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2 Universitat Politècnica de Catalunya, Spain
jcarmona@cs.upc.edu

Abstract Process mining techniques rely on event logs: the extraction of a process model
(discovery) takes an event log as the input, the adequacy of a process model (conformance) is
checked against an event log, and the enhancement of a process model is performed by using
available data in the log. Several notations and formalisms for event log representation have
been proposed in the recent years to enable efficient algorithms for the aforementioned process
mining problems. In this paper we show how Conditional Partial Order Graphs (CPOGs),
a recently introduced formalism for compact representation of families of partial orders, can
be used in the process mining field, in particular for addressing the problem of compact and
easy-to-comprehend visualisation of event logs with data. We present algorithms for extracting
both the control flow as well as the relevant data parameters from a given event log and show
how CPOGs can be used for efficient and effective visualisation of the obtained results. We
demonstrate that the resulting representation can be used to reveal the hidden interplay
between the control and data flows of a process, thereby opening way for new process mining
techniques capable of exploiting this interplay.

1 Introduction

Event logs are ubiquitous sources of process information that enabled the rise of the process mining
field, which stands at the interface between data science, formal methods, concurrency theory,
machine learning, data visualisation and others [26]. A process is a central notion in these fields and
in computing science in general, and the ability to automatically discover and analyse evidence-
based process models is of utmost importance for many government and business organisations.
Furthermore, this ability is gradually becoming a necessity as the digital revolution marches forward
and traditional process analysis techniques based on the explicit construction of precise process
models are no longer adequate for continuously evolving large scale real-life processes, because our
understanding of them is often incomplete and/or inconsistent.

At present, the process mining field is mainly focused on three research directions: i) the discovery
of a formal process model, typically, a Petri Net or a BPMN (Business Process Model and Notation);
ii) the conformance analysis of a process model with respect to a given event log; and iii) the
enhancement of a process model with respect to additional information (i.e., data) contained in
an event log. The bulk of research in these directions has been dedicated to the design of the
algorithmic foundation and associated software tools with many notable successes, such as, e.g.
the ProM framework [2]. However, a more basic problem of event log visualisation received little
attention to date, despite the fact that effective visualisation is essential for achieving a good
understanding of the information contained in an event log. Indeed, even basic dotted charts prove

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41827196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


very useful for describing many aspects of event logs even though they are just simple views of
event log traces plotted over time [25].

In this paper we discuss the application of Conditional Partial Order Graphs (CPOGs) for event
log visualisation. The CPOG model has been introduced in [17] as a compact graph-based repres-
entation for complex concurrent systems, whose behaviour could be thought of as a collection of
many partial order scenarios. The key idea behind our approach is to convert a given event log into
a collection of partial orders, which can then be compactly described and visualised as a CPOG.
Although CPOGs are less expressive than Petri Nets and have important limitations, such as the
inability to represent cyclic behaviour, they are perfectly suitable for representing event logs, which
are inherently acyclic. We therefore see CPOGs not as the final product of process mining, but
as a convenient intermediate representation of an event log that provides much better clarity of
visualisation as well as better compactness, which is important for the efficiency of algorithms fur-
ther in the process mining pipeline. Furthermore, CPOGs can be manipulated using algorithmically
efficient operations such as overlay (combining several event logs into one), projection (extracting
a subset of interesting traces from an event log), equivalence checking (verifying if two event logs
describe the same behaviour) and others, as has been formalised in [19].

The contribution of the paper is twofold. Firstly, we present a method for deriving compact
CPOG representations of event logs, which is based on the previous research in CPOG synthesis [17].
Secondly, we propose techniques for extracting data parameters from the information typically con-
tained in event labels of a log and for using these parameters for annotating the derived CPOG
model, thereby providing a direct link between the control and data aspects of a given system.

The remainder of the paper is organised as follows: the next section illustrates the motivation
and contributions of the paper with the help of a small example. Section 3 provides the background
on event logs, and Section 4 introduces the theory of CPOGs in detail, placing it in the context
of process mining. The extraction of CPOGs from event logs is described in Section 5. This is
followed by Section 6, which shows how one can automatically incorporate data into CPOGs.
Finally, Section 7 provides a discussion about related and future work.

