast to earlier work we apply neural models to admission
notes in an admission to discharge setup.

Pre-trained language models for the clinical domain. While pre-trained lan-
guage models are successful in many areas of NLP, there application to the clinical
domain has not been studied extensively [Qiu et al., 2020]. Alsentzer et al. [2019]
and Huang et al. [2019] both pre-trained BERT-based models on clinical data. They
evaluated their work on readmission prediction and other NLP tasks. We are the
first to evaluate pre-trained language models on multiple clinical outcome tasks with
large label sets. We further propose a novel pre-training objective specifically for the
clinical domain.

Prediction of diagnoses and procedures. The majority of work on diagnosis
and procedure prediction covers either single diagnoses [Liu et al., 2018, Choi et al.,
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2018] or coarse-grained groups [Peng et al., 2020, Sushil et al., 2018]. We argue
that models should predict diseases and procedures in a fine-grained manner to be
beneficial for doctors. Thus, we use all diagnosis and procedure codes from the data
for our outcome prediction tasks.

ICD coding vs. outcome prediction. There is a variety of work in the related
field of automated ICD coding [Xie et al., 2018, Falis et al., 2019]. Zhang et al. [2020c]
presented a model able to identify up to 2,292 ICD codes from text. However, ICD
coding differs from outcome prediction in the way that diseases are directly extracted
from text rather than inferred from symptom descriptions and patient history. We
further discuss this distinction in Section 6.6.

6.3 Clinical Admission to Discharge Task

Clinical outcome prediction can be defined in different ways. We approach the task
from a doctor’s perspective and predict the outcome of a current admission from the
time of the patient’s arrival to the hospital unit. We describe our setup as follows.

6.3.1 Clinical Notes from MIMIC-III

As our primary data source, we use the freely-available MIMIC-III v1.4 database
[Johnson et al., 2016]. It contains de-identified EHR data including clinical notes in
English from the Intensive Care Unit (ICU) of Beth Israel Deaconess Medical Center
in Massachusetts between 2001 and 2012. We focus our work on discharge summaries
in particular and the outcome information associated with an admission. Similar to
previous work, we filter out notes about newborns and remove duplicates.

6.3.2 Creating Admission Notes from Discharge Summaries

The state of a patient is commonly summarized in an ongoing document, which finally
concludes in a discharge summary. Since we want to support clinical decisions from
the beginning of a patient’s stay, we simulate the state of the patient’s document at

Admission Notes Statistics
average std average std

(words / doc) (words / doc) (sentences / doc) (sentences / doc)
396.3 233.3 32.5 23.1

Table 6.1. Numbers of words / sentences in MIMIC-III admission notes. We see a
high variation in length.
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Multi-label tasks: ICD-9 codes per dataset split
Diagnoses Procedures

Total Train Val Test Total Train Val Test
1,266 1,201 906 1,031 711 672 476 563

Table 6.2. Distribution of ICD-9 codes per dataset split (patient-wise). Note that
very rare codes do not appear in each split of the dataset.

Single-label tasks: Samples per class
Mortality Length of Stay (in days)
0 1 ≤ 3 > 3 & ≤ 7 > 7 & ≤ 14 > 14

43,609 5,136 5,596 16,134 13,391 8,488

Table 6.3. Distribution of labels for Mortality Prediction and Length of Stay task.
Both tasks have unbalanced class distributions.

admission time. We thus filter the document by sections that are known at admission
such as: Chief complaint, (History of) Present illness, Medical history, Admission
Medications, Allergies, Physical exam, Family history and Social history.

In order to filter the documents by admission sections, we first split all discharge
summaries into sections with simple pattern matching. Together with clinical pro-
fessionals, we then evaluated discharge summaries and identified sections that are
known at admission time. We remove all other sections and thus hide information
about the further hospital course and discharge of a patient. We exclude notes that
do not contain any of the admission sections. We further apply a patient-wise split
into train, validation and test set with a 70/10/20 ratio.

Our approach results in 48,745 admission notes. As shown in Table 6.1 the notes
contain about 400 words on average. The selection of admission sections as well as
the resulting structure of the notes were verified by medical doctors. This newly
created admission dataset enables us to make predictions on the outcome of a current
admission. At inference time, doctors can then use the model’s predictions on textual
data from newly arrived patients.

6.3.3 Outcome Prediction Tasks

We select four relevant tasks for outcome prediction in consultation with medical
professionals. All tasks take admission notes as input.

Diagnosis prediction. A main goal of clinical outcome prediction is to support
medical professionals in the process of differential diagnosis. We thus take all diag-
noses associated with an admission into account and frame the task as an extreme
multi-label classification. Diagnoses are encoded as ICD-9 codes in the MIMIC-III
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Figure 6.2. Distribution of ICD-9 diagnosis codes in MIMIC-III training set.

Figure 6.3. Distribution of ICD-9 procedure codes in MIMIC-III training set.

database. Following Choi et al. [2017], we group ICD-9 diagnosis codes from the
database from 4- into 3-digit codes to reduce complexity while still obtaining granu-
lar suggestions. This results in a total of 1,266 diagnosis codes, which are distributed
over our dataset splits as shown in Table 6.2. The labels are power-law distributed
with a long tail of very rare codes as shown in Figure 6.2.

Procedure prediction. Procedures are either diagnostics or treatments applied to
a patient during a stay. Similarly to diagnosis prediction, this is an extreme multi-
label task. We again group the ICD-9 codes from the MIMIC-III database into 3-digit
codes. In total, there are 711 procedure codes labeled in the database in a power law
distribution similar to the diagnosis codes (Figure 6.3).

In-hospital mortality prediction. Predicting a patient’s mortality risk is a fun-
damental part of the triage process. In-hospital mortality in particular describes
whether a patient died during the current admission and is a binary classification
task. The percentage of deceased patients in the data is around 10% (see Table 6.3).
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As some notes contain direct indications of mortality such as patient deceased within
the admission sections, we apply an additional filter for those terms.

Length-of-stay prediction. The duration of an ICU stay is an important infor-
mation for hospitals in order to plan allocations of resources. We group patients into
four major categories regarding their length of stay: Under 3 days, 3 to 7 days, 1
week to 2 weeks, more than 2 weeks. These categories were recommended by medical
doctors in order to make the results as useful as possible in clinical practice. Table
6.3 shows the samples per class.

6.4 Integrating Clinical Knowledge Into Language

Models

In the following, we propose clinical outcome pre-training, a way to integrate knowl-
edge about clinical patient outcomes into pre-trained language models. We further
introduce an additional step to incorporate medical knowledge from the International
Statistical Classification of Diseases and Related Health Problems (ICD) coding hier-
archy into our multi-label classification tasks.

6.4.1 Clinical Outcome Pre-Training

Motivation. Language model pre-training has shown to be of use in specialized
domains like the clinical [Alsentzer et al., 2019, Huang et al., 2019]. However, these
models lack knowledge about patient trajectories and symptom-diagnosis relations,
because their training is focused on learning language characteristics.
We develop an additional pre-training step that produces Clinical Outcome Represen-
tations (CORe) in order to teach the model relations between symptoms, risk factors
and clinical outcomes. Much of this knowledge is present and publicly available, e.g. in
knowledge bases like Wikipedia or publication archives like PubMed. Another source
is available to hospitals in the form of unlabeled clinical notes from previous patients.
The suggested outcome pre-training is a way to use this knowledge to improve the
model’s capabilities in predicting clinical outcomes as described in 6.3.3.
Corresponding to the way doctors gain their knowledge from both experience and
medical literature, we incorporate knowledge from complete patient notes (including
discharge information) and medical articles.

Training objective. Our proposed training objective (Figure 6.4) is strongly re-
lated to the Next Sentence Prediction (NSP) task introduced by Devlin et al. [2019].
In NSP the model gets two sentences as an input and predicts whether the second
follows the first sentence. This way models such as BERT learn relations between



CHAPTER 6. CORE: ADAPTING LLMS TO CLINICAL OUTCOME PREDICTION 74

BERT
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Representations
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Mortality Length of Stay
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Samples

MIMIC 
III PubMed Wikipedia MedQuad

DISCHARGEADMISSION
TEXT

DISCHARGE
TEXT

[CLS] Former 1ppd smoker for 20-30 years. 
[SEP] The aorta is ectatic with eccentric ...

Does this outcome match the patient?
Label: True

Clinical Outcome Pre-Training

DISCHARGESYMPTOMS /
RISK FACTORS

TREATMENTS /
PROGNOSES / ...

[CLS] ... skin lesions with sometimes itching. 
[SEP] Delivery of whole brain radiotherapy ...

Does this treatment match the symptoms?
Label: False

PATIENTS ARTICLES

Figure 6.4. Schematic demonstration of clinical outcome pre-training. Sources of clin-
ical knowledge are complete patient notes and medical articles. Based on that, we
create a self-supervised learning objective that teaches relations between symptoms,
risk factors and outcomes.

sentences. We convert this setting so that the model instead learns relations between
admissions and outcomes.
From common sections in patient notes, we create two categories: Sections that are
created at admission A and sections that are created after admission, e.g. at dis-
charge time D. Given a patient note N , we split it into sections AN ∈ A and
DN ∈ D. We remove all other sections. We then sample token sequences from these
sections to get tN,1...k ∈ AN and t′N,1...k ∈ DN , where k is randomly set between 30
and 50 tokens. We then train the model to maximize P (Same Patient|XN N) and
P (Other Patient|XN M) with

XN N = Enc(tN,1...k, t
′
N,1...k)

XN M = Enc(tN,1...k, t
′
M,1...k)

(6.1)

with M being a randomly sampled document from the same batch and Enc referring
to the BioBERT encoding. As in the original NSP setting, we apply negative sampling
(XN M) for 50% of examples. We apply the same strategy on medical articles and
case reports, so that A represents sections describing symptoms and risk factors, and
D represents sections that describe outcomes of a disease or case.

Data sources. We create the pre-training dataset from multiple public sources. To
integrate knowledge that doctors gain from previous patients and medical literature,
we create two groups of sources:

1) Patients, which includes 32,721 discharge summaries from the MIMIC-III cor-
pus training set, 5,000 publicly available medical transcriptions from the MTSamples
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website 1 and 4,777 clinical notes from the i2b2 challenges 2006-20122 [Uzuner et al.,
2007, 2008, 2010a,b, 2011, 2012, Sun et al., 2013a,b].

2) Articles, composed of 9,335 case reports from PubMed Central (PMC), 2,632 ar-
ticles fromWikipedia describing diseases and 1,467 article sections from the MedQuAd
dataset [Abacha and Demner-Fushman, 2019] extracted from NIH websites such as
cancer.gov.

While Patients samples contain unaudited practical knowledge, Articles samples
are built from verified general medical knowledge such as peer-reviewed studies. The
sources are, therefore, substantially different and we evaluate their individual effect
on performance in Section 6.5.3.

Data preparation. We create admission (AN) and discharge parts (DN) of the
documents based on section headings. We define common sections belonging to the
admission part and those belonging to the discharge part similar to the method de-
scribed in Section 6.3.2. We ignore sections that cannot be categorized. For section
heading extraction from MIMIC-III discharge summaries and MTSamples transcrip-
tions, we apply simple rule-based approaches, which is feasible because the notes are
well-structured. For Wikipedia we use headings from the WikiSection dataset [Arnold
et al., 2019] filtered for disease articles only. For PubMed Central we similarly use
the PubMedSection dataset [Schneider et al., 2020] and filter for section headings
that indicate case reports. As i2b2 notes are less well-structured in comparison to
MIMIC-III discharge summaries, we use a classifier as proposed by Rosenthal et al.
[2019] to determine which section a sentence belongs to. The classifier is trained on
an annotated set of i2b2 notes and then applied to all other notes.

6.4.2 ICD+: Incorporation of ICD Hierarchy

Medical knowledge in ICD labels. Diagnosis and procedure prediction requires
the model to predict ICD-9 codes in a multi-label manner. ICD-9 codes are hier-
archically ordered into associated groups. Figure 6.5 shows the code hierarchy for
Malignant hypertensive renal disease with the ICD-9 code 403.0. The diagnosis has
two parent groups namely Hypertension renal disease and Diseases of the circula-
tory system. Diagnoses or procedures in the same group often share similar medical
characteristics, therefore, hierarchical relations of a labeled code can be valuable in-
formation. This medical information is currently not integrated into the model. The
same holds for words describing the ICD-9 codes, that often represent further impor-
tant signals, such as the words renal or malignant.

1https://mtsamples.com
2We exclude notes from the 2014 De-identification and Heart Disease Risk Factors Challenge in

order to use this set for evaluation as described in Section 6.5.4.

https://mtsamples.com
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390 – 459 Diseases of the circulatory system
   - 401 Essential Hypertension
   - 403 Hypertension renal disease
      - 403.0 Malignant hypertensive renal disease
      - 403.1 Benign hypertensive renal disease

Assigned Label: 403

Assigned Labels with ICD+: 
403, 403.0, malignant, hypertensive, renal, disease,
hypertension, circulatory, system

Figure 6.5. Example of ICD+ labeling. Malignant hypertensive renal disease is as-
signed to nine codes (bottom row) that inform about the type and group of the
disease.

Enhancing training with useful additional signals. We propose a novel yet
simple method, ICD+, to incorporate both associated groups and words into the
model weights: Instead of only classifying 3-digit codes (as mentioned in 6.3.3), we
let the model additionally predict the 4-digit codes and the bag of associated words
with a code and its parent groups. In order to create the bag of words per code, we
use the descriptions of ICD-9 codes from MIMIC-III and remove all stop words. As
shown in Figure 6.5, the ICD+ method assigns eight additional labels to the example
diagnosis and thus supplies the model with further information about the diagnosis
during training. By increasing the amount of labels per sample, we integrate relevant
medical knowledge and enable the model to learn implicit relations between codes
and code groups that share certain words. We evaluate the effectiveness of ICD+ in
Section 6.5.

