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Abstract Process mining techniques rely on event logs: the extraction
of a process model (discovery) takes an event log as the input, the ad-
equacy of a process model (conformance) is checked against an event log,
and the enhancement of a process model is performed by using available
data in the log. Several notations and formalisms for event log representa-
tion have been proposed in the recent years to enable efficient algorithms
for the aforementioned process mining problems. In this paper we show
how Conditional Partial Order Graphs (CPOGs), a recently introduced
formalism for compact representation of families of partial orders, can be
used in the process mining field, in particular for addressing the problem
of compact and easy-to-comprehend representation of event logs with
data. We present algorithms for extracting both the control flow as well
as the relevant data parameters from a given event log and show how
CPOGs can be used for efficient and effective visualisation of the ob-
tained results. We demonstrate that the resulting representation can be
used to reveal the hidden interplay between the control and data flows
of a process, thereby opening way for new process mining techniques
capable of exploiting this interplay.

1 Introduction

Event logs are ubiquitous sources of process information that enabled the rise
of the process mining field, which stands at the interface between data science,
formal methods, concurrency theory, machine learning, data visualisation and
others [1]. A process is a central notion in process mining and in computing sci-
ence in general, and the ability to automatically discover and analyse evidence-
based process models is of utmost importance for many government and busi-
ness organisations. Furthermore, this ability is gradually becoming a necessity
as the digital revolution marches forward and traditional process analysis tech-
niques based on the explicit construction of precise process models are no longer
adequate for continuously evolving large-scale real-life processes, because our
understanding of them is often incomplete and/or inconsistent.

At present, the process mining field is mainly focused on three research dir-
ections: i) the discovery of a formal process model, typically, a Petri Net or a
BPMN (Business Process Model and Notation); ii) the conformance analysis of
a process model with respect to a given event log; and iii) the enhancement of
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a process model with respect to additional information (i.e., data) contained in
an event log. The bulk of research in these directions has been dedicated to the
design of the algorithmic foundation and associated software tools with many
notable successes, such as, e.g. the ProM framework [2].

However, a more basic problem of event log representation and visualisation
received little attention to date, despite the fact that effective visualisation is
essential for achieving a good understanding of the information contained in an
event log. Indeed, even basic dotted charts prove very useful for describing many
aspects of event logs even though they are just simple views of event log traces
plotted over time [3].

In this paper we discuss the application of Conditional Partial Order Graphs
(CPOGs) for event log representation and visualisation. The CPOG model has
been introduced in [4] as a compact graph-based formalism for complex concur-
rent systems, whose behaviour could be thought of as a collection of multiple
partial order scenarios (see a formal definition in §4). The key idea behind our
approach is to convert a given event log into a collection of partial orders, which
can then be compactly described and visualised as a CPOG, as explained in the
motivating example in §2. CPOGs are less expressive than Petri Nets and have
important limitations, such as the inability to represent cyclic behaviour, but
they are well-suited for representing inherently acyclic event logs.

We see CPOGs not as the end product of process mining, but as a conveni-
ent intermediate representation of event logs that provides much better clarity of
visualisation as well as better compactness, which is important for the efficiency
of algorithms further in the process mining pipeline. Furthermore, CPOGs can
be manipulated using algorithmically efficient operations such as overlay (com-
bining several event logs into one), projection (extracting a subset of interesting
traces from an event log), equivalence checking (verifying if two event logs de-
scribe the same behaviour) and others, as formalised in [5].

The contributions of this paper3 are:

– We propose two methods for mining compact CPOG representations from
event logs, see §5. The methods are based on the previous research in CPOG
synthesis [4], and on a novel concurrency oracle introduced in §5.2.

– We propose techniques for extracting data parameters from the information
typically contained in event labels of a log and for using these parameters for
annotating derived CPOG models, thereby providing a direct link between
the control and data aspects of a system under observation, see §6.

– We present an opensource implementation of the CPOG mining methods as
a Workcraft plugin [7] and as a command line tool PGminer [8], see §7.

– We evaluate our implementation on several event logs known to the process
mining community, see §7.3. The experimental results show that the current
implementation is capable of handling large real-life logs in reasonable time
and highlight the areas where future research work is needed. We review and
discuss related work in §8.

3 This paper is an extended version of [6].



2 Motivating Example

We start by illustrating the reasons that motivate us to study the application
of CPOGs in process mining, namely: (i) the ability of CPOGs to compactly
represent complex event logs and clearly illustrate their high-level properties,
and (ii) the possibility of capturing event log meta data as part of a CPOG
representation, thereby taking advantage of the meta data for the purpose of
explaining the process under observation.