2 Motivating Example

We start by illustrating the reasons that motivate us to study the application of CPOGs in process
mining, namely: (i) the ability of CPOGs to compactly represent complex event logs and clearly
illustrate their high-level properties, and (ii) the possibility of capturing event log meta data as part
of a CPOG representation, thereby taking advantage of the meta data for the purpose of explaining
the process under observation.

Consider an event log L = {abcd, cdab, badc, dcba}. One can notice that the order between
events a and b always coincides with the order between events c and d. This is an important piece
of information about the process, which however may not be immediately obvious when looking
at the log in the text form. To visualise the log one may attempt to use existing process mining
techniques and discover a graphical representation for the log, for example in the form of a Petri
Net or a BPMN. However, the existing process mining techniques perform very poorly on this log
and fail to capture this information. To compare the models discovered from this log by several
popular process mining methods, we will describe the discovered behaviour by regular expressions,
where operators || and ∪ denote interleaving and union, respectively.



The α-algorithm [27] applied to L produces a Petri Net accepting the behaviour a ∪ b ∪ c ∪ d,
which clearly cannot reproduce any of the traces in L. Methods aimed at deriving block-structured
process models [3][13] produce a connected Petri Net that with the help of silent transitions re-
produces the behaviour a || b || c || d, which is a very imprecise model accepting all possible inter-
leavings of the four events. The region-based techniques [4] discover the same behaviour as the
block-structured miners, but the derived models are not connected.

CPOGs, however, can represent L exactly and in a very compact form, as shown in Fig. 1(a).
Informally, a CPOG is an overlay of several partial orders that can be extracted from it by as-
signing values to variables that appear in the conditions of the CPOG vertices and arcs, e.g., the
upper-left graph shown in Fig. 1(b) (assignment x = 1, y = 1) corresponds to the partial order
containing the causalities a ≺ b, a ≺ d, b ≺ c, c ≺ d. One can easily verify that the model is
precise by trying all possible assignments of variables x and y and checking that they generate the
traces {abcd, cdab, badc, dcba} as expected, and nothing else. See Fig. 1(b) for the corresponding
illustration. The compactness of the CPOG representation of L is due to the fact that several event
orderings can be overlayed on top of each other taking advantage of the similarities between them.
See Sections 4 and 5 for a detailed introduction to CPOGs and algorithms for automated translation
of event logs to CPOGs.
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Figure 1: Exact CPOG representation of log L = {abcd, cdab, badc, dcba}

It is worth mentioning that CPOGs allow us to recognize second order relations between events.
These are relations that are not relating events themselves, but are relating relations between
events: indeed, the CPOG in Fig. 1(a) clearly shows that the relation between a and b is equal to
the relation between c and d, and the same holds for pairs (a, d) and (b, c). In principle, one can
go even further and consider third order relations and so forth. The practical use of such a relation
hierarchy is that it may help to extract an event hierarchy from event logs, thereby simplifying the
resulting representation even further.



One may be unsatisfied by the CPOG representation in Fig. 1(a) due to the use of ‘artificial’
variables x and y. Where do these variables come from and what exactly do they correspond to
in the process? We found out that additional data which is often present in event logs can be
used to answer such questions. In fact, as we will show in Section 6, it may be possible to use
easy-to-understand predicates constructed from the data instead of ‘opaque’ Boolean variables.

For example, consider the same log L but augmented with temperature data attached to traces:

– abcd, t = 25◦

– cdab, t = 30◦

– badc, t = 22◦

– dcba, t = 23◦

With this information at hand we can now explain what variable x means. In other words, we
can open the previously opaque variable x by expressing it as a predicate involving data parameter t:

x = t ≥ 25◦

One can subsequently drop x completely from the CPOG by using conditions t ≥ 25◦ and t < 25◦

in place of x and x, respectively. See Fig. 2 for the corresponding illustration.