6.5 Experimental Evaluation

6.5.1 Training Clinical Outcome Representations

We pre-train the CORe model on top of BioBERT weights3. We then fine-tune the
model separately on the four outcome tasks. We use the same training regimen for
both pre-training and fine-tuning: We tokenize the texts with WordPiece tokenization
and truncate them to 512 tokens, due to the limited context length of the pre-trained
models. We use early stopping and apply a random search for tuning the follow-
ing hyperparameters on the validation set: learning rate [1e-4−1e-6], warmup steps
[50−30k], dropout [0.1−0.3], class balancing [True/False] (fine-tuning only), gradient
accumulation [1−200] with a batch size of 20.

3We choose BioBERT as the base for our model because it outperforms BERT on medical tasks
and has not seen data from our test set during pre-training unlike DischargeBERT.
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6.5.2 Baseline Models

In the following, we introduce the baseline models that we evaluate on the novel
outcome prediction tasks. In order to understand the abilities of pre-trained language
models we compare their performance against more traditional approaches. The first
three models (BOW, word embeddings, CNN) are trained using the hyperparameters
proposed by the authors for outcome prediction tasks. The language models are
fine-tuned the same way as the CORe model.

Bag of Words. Boag et al. [2018] shows that a simple bag of words (BOW) ap-
proach can outperform more complex models on tasks like mortality prediction. We
thus include their approach in our evaluation. We adopt their training setting ex-
cept that we consider 200 instead of 20 top tf-idf words in order to make the model
converge.

Pre-trained word embeddings. Boag et al. [2018] further propose the use of pre-
computed word embeddings that were trained on MIMIC-III data. We use the same
setting as for the BOW approach and fit a support vector machine classifier on the
clinical outcome tasks.

Convolutional Neural Network (CNN). Si and Roberts [2019] built a neural
network for mortality prediction with two hierarchical convolutional layers at the
word and sentence levels and then aggregated it to a patient level representation. We
follow their approach to evaluate the model on our four admission to discharge tasks.

BioBERT. Following the success of BERT, Lee et al. [2020] further pre-trained
the model on biomedical research articles from PubMed using abstracts and full-text
articles. They reported improved performance on a range of biomedical text mining
tasks.

ClinicalBERT and DischargeBERT. We further evaluate two public language
models pre-trained on the clinical domain, with MIMIC-III data in particular. Huang
et al. [2019] pre-trained a BERT base model on 100,000 random clinical notes (Clini-
calBERT) while Alsentzer et al. [2019] further pre-trained BioBERT on all discharge
summaries from MIMIC-III (we refer to the model as DischargeBERT for simplicity).

6.5.3 Results on MIMIC-III Admission Notes

Table 8.1 shows performances in (macro-averaged) area under the receiver operating
characteristic curve (AUROC). We report scores of the CORe model trained only on
Articles, Patients and in a combined training setting CORe All. We evaluate diagnosis
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Diagnoses Procedures In-Hospital Mortality Length-of-Stay
(1266 classes) (711 classes) (2 classes) (4 classes)

BOW [Boag et al., 2018] 75.87 77.47 79.15 65.83
Embeddings [Boag et al., 2018] 75.16 76.72 79.94 66.78
CNN [Si and Roberts, 2019] 61.18 73.13 75.50 64.49
BERT Base [Devlin et al., 2019] 82.08 85.84 81.13 70.40
ClinicalBERT [Huang et al., 2019] 81.99 86.15 82.20 71.14
DischargeBERT [Alsentzer et al., 2019] 82.86 87.09 84.51 71.73
BioBERT Base [Lee et al., 2020] 82.81 86.36 82.55 71.59
BioBERT ICD+ 83.17 87.45 - -
CORe Articles (w/o ICD+) 83.46 (82.89) 87.43 (86.75) 83.64 71.99
CORe Patients (w/o ICD+) 83.41 (83.40) 88.37 (86.60) 83.60 71.96
CORe All (w/o ICD+) 83.54 (83.39) 87.65 (87.15) 84.04 72.53

Table 6.4. Results on outcome prediction tasks in macro-averaged % AUROC. The
CORe models outperform the baselines, ICD+ adds further improvement (values in
parentheses are ablation results without ICD+). DischargeBERT results are printed
in italic because the model has seen all test data during pre-training and is thus
slightly advantaged.

and procedure prediction both with and without the ICD+ method on BioBERT and
the CORe models. In both scenarios we evaluate on 3-digit ICD codes only, in order
to maintain comparability between the methods.

Pre-trained models outperform baselines. We see that the evaluated pre-
trained language models clearly outperform the BOW, word embeddings and CNN
approaches. We further observe that the CORe models improve scores on all tasks in
comparison to the baseline models, except for DischargeBERT that reaches a higher
score in mortality prediction—probably affected by its exposure to the test data. This
shows that even though the language models are trained on similar data (e.g. PubMed
and/or clinical notes), the specific outcome pre-training improves the model’s ability
to predict clinical outcome targets. Pre-training on Patients and Articles achieve
similar improvements over the baselines, while the combined training is the most
effective. An exception is the procedure prediction, where pre-training on Patients
achieves the highest score. A probable reason is that procedures are documented in
more detail in clinical notes, especially since our selection of medical articles focuses
on diseases rather than procedures.

Predicting mortality risk is easier than length of stay. We see that the models
reach higher scores in the binary mortality task than in length of stay prediction. Even
a simple BOW approach can reach a relatively high score, which indicates that most
of the notes contain clear hints towards an increased mortality risk. On the other
hand, the length of stay task is difficult due to the many factors that can contribute
to the length of a patient’s stay after the admission, including nonclinical factors such
as the patient’s insurance situation [Khosravizadeh et al., 2016].
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Figure 6.6. Top 10 diagnoses by frequency with the scores reached by the CORe All
model.

Figure 6.7. Top 10 procedures by frequency with the scores reached by the CORe All
model.

ICD hierarchy improves diagnosis and procedure predictions. Table 8.1
shows an ablation test without the ICD+ method (in parentheses). We see that
both the BioBERT model and the CORe models improve when incorporating code
hierarchy and relations through ICD+ into the training process. This is especially
visible for ICD procedures, where the hierarchical and textual information, e.g. that a
Nephropexy is an operation on the kidney can add important signals during training.

Differing results on most frequent diagnoses and procedures Figures 6.6
and 6.7 show the % AUROC scores of our CORe All model on the most frequent la-
bels within the diagnosis and procedure prediction tasks. Figure 6.6 shows that many
chronic diseases such as Essential Hypertension or Chronic ischemic heart disease are
among the most common within the MIMIC-III dataset and present with relatively
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i2b2 Diagnoses
BioBERT ICD+ 80.43
CORe Articles 81.46
CORe Patients 82.31
CORe All 81.15

Table 6.5. Results on i2b2 diagnosis prediction task (5 classes) in % AUROC. The
models reach similar results as on the MIMIC-III data, indicating their transferability
to other data sources without additional fine-tuning.

high AUROC values. We also observe that very specific codes such as Diabetes mel-
litus and Bypass Anastomosis are predicted more easily compared to more general
codes such as Other and unspecified anemias. Figure 6.7 further shows the negative
influence of inconsistent labeling on standard procedures such as Puncture of Vessel.

6.5.4 Model Transferability: Cross-Verification on i2b2 Clin-
ical Notes

In order to verify that the fine-tuned models are transferable to ICU data from other
sources, we apply it to data from the i2b2 De-identification and Heart Disease Risk
Factors Challenge [Stubbs et al., 2015, Stubbs and Uzuner, 2015]. The challenge
introduces a dataset that contains clinical notes and discharge summaries annotated
based on risk factors and disease indicators. We convert the data into an admission to
discharge task by selecting five of the annotated conditions which correspond to ICD-
9 codes as our labels, namely Hypertension (401), Hyperlipidemia (272), Coronary
artery disease (414), Diabetes mellitus (250) and Obesity (278). Just like the MIMIC-
III diagnosis task, samples are annotated in a multi-label fashion. In order to convert
the clinical notes to admission notes, we use the dataset from Rosenthal et al. [2019]
that contain section labels per sentence. We then exclude sections that are not known
at admission time concurrent to Section 6.3.2. This approach results in 1,118 samples
labeled with up to five ICD-9 codes.

Models generalize to i2b2 data. We apply the models based on MIMIC-III
to predict diagnosis codes for the i2b2 notes without further fine-tuning. We then
evaluate whether the predictions contain the five mentioned ICD-9 codes. The results
in macro-averaged % AUROC are shown in Table 6.5. Even though the clinical notes
differ from the MIMIC-III notes in structure and writing style, the tested models are
mostly able to identify the conditions. The scores are comparable to the MIMIC-III
results, which shows that the models are able to generalize on data from different
sources such as other hospitals.
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Figure 6.8. Impact of age on mortality prediction on 20 random samples. Mortality
risk and age mostly increase proportionally as intended, with certain peaks that might
indicate unintended biases in the data.

% AUROC
All Diagnoses 83.54
Diagnoses Mentioned in Text 87.10
Diagnoses Not Mentioned in Text 82.35

Table 6.6. Analysis of the impact of directly mentioned diagnoses on the diagnosis
prediction task. Mentioned diagnoses are detected more reliably. Though on unmen-
tioned diagnoses, scores only see a small decrease compared to the overall score.

6.6 Discussion and Findings

Clinical outcome prediction is a sensitive task. Therefore, we conduct an extensive
analysis on the CORe All model including a manual error analysis by medical doctors
to understand how the model would perform in clinical practice.

6.6.1 A Closer Look at the Model’s Abilities

Does the model mainly extract already present diagnoses? We observe that
a majority of coded diseases are already mentioned in the admission text. This is
mainly due to chronic diseases (e.g. diabetes mellitus) or to conditions that were
identified prior to the ICU admission (e.g. in the emergency ward). We want to know
if our model is also able to predict diagnoses that are not mentioned in the text.
We annotate the admission texts with ICD-9 diagnosis codes with the methodology
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described by Searle et al. [2020]. We then evaluate on codes that were explicitly
mentioned in the text and those that were not. Table 6.6 shows that the model
indeed extracts many diagnoses directly from the text and thus reaches a higher
score on mentioned diagnoses. On the other hand, we see that the performance on
non-mentioned diagnoses does drop only slightly, indicating that the model has also
learned to predict non-mentioned diagnoses.

How does age and gender impact predictions? Age and gender are common
risk factors with significant impact on the potential clinical outcome of a patient.
We want our models to learn that impact without overestimating it. We test the
model’s behaviour by switching age and gender throughout 20 random samples and
analyze how the mortality prediction changes. For each sample we manually switch
the age mention and iterate over it from 18 until [**Age over 90**]4. Figure 7.6
shows that the analyzed samples show a high variation in mortality risk and that
age only impacts the prediction partially. In all cases the prediction increases with
age—as expected from a medical perspective. We also observe some peaks without a
medical reason that are caused by the mortality of certain age groups in the original
data (black dotted line). This demonstrates how the model does not follow medical
reasoning but merely statistic observations. We similarly switch the gender mention
and all pronouns in the texts and observe that mortality prediction for male patients
is increased by 5% on average, consistent with medical rationale.

Where is the model failing? To better understand the shortcomings of our
model, we present medical professionals with 20 randomly selected error samples.

1. Negation Our error analysis finds that negation does not generally falsify the
model’s predictions, however, we could identify single samples in which espe-
cially medical-specific negations, such as abstinent from alcohol, are misinter-
preted by the model, e.g. into alcohol dependence syndrome.

2. Numerical data Wallace et al. [2019] show BERT’s inabilities to interpret
numbers. We observe this in the case that the model does not interpret life-
threatening vital values (such as temperature over 105◦F) as an increased mor-
tality risk. Clinical notes contain many such relevant values, thus improving
the encoding of such data is an important goal for future work.

6.6.2 There is No Ground Truth in Clinical Data

Incomplete and inconsistent labels. Our error analysis reveals that 60% of the
analyzed samples are partially under-coded. They contain indicators for a diagnosis or
procedure but miss the corresponding ICD-9 code. This is consistent with results from

4De-identified age information in MIMIC-III for patients older than 89.
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Searle et al. [2020] showing that MIMIC-III is up to 35% under-coded. Additionally
we find that procedures that are almost always performed in the ICU such as Puncture
of vessel are often coded inconsistently. While a doctor can infer these labels with
medical common sense, they pose a challenge to our models. We thus suggest a
critical view towards the data and welcome additional clinical datasets to compensate
for noisy labels.

Multiple possible outcomes. 85% of analyzed samples contain false positive pre-
dictions that the doctors still consider medically reasonable. This demonstrates that
there are many possible clinical pathways and that some might not be foreseeable
at admission time. We also see many cases in which the information in the clinical
note is not sufficient and allows multiple interpretations. For future work, we propose
including further EHR data as suggested by Khadanga et al. [2019] to extend the
patient representation in these scenarios.

6.7 Chapter Summary

In this chapter, we reframed the task of clinical outcome prediction to consider the
admission state of a patient and thus support doctors in their initial decision process.
We show that large language models outperform selected baselines on this task, and
we present methods for further improving them by integrating domain-specific data
in a self-supervised manner: First, by outcome pre-training, which enables our models
to learn from unlabeled sources including clinical case studies and publications. And
second, by introducing ICD+, a method that incorporates hierarchical and textual
ICD representations into our models. Both approaches increase performance and
transferability to other datasets.