Consider an event log L = {abcd, cdab, badc, dcba}. One can notice that the
order between events a and b always coincides with the order between events c
and d. This is an important piece of information about the process, which how-
ever may not be immediately obvious when looking at the log in the text form.
To visualise the log one may attempt to use existing process mining techniques
and discover a graphical representation for the log, for example in the form of
a Petri Net or a BPMN. However, an exact Petri Net representation of event
log L is cumbersome and difficult to understand. Furthermore, existing Petri Net
based process mining techniques perform very poorly on this log. To compare the
models discovered from this log by several popular process mining methods, we
will describe the discovered behaviour by regular expressions, where operators ||
and ∪ denote interleaving and union, respectively.

The α-algorithm [9] applied to L produces a Petri Net accepting the beha-
viour a ∪ b ∪ c ∪ d, which clearly cannot reproduce any of the traces in L.
Methods aimed at deriving block-structured process models [10][11] produce
a connected Petri Net that with the help of silent transitions reproduces the
behaviour a || b || c || d, which is a very imprecise model accepting all possible
interleavings of the four events. The region-based techniques [12] discover the
same behaviour as the block-structured miners, but the derived models are not
connected. One can use classical synthesis techniques to exclude wrong continu-
ations (such as acbd, acdb, etc.), from the resulting Petri Net [13], however, this
process is hard to automate and still leads to inadequately complex models.

CPOGs, however, can represent L exactly and in a very compact form, as
shown in Fig. 1(a). Informally, a CPOG is an overlay of several partial orders
that can be extracted from it by assigning values to variables that appear in the
conditions of the CPOG vertices and arcs. For example, the upper-left graph
shown in Fig. 1(b) (assignment x = 1, y = 1) corresponds to the partial order
containing the causalities a ≺ b, a ≺ d, b ≺ c, c ≺ d. One can easily verify that
the model is precise by trying all possible assignments of variables x and y and
checking that they generate the traces {abcd, cdab, badc, dcba} as desired, and
nothing else. See Fig. 1(b) for the corresponding illustration. The compactness
of the CPOG representation is due to the fact that several event orderings are
overlayed on top of each other taking advantage of the similarities between them.
See §4 and §5 for a formal introduction to CPOGs and synthesis algorithms that
can be used for mining CPOGs from event logs.

It is worth mentioning that CPOGs allow us to recognise second-order rela-
tions between events. These are relations that are not relating events themselves,
but are relating relations between events: indeed, the CPOG in Fig. 1(a) clearly
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Figure 1: Exact CPOG representation of log L = {abcd, cdab, badc, dcba}

shows that the relation between a and b is equal to the relation between c and d,
and the same holds for pairs (a, d) and (b, c). In principle, one can go even fur-
ther and consider third-order relations and so forth. The practical use of such a
relation hierarchy is that it may help to extract an event hierarchy from event
logs, thereby simplifying the resulting representation even further.

One may be unsatisfied by the CPOG representation in Fig. 1(a) due to the
use of ‘artificial’ variables x and y. Where do these variables come from and what
exactly do they correspond to in the process? We found out that additional data
which is often present in event logs can be used to answer such questions. In fact,
as we will show in §6, it may be possible to use easy-to-understand predicates
constructed from the data instead of ‘opaque’ Boolean variables.

For example, consider the same event log L but augmented with temperature
data attached to the traces:

– abcd, t = 25◦

– cdab, t = 30◦

– badc, t = 22◦

– dcba, t = 23◦

With this information at hand we can now explain what variable x means. In
other words, we can open the previously opaque variable x by expressing it as a
predicate on temperature t:

x = t ≥ 25◦

One can subsequently drop x completely from the CPOG by using conditions
t ≥ 25◦ and t < 25◦ in place of x and x, respectively, as shown in Fig. 2.

In summary, we believe that CPOGs bring unique event log visualisation
capabilities to the process mining field. One can use CPOGs as an intermediate
representation of event logs, which can be exact as well as more comprehensible
both for humans and for software tools further in the process mining pipeline.



Figure 2: Using event log data to explain CPOG variables

3 Event Logs

In this section we introduce the notion of an event log, which is central for this
paper and for the process mining field. We also discuss important quality metrics
that are typically used to compare methods for event log based process mining.

Table 1 shows a simple event log, which contains not only event information
but also data in the form of event attributes. The underlying traces of the log
are {abcd, cdab, badc, dcba}, just as in the previous section, and they correspond
to ‘case IDs’ 1, 2, 3 and 4, respectively. We assume that the set of attributes
is fixed and the function attr maps pairs of events and attribute names to the
corresponding values. For each event e the log contains the case ID case(e), the
activity name act(e), and a set of attributes, e.g. attr(e, timestamp). As an ex-
ample, case(e7) = 2, act(e7) = a, attr(e7, timestamp) = “10-04-2015 10:28pm”,
and attr(e7, cost) = 19 in Table 1. Given a set of events E, an event log is a
multiset of traces E∗ of events, where events are identified by the activities act.