Figure 2: Using data to explain variables

To conclude, we believe that CPOGs bring unique log visualisation capabilities to the process
mining field. It is possible to use CPOGs as an intermediate representation of event logs, which
can be exact as well as more comprehensible both for humans and for software tools further in the
process mining pipeline.

3 Event Logs

In this section we introduce the notion of an event log, which is central for this paper and for the
process mining field. We also discuss important quality metrics that are typically used to compare
methods for event log based process mining.

Table 1 shows a simple event log, which contains not only event information but also data in
the form of event attributes. The example event log matches the log used in the previous section,



Event Case ID Activity Timestamp Temperature Resource Cost Risk

1 1 a 10-04-2015 9:08am 25.0 Martin 17 Low

2 2 c 10-04-2015 10:03am 28.7 Mike 29 Low

3 2 d 10-04-2015 11:32am 29.8 Mylos 16 Medium

4 1 b 10-04-2015 2:01pm 25.5 Silvia 15 Low

5 1 c 10-04-2015 7:06pm 25.7 George 14 Low

6 1 d 10-04-2015 9:08pm 25.3 Peter 17 Medium

7 2 a 10-04-2015 10:28pm 30.0 George 19 Low

8 2 b 10-04-2015 10:40pm 29.5 Peter 22 Low

9 3 b 11-04-2015 9:08am 22.5 Mike 31 High

10 4 d 11-04-2015 10:03am 22.0 Mylos 33 High

11 4 c 11-04-2015 11:32am 23.2 Martin 35 High

12 3 a 11-04-2015 2:01pm 23.5 Silvia 40 Medium

13 3 d 11-04-2015 7:06pm 28.8 Mike 43 High

14 3 c 11-04-2015 9:08pm 22.9 Silvia 45 Medium

15 4 b 11-04-2015 10:28pm 23.0 Silvia 50 High

16 4 a 11-04-2015 10:40pm 23.1 Peter 35 Medium

Table 1: An example event log

that is the underlying traces are {abcd, cdab, badc, dcba} and they correspond to ‘case IDs’ 1, 2, 3,
and 4, respectively. We assume that the set of attributes is fixed and the function attr maps pairs
of events and attributes to the corresponding values. For each event e the log contains the case ID
case(e), the activity name act(e), and the set of attributes defined for e, e.g., attr(e, timestamp).
For instance, for the event log in Table 1, case(e7) = 2, act(e7) = a, attr(e7, timestamp) = “10-
04-2015 10:28pm”, and attr(e7, cost) = 19. Given a set of events E, an event log L ∈ B(E∗) is a
multiset of traces E∗ of events.

Process mining techniques use event logs containing footprints of real process executions for
discovering, analysing and extending formal process models, which reveal real processes in a sys-
tem [26]. The process mining field has risen around a decade ago, and since then it has evolved
in several directions, with process discovery being perhaps the most difficult challenge, as demon-
strated by the large number of techniques available for it today. What makes process discovery hard
is the fact that derived process models are expected to be good across four quality metrics, which
are often mutually exclusive:

– fitness: the ability of the model to reproduce the traces in the event log (i.e., not too many
traces are lost),

– precision: the precision of the model in representing the behavior in the log (i.e., not too many
new traces are introduced),

– generalisation: the ability of the model to generalise the behavior not covered by the log, and

– simplicity: the well-known Occam’s Razor principle that advocates for simpler models.

Although this paper does not focus on the discovery of process models, we will consider these
quality metrics when analysing the derived Conditional Partial Order Graphs, which are formally
described in the next section.



4 Conditional Partial Order Graphs

Conditional Partial Order Graphs (CPOGs) were introduced for the compact specification of concur-
rent systems comprised from multiple behavioural scenarios [17]. CPOGs are particularly effective
when scenarios of the system share common patterns, which can be exploited for the automated
derivation of a compact combined representation of the system’s behaviour. CPOGs have been used
for the design of asynchronous circuits [20] and for optimal encoding of processor instructions [18].
In this paper we demonstrate how CPOGs can be employed in process mining.