We further conducted an error analysis and studied the impact of age on mortality
predictions. The results of this analysis reveal the need for closer observations of
model behavior to ensure safe deployment in real scenarios. That is why we introduce
a more comprehensive study on model patterns and behavior in the next chapter.





7
Behavioral Testing of Clinical Language Models

In the previous chapter, we have shown that decision support systems based on clinical
notes have the potential to improve patient care by pointing doctors towards overseen
risks. Predicting a patient’s outcome is an essential part of such systems, for which
the use of LLMs has shown promising results.

However, the patterns learned by these networks are mostly opaque and at risk of
reproducing unintended biases. We thus introduce an extendable testing framework
that evaluates the behavior of clinical outcome models regarding changes in the input.
The framework helps to understand learned patterns and their influence on model
decisions. In this chapter, we apply it to analyze the change in behavior with regard
to the patient characteristics gender, age and ethnicity. We show that communicating
model behavior to medical professionals is crucial for the safe application of such
systems and that the presented framework can be used as part of such communication.
In conjunction with the interpretable model architecture presented in Chapter 8, the
following work approaches research question 4: How can we make large language
models more transparent to serve domain requirements?

7.1 Introduction

The use of automatic systems in the medical domain is promising due to their poten-
tial exposure to large amounts of data from earlier patients. This data can include
information that helps doctors make better decisions regarding diagnoses and treat-
ments of a patient at hand. Outcome prediction models take patient information
as input and then output probabilities for all considered outcomes (see [Choi et al.,
2018, Khadanga et al., 2019] and Chapter 6). As in the last chapter, we focus on
outcome models using natural language in the form of clinical notes as an input, since
they are a common source of patient information and contain a multitude of possible
variables.

85
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58yo man presents with stomach
pain and acute shortness of breath

58yo woman presents with stomach pain
and acute shortness of breath

58yo afro american man presents with
stomach pain and shortness of breath

58yo obese man presents with stomach
pain and shortness of breath

Predicted
Mortality Risk

Predicted
Diagnoses i.a.

86yo man presents with stomach pain
and shortness of breath

Original sample

Artificially altered testing samples

49% ... esophagitis ...

44% ... anxiety ...

63% ... abuse of drugs ...

31% ... hypertension ...

84% ... heart failure ...

Figure 7.1. Minimal alterations to the patient description can have a large impact on
outcome predictions of clinical NLP models. We introduce behavioral testing for the
clinical domain to expose these impacts.

The problem of black box models for clinical predictions. Neural models
show promising results on tasks such as mortality [Si and Roberts, 2019] and diagno-
sis prediction [Liu et al., 2018, Choi et al., 2018]. However, since most of these models
work as black boxes, it is unclear which features they consider important and how
they interpret certain patient characteristics. From earlier work we know that highly
parameterized models are prone to emphasize systemic biases in the data [Sun et al.,
2019b]. Further, these models have high potential to disadvantage minority groups
as their behavior towards out-of-distribution samples is often unpredictable. This
behavior is especially dangerous in the clinical domain, since it can lead to under-
diagnosis or inappropriate treatment [Straw, 2020]. Thus, understanding models and
allocative harms they might cause [Barocas et al., 2017] is an essential prerequisite
for their application in clinical practice. We argue that more in-depth evaluations are
needed to know whether models have learned medically meaningful patterns or not.

Behavioral testing for the clinical domain. As a step towards this goal, we
introduce a novel testing framework specifically for the clinical domain that enables
us to examine the influence of certain patient characteristics on the model predic-
tions. Our work is motivated by behavioral testing frameworks for general NLP tasks
[Ribeiro et al., 2020] in which model behavior is observed under changing input data.
Our framework incorporates a number of test cases and is further extendable to the
needs of individual data sets and clinical tasks.

Influence of patient characteristics. As an initial case study we apply the
framework to analyze the behavior of models trained on the widely used MIMIC-III
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database [Johnson et al., 2016]. We analyze how sensitive these models are towards
textual indicators of patient characteristics, such as age, gender and ethnicity, in
English clinical notes. These characteristics are known to be affected by discrimina-
tion in health care [Stangl et al., 2019], however, they can also represent important
risk factors for certain diseases or conditions. That is why we consider it especially
important to understand how these mentions affect model decisions.

7.2 Related Work

7.2.1 Clinical Outcome Prediction

Outcome prediction from clinical text has been studied regarding a variety of out-
comes. The most prevalent being in-hospital mortality [Ghassemi et al., 2014, Jo
et al., 2017, Suresh et al., 2018, Si and Roberts, 2019], diagnosis prediction [Tao
et al., 2019, Liu et al., 2018, 2019a] and phenotyping [Liu et al., 2019a, Jain et al.,
2019, Oleynik et al., 2019, Pfaff et al., 2020]. In recent years, most approaches are
based on deep neural networks due to their ability to outperform earlier methods in
most settings. Transformer-based LLMs have been applied for prediction of patient
outcomes with reported increases in performance [Huang et al., 2019, Zhang et al.,
2020a, Blinov et al., 2020, Zhao et al., 2021a, van Aken et al., 2021a, Rasmy et al.,
2021]. In this work, we analyze three of these Transformer-based LLMs due to their
upcoming prevalence in the application of NLP in health care.

7.2.2 Behavioral Testing in NLP

Ribeiro et al. [2020] identify shortcomings of common model evaluation on held-out
datasets, such as the occurrence of the same biases in both training and test set and
the lack of broad testing scenarios in the held-out set. To mitigate these problems,
they introduce CheckList, a behavioral testing framework for general NLP abilities.
In particular, they highlight that such frameworks evaluate input-output behavior
without any knowledge of internal structures of a system [Beizer, 1995]. Building
upon CheckList, Röttger et al. [2021] introduce a behavioral testing suite for the
domain of hate speech detection to address the individual challenges of the task.
Following their work, we create a behavioral testing framework for the domain of
clinical outcome prediction, that comprises domain-specific language and data points
with respective challenges.

7.2.3 Analyzing Clinical NLP Models

Zhang et al. [2020b] highlight the reproduction of systemic biases in clinical NLP
models. They quantify such biases with the recall gap among patient groups and
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TEST SET

...year old characteristic B patient ...

characteristic C

characteristic A

MODIFICATION OF ALL SAMPLES
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Figure 7.2. Schematic overview of the introduced behavioral testing framework for the
clinical domain. From an existing test set we create test groups by altering specific
tokens in the clinical note. We then analyze the change in predictions which reveals
the impact of the mention on the clinical NLP model.

show that models trained on data from MIMIC-III inherit biases regarding gender,
ethnicity, and insurance status—leading to higher recall values for majority groups.
Logé et al. [2021] further find disparities in pain treatment suggestions by language
models for different races and genders. We take these findings as motivation to
directly analyze the sensitivity of large pre-trained models with regard to patient
characteristics. In contrast to earlier work and following Ribeiro et al. [2020], we
want to eliminate the influence of existing data labels on our evaluation. Further,
our approach simulates patient cases that are similar to real-life occurrences. It thus
displays the actual impact of learned patterns on all analyzed patient groups.

7.3 Behavioral Testing of Clinical NLP Models

Sample alterations. Our goal is to examine how clinical NLP models react to men-
tions of certain patient characteristics in text. Comparable to earlier approaches to
behavioral testing we use sample alterations to artificially create different test groups.
In our case, a test group is defined by one manifestation of a patient characteristic,
such as female as the patient’s gender. To ensure that we only measure the influence
of this certain characteristic, we keep the rest of the patient case unchanged and apply
the alterations to all samples in our test dataset. Depending on the original sample,
the operations to create a certain test group thus include 1) changing a mention, 2)
adding a mention or 3) keeping a mention unchanged (in case of a patient case that
is already part of the test group at hand). This results in one newly created dataset
per test group, all based on the same patient cases and only different in the patient
characteristic under investigation.

Prediction analysis. After creating the test groups, we collect the models’ predic-
tions for all cases in each test group. Different from earlier approaches to behavioral
testing we do not test whether predictions on the altered samples are true or false with
regard to the ground truth. As discussed in Section 6.6.2, clinical ground truth must
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be viewed critically, because the collected data does only show one possible pathway
for a patient out of many. Further, existing biases in treatments and diagnoses are
likely included in our testing data potentially leading to meaningless results. To pre-
vent that, we instead focus on detecting how the model outputs change regardless
of the original annotations. This way we can also evaluate very rare mentions (e.g.
transgender) and observe their impact on the model predictions reliably. Figure 7.2
shows a schematic overview of the functioning of the framework.

Extensibility. In this study, we use the introduced framework to analyze model
behavior with regard to patient characteristics as described in 7.4.2. However, it can
also be used to test other model behavior like the ability to detect diagnoses when
certain indicators are present in the text or the influence of stigmatizing language (cf.
Goddu et al. [2018]). It is further possible to combine certain patient groups to test
model behavior regarding intersectionality. While such analyses are beyond the scope
of this work, we include them in the published codebase as an example for further
extensions.

7.4 Case Study: Patient Characteristics

7.4.1 Data

We conduct our analysis on data from the MIMIC-III database [Johnson et al., 2016].
In particular, we use the outcome prediction task setup introduced in Chapter 6.
The classification task includes 48,745 English admission notes annotated with the
patients’ clinical outcomes at discharge. We select the outcomes diagnoses at dis-
charge and in-hospital mortality for this analysis, since they have the highest impact
on patient care and present a high potential to disadvantage certain patient groups.
We use three models (see 7.4.3) trained on the two admission to discharge tasks and
conduct our analysis on the test set defined by the authors with 9,829 samples.

7.4.2 Considered Patient Characteristics

We choose three characteristics for the analysis in this work: Age, gender and eth-
nicity. While these characteristics differ in their importance as clinical risk factors,
all of them are known to be subject to biases and stigmas in health care [Stangl
et al., 2019]. Therefore, we want to test whether the analyzed models have learned
medically plausible patterns or ones that might be harmful to certain patient groups.
We deliberately also include groups that occur very rarely in the original dataset.
We want to understand the impact of imbalanced input data especially on minority
groups, since they are already disadvantaged by the health care system [Riley, 2012,
Bulatao and Anderson, 2004].
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PubMedBERT CORe BioBERT

Diagnoses 83.75 83.54 82.81
Mortality 84.28 84.04 82.55

Table 7.1. Performance of three state-of-the-art models on the tasks diagnoses (multi-
label) and mortality prediction (binary task) in % AUROC. PubMedBERT outper-
forms the other models in both tasks by a small margin.

When altering the samples in our test set, we utilize the fact that patients are
described in a mostly consistent way in clinical notes. We collect all mention variations
from the training set used to describe the different patient characteristics and alter the
samples accordingly in an automated setup. Details regarding all applied variations
can be found in the public repository1.

Age. The age of a patient is a significant risk factor for a number of clinical out-
comes. Our test includes all ages between 18 and 89 and the [** Age over 90**]
de-idenfitication label from the MIMIC-III database. By analyzing the model be-
havior for changing age mentions we can get insights on how the models interpret
numbers, a subtask that is considered challenging for current NLP models [Wallace
et al., 2019].

Gender. A patient’s gender is both a risk factor for certain diseases and also subject
to unintended biases in healthcare. We test the model’s behavior regarding gender
by altering the gender mention and by changing all pronouns in the clinical note. In
addition to female and male, we also consider transgender as a gender test group
in our study. This group is extremely rare in clinical datasets like MIMIC-III, but
since approximately 1.4 million people in the U.S. identify as transgender [Flores
et al., 2016], it is important to understand how model predictions change when the
characteristic is present in a clinical note.

Ethnicity. The ethnicity of a patient is only occasionally mentioned in clinical
notes and its role in medical decision-making is controversial, since it can lead to
disadvantages in patient care [Anderson et al., 2001, Snipes et al., 2011]. Earlier
studies have also shown that ethnicity in clinical notes is often incorrectly assigned
[Moscou et al., 2003]. We want to know how clinical NLP models interpret the
mention of ethnicity in a clinical note and whether their behavior can cause unfair
treatment. We choose White, African American, Hispanic and Asian as ethnicity
groups for our evaluation, as they are the most frequent ethnicities in MIMIC-III.

1URL to public repository: https://github.com/bvanaken/clinical-behavioral-testing.

https://github.com/bvanaken/clinical-behavioral-testing
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7.4.3 Clinical NLP Models

In this study, we apply the introduced testing framework to three existing clinical
models which are fine-tuned on the tasks of diagnosis and mortality prediction. We
use public pre-trained model checkpoints and fine-tune all models on the same training
data with the same hyperparameter setup2. The models are based on the BERT
architecture [Devlin et al., 2019] as it presented the state-of-the-art in predicting
patient outcomes at the time of these experiments. Their performance on the two
tasks is shown in Table 7.1. We deliberately choose three models based on the same
architecture to investigate the impact of pre-training data while keeping architectural
considerations aside. In general, the proposed testing framework is model agnostic
and works with any type of text-based outcome prediction model.

BioBERT. Lee et al. [2020] introduced BioBERT which is based on a pre-trained
BERT base [Devlin et al., 2019] checkpoint. They applied another language model
fine-tuning step using biomedical articles from PubMed abstracts and full-text arti-
cles. BioBERT has shown improved performance on both medical and clinical down-
stream tasks.

CORe. Clinical Outcome Representations (CORe) introduced in Chapter 6 are
based on BioBERT and extended with a pre-training step that focuses on the pre-
diction of patient outcomes. The pre-training data includes clinical notes, Wikipedia
articles and case studies from PubMed. The tokenization is similar to the BioBERT
model.

PubMedBERT. Gu et al. [2022] introduced the PubMedBERT model based on
similar data as BioBERT. They use PubMed articles and abstracts but instead of
extending a BERT base model, they train PubMedBERT from scratch. The tok-
enization is adjusted to the medical domain accordingly. The model reaches state-
of-the-art results on multiple medical NLP tasks and outperforms the other analyzed
models on the outcome prediction tasks.

