7 research outputs found

    An evolutionary technique to approximate multiple optimal alignments

    Get PDF
    The alignment of observed and modeled behavior is an essential aid for organizations, since it opens the door for root-cause analysis and enhancement of processes. The state-of-the-art technique for computing alignments has exponential time and space complexity, hindering its applicability for medium and large instances. Moreover, the fact that there may be multiple optimal alignments is perceived as a negative situation, while in reality it may provide a more comprehensive picture of the model’s explanation of observed behavior, from which other techniques may benefit. This paper presents a novel evolutionary technique for approximating multiple optimal alignments. Remarkably, the memory footprint of the proposed technique is bounded, representing an unprecedented guarantee with respect to the state-of-the-art methods for the same task. The technique is implemented into a tool, and experiments on several benchmarks are provided.Peer ReviewedPostprint (author's final draft

    How to evaluate a subspace visual projection in interactive visual systems? A position paper

    Get PDF
    International audienceThis paper presents a position paper on subspace projection evaluation methods in interactive visual systems. We focus on how to evaluate real information rendered through the visual data projection for the mining of high dimensional data sets. To do this, we investigate automatic techniques that select the best visual projection and we discuss how they evaluate the projections to help the user before interactivity. When we deal with high dimensional data sets, the number of potential projections exceeds the limit of human interpretation. To find the optimal subspace representation, there are two possibilities, the first one is to find the optimal subspace which reproduces what really exists in the original data: getting the existing clusters and/or outliers in the projection. The second possibility consists in researching subspaces according to the knowledge discovery process: discovering novel, but meaningful information, such as clusters and/or outliers from the projection. The problem is that visual projection cannot be in adequation with the subspaces. In some cases, the visual projection can show some things that do not really exist in the original data space (which can be considered as an artifact). The mapping between the visual structure and the real data structure is as important as the efficiency and accuracy of the visualization. We examine and discuss the literature of Information visualization, Visual analytic, High dimensional data visualization, and interactive data mining and machine learning communities, on how to evaluate the faithfulness of the visual projection information

    Event log visualisation with conditional partial order graphs: from control flow to data

    Get PDF
    Process mining techniques rely on event logs: the extraction of a process model (discovery) takes an event log as the input, the adequacy of a process model (conformance) is checked against an event log, and the enhancement of a process model is performed by using available data in the log. Several notations and formalisms for event log representation have been proposed in the recent years to enable efficient algorithms for the aforementioned process mining problems. In this paper we show how Conditional Partial Order Graphs (CPOGs), a recently introduced formalism for compact representation of families of partial orders, can be used in the process mining field, in particular for addressing the problem of compact and easy-to-comprehend visualisation of event logs with data. We present algorithms for extracting both the control flow as well as the relevant data parameters from a given event log and show how CPOGs can be used for efficient and effective visualisation of the obtained results. We demonstrate that the resulting representation can be used to reveal the hidden interplay between the control and data flows of a process, thereby opening way for new process mining techniques capable of exploiting this interplay.Peer ReviewedPostprint (author's final draft

    Mining conditional partial order graphs from event logs

    Get PDF
    Process mining techniques rely on event logs: the extraction of a process model (discovery) takes an event log as the input, the adequacy of a process model (conformance) is checked against an event log, and the enhancement of a process model is performed by using available data in the log. Several notations and formalisms for event log representation have been proposed in the recent years to enable efficient algorithms for the aforementioned process mining problems. In this paper we show how Conditional Partial Order Graphs (CPOGs), a recently introduced formalism for compact representation of families of partial orders, can be used in the process mining field, in particular for addressing the problem of compact and easy-to-comprehend representation of event logs with data. We present algorithms for extracting both the control flow as well as the relevant data parameters from a given event log and show how CPOGs can be used for efficient and effective visualisation of the obtained results. We demonstrate that the resulting representation can be used to reveal the hidden interplay between the control and data flows of a process, thereby opening way for new process mining techniques capable of exploiting this interplay. Finally, we present open-source software support and discuss current limitations of the proposed approach.Peer ReviewedPostprint (author's final draft

    Introducing Interactions in Multi-Objective Optimization of Software Architectures

    Full text link
    Software architecture optimization aims to enhance non-functional attributes like performance and reliability while meeting functional requirements. Multi-objective optimization employs metaheuristic search techniques, such as genetic algorithms, to explore feasible architectural changes and propose alternatives to designers. However, the resource-intensive process may not always align with practical constraints. This study investigates the impact of designer interactions on multi-objective software architecture optimization. Designers can intervene at intermediate points in the fully automated optimization process, making choices that guide exploration towards more desirable solutions. We compare this interactive approach with the fully automated optimization process, which serves as the baseline. The findings demonstrate that designer interactions lead to a more focused solution space, resulting in improved architectural quality. By directing the search towards regions of interest, the interaction uncovers architectures that remain unexplored in the fully automated process

    The germinal centre artificial immune system

    Get PDF
    This thesis deals with the development and evaluation of the Germinal centre artificial immune system (GC-AIS) which is a novel artificial immune system based on advancements in the understanding of the germinal centre reaction of the immune system. The key research questions addressed in this thesis are: can an artificial immune system (AIS) be designed by taking inspiration from recent developments in immunology to tackle multi-objective optimisation problems? How can we incorporate desirable features of the immune system like diversity, parallelism and memory into this proposed AIS? How does the proposed AIS compare with other state of the art techniques in the field of multi-objective optimisation problems? How can we incorporate the learning component of the immune system into the algorithm and investigate the usefulness of memory in dynamic scenarios? The main contributions of the thesis are: • Understanding the behaviour and performance of the proposed GC-AIS on multiobjective optimisation problems and explaining its benefits and drawbacks, by comparing it with simple baseline and state of the art algorithms. • Improving the performance of GC-AIS by incorporating a popular technique from multi-objective optimisation. By overcoming its weaknesses the capability of the improved variant to compete with the state of the art algorithms is evaluated. • Answering key questions on the usefulness of incorporating memory in GC-AIS in a dynamic scenario
    corecore