4.1 Basic definitions

A CPOG is a directed graph (V,E), whose vertices V and arcs E ⊆ V × V are labelled with
Boolean functions, or conditions, φ : V ∪ E → ({0, 1}X → {0, 1}), where {0, 1}X → {0, 1} stands
for a Boolean function defined on Boolean variables X.

Figure 3: Example of a Conditional Partial Order Graph and the associated family of graphs

Fig. 3 (the top left box) shows an example of a CPOG H containing 4 vertices V = {a, b, c, d},
6 arcs and 2 variables X = {x, y}. Vertex d is labelled with condition x+ y (that is, ‘x OR y’), arcs
(b, c) and (c, b) are labelled with conditions x and y, respectively. All other vertices and arcs are
labelled with trivial conditions 1 (trivial conditions are not shown for clarity); we call such vertices
and arcs unconditional.

There are 2|X| possible assignments of variables X, called codes. Each code induces a subgraph
of the CPOG, whereby all the vertices and arcs, whose conditions evaluate to 0 are removed. For



example, by assigning x = y = 0 one obtains graph H00 shown in the bottom right box in Fig. 3;
vertex d and arcs (b, c) and (c, b) have been removed from the graph, because their conditions are
equal to 0 when x = y = 0. Different codes can produce different graphs, therefore a CPOG with |X|
variables can potentially specify a family of 2|X| graphs. Fig. 3 shows two other members of the
family specified by CPOG H: H01 and H10, corresponding to codes 01 and 10, respectively, which
differ only in the direction of the arc between vertices b and c.

It is often useful to focus only on a subset C ⊆ {0, 1}X of codes, which are meaningful in some
sense. For example, code 11 applied to CPOG H in Fig. 3 produces a graph with a loop between
vertices b and c, which is undesirable if arcs are interpreted as causality. We use a Boolean restriction
function ρ : {0, 1}X → {0, 1} to compactly specify the set C = {x | ρ(x) = 1} and its complement
DC = {x | ρ(x) = 0}, which are often referred to as the care and don’t care sets [8]. By setting
ρ = xy one can disallow code x = 11, thereby restricting the family of graphs specified by CPOG H
to three members only, which are all shown in Fig. 3.

The size |H| of a CPOG H = (V,E,X, φ, ρ) is defined as:

|H| = |V |+ |E|+ |X|+

∣∣∣∣∣ ⋃
z∈V ∪E

φ(z) ∪ ρ

∣∣∣∣∣ ,
where |{f1, f2, . . . , fn}| stands for the size of the smallest circuit [30] that computes all Boolean
functions in set {f1, f2, . . . , fn}.

4.2 Families of partial orders

A CPOG H = (V,E,X, φ, ρ) is well-formed if every allowed code x produces an acyclic graph Hx.
By computing the transitive closure H∗x one can obtain a strict partial order, an irreflexive and
transitive relation on the set of events corresponding to vertices of Hx.

We can therefore interpret a well-formed CPOG as a specification of a family of partial orders.
We use the term family instead of the more general term set to emphasise the fact that partial
orders are encoded, that is each partial order H∗x is paired with the corresponding code x. For
example, the CPOG shown in Fig. 3 specifies the family comprising the partial order H∗00, where
event a precedes concurrent events b and c, and two total orders H∗01 and H∗10 corresponding to
sequences acbd and abcd, respectively.

The language L(H) of a CPOG H is the set of all possible linearisations of partial orders con-
tained in it. For example, the language of the CPOG shown in Fig. 3 is L(H) = {abc, acb, abcd, acbd}.
One of the limitations of the CPOG model is that it can only describe finite languages. However,
this limitation is irrelevant for the purposes of this paper since event logs are always finite.

It has been demonstrated in [14] that CPOGs are a very efficient model for representing families
of partial orders. In particular, they can be exponentially more compact than Labelled Event Struc-
tures [21] and Petri Net unfoldings [15]. Furthermore, for some applications CPOGs provide more
comprehensible models than other widely used formalisms, such as Finite State Machines and Petri
Nets, as has been shown in [17] and [20]. This motivated the authors to investigate the applicability
of CPOGs to process mining.