7.5 Results

We present the results on all test cases by averaging the probabilities that a model
assigns to each test sample. We then compare the averaged probabilities across test
cases to identify which characteristics have a large impact on the model’s prediction
over the whole test set. The values per diagnosis in the heatmaps shown in Figure
7.3, 7.4, 7.7 and 7.8 are defined using the following formula:

2Batch size: 20; learning rate: 5e-05; dropout: 0.1; early stopping patience: 20; warmup steps:
1000.
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Figure 7.3. Influence of gender on predicted diagnoses. Blue: Predicted probability
for diagnosis is below-average; red: predicted probability above-average. PubMed-
BERT shows highest sensitivity to gender mention and regards many diagnoses less
likely if transgender is mentioned in the text. The graph shows deviation of proba-
bilities on 24 most common diagnoses in the test set.

Figure 7.4. Original distribution of diagnoses per gender in MIMIC-III. Cell colors:
Deviation from average probability. Numbers in parenthesis: Occurrences in the
training set. Most diagnoses occur less often in transgender patients due to their very
low sample count.

ci = pi −
∑N

j pj

N
(7.1)

where ci is the value assigned to test group i, p is the (predicted) probability for
a given diagnosis and N is the number of all test groups except i.

We choose this illustration based on the concept of partial dependence plots [Fried-
man, 2001] to highlight both positive and negative influence of a characteristic on
model behavior. Since all test groups are based on the same patients and only differ
regarding the characteristic at hand, even small differences in the averaged predictions
can point towards general patterns that the model has learned.
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7.5.1 Influence of Gender

Transgender mention leads to lower mortality and diagnoses predictions.
Table 7.2 shows the mortality predictions of the three analyzed models with regard to
the gender assigned in the text. While the predicted mortality risk for female and male
patients lies within a small range, all models predict the mortality risk of patients
that are described as transgender as lower than non-transgender patients. This is
probably due to the relative young age of most transgender patients in the MIMIC-
III training data, but can be harmful to older patients identifying as transgender at
inference time.

Sensitivity to gender mention varies per model. Figure 7.3 shows the change
in model prediction for each diagnosis with regard to the gender mention. The cells
of the heatmap are the deviations from the average score of the other test cases.
Thus, a red cell indicates that the model assigns a higher probability to a diagnosis
for this gender group. We see that PubMedBERT is highly sensitive to the change
of the patient gender, especially regarding transgender patients. Except from few
diagnoses such as Cardiac dysrhythmias and Drug Use / Abuse, the model predicts
a lower probability to diseases if the patient letter contains the transgender mention.
The CORe and BioBERT models are less sensitive in this regard. The most salient
deviation of the BioBERT model is a drop in probability of Urinary tract disorders
for male patients, which is medically plausible due to anatomic differences [Tan and
Chlebicki, 2016].

Patterns in MIMIC-III training data are partially inherited. In Figure 7.4
we show the original distribution of diagnoses per gender in the training data. Note
that the deviations are about 10 times larger than the ones produced by the model
predictions in Figure 7.3. This indicates that the models take gender as a decision
factor, but only among others. Due to the very rare occurrence of transgender men-
tions (only seven cases in the training data), most diagnoses are underrepresented
for this group. This is partially reflected by the model predictions, especially by
PubMedBERT, as described above. Other salient patterns such as the prevalence of
Chronic ischemic heart disease in male patients are only reproduced faintly.

PubMedBERT CORe BioBERT

Female 0.335 0.239 0.119
Male 0.333 0.245 0.121
Transgender 0.326 0.229 0.117

Table 7.2. Influence of gender on mortality predictions. PubMedBERT assigns high-
est risk to female, the other models to male patients. Notably, all models decrease
their mortality prediction for transgender patients.
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Figure 7.5. Influence of age on mortality predictions. X-axis: Simulated age; y-axis:
predicted mortality risk. The three models are differently calibrated and only CORe
is highly influenced by age.

7.5.2 Influence of Age

Mortality risk is differently influenced by age. Figure 7.5 shows the averaged
predicted mortality per age for all models and the actual distribution from the training
data (dotted line). We see that BioBERT does not take age into account when
predicting mortality risk except for patients over 90. PubMedBERT assigns a higher
mortality risk to all age groups with a small increase for patients over 60 and an even
steeper increase for patients over 90. CORe follows the training data the most while
also inheriting peaks and troughs in the data.

Models are equally affected by age when predicting diagnoses. We exem-
plify the impact of age on diagnosis prediction on eight outcome diagnoses in Figure
7.6. The dotted lines show the distribution of the diagnosis within an age group in
the training data. The change of predictions regarding age are similar throughout the
analyzed models with only small variations such as for Cardiac dysrhythmias. Some
diagnoses are regarded more probable in older patients (e.g. Acute Kidney Failure)
and others in younger patients (e.g. Abuse of drugs). The distributions per age group
in the training data are more extreme, but follow the same tendencies as predicted
by the models.
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Figure 7.6. Influence of age on diagnosis predictions. The x-axis is the simulated age
and the y-axis is the predicted probability of a diagnosis. All models follow similar
patterns with some diagnosis risks increasing with age and some decreasing. The
original training distributions (black dotted line) are mostly followed but attenuated.

Peaks indicate lack of number understanding. From earlier studies we know
that BERT-based models have difficulties dealing with numbers in text [Wallace et al.,
2019]. The peaks that we observe in some predictions support this finding. For
instance, the models assign a higher risk of Cardiac dysrhythmias to patients aged
73 than to patients aged 74, because they do not capture that these are consecutive
ages. Therefore, the influence of age on the predictions might solely be based on the
individual age tokens observed in the training data.

7.5.3 Influence of Ethnicity

Mention of any ethnicity decreases prediction of mortality risk. Table 7.3
shows the mortality predictions when different ethnicities are mentioned and when
there is no mention. We observe that the mention of any of the ethnicities leads to a
decrease in mortality risk prediction in all models, with White and African American
patients receiving the lowest probabilities.

Diagnoses predicted by PubMedBERT are highly sensitive to ethnicity
mentions. Figure 7.7 depicts the influence of ethnicity mentions on the three mod-
els. Notably, the predictions of PubMedBERT are strongly influenced by ethnicity
mentions. Multiple diagnoses such as Chronic kidney disease are more often predicted
when there is no mention of ethnicity, while diagnoses like Hypertension and Abuse of
drugs are regarded more likely in African American patients and Unspecified anemias
in Hispanic patients. While the original training data in Figure 7.8 shows the same
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Figure 7.7. Influence of ethnicity on diagnosis predictions. Blue: Predicted proba-
bility for diagnosis is below-average; red: predicted probability above-average. Pub-
MedBERT’s predictions are highly influenced by ethnicity mentions, while CORe and
BioBERT show smaller deviations, but also disparities on specific groups.

Figure 7.8. Original distribution of diagnoses per ethnicity in MIMIC-III. Cell colors:
Deviation from average probability. Numbers in parenthesis: Occurrences in the
training set. Both the distribution of samples and the occurrences of diagnoses are
highly unbalanced in the training set.

strong variance among ethnicities, this is not inherited the same way in the CORe
and BioBERT models. However, we can also observe deviations regarding ethnicity
in these models.

African American patients are assigned lower risk of diagnoses by CORe
and BioBERT. The heatmaps showing predictions of CORe and BioBERT reveal
a potentially harmful pattern in which the mention of African American in a clini-
cal note decreases the predictions for a large number of diagnoses. This pattern is
found more prominently in the CORe model, but also in BioBERT. Putting these
models into clinical application could result in fewer diagnostic tests to be ordered by
physicians and, therefore, lead to disadvantages in the treatment of African American
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patients. This is particularly critical as it would reinforce existing biases in health
care [Nelson, 2002].

PubMedBERT CORe BioBERT

No mention 0.333 0.243 0.120
White 0.329 0.235 0.119
African Amer. 0.329 0.239 0.116
Hispanic 0.331 0.237 0.118
Asian 0.330 0.238 0.118

Table 7.3. Influence of ethnicity on mortality predictions. The mention of an eth-
nicity decreases the predicted mortality risk. White and African American patients
are assigned with the lowest mortality risk (gray-shaded).

7.6 Discussion

Model behaviors show large variance. The results described in 6.5.3 reveal
large differences in the influence of patient characteristics throughout the models.
The analysis shows that there is no overall best model, but each model has learned
both useful patterns (e.g. age as a medical plausible risk factor) and potentially
dangerous ones (e.g. decreases in diagnosis risks for minority groups). The large
variance is surprising since the models have a shared architecture and are fine-tuned
on the same data—they only differ in their pre-training. And while the reported
AUROC scores for the models (Table 7.1) are close to each other, the variance in
learned behavior show that we should consider in-depth analyses a crucial part of
model evaluation in the clinical domain. This is especially important since harmful
patterns in clinical NLP models are often fine-grained and difficult to detect.

Model scoring can obfuscate critical behavior. The analysis has shown that
PubMedBERT which outperforms the other models in both mortality and diagnosis
prediction by AUROC show larger sensitivity to mentions of gender and ethnicity in
the text. Many of them, such as lower diagnosis risk assignment to African Amer-
ican patients, might lead to undertreatment. This is alerting since it particularly
affects minority groups which are already disadvantaged by the health care system.
It also shows that instead of measuring clinical models regarding rather abstract
scores, looking at their potential impact to patients should be further emphasized.
To communicate model behavior to medical professionals one possible direction could
be to use behavioral analysis results as a part of clinical model cards as proposed by
Mitchell et al. [2019].
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Limitations of the proposed framework. Unlike other behavioral testing setups
(see 7.2.2), results of our framework cannot be easily categorized into correct and
false behavior. While increased risk allocations can be beneficial to a patient group
due to doctors running additional tests, they can also lead to mistreatment or other
diagnoses being overlooked. Same holds for the influence of rare mentions, such as
transgender : One could argue that based on only seven occurrences in the training
set the characteristic should have less impact on model decisions overall. However,
some features e.g. regarding rare diseases should be recognized as important even
if very infrequent. Since our models often lack such judgement, the decision about
which patient characteristic to consider a risk factor and their impact on outcome
predictions is still best made by medical professionals. Nevertheless, decision support
systems can be beneficial if their behavior is transparently communicated. With this
framework we want to take a step towards improving this communication.

7.7 Chapter Summary

We introduced a behavioral testing framework for the clinical domain to understand
the effects of textual variations on model predictions. We applied this framework to
three clinical LLMs to examine the impact of certain patient characteristics. Our
evaluation demonstrates the concrete effects of these characteristics on the models’
decisions. Our results show that the models—even with very similar AUROC scores—
have learned very different behavioral patterns, some of them with high potential to
disadvantage minority groups. With this study, we demonstrate the importance of
model evaluation beyond common metrics especially in sensitive domains like health
care. We recommend to use the proposed framework and the results of our evaluations
for discussions with medical professionals. Being aware of specific model behavior and
incorporating this knowledge into clinical decision making is a crucial step towards
safe deployment of such models.

Furthermore, we take the results of this chapter as motivation towards more in-
terpretable models that can be iteratively improved with medical professionals in the
loop. This way, models could learn which patterns to stick to and which ones to
discard. The next chapter introduces an approach for adapting LLMs towards these
goals by embedding them into an interpretable architecture.



8
ProtoPatient: Interpretable Diagnosis Prediction

Using Prototypical Networks and LLMs

Our studies in the previous chapters have shown that LLMs can achieve promising
results in clinical tasks but also that they incorporate opaque patterns which are not
always medically plausible. In clinical practice, however, such models must not only
have a high accuracy, but provide doctors with interpretable and helpful results. In
this chapter, we introduce ProtoPatient, a novel method based on prototypical net-
works and label-wise attention that presents a step towards both of these abilities.
ProtoPatient makes predictions based on parts of the text that are similar to proto-
typical patients—providing justifications that doctors understand. We evaluate the
model on two publicly available clinical datasets and show that it outperforms exist-
ing baselines. Quantitative and qualitative evaluations with medical doctors further
demonstrate that the model provides valuable explanations for clinical decision sup-
port. With ProtoPatient we thus present a way to embed the strengths of LLMs into
an architecture that satisfies the domain requirement for more transparent systems.

8.1 Introduction

Medical professionals are faced with a large amount of textual patient information
every day. Clinical decision support systems (CDSS) aim to help clinicians in the
process of decision-making based on such data. We specifically look at a subtask
of CDSS, namely the prediction of clinical diagnosis from patient admission notes.
When clinicians approach the task of diagnosis prediction, they usually take similar
patients into account (from their own experience, clinic databases or by talking to
their colleagues) who presented with typical or atypical signs of a disease. They then
compare the patient at hand with these previous encounters and determine the pa-
tient’s risk of having the same condition.

99
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PRESENT ILLNESS: complained
headache of his life since yd
PRESENT ILLNESS: 62yo male
patient presented with worst of
her life. Transferred to hospital
upoon neepisodes xt ICU where
she had episodes problems
keeping food iin and  of nausea
transferred for a CT which
showed signs of a large [...]

CHIEF COMPLAINT: headaches
PRESENT ILLNESS: 62yo male
patient presented with severe
headaches. He had nausea and
vomited multiple times.
MEDICATION ON ADMISSION:
levoxil, spirvia, 
pempril, multi-vit, trazadone
FAMILY HISTORY: fhx significant
for DMII & HTN, father with  [...]

This Patient
newly admitted

to the ICU

That Patient
with prototypical signs

of intracerebral
hemorrhage

Looks Like

... severe headaches. 
He felt nauseous and
vomited multiple
times...

... complained of worst 
headache of her life ...

... episodes of nausea
and problems keeping
food down  ...

Figure 8.1. Basic concept of the ProtoPatient method. The model makes predictions
for a patient (left side) based on the comparison to prototypical parts of earlier
patients (right side).

In this chapter, we propose ProtoPatient, a deep neural approach that imitates
this reasoning process of clinicians: Our model learns prototypical characteristics of
diagnoses from previous patients and bases its prediction for a current patient on the
similarity to these prototypes. This results in a model that is both inherently inter-
pretable and provides clinicians with pointers to previous prototypical patients. Our
approach is motivated by Chen et al. [2019] who introduced prototypical part networks
(PPNs) for image classification. PPNs learn prototypical parts for image classes and
base their classification on the similarity to these prototypical parts. We transfer this
work into the text domain and apply it to the extreme multi-label classification task
of diagnosis prediction. For this transfer, we apply an additional label-wise attention
mechanism that further improves the interpretability of our method by highlighting
the most relevant parts of a clinical note regarding a diagnosis.

While deep neural models have been widely applied to outcome prediction tasks
in the past [Shamout et al., 2020], their black box nature remains a large obstacle for
clinical application, as we have shown in Chapter 7. We argue that decision support
is only possible when model predictions are accompanied by justifications that enable
clinicians to follow a lead or to potentially discard predictions. With ProtoPatient
we introduce an architecture that allows such decision support. Our evaluation on
publicly available data shows that the model can further improve state-of-the-art
performance on predicting clinical outcomes.
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Figure 8.2. Distribution of ICD-9 diagnosis codes in the MIMIC-III training set.

8.2 Task: Diagnosis Prediction from Admission

Notes

The task of outcome prediction from admission notes was introduced in Section 6.3
and assumes the following situation: A new patient p gets admitted to the hospital.
Information about the patient is written into an admission note ap. The goal of the
decision support system is to identify risk factors in the text and to communicate
these risks to the medical professional in charge. For outcome diagnosis prediction in
particular, the underlying model determines these risks by predicting the likelihood
of a set of diagnoses C being assigned to the patient at discharge.

Data. We evaluate our approach on the diagnosis prediction task from the clinical
outcome prediction dataset introduced in Chapter 6. The data is based on the pub-
licly available MIMIC-III database [Johnson et al., 2016]. It comprises de-identified
data from patients in the Intensive Care Unit (ICU) of the Beth Israel Deaconess
Medical Center in Massachusetts in the years 2001-2012. The data includes 48,745
admission notes written in English from 37,320 patients in total. They are split into
train/val/test sets with no overlap in patients. The admission notes were created by
extracting sections from MIMIC-III discharge summaries which contain information
known at admission time such as Chief Complaint or Family History. The notes
are labeled with diagnoses in the form of 3-digit ICD-9 codes that were assigned to
the patients at discharge. On average, each patient has 11 assigned diagnoses per
admission from a total set of 1266 diagnoses.

Challenges. Challenges surrounding diagnosis prediction can be divided into two
main categories:

• Predicting the correct diagnoses The number of possible diagnoses is large
(>1K) and, as shown in Figure 8.2, the distribution is extremely skewed. Since
many diagnoses only have a few samples, learning plausible patterns is challeng-
ing. Further, each admission note describes multiple conditions, some being highly
related while others are not. The text in admission notes is also highly context
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dependent. Abbreviations like SBP (i.a. for systolic blood pressure or spontaneous
bacterial peritonitis) have completely different meanings based on their context.
Our models must capture these differences and enable users to check the validity
of features used for a prediction.

• Communicating risks to doctors Apart from assigning scores to diagnoses, for a
high stakes task such as diagnosis prediction, a system must be designed for medical
professionals to understand and act upon its predictions. Therefore, models must
provide faithful explanations for their predictions and give clues that enable further
clinical reasoning steps by doctors. These requirements are challenging, since in-
terpretability of models often come with a trade-off in their prediction performance
[Arrieta et al., 2020].

8.3 Method

To address the challenges above, we propose a novel model architecture called Pro-
toPatient, which adapts the concept of prototypical networks [Chen et al., 2019] to
the extreme multi-label scenario by using label-wise attention and dimensionality re-
duction. Figure 8.3 presents a schematic overview. We further show how our model
can be efficiently initialized to improve both speed and performance.

8.3.1 Learning Prototypical Representations

We encode input documents ap (p indexes patients) into vectors vp with dimension
D and measure their distance to a learned set of prototype vectors. Each prototype
vector uc represents a diagnosis c ∈ C in the dataset. The prototype vectors are
learned jointly with the document encoder so that patients with a diagnosis can
best be distinguished from patients without it. As a distance measure we use the
Euclidean distance dpc = ||vp−uc||2 which Snell et al. [2017] identified as best suited
for prototypical networks. We then calculate the sigmoid σ of the negative distances
to get a prediction ŷpc = σ(−dpc), so that documents closer to a prototype vector get
higher prediction scores. We define the loss L as the binary cross entropy (BCE)
between ŷpc and the ground truth ypc ∈ {0, 1}.

L =
∑
p

∑
c

BCE(ŷpc, ypc) (8.1)

Prototype initialization. Snell et al. [2017] define each prototype as the mean of
the embedded support set documents. In contrast, we learn the label-wise prototype
vectors end-to-end while optimizing the multi-label classification. This leads to better
prototype representations since not all documents are equally representative of a
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class, as taking the mean would suggest. However, using the mean of all support
documents is a reasonable starting point. We set the initial prototype vectors of a
class as ucinit

= ⟨vc⟩, i.e. the mean of all document vectors vc with class label c
in the training set. We then fine-tune their representation during training. Initial
experiments showed that this initialization leads to model convergence in half the
number of steps compared to random initialization.

Contextualized document encoder. For the encoding of the documents, we
choose a Transformer-based LLM due to their strengths demonstrated in Part I of
this dissertation. For initializing the document encoder, we use the weights of a pre-
trained language model. At the time of our experiments, the PubMedBERT [Gu
et al., 2022] model reaches the best results on a range of biomedical NLP tasks.
We thus initialize our document encoder with PubMedBERT weights1 and further
optimize it with a small learning rate during training.

8.3.2 Encoding Relevant Document Parts with Label-wise
Attention

Since we face a multi-label problem, having only one joint representation per docu-
ment tends to produce document vectors located in the center of multiple prototypes
in vector space. This way, important features for single diagnoses can get blurred, es-
pecially if these diagnoses are rare. To prevent this, we follow the idea of prototypical
part networks to select parts of the note that are of interest for a certain diagnosis. In
contrast to Chen et al. [2019], we use an attention-based approach instead of convo-
lutional filters, since attention is an effective way for selecting relevant parts of text.
For each diagnosis c, we learn an attention vector wc. To encode a patient note with
regard to c, we apply a dot product between wc and each embedded token gpj, where
j is the token index. We then apply a softmax.

spcj = softmax(gT
pjwc) (8.2)

We use the resulting scores spcj to create a document representation vpc as a weighted
sum of token vectors.

vpc =
∑
j

spcj gpj (8.3)

This way, the document representation for a certain diagnosis is based on the parts
that are most relevant to that diagnosis. We then measure the distance dpc =
||vpc − uc||2 to the prototype vector uc based on the diagnosis-specific document
representation vpc.

1Model weights from: https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext

https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
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Attention initialization. The label-wise attention vectors wc determine which
tokens the final document representation is based on. Therefore, when initializing
them randomly, we start our training with document representations which might
carry little information about the patient and the corresponding diagnosis. To prevent
this cold start, we initialize the attention vectors wcinit

with tokens informative to
the diagnosis c. This way, at training start, these tokens reach higher initial scores
spcj. We consider tokens t̃ informative that surpass a TF-IDF threshold of h. We
then use the average of all embeddings gct̃ from t̃ in documents corresponding to the
diagnosis.

wcinit
= ⟨gct̃⟩ (8.4)

with t̃ = t : tf-idf(t) > h. We found h=0.05 suitable to get 5-10 informative tokens
per diagnosis.

8.3.3 Compressing Representations

Label-wise attention vectors for a label space with more than a thousand labels lead
to a considerable increase in model parameters and memory load. We compensate
this by reducing the dimensionality D of vector representations used in our model.
We add a linear layer after the document encoder that both reduces the size of the
document embeddings and acts as a regularizer, compressing the information encoded
for each document. We find that reducing the dimensionality by one third (D = 256)
leads to improved results compared to the full-size model, indicating that more dense
representations are beneficial to our setup.

8.3.4 Presenting Prototypical Patients

For retrieving prototypical patients v′c for decision justifications at inference time, we
simply take the label-wise attended documents from the training data that are closest
to the diagnosis prototype. By presenting their distances to the prototype vector,
we can provide further insights about the general variance of diagnosis presentations.
Correspondingly, we can also present patients with atypical presentation of a diagnosis
by selecting the ones furthest away from the learned prototype.
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Figure 8.3. Schematic view of the ProtoPatient method. Starting at the bottom,
document tokens get a contextualized encoding and are then transformed into a label-
wise document representation vpc. The classifier simply considers the distance of this
representation to a learned prototypical vector uc. The prototypical patient v

′
c is the

training example closest to the prototypical vector.
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8.4 Evaluating Diagnosis Predictions

8.4.1 Experimental Setup

Baselines. We compare ProtoPatient to hierarchical attention models and to LLMs
pre-trained on (bio)medical text, representing two state-of-the-arts approaches for
ICD coding and outcome prediction tasks, respectively.

• Hierarchical attention models Hierarchical Attention Networks (HAN)
were introduced by Yang et al. [2016]. They are based on bidirectional Gated
Recurrent Units with attention applied on both the sentence and token level.
Baumel et al. [2018] builtHA-GRU upon this concept using only sentence-wise
attention, while adding a label-wise attention scheme comparable to ProtoPa-
tient. Dong et al. [2021] further show that pre-initialized label embeddings
learned from ICD code co-occurrence improves results for both approaches. We
thus evaluate the models with and without label embeddings.2

• Transformers pre-trained on in-domain text Alsentzer et al. [2019] ap-
plied clinical language model fine-tuning on two LLMs based on the BioBERT
model [Lee et al., 2020]. ClinicalBERT was trained on all clinical notes in the
MIMIC-III database, and DischargeBERT on all discharge summaries. They
belong to the most widely used clinical language models and achieve high scores
on multiple clinical NLP tasks. The CORe model introduced in Chapter 6 is
also based on BioBERT, but further pre-trained with an objective specific to
patient outcomes, which achieved higher scores on clinical outcome prediction
tasks. Tinn et al. [2021] introduced PubMedBERT which was, in contrast
to the other models, trained from scratch on articles from PubMed Central
with a dedicated vocabulary. At the time of experimentation, it was the best
performing approach on the BLURB [Gu et al., 2022] benchmark.

Training. We train all baselines on the dataset introduced in Section 8.2. For
training HAN and HA-GRU, we use the code and best performing hyperparameters
as provided by Dong et al. [2021]. We further apply label embeddings to the HAN and
HA-GRU network as proposed by Dong et al. [2021]. In particular, we use the pre-
initialized embeddings provided by the authors. Since they use a larger label set, we
map their embedding vectors to the ICD-9 groups we use in our study. The mapping
is done by averaging all subcodes for one group. If no code is available for an ICD-
9 group, we use a randomly initialized vector. For training the Transformer-based

2Note that Dong et al. [2021] also propose the H-LAN model, which is a combination of HAN
and HA-GRU using label-wise attention on sentence and token level. However, the model is only
applicable to smaller label spaces (<100) due to its memory footprint and thus cannot be evaluated
on our task.
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AUROC macro AUROC micro AUPRC macro

HAN [Yang et al., 2016] 83.38 ±0.13 96.88 ±0.04 13.56 ±0.01

HAN + Label Emb [Dong et al., 2021] 83.49 ±0.18 96.87 ±0.12 13.07 ±0.14

HA-GRU [Baumel et al., 2018] 79.94 ±0.57 96.65 ±0.12 9.52 ±1.01

HA-GRU + Label Emb [Dong et al., 2021] 80.54 ±1.67 96.67 ±0.22 10.33 ±1.70

ClinicalBERT [Alsentzer et al., 2019] 80.95 ±0.16 94.54 ±0.93 11.62 ±0.64

DischargeBERT [Alsentzer et al., 2019] 81.17 ±0.30 94.70 ±0.48 11.24 ±0.88

CORe [van Aken et al., 2021a] 81.92 ±0.09 94.00 ±1.10 11.65 ±0.78

PubMedBERT [Tinn et al., 2021] 83.48 ±0.21 95.47 ±0.22 13.42 ±0.57

Prototypical Network 81.89 ±0.22 95.23 ±0.01 –9.94 ±0.36

ProtoPatient 86.93 ±0.24 97.32 ±0.00 21.16 ±0.21

ProtoPatient + Attention Init 87.93 ±0.07 97.24 ±0.02 17.92 ±0.65

Table 8.1. Results in % AUROC for diagnosis prediction task (1266 labels) based on
MIMIC-III data. The ProtoPatient model outperforms the baselines in micro AUROC
and AUPRC. The attention initialization further improves the macro AUROC. Label
Emb: Label Embeddings. Attention Init: Attention vectors initialized as described
in Section 8.3.2. ± values are standard deviations.

LLMs and ProtoPatient, we use hyperparameters that perform best for BERT-based
models in earlier experiments and additionally optimize the learning rate and number
of warm up steps with a grid search. We further truncate the notes to a context size
of 512.