4.3 Synthesis

In the previous sections we have demonstrated how one can extract partial orders from a given
CPOG. However, the opposite problem is more interesting: derive the smallest CPOG description



for a given a set of partial orders. This problem is called CPOG synthesis and it is an essential step
in the proposed CPOG-based approach to process mining.

A number of CPOG synthesis methods have been proposed to date. In this paper we will rely on
the one based on graph colouring [17], which produces CPOGs with all conditions having at most
one literal. Having at most one literal per condition is a serious limitation for many applications,
but we found that the method works well for process mining. A more sophisticated approach, which
produces CPOGs with more complex conditions has been proposed in [18], however, it has poor
scalability and cannot be applied to large process mining instances. Both methods are implemented
in open-source Workcraft framework [1], which we used in our experiments.

In general, the CPOG synthesis problem is still under active development and new approximate
methods are currently being studied, e.g., see [7]. Another promising direction for overcoming this
challenge is based on reducing the CPOG synthesis problem to the problem of Finite State Machine
synthesis [29].

5 From Event Logs to CPOGs

When visualising behaviour of an event log, it is difficult to identify a single technique that per-
forms well for any given log due to the representational bias exhibited by existing process dis-
covery algorithms. For example, if the event log describes a simple workflow behaviour, then the
α-algorithm [27] is usually the best choice. However, if non-local dependencies are present in the
behaviour, the α-algorithm will not be able to find them, and then other approaches, e.g. based
on the theory of regions [4][24][28], may deliver best results. The latter techniques in turn are not
tailored for dealing with noise, and alternative approaches such as [9][31] should be considered.
There are event logs for which none of the existing process discovery techniques seem to provide a
satisfactory result according to the quality metrics presented in Section 3; see the simple event log
shown in Section 2 as an example.

In this section we describe two approaches for translating a given event log L into a compact
CPOG representation H. The first approach, which we call the exact CPOG mining, treats each
trace as a totally ordered sequence of events and produces CPOGH such that L = L(H). The second
approach attempts to extract concurrency between the events, hence we call it the concurrency-
aware CPOG mining. The former approach does not introduce any new behaviours, while the latter
one may in fact introduce new behaviours, which could be interpreted as new possible interleavings
of the traces contained in the given log, hence producing CPOG H such that L ⊆ L(H).

5.1 Exact CPOG mining

The problem of the exact CPOG mining is formulated as follows: given an event log L, derive a
CPOG H such that L = L(H). This can be trivially reduced to the CPOG synthesis problem.
Indeed, each trace t = e1e2 · · · em can be considered a total order of events e1 ≺ e2 ≺ · · · ≺ em.
Therefore, a log L = {t1, t2, · · · , tn} can be considered a set of n total orders and its CPOG
representation can be readily obtained via CPOG synthesis.

For example, given event log L = {abcd, cdab, badc, dcba} described in Section 2, the exact
mining approach produces the CPOG shown in Fig. 1. As has already been discussed in Section 2,
the resulting CPOG is very compact and provides a more comprehensible representation of the
event log compared to conventional models used in process mining, such as Petri Nets or BPMNs.



When a given event log contains concurrency, the exact CPOG mining approach may lead
to suboptimal results. For example, consider a simple event log L = {abcd, acbd}. If we directly
synthesise a CPOG by considering each trace of this log a total order, we will obtain the CPOG H
shown in Fig. 4 (left). Although L = L(H) as required, the CPOG uses a redundant variable x to
distinguish between the two total orders even though they are just two possible linearisations of
the same partial order, where a ≺ b, a ≺ c, b ≺ d, and c ≺ d. It is therefore desirable to recognise
and extract the concurrency between events b and c in this event log and use the information for
simplifying the derived CPOG, as shown in Fig. 4 (right). Note that the simplified CPOG H ′ still
preserves the language equality, i.e. L = L(H ′).