Since we work with 1266 labels, the label-wise attention calculations limit the
batch size that fits into memory. Therefore, we use a batch size of 20 for all models
without label-wise attention, 10 for label-wise attention models reduced to a dimen-
sionality of 256, and 5 for the others. Initial experiments showed that the batch
sizes have no influence on model performance in our experiments, only on memory
consumption and training duration.

We choose different learning rates for the document encoder weights and the
prototype and label-wise attention vectors. Since we expect the encoder weights from
the pre-trained LLMs to be already well aligned with clinical language, we choose a
small learning rate between 5e-04 and 5e-06. The prototypical diagnosis vectors and
the label-wise attention vectors need more adjustments to enable the classification
task, so we search in a range of 5e-02 and 5e-04. We further apply an AdamW
[Loshchilov and Hutter, 2017] optimizer and a linear learning rate scheduler with a
warm-up period of 1K to 5K steps. We provide the best hyperparameters per model
in the public code repository. We further report the scores of all models as an average
over three runs with different seeds.

Ablation studies. ProtoPatient combines three strategies: Prototypical networks,
label-wise attention and dimensionality reduction. We conduct ablation studies to
measure the impact of each strategy. To this end, we apply both label-wise attention
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Figure 8.4. Macro AUROC scores regarding the frequency of ICD-9 codes in the
training set. ProtoPatient models show the largest performance gain in rare codes
(≤100 samples). Attention initialization leads to large improvement for extremely
rare ones (<10 samples).

and dimensionality reduction to a PubMedBERT model using a standard classifica-
tion head. We further train a prototypical network without label-wise attention and
ProtoPatient with different dimension sizes. The results are found in Table 8.2.

Transfer to second data set. Clinical text data varies from clinic to clinic. We
want to test whether the patterns learned by the models are transferable to other
data sources than MIMIC-III. We use another publicly available dataset from the
i2b2 De-identification and Heart Disease Risk Factors Challenge [Stubbs and Uzuner,
2015] further processed into admission notes as described in Section 6.5.4. The data
consists of 1,118 admission notes labeled with the ICD-9 codes for chronic ischemic
heart disease, obesity, hypertension, hypercholesterolemia and diabetes. We evaluate
models without fine-tuning on the new data to simulate a model transfer to another
clinic. The resulting scores are reported in Table 8.3.

8.4.2 Results

We present the results of all models on the diagnosis prediction task in Table 8.1. In
addition, we show the macro AUROC score across codes depending on their frequency
in the training set in Figure 8.4. We summarize the main findings as follows.

ProtoPatient outperforms previous approaches. The results show that Pro-
toPatient achieves the best scores among all evaluated models. Pre-initializing the
attention vectors further improves the macro AUROC score. Ablation studies show
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AUROC macro AUROC micro AUPRC macro

Dimensionality reduction
ProtoPatient 768 83.56 ±0.17 96.65 ±0.03 14.36 ±0.16

ProtoPatient 256 86.93 ±0.24 97.32 ±0.00 21.16 ±0.21

Prototypical LLM vs. LLM
ProtoPatient 768 83.56 ±0.17 96.65 ±0.03 14.36 ±0.16

PubMedBERT 768 + Label Attention 84.10 ±0.25 96.66 ±0.17 19.74 ±1.27

Label-wise attention
PubMedBERT 256 83.61 ±0.04 95.76 ±0.05 13.35 ±0.25

PubMedBERT 256 + Label Attention 84.68 ±0.52 96.86 ±0.14 17.15 ±1.52

ProtoPatient 256 86.93 ±0.24 97.32 ±0.00 21.16 ±0.21

Table 8.2. Ablation studies comparing different dimension sizes and how a standard
LLM (PubMedBERT) performs with additional label-wise attention. Smaller dimen-
sion sizes benefit ProtoPatient, while the effect is less notable on PubMedBERT.
Adding label-wise attention, however, increases PubMedBERT results clearly. Over-
all, the combination of prototypical network, label-wise attention, and reduced di-
mension in ProtoPatient reaches the best results.

that all components play a role in improving the results. A prototypical network
without label-wise attention is not able to capture the extreme multi-label data.
PubMedBERT using a standard classification head also benefits from label-wise at-
tention, but not to the same extent. Combining prototypical networks and label-wise
attention thus brings additional benefits. The choice of dimension size is another
important factor. Using 768 dimensions (the standard BERT base size) appears to
lead to over-parameterization in the attention and prototype vectors. Using 256 di-
mensions also improves generalization which is shown in producing the best results
on the i2b2 data set in Table 8.3.

Improvements for rare diagnoses. Figure 8.4 shows that the AUROC improve-
ments are particularly large for codes that are rare (≤50 times) in the training set.
Prototypical networks are known for their few-shot capabilities [Snell et al., 2017]
which also prove useful in our scenario with mixed label frequencies. For extremely
rare codes that appear less than ten times, the attention initialization described in
Section 8.3.2 further improves results. This indicates that the randomly initialized
attention vectors need at least a number of samples to learn the most important
tokens, and that pre-initializing them can accelerate this process.

PubMedBERT and HAN are the best baselines. The pre-trained PubMed-
BERT and the HAN model achieve the highest scores among the baselines. Inter-
estingly, PubMedBERT outperforms the LLMs pre-trained on clinical text. This
indicates that training from scratch with a domain-specific vocabulary is beneficial
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AUROC macro AUROC micro AUPRC macro

PubMedBERT 82.11 ±0.12 85.48 ±0.64 84.38 ±0.54

PubMedBERT 256 + Label Attention 79.78 ±5.30 83.43 ±4.54 84.70 ±2.84

Prototypical Network 69.65 ±0.22 74.31 ±0.19 78.53 ±0.19

ProtoPatient 768 85.28 ±0.49 88.63 ±0.43 87.78 ±0.10

ProtoPatient 87.38 ±0.20 90.63 ±0.23 89.72 ±0.24

ProtoPatient + Attention Init 86.72 ±1.52 89.84 ±1.16 89.71 ±1.20

Table 8.3. Performance on a second data set based on clinical notes from the i2b2
challenge [Stubbs and Uzuner, 2015]. Note that the baseline AUPRC is much higher
for this task than for the task based on MIMIC-III. ProtoPatient models reach the
highest scores, indicating that they are more robust towards changes in text style than
the PubMedBERT baselines. The PubMedBERT model with label-wise attention, in
particular, shows quite inconsistent results regarding different seeds.

for the task. The scores of the HAN model further emphasize the importance of label-
wise attention. The addition of label embeddings to HAN and HA-GRU, however,
does not add significant improvements in our case.

8.5 Evaluating Interpretability

We evaluate the interpretability of ProtoPatient with quantitative and qualitative
analyses as follows.

Occlusion GuidedBackpropagation Lime
InputXGrad ProtoPatient

highlighted tokens
Faithfulness of

Figure 8.5. Evaluating faithfulness of highlighted tokens. Lower scores indicate more
faithful explanations. ProtoPatient’s token highlights are part of the model decision
and thus more faithful than post-hoc explanations.
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Diagnosis ————– 15 most attended words - with medical relation to diagnosis

Sepsis 1. hypotension symptom, 2. sepsis descriptor, 3. fever symptom, 4. hypotensive symptom,

5. fevers symptom, 6. septic descriptor, 7. lactate indicator, 8. shock descriptor,

9. bacteremia descriptor, 10. febrile symptom, 11. vancomycin medication, 12. SBP risk factor,

13. levophed medication, 14. swelling symptom, 15. cirrhosis risk factor

Intracerebral 1. hemorrhage descriptor, 2. bleed descriptor, 3. headache symptom, 4. ICH descriptor,

Hemorrhage 5. IPH descriptor, 6. CT diagnostic, 7. weakness symptom, 8. stroke descriptor, 9. brain descriptor,

10. intracranial descriptor, 11. hemorrhagic descriptor, 12. intraventricular descriptor,

13. hemorrhages descriptor, 14. hemiparesis symptom, 15. aphasia symptom

Pneumonia 1. pneumonia descriptor, 2. cough symptom, 3. PNA descriptor, 4. COPD risk factor,

5. infiltrate symptom, 6. distress complication, 7. fever symptom, 8. breath ambiguous,

9. hypoxia symptom, 10. sputum symptom, 11. respiratory complication, 12. sepsis complication,

13. SOB symptom, 14. consolidation symptom, 15. CAP descriptor

Table 8.4. Words from the test set with the highest attention scores assigned by
ProtoPatient. All words are directly related to the diagnoses and mostly describe
symptoms or direct descriptors (in various forms). The highlights can, therefore, help
doctors to quickly identify important parts within a note and to compare them to
prototypical parts.

Quantitative study on faithfulness. Faithfulness describes how explanations
correspond to the inner workings of a model, a property essential to their useful-
ness. We apply the explainability benchmark introduced by Atanasova et al. [2020]
to compare the faithfulness of ProtoPatient’s token highlights to post-hoc explanation
methods. Following the benchmark, faithfulness is measured by incrementally mask-
ing highlighted tokens, expecting a steep drop in model performance if the tokens are
indeed relevant to the model prediction.

The framework evaluates different methods that output saliencies indicating token
importance for a model decision. The evaluation masks the most salient tokens via
multiple thresholds and measures the model’s performance for each one. Thresholds
are going from masking only the top 10% of salient tokens in steps of 10pp until
100% of tokens are masked. The final faithfulness score is then calculated as the area
under the curve of model performance over all thresholds. As a performance mea-
sure, we choose macro AUROC to stay consistent with the rest of our experiments.
We compare tokens highlighted by ProtoPatient’s label-wise attention vectors to four
common post-hoc explanation methods, namely Lime [Ribeiro et al., 2016], Occlusion
[Zeiler and Fergus, 2014], InputXGradient [Kindermans et al., 2016], and Gradient
Backpropagation [Springenberg et al., 2015]. We apply these methods to the Pub-
MedBERT baseline, corresponding to a typical post-hoc explanation approach for an
otherwise black box model.

Due to the high computational costs of the evaluation, we limit our analyses to
three diagnoses with a high severity to the ICU: Sepsis, intracerebral hemorrhage and
pneumonia. Figure 8.5 shows the results, for which lower scores mean more faithful
explanations (i.e. a steeper drop in model performance). We see that ProtoPatient’s
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explanations reach the lowest scores for all three labels, proving that they are more
faithful than the post-hoc explanations. This is a result of the interpretable structure
of ProtoPatient, in which model decisions are directly based on the highlighted parts.

Finding most relevant words per diagnosis. We want to examine which parts
of the clinical notes are highlighted by ProtoPatient per diagnosis. To that end, we
collect the tokens with the highest attention scores over all training samples per label.
We again use the three diagnoses sepsis, intracerebral hemorrhage and pneumonia
for a closer analysis. We further map the tokens to their corresponding words. We
then let doctors define the words’ medical relations to understand which features
the model considers important. Table 8.4 shows that the most attended words are
mainly symptoms or descriptors of the condition at hand, which meets the objective
of ProtoPatient to point doctors to relevant parts of a note.

Manual analysis by medical doctors. We conduct a manual analysis with two
medical doctors (one specialized, one resident) to understand whether highlighted
tokens and prototypical patients are helpful for their decisions. They used a demo
application of ProtoPatient and analyzed 20 random patient letters with 203 diagnoses
in total. The results are shown in Table 8.5. The doctors first identified the principal
diagnoses and then rated the corresponding prototypical patients presented by the
model. Note that some patients have more than one principal diagnosis. In 21
of 23 cases, the prototypical samples were showing typical signs of the respective
diagnosis and 17 of them were rated as helpful for making a diagnosis decision. Cases
in which they were not helpful included very rare conditions or ones with a strong
difference to the specific case. They further analyzed the highlighted tokens for all
diagnoses and found that they contained mostly relevant information in 150 cases.
Examples of highlighted risk factors judged as plausible were obesity known to relate
to diabetes type II, untreated hypertension to heart failure or a medication history of
anticoagulant coumadin to atrial fibrillation. They also identified cases in which the
highlighted tokens were partially or hardly relevant. In these cases, the highlighted
tokens often included stop words or punctuation, indicating that the attention vector
failed to learn relevant tokens. This was mainly observed in very frequent diagnoses
such as hypertension or anemia, which corresponds to the lower model performance
on these conditions (see Figure 8.4). This is because conditions very common in the
ICU are often either not indicated in the text of the clinical note or not labeled,
as described in 6.6.2, so that the model cannot learn clear patterns regarding their
relevant tokens.
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Analysis of prototypical patient cases

(principal diagnoses)

Q1: Prototypical patient shows typical clinical signs

yes no

21 2

Q2: Highlighted prototypical parts are relevant

mostly partially hardly

21 2 0

Q3: Prototypical patient is helpful for diagnosis decision

yes no

17 6

Analysis of highlighted parts

(all diagnoses)

Q4: Highlighted tokens are relevant for diagnosis

(i.e. describe diagnosis, symptoms or risk factors)

mostly partially hardly

TPs 78 3 7

FPs 50 12 9

FNs 22 10 12

Q5: Important tokens are missing from highlights

yes no

TPs 17 71

FPs 13 58

FNs 2 42

Table 8.5. Results of the manual analysis conducted by medical doctors on ProtoPa-
tient outputs. The prototypical patients were analyzed for the principal diagnoses
only, while the highlighted parts of the patient letter at hand were analyzed for all
diagnoses. Q1..5 denote the questions answered regarding each patient case.
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Admission note Relevant parts of admission
note

Parts of prototypical patient
notes

PRESENT ILLNESS: Patient is a
35-year-old male pedestrian struck by a
bicycle from behind with positive loss of
consciousness for 6 minutes at the scene
after landing on his head. At arrival at ER
patient was confused, had multiple
contusions noted on a head CT scan
including bilateral frontal and right
temporal contusions. His cervical spine and
abdominal examinations were negative
radiologically. The patient was then
transferred to the Emergency Room.
Patient had several episodes of vomiting
during flight and during the trauma workup.
He was assessed and was intubated for
airway protection. The patient was given
coma score of 9 upon initial assessment.
Patient remaining hemodynamically stable
throughout the transfer and throughout the
workup in the ED. [. . . ]

struck by a bicycle . . .

loss of consciousness for 6
minutes . . .

coma score 9 . . .

−→
cerebral hemorrhage
loss of consciousness . . .
struck by vehicle . . .
with a gcs of 10 . . .

head CT scan . . .

bilateral contusions . . .

hemodynamically stable . . .

−→
skull fracture
head wound . . .
right and left contusions . . .
stable blood circulation . . .

transferred to Emergency
Room . . .

several episodes of vomiting
. . .

−→
shock
patient had multiple
episodes of vomiting during
the day . . .

patient was confused . . .

intubated for airway protec-
tion . . .

−→
acute respiratory failure
patient was disoriented . . .
later intubated for protec-
tion. . .

Table 8.6. Exemplary output of ProtoPatient. The model identifies parts in an ad-
mission note that are similar to (i.e. ”look like”) parts from prototypical patient notes
seen during training leading to the prediction of this diagnosis.

8.6 Related Work

Diagnosis prediction from clinical notes. Predicting diagnosis risks from clin-
ical text has been studied using different methods. Fakhraie [2011] analyzed the
predictive value of clinical notes with bag of words and word embeddings. Jain et al.
[2019] experimented with adding attention modules to recurrent neural models. Re-
cently, the use of Transformer-based LLMs for diagnosis prediction has outperformed
earlier approaches. We applied BERT-based models further pre-trained on clinical
cases to predict patient outcomes in Chapter 6. However, the black box nature of these
models hinders their application in clinical practice. We thus introduce ProtoPatient,
which uses representations from LLMs but provides interpretable predictions.

Prototypical networks for few-shot learning. Prototypical networks were first
introduced by Snell et al. [2017] for few-shot learning. They initialized prototypes as
centroids of support samples per episode and applied the approach to image classifi-
cation. Sun et al. [2019a] adapted the approach to text documents with hierarchical
attention layers. Related approaches based on prototypical networks have been used
for multiple few-shot text classification tasks [Wen et al., 2021, Zhang et al., 2021b,
Ren et al., 2020, Deng et al., 2020, Feng et al., 2023]. In contrast, we do not train
our model in a few-shot scenario using episodic learning. However, our model shows
related capabilities by improving results for diagnoses with few available samples.
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Prototypical networks for interpretable models. Chen et al. [2019] used pro-
totypical networks in a different setup to build an interpretable model for image
classification. To this end, they learn prototypical parts of images to mimic human
reasoning. We adapt their idea and show how to apply it to clinical natural language.
Comparably, Ming et al. [2019] and Das et al. [2022] applied the concept of prototypi-
cal networks to text classification and showed how prototypical texts help to interpret
predictions. In contrast to their work and following Chen et al. [2019], we identify
prototypical parts rather than whole documents by using label-wise attention. This
makes interpreting results easier and enables multi-label classification with over a
thousand labels.

Label-wise attention. Mullenbach et al. [2018] introduced label-wise attention for
clinical text with the CAMLmodel. Since then, the method has been further improved
by hierarchical attention approaches [Baumel et al., 2018, Yang et al., 2016, Dong
et al., 2021]. Label-wise attention has mainly been used for ICD coding, a task related
to diagnosis prediction that differs in the input data: ICD coding is done on notes
that describe the whole stay at a clinic. In contrast, outcome diagnosis prediction
uses admission notes as input and identifies diagnosis risks rather than the diagnoses
already mentioned in the text. Our method—combining prototypical networks with
label-wise attention—is particularly focused on detecting and highlighting those risks
to enable clinical decision support.

8.7 Discussion

8.7.1 Reflection on the Challenges

Rudin [2019] urges to stop explaining black boxes and to build interpretable models
instead. With ProtoPatient we introduce a model with a simple decision process—
this patient looks like that patient—that is understandable to medical professionals
and inherently interpretable. An exemplary output is shown in Table 8.6. Our results
indicate that the model is able to deal with contextual text in clinical notes, e.g. when
identifying SBP as a risk factor for sepsis in 8.5. In addition, it improves results on
rare diagnoses, which are especially challenging for doctors to detect due to the lack
of experience and sensitivity towards their signs. Overall, our approach demonstrates
that interpretability can be improved without compromising performance. The mod-
ularity of the prototype vectors further allows clinicians to modify the model even
after training. This can be done by adding prototypes whenever a new condition is
found, or by directly defining certain patients as prototypical for the system.
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8.7.2 Limitations of this Work

Our model currently learns relations between diagnoses only indirectly, due to the
label-wise nature of the classification. However, considering relations or conflicts
between diagnoses is an important part of clinical decision-making. One way to
include such relations is the addition of a loss term incorporating diagnosis relations,
as proposed by Mullenbach et al. [2018]. Another limitation is that the current model
only considers one prototype per diagnosis, even though most diagnoses have multiple
presentations, varying among patient groups. We, therefore, propose further research
towards including multiple prototypes into the system.

8.8 Chapter Summary

In this chapter, we presented ProtoPatient which enables interpretable outcome diag-
nosis prediction from text. The proposed approach enhances existing methods in their
prediction capability—especially for rare classes—and presents benefits to doctors by
highlighting relevant parts in the text and pointing towards prototypical patients.
The modularity of prototypical networks is a promising characteristic that should be
further explored in future research. Prototypes could be added manually by medical
professionals based on patients they consider prototypical. Another approach would
be to initialize prototypes from medical literature and compare them to those learned
from patients.

Overall, we showed that large language models can be used as building blocks in
systems that incorporate characteristics beneficial to domain-specific needs. Proto-
typical networks have been demonstrated to be one of such systems in which LLMs
can be embedded to. Our findings indicate that we can use such wrapping systems
for adapting LLMs to even more specific domain requirements while benefiting from
their ability to effectively encode language.

This chapter concludes the second part of the dissertation. In this part, we pre-
sented approaches to adapt LLMs to the clinical domain. We first showed that in-
domain pre-training data with similar language style is an important factor for the
performance of LLMs in the clinical domain and that task-specific data often lacks the
variety to cover long tail expressions. This motivated research toward incorporating
further resources into our models. To this end, we presented two approaches using
unlabeled text resources as input for pre-training and additional knowledge from the
medical coding system ICD for fine-tuning. We further studied adaptation with re-
gard to the transparency needs of domain experts and introduced a clinical behavioral
testing framework to improve the communication of model capabilities. The frame-
work also highlights the need for interpretable systems in high stakes settings such as
diagnosis prediction. Following this, we finally showed that such interpretable systems
can be applied in combination with LLMs using architectures such as ProtoPatient.
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Conclusion and Future Work

9.1 Summary of Contributions

In this dissertation, we analyzed how large language models can be applied and
adapted to address the requirements and challenges posed by specialized domains.
As a prerequisite, we explored capabilities and inner workings of LLMs. We showed
that missing paradigmatic context and the lack of world knowledge hinders earlier
approaches in capturing the granularities of specialized domains. We then analyzed
the layer transformations of LLMs and demonstrated how such models can be exam-
ined and interpreted for a better understanding of their abilities. In the second part
of this dissertation, we presented different methods for adapting LLMs to specialized
domains and tasks. As an exemplary domain, we investigated the adaptation of LLMs
to clinical text documents, in particular to patient notes. This research included the
definition and framing of domain-specific tasks and datasets. The adaptations we
presented are using LLMs as building blocks to fulfill identified domain requirements,
such as the incorporation of domain-knowledge from un- or semi-labeled data and
the need for explainable and justifiable solutions. In the following, we summarize the
contributions presented in this work.

Analyzing inner workings and behavior of large language models. As the
first step to understand the potential of LLMs, we presented an ensemble-based
method for a joint error analysis of machine learning systems. This way, we were able
to identify that a large source of errors was grounded in the lack of world knowledge
encoded in earlier models. We also found many errors based on missing contextual-
ization. Large language models based on Transformers encode text with regard to
its context and are commonly pre-trained on a large amount of unlabeled training
data, which allows to incorporate world knowledge that is missing from the sparse
domain-specific labeled data. In an in-depth analysis of LLM layers, we were able to
identify the phases of transformations happening within Transformer-based language
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models. Our findings supported the hypothesis that Transformer-based LLMs encode
knowledge about language and relations between entities learned during pre-training
in their lower layers, which allows the later layers to use this knowledge for solving
domain-specific tasks. Due to these characteristics LLMs show such large potential
for the use in specialized domains.

Improving the general understanding of large language models is important for
further development of their technology. However, for their save application in spe-
cialized domains, we require additional domain-specific analyses of their behavior
targeted to domain experts. Therefore, in the second part of this dissertation, we
presented a framework for behavioral testing of NLP models adapted to the clinical
domain and to be used for communicating model behavior and risks to medical pro-
fessionals. The framework can be extended to further use cases and requirements of
the particular end users.

Identification and creation of tasks and datasets. The second part of this
dissertation addresses the adaptation of LLMs to the clinical domain. In order to do
understand how NLP systems can benefit clinical practice, we first identified com-
mon tasks in collaboration with medical professionals. The first task we analyzed
is the classification of assertions in clinical text. This information extraction task
requires the model to identify terms that confirm, negate or conjecture a medical
condition. Due to the missing variety in existing data, we annotated 5,000 assertions
from different types of clinical patient notes that we published to encourage further
research.

Building up on this information extraction scenario, we further analyzed how
LLMs can be applied for clinical decision support. Together with medical profession-
als, we developed a clinical outcome prediction task with an admission to discharge
objective. We used publicly available data and transformed it according to domain-
specific requirements spanning four common outcome prediction tasks that can be
approached by deep learning models such as LLMs. This benchmark is also made
public and can be used to test future model derivatives.

Adaptations to domain-specific use cases. We presented different ways of
adapting LLM-based models to the clinical domain. First, we showed the influence
of language model pre-training based on different data sources in Chapter 5. Models
pre-trained on in-domain data outperformed general domain data by large margins;
the closer the pre-training text to the final documents, the better the downstream
performance. On this basis, we introduced a novel clinical outcome pre-training, a use
case specific pre-training objective that harnesses semi-structured unlabeled clinical
documents to integrate knowledge about patient trajectories into the model. This
additional pre-training data can come both from patient data (clinical experience)
and from literature (verified medical knowledge). We further proposed a method
to incorporate hierarchical information from domain-specific ontologies into model
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weights by using ICD hierarchies for multi-label classification. Both these methods
introduced in Chapter 6 represent approaches to complement the models with ad-
ditional domain knowledge that is usually not fully available from the (oftentimes
scarce) labeled fine-tuning data.

In Chapter 8, we then showed how to use LLMs as building blocks in systems
that are even more customized to the requirements of the use case at hand. We
investigated the use case of clinical diagnosis prediction, which requires not only
accurate predictions but pointers to similar patients these predictions are based on.
As an additional requirement, the system must be adjustable by domain experts. We
identified a setup using prototypical networks as suitable to fulfill these needs and
presented an architecture that combines such networks with pre-trained language
models.

Use of LLMs in interpretable systems. The analysis of model behavior we
presented in Chapter 5 highlighted the importance of transparency when using deep
learning models such as LLMs. Therefore, when adapting models to domain re-
quirements, the interpretability of such models has a high priority. While LLMs are
commonly used as black box models, our method ProtoPatient allows us to integrate
them into an interpretable setup. We achieve this by using LLMs for encoding clin-
ical notes into an interpretable prototypical network. An additional attention-based
layer allows us to identify which tokens the model considers important for a decision.
This way, it is possible to communicate faithful explanations of model predictions to
domain experts while utilizing the favourable capabilities of LLMs, which we ana-
lyzed in the first part of this dissertation. The release of a demo application1 helps to
further refine model requirements, to understand its behavior, and to quickly identify
strengths and weaknesses of the system.

9.2 Review of Research Questions

In Section 1 of this dissertation, we posed four research questions towards understand-
ing the capabilities of large language models and adaptation strategies for specialized
domains. In the following, we summarize our findings for each of these questions.

RQ1: What are common errors of machine learning models in specialized
domains? How can large language models help to address them?

We conducted an ensemble-based error analysis to identify common mistakes of
pre-LLM machine learning algorithms to understand main challenges of domain-
specific NLP tasks. Our results showed three main sources of errors: 1. Lack of
contextual awareness. The evaluated models often placed too much weight on single

1Demo application available at https://protopatient.demo.datexis.com.

https://protopatient.demo.datexis.com
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tokens independent of their context. Transformer-based LLMs are focussed on the
highly contextualized encoding of tokens due to their self-attention mechanism, in
which each token has a 1-to-1 connection to all others tokens in the text. This allows
to counteract the observed errors in many cases. 2. Noisy training labels. This prob-
lem occurs due to highly subjective annotation tasks with many influencing external
factors, such as the identity of the annotator of a toxic language sample. The lack
of an objective ground-truth is typical for specialized domains and was also observed
when working with clinical data as described in Section 8.7. While LLMs can also
be affected by this problem, their pre-training on large scale data makes them more
robust against noisy labels as shown by Tänzer et al. [2022]. 3. Missing world knowl-
edge. Due to data silos, labeled training data in specialized domains typically does
not contain all knowledge required to solve a task. In our analysis, we found that
missing world knowledge often leads to classification errors. LLMs can again benefit
from their pre-training in this regard. The large corpora they are trained on contain
many additional signals and help to complement missing world knowledge. With
research question 2, we take a closer look at how such knowledge is stored within
pre-trained large language models.