Figure 4: CPOG mining from event log L = {abcd, acbd}

5.2 Concurrency-aware CPOG mining

This section presents an algorithm for extracting concurrency from a given event log and using
this information for simplifying the result of the CPOG mining. Classic process mining techniques
generally follow the same principle; in particular, the α-algorithm [26] is often used to extract
concurrency in the context of process mining based on Petri Nets. We introduce a new concurrency
extraction algorithm, which is more conservative than the α-algorithm: it uses stronger restrictions
when declaring two events concurrent, which leads to higher accuracy of process mining. This
method works particularly well in combination with CPOGs due to their compactness, however, we
believe that it can also be useful in combination with other formalisms.

First, let us introduce convenient operations for extracting subsets of traces from a given event
log L. Given an event e, the subset of L’s traces containing e will be denoted as L|e, while the
subset of L’s traces not containing e will be denoted as L|e. Clearly, L|e ∪ L|e = L. Similarly,
given two events e and f , the subset of L’s traces containing both e and f with e occurring before
f will be denoted as L|e→f . Note that L|e ∩ L|f = L|e→f ∪ L|f→e, i.e., if two events appear in
a trace, they must be ordered one way or another. For instance, if L = {abcd, acbd, abce} then
Le = {abce}, La = ∅, La→b = L, and La→d = {abcd, acbd}. An event e is conditional if L|e 6= ∅
and L|e 6= L, otherwise it is unconditional. A conditional event will necessarily have a non-trivial
condition (neither 0 nor 1) in the mined CPOG. Similarly, a pair of events e and f is conditionally
ordered if L|e→f 6= ∅ and L|e→f 6= L. Otherwise, e and f are unconditionally ordered.

We say that a conditional event r indicates the order between events e and f in an event log L
if one of the following criteria holds:



– L|r ⊆ L|e→f

– L|r ⊆ L|f→e

– L|r ⊆ L|e→f

– L|r ⊆ L|f→e

In other words, the existence or non-existence of the event r can be used as an indicator of the
order between the events e and f . For example, if L = {abcd, acbd, abce}, then e indicates the order
between b and c. Indeed, whenever we observe event e in a trace we can be sure that b occurs before
c in that trace: L|e ⊆ L|b→c.

Similarly, we say that a conditionally ordered pair of events r and s indicates the order between
events e and f in an event log L if one of the following criteria holds:

– L|r→s ⊆ L|e→f

– L|r→s ⊆ L|f→e

– L|s→r ⊆ L|e→f

– L|s→r ⊆ L|f→e

In other words, the order between the events r and s can be used as an indicator of the order
between the events e and f . For example, if L = {abcd, cdab, badc, dcba}, then the order between
events a and b indicates the order between events c and d (and vice versa). Indeed, whenever a
occurs before b in a trace, we know that c occurs before d: L|a→b = L|c→d.

The indicates relation has been inspired by and is somewhat similar to the reveals relation
introduced in [10].

We are now equipped to describe the algorithm for concurrency-aware CPOG mining. The
algorithm takes an event log L as input and produces a CPOG H such that L ⊆ L(H).

1. Extract concurrency: find all conditionally ordered pairs of events e and f such that the order
between them is not indicated by any other events or pairs of events. Call the resulting set of
pairs C.

2. Convert each trace t ∈ L into a partial order p by relaxing the corresponding total order
according to the set of concurrent pairs C. Call the resulting set of partial orders P .

3. Perform the CPOG synthesis on the obtained set of partial orders P to produce the resulting
CPOG H.

Note that the resulting CPOG H indeed satisfies the condition L ⊆ L(H), since we can only add
new linearisations into H in step (2) of the algorithm, when we relax a total order corresponding
to a particular trace by discarding some of the order relations.

Let us apply the algorithm to the previous examples. Given log L = {abcd, cdab, badc, dcba} from
Section 2, the algorithm does not find any concurrent pairs, because the order between each pair of
events is indicated by the order between the complementary pair of events (e.g., L|a→b = L|c→d).
Hence, C = ∅ and the result of the algorithm coincides with the exact CPOG mining, as shown in
Section 2. Given log L = {abcd, acbd} from Section 5.1, the algorithm finds one pair of concurrent
events, namely {b, c}, which results in collapsing of both traces of L into the same partial order
with trivial CPOG representation shown in Fig. 4 (right).

6 From Control Flow to Data

As demonstrated in the previous section, one can derive a compact CPOG representation from
a given event log using CPOG mining techniques. The obtained representations however rely on



opaque Boolean variables, which make the result difficult to comprehend. For example, Fig. 1(a)
provides no intuition on how a particular variable assignment can be interpreted with respect to
the process under observation. The goal of this section is to present a method for the automated
extraction of useful data labels from a given event log (in particular from available event attributes)
and using these labels for constructing ‘transparent’ and easy-to-comprehend predicates, which can
substitute the opaque Boolean variables. This is similar to the application of conventional machine
learning techniques for learning ‘decision points’ in process models or in general for the automated
enhancement of a given model by leveraging the available data present in the event log [26].

More formally, given an event log L and the corresponding mined CPOG H our goal is to explain
how a particular condition f can be interpreted using data available in the log L. Note that the
condition f can be as simple as just a single literal x ∈ X (e.g., the arc a → b in Fig. 1(a)), in
which case our goal is to explain a particular Boolean variable; however, the technique introduced
in this section is applicable to any Boolean function of the CPOG variables f : {0, 1}X → {0, 1}, in
particular, one can use the technique for explaining what the restriction function ρ corresponds to
in the process, effectively discovering the process invariants. We achieve the goal by constructing
an appropriate instance of the classification problem [16].

Let n = |E| be the number of different events in L, and k be the number of different event
attributes available in L. Remember that attributes of an event e can be accessed via function
attr(e), see Section 3. Hence, every event e in the log defines a feature vector ê of dimension k
where the value at i-th position corresponds to the value of the i-th attribute of e3. For instance, the
feature vector ê1 corresponding to the event e1 in the log shown in Table 1 is (“10-04-2015 9:08am”,
25.0, “Martin”, 17, Low). Some of the features, e.g. timestamp, may need to be abstracted before
applying the technique described below in order to produce better results. For example, timestamps
can be mapped to five discrete classes morning, noon, afternoon, evening and night.

The key observation for the proposed method is that all traces in the log L can be split into two
disjoint sets, or classes, with respect to the given function f : i) set L|f , containing the traces where
f evaluates to 1, and ii) set L|f containing the traces where f evaluates to 0. This immediately leads
to an instance of the binary classification problem on n feature vectors, as illustrated in Table 2.

Feature vectors Class

{ê|e ∈ σ ∧ σ ∈ L|f} True

{ê|e ∈ σ ∧ σ ∈ L|f} False

Table 2: Binary classification problem for function f and event log L.

In other words, every event belonging to a trace where the function evaluates to 1 is considered
to belong to the class we learn, that is, the class labelled as True in Table 2 (the remaining events do
not belong to this class). Several methods can be applied to solve this problem, including decision
trees [23], support vector machines [6], and others. In this work we focus on decision trees as they
provide a convenient way to extract predicates defined on event attributes, which can be directly
used for substituting opaque CPOG conditions. The method is best explained by way of an example.

3 We assume a total order on the set of event attributes.
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Figure 5: Decision tree built for function f = x in the CPOG of Fig. 1(a).

Consider the event log shown in Table 1, which contains a number of data attributes for each
event. The traces underlying the log are {abcd, cdab, badc, dcba}. Fig. 1(a) shows the corresponding
CPOG produced by the CPOG mining techniques presented in the previous section. Let us try
to find an interpretation of the variable x by applying the above procedure with f = x. The set
L|f equals to L|a→b, i.e. it contains traces 1 and 2, wherein event a occurs before event b and
therefore f = 1. Therefore, feature vectors ê1-ê8 provide the positive instances of the class to learn
(the first eight events of the log belong to traces 1 and 2), while feature vectors ê9-ê16 provide the
negative ones. The decision tree shown in Fig. 5 is a possible classifier for this function, which has
been derived automatically using machine learning software Weka [11]. By combining the paths in
the tree that lead to positively classified instances, one can derive the following predicate for f :
risk = low ∨ (risk = medium ∧ temperature > 23.5). This predicate can be used to substitute the
opaque variable x in the mined CPOG.