RQ2: How do large language models process information throughout their
layers?

LLMs like BERT that are based on Transformer encoders are built of multiple
layers of encoder blocks. In each block, the input sequence gets transformed into a
new representation which is finally used as input to a classification head depending
on the task to solve. This architecture combined with model pre-training has shown
to work well on a multitude of NLP tasks indicating that information is processed
in an effective way throughout the layers. To understand how these transformations
work and which influence pre-training and fine-tuning has on this process, we con-
ducted a layer-wise analysis of BERT-based models. We used models fine-tuned on
Question Answering tasks, since such downstream tasks often require multiple steps
of information processing. Our analysis revealed that the transformations take part
in multiple phases. First, we see semantic clustering, followed by a phase in which
entities, coreferences and their attributes are clustered. The last two phases are task-
specific and first match the query with relevant parts of the input to then extract the
answer tokens from the rest of the document tokens.

The first two phases are mostly task-independent and learned during pre-training.
This allows to focus on domain- and task-specific transformations in the later layers,
which are more strongly altered during fine-tuning. This way, the models are learn-
ing universal representations (mostly stored in their lower layers) during pre-training,
which reduces the amount of required labeled training data for downstream tasks in
the fine-tuning stage.
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RQ3: How can we incorporate domain-specific knowledge into LLMs in
the clinical domain?

We explored different ways to adapt general domain language models to the clinical
domain. The most common method for incorporating domain-specific knowledge into
LLMs is language model fine-tuning as defined by [Howard and Ruder, 2018]. We
found that using training data that is closely related to the downstream task can be
more beneficial than simply using larger amounts of data in this training state. Since
such data is not always available, we investigated further ways to include clinical
knowledge into language models. In that regard, we introduced a new domain- and
task-specific pre-training objective (clinical outcome pre-training) and showed that it
is an effective method to integrate further clinical knowledge into our models. The
approach is inspired by the idea that clinical professionals learn both from experience
and from literature. Simultaneously, we used public textual sources from clinical
cases and from medical articles as input to the pre-training task and showed that the
resulting models achieve better results than the baselines.

As another way to incorporate signals missing from training data, we identified the
use of domain-specific resources, which do not necessarily have to be text-based. As
one example, we have shown how the ICD (International Classification of Diseases)
taxonomy can be used for model adaptation by incorporating hierarchical informa-
tion about diseases into the model weights. Depending on the use case at hand, the
type of resource that is beneficial to the task varies. However, in general, our results
encourage to consider data sources beyond text to complement model weights with
additional domain knowledge.

RQ4: How can we make large language models more transparent to serve
domain requirements?

To answer this research question, we worked closely with domain experts, in our
case, doctors with clinical experience. This cooperation allowed us to identify the most
important requirements and multiple tasks within the clinical domain to address with
neural NLP systems. An essential factor for such systems is the ability to effectively
communicate model results to the domain experts. In the clinical domain, such
communication includes both the explanation of individual model predictions, but
also to highlight the general abilities and behavior of the applied models. We showed
that both can be achieved while using black box models such as LLMs.

To obtain faithful model explanations, we presented an architecture that uses
LLMs as building blocks within an interpretable system based on prototypical net-
works. The system is able to explain model decisions on a token-basis and to ad-
ditionally point towards patients that are similar to the current case, fulfilling two
important domain-specific requirements. For communicating the general behavior of
multiple LLMs in the clinical setting, we introduced a behavioral testing framework
that reveals model strengths but also potential adverse effects, such as learned biases.
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While the requirements of specialized domains are manifold and diverse, trans-
parency is a shared need in domain-specific setups. It allows domain experts to better
judge and potentially improve the capabilities of the models.

Our approaches further demonstrate how LLMs can be integrated into different
systems which can then be tailored to the requirements of individual domains.

9.3 Future Work

The presented work on exploration and adaptation of large language models provides
many possibilities for continuation. In the following, we present two directions for
future research that we consider particularly promising for specialized domains.

9.3.1 Integration of Multimodal and Multilingual Data

The approaches presented in this dissertation are limited to textual data in English.
However, we see large potential for extending NLP systems for specialized domains to
multiple languages and modalities. First, to serve a wider audience of domain experts,
and second, to enable knowledge transfer between languages and regions around the
world. In the following, we briefly discuss both strategies and point towards some
promising approaches.

Multilingual domain-specific models. The majority of data collected in spe-
cialized domains, such as the clinical, is written in regional languages. The quality
of domain-specific pre-trained language models for individual languages other than
English varies depending on the amount of textual data available in this language and
domain. In most cases, such data is rare, which impedes the availability of domain-
and language-specific models. In Papaioannou et al. [2022], we explore how clinical
LLMs pre-trained on English text can be beneficial for languages other than English
in a sequential transfer learning setting. The results show that such knowledge trans-
fer can improve the performance of models in lower resource languages. However,
adding additional sources from different languages does not always lead to improve-
ments. In times of global health events, such as the Covid-19 pandemic, the transfer
of clinical knowledge around the globe becomes a pressing manner. In an increas-
ingly globalized world, the same holds true for other specialized domains. That is why
we see large potential in the development of multilingual and cross-lingual language
models [Conneau and Lample, 2019]. Such models are already widely used for general
domain text, but are less common for specialized domains. Promising approaches in
this direction were proposed by Li et al. [2020], Jørgensen et al. [2021], and Verma
et al. [2022], introducing strategies for domain adaptation of multilingual pre-trained
models.



123 9.3. FUTURE WORK

Integrating multiple modalities into LLMs. This dissertation considers text
as the only input to large language models. However, data in specialized domains
is usually comprised of multiple modalities. In the clinical domain, there exists an
abundance of sensory and laboratory data, stored in tabular forms, but also image
data, such as radiology scans. Simultaneously, determining whether an online user
comment contains toxicity can be dependent on images or videos included in a post-
ing. Consequently, we can only process the full information of a task if we use models
that allow multimodal input. The last years have seen increasing progress in the direc-
tion of LLMs for multiple modalities, especially those combining vision and language
models (e.g. CLIP [Radford et al., 2021] and VilBERT [Lu et al., 2019]). Those ap-
proaches are based on the idea of mapping input data from different modalities into
a joint vector space, in which their semantic meaning is preserved, and combined.
Ideally, we can train models to produce such semantic representations regardless of
the input modality. Approaches in this direction include the Perceiver model [Jaegle
et al., 2021], which uses the same underlying Transformer architecture for multiple
modalities, and the recently published PaLM-E model [Driess et al., 2023]. Here, in-
puts are simply embedded into language sequences and then fed into a large language
model able to encode combinations of modalities with a common language modeling
objective. We expect similar approaches to play an increasing role in NLP for spe-
cialized domains. Acosta et al. [2022] give a comprehensive overview of the challenges
and potentials of multimodal models for the biomedical domain. Especially domains
with an inherent lack of data can benefit from such strategies that complement all
available sources into a more complete input representation.

9.3.2 Efficient Methods for Large Language Models

One problem with the current development of LLMs is the ever-growing need for
resources. These resources include data, computation, memory, and time. Since they
all require significant investments, it becomes harder for companies or research groups
with less funding to participate in state-of-the-art research. This does not only in-
clude training such models but also the inference and, in that way, the evaluation
of models. However, when publicly available models can only be evaluated by cer-
tain parties, checking them for possible harms and thereby improving them steadily
becomes increasingly difficult. That is why research towards efficient use of large
language models becomes increasingly important.

Efficiency can be addressed across multiple dimensions, related to the affected
resources listed above. It also covers all stages of the NLP pipeline, such as efficient use
of data, model design, pre-training and fine-tuning of LLMs, inference, and hardware
aspects. In Treviso et al. [2022b], we discuss existing methods for efficient use of
LLMs across these different stages as visualized in Figure 9.1.
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Data

Filtering [Mishra and Sachdeva,
2020, Zhang et al., 2022]

Curriculum Learning [Wan et al., 2020,
Press et al., 2021, Zhu et al., 2021]

Active Learning [Ein-Dor et al., 2020,
Yuan et al., 2022, Lee et al., 2022]

Model
Design

Compressing Attention [Dai
et al., 2019, Martins et al., 2022]

Fast Attention [Kitaev et al.,
2020, Choromanski et al., 2021]

Sparse Modeling [Fedus et al.,
2022, Treviso et al., 2022a]

Parameter Efficiency [Lan
et al., 2020, Jaegle et al., 2021];

Retrieval-based [Khandelwal
et al., 2020, Borgeaud et al., 2022]

Pre-
training

Decoder only [Brown et al.,
2020, Chowdhery et al., 2022]

Encoder only [Devlin et al.,
2019, Clark et al., 2020]

Encoder-Decoder [Raffel et al.,
2020, Lewis et al., 2020a]

Fine-
tuning

Parameter-Efficiency [Houlsby
et al., 2019, Hu et al., 2022]

Multi-task Learning [Raffel
et al., 2020, Liu et al., 2022]

Zero-shot Learning [Sanh
et al., 2022, Wei et al., 2022]

Prompting [Brown et al., 2020,
Schick and Schütze, 2021]

Inference
& Com-
pression

Pruning [Gordon et al.,
2020, Sanh et al., 2020]

Distillation [Jiao et al.,
2020, Sun et al., 2020]

Adaptive Computation [Dabre
et al., 2020, Elbayad et al., 2020]

Quantization [Bhandare
et al., 2019, Shen et al., 2020]

Hardware
Utilization

Libraries [Ren et al., 2021,
Dettmers et al., 2022]

Specialized Hardware Li et al. [2021],
Qu et al. [2022], Tambe et al. [2020]

Edge Devices [Iandola et al.,
2020, Sankar et al., 2021]

Figure 9.1. Typology of efficient NLP methods as surveyed by Treviso et al. [2022b].

Many of these methods can decrease resource usage significantly without impact-
ing performance by large margins. However, we also identify challenges, such as
trade-offs between different dimensions of efficiency and the lack of simple evaluation
frameworks.

Considering the current direction of NLP research, which puts a focus on scaling,
as discussed in 2.1.6, we especially recommend future research for LLMs in specialized
domains to think efficiency-first. Most resources in specialized domains are naturally
limited, and therefore, prioritizing efficiency across multiple dimensions will be par-
ticularly beneficial by enabling faster development, progress sharing, and, ultimately,
safer applications.
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C. Logé, E. Ross, D. Y. A. Dadey, S. Jain, A. Saporta, A. Y. Ng, and P. Rajpurkar. Q-pain:
A question answering dataset to measure social bias in pain management. In Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021.

I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017.

J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 13–23, 2019.

P. H. Martins, Z. Marinho, and A. F. T. Martins. ∞-former: Infinite memory transformer. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 5468–
5485. Association for Computational Linguistics, 2022.



BIBLIOGRAPHY 140

B. McCann, N. S. Keskar, C. Xiong, and R. Socher. The natural language decathlon:
Multitask learning as question answering. CoRR, abs/1806.08730, 2018.

M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24:109–165, 1989.

Y. Mehdad and J. R. Tetreault. Do characters abuse more than words? In Proceedings of the
SIGDIAL 2016 Conference, The 17th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 13-15 September 2016, Los Angeles, CA, USA, pages 299–303.
The Association for Computer Linguistics, 2016.

O. Melamud, J. Goldberger, and I. Dagan. context2vec: Learning generic context em-
bedding with bidirectional LSTM. In Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, CoNLL 2016, Berlin, Germany, August 11-
12, 2016, pages 51–61. ACL, 2016.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations
in vector space. In 1st International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.

Y. Ming, P. Xu, H. Qu, and L. Ren. Interpretable and steerable sequence learning via proto-
types. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages
903–913. ACM, 2019.

S. Mishra and B. S. Sachdeva. Do we need to create big datasets to learn a task? In Pro-
ceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing,
SustaiNLP@EMNLP 2020, Online, November 20, 2020, pages 169–173. Association for
Computational Linguistics, 2020.

M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D.
Raji, and T. Gebru. Model cards for model reporting. In Proceedings of the Conference
on Fairness, Accountability, and Transparency, FAT* 2019, Atlanta, GA, USA, January
29-31, 2019, pages 220–229. ACM, 2019.

S. Moscou, M. R. Anderson, J. B. Kaplan, and L. Valencia. Validity of racial/ethnic
classifications in medical records data: an exploratory study. American journal of public
health, 93(7):1084–1086, 2003.

J. Mullenbach, S. Wiegreffe, J. Duke, J. Sun, and J. Eisenstein. Explainable prediction
of medical codes from clinical text. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume
1 (Long Papers), pages 1101–1111. Association for Computational Linguistics, 2018.

A. Nelson. Unequal treatment: confronting racial and ethnic disparities in health care.
Journal of the national medical association, 94(8):666, 2002.



141 BIBLIOGRAPHY

D. Njagi, Z. Zuping, D. Hanyurwimfura, and J. Long. A lexicon-based approach for hate
speech detection. In International Journal of Multimedia and Ubiquitous Engineering,
volume 10, pages 215–230, 2015.

C. Nobata, J. R. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang. Abusive language
detection in online user content. In Proceedings of the 25th International Conference on
World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016, pages 145–153.
ACM, 2016.

M. Oleynik, A. Kugic, Z. Kasác, and M. Kreuzthaler. Evaluating shallow and deep learning
strategies for the 2018 n2c2 shared task on clinical text classification. J. Am. Medical
Informatics Assoc., 26(11):1247–1254, 2019.

OpenAI. Introducing chatgpt. https://openai.com/blog/chatgpt, 2022. Accessed: 2023-03-
18.

S. Paasch-Colberg, B. van Aken, S. Christian, L. Laugwitz, A. Löser, J. Trebbe, and M. Em-
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