One can use the same procedure for deriving the explanation for all variables and/or conditions
in the mined CPOG, thereby providing a much more comprehensible representation for the event
log. Note that for complementary functions, taking the negation of the classification description
will suffice, e.g., conditions x in Fig. 1(a) can be substituted with predicate risk 6= low ∧ (risk 6=
medium ∨ temperature ≤ 23.5). Alternatively, one can derive the predicate for a complementary
function by combining paths leading to the negative instances; for example, for f = x the resulting
predicate is risk = high ∨ (risk = medium ∧ temperature ≤ 23.5).

The learned classifier can be tested for evaluating the quality of representation of the learned
concept. If the quality is unacceptable then the corresponding condition may be left unexplained
in the CPOG. Therefore in general the data extraction procedure may lead to partial results when
the process contains concepts which are ‘difficult to learn’. For example, in the discussed case study
the condition f = y could not be classified exactly.

A coarse-grain alternative to the technique discussed in this section is to focus on case attributes
instead of event attributes. Case attributes are attributes associated with a case (i.e., a trace) as
a whole instead to individual events [26]. Furthermore, the two approaches can be combined with
the aim of improving the quality of obtained classifiers.



7 Discussion

The techniques presented in this paper are currently being implemented as part of the Workcraft
framework [1][22], and the next step is to evaluate them on real-life event logs containing data
attributes. Several challenges need to be faced, e.g., the complexity of the concurrency extraction
algorithm (the first step in the algorithm presented in Section 5.2), the fine-tuning of parameters
of the machine learning techniques, and some others.

Due to the inability of CPOGs to directly represent cyclic behavior, we currently only focus on
using CPOGs for visualisation and as an intermediate representation of event logs, which can be
further transformed into an appropriate process mining formalism, such as Petri Nets or BPMNs.
Although some syntactic transformations already exist to transform CPOGs into contextual Petri
nets [22], we believe that finding new methods for discovery of process mining models from CPOGs
is an interesting direction for future research.

Another research direction is to consider CPOGs as compact algebraic objects that can be used
to efficiently manipulate and compare event logs [19]. Since a CPOG corresponding to an event log
can be exponentially smaller, this may help to alleviate the memory requirements bottleneck for
current process mining tools that store ‘unpacked’ event logs in memory.

Event logs are not the only suitable input for the techniques presented in this paper: we see an
interesting link with the work on discovery of frequent episodes, e.g., as reported recently in [12].
Episodes are partially ordered collections of events (not activities), and as such they can also be
represented by CPOGs. This may help to compress the information provided by frequent episodes,
especially if one takes into account the fact that current algorithms may extract a large number of
episodes, which then need to be visualised for human understanding.

8 Conclusions

This paper describes the first steps towards the use of CPOGs in the field of process mining. In
particular, the paper presented the automatic derivation of the control flow part of the CPOG
representation from a given event log, and then the incorporation of meta data contained in the
log as conditions of the CPOG vertices and arcs. We have implemented some of the reported
techniques, in particular the extraction of a CPOG from an event log as described in Section 5, and
some preliminary experiments have been carried out.

The future work includes addressing the challenges described in the previous section, as well as a
thorough practical evaluation of the algorithms described in this paper. The developed software tool
may then be used within a more general framework such as ProM [2], Workcraft [1] or PMLAB [5].

Acknowledgments. This work as been partially supported by funds from the Spanish Ministry for
Economy and Competitiveness (MINECO) and the European Union (FEDER funds) under grant
COMMAS (ref. TIN2013-46181-C2-1-R).

References

1. The Workcraft framework homepage. http://www.workcraft.org/, 2009.

2. The ProM framework homepage. http://www.promtools.org/, 2010.



3. Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. A genetic algorithm
for discovering process trees. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2012, Brisbane, Australia, June 10-15, 2012, pages 1–8, 2012.

4. Josep Carmona, Jordi Cortadella, and Michael Kishinevsky. New region-based algorithms for deriving
bounded Petri nets. IEEE Trans. Computers, 59(3):371–384, 2010.
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