Process mining techniques use event logs containing footprints of real process
executions for discovering, analysing and extending formal process models, which
reveal real processes in a system [1]. The process mining field has risen around
a decade ago, and since then it has evolved in several directions, with process
discovery being perhaps the most difficult challenge, as demonstrated by a large
number of existing techniques. Discovered process models are typically ranked
across the following quality metrics, some of which are mutually exclusive:

– fitness: the ability of the model to reproduce the traces in the event log (in
other words, not too many traces are lost);

– precision of the representation of the event log by the model (the opposite
of fitness, i.e. not too many new traces are introduced);

– generalisation: the ability of the model to generalise the behaviour covered
by the event log;

– simplicity: the Occam’s Razor principle that advocates for simpler models.

We present new methods for CPOG mining from event logs and analyse their
performance. A qualitative study with respect to the above metrics is beyond
the scope of this paper and is left for future research.



Event Case ID Activity Timestamp Temperature Cost Risk

1 1 a 10-04-2015 9:08am 25.0 17 Low

2 2 c 10-04-2015 10:03am 28.7 29 Low

3 2 d 10-04-2015 11:32am 29.8 16 Medium

4 1 b 10-04-2015 2:01pm 25.5 15 Low

5 1 c 10-04-2015 7:06pm 25.7 14 Low

6 1 d 10-04-2015 9:08pm 25.3 17 Medium

7 2 a 10-04-2015 10:28pm 30.0 19 Low

8 2 b 10-04-2015 10:40pm 29.5 22 Low

9 3 b 11-04-2015 9:08am 22.5 31 High

10 4 d 11-04-2015 10:03am 22.0 33 High

11 4 c 11-04-2015 11:32am 23.2 35 High

12 3 a 11-04-2015 2:01pm 23.5 40 Medium

13 3 d 11-04-2015 7:06pm 28.8 43 High

14 3 c 11-04-2015 9:08pm 22.9 45 Medium

15 4 b 11-04-2015 10:28pm 23.0 50 High

16 4 a 11-04-2015 10:40pm 23.1 35 Medium

Table 1: An example event log

4 Conditional Partial Order Graphs

Conditional Partial Order Graphs (CPOGs) were introduced for the compact
specification of concurrent systems comprised from multiple behavioural scen-
arios [4]. CPOGs are particularly effective when scenarios of the system share
common patterns, which can be exploited for the automated derivation of a com-
pact combined representation of the system’s behaviour. CPOGs have been used
for the design of asynchronous circuits [14] and processor microcontrollers [15].
In this paper we demonstrate how CPOGs can be employed in process mining.

4.1 Basic definitions

A CPOG is a directed graph (V,E), whose vertices V and arcs E ⊆ V × V are
labelled with Boolean functions, or conditions, φ : V ∪ E → ({0, 1}X → {0, 1}),
where {0, 1}X → {0, 1} is a Boolean function on a set of Boolean variables X.

Fig. 3 (the top left box) shows an example of a CPOG H containing 4 vertices
V = {a, b, c, d}, 6 arcs and 2 variables X = {x, y}. Vertex d is labelled with
condition x+ y (i.e. ‘x OR y’), arcs (b, c) and (c, b) are labelled with conditions
x and y, respectively. All other vertices and arcs have trivial conditions 1 (trivial
conditions are not shown for clarity); we call such vertices and arcs unconditional.

There are 2|X| possible assignments of variables X, called codes. Each code
induces a subgraph of the CPOG, whereby all the vertices and arcs, whose
conditions evaluate to 0 are removed. For example, by assigning x = y = 0
one obtains graph H00 shown in the bottom right box in Fig. 3; vertex d and
arcs (b, c) and (c, b) have been removed from the graph, because their conditions



Figure 3: A CPOG and the associated family of graphs

are equal to 0 when x = y = 0. Different codes can produce different graphs,
therefore a CPOG with |X| variables can potentially specify a family of 2|X|

graphs. Fig. 3 shows two other members of the family specified by CPOG H:
H01 and H10, corresponding to codes 01 and 10, respectively, which differ only
in the direction of the arc between vertices b and c. Codes will be denoted in a
bold font, e.g. x = 01, to distinguish them from vertices and variables.

It is often useful to focus only on a subset C ⊆ {0, 1}X of codes, which are
meaningful in some sense. For example, code 11 applied to CPOG H in Fig. 3
produces a graph with a loop between vertices b and c, which is undesirable if arcs
are interpreted as causality. A Boolean restriction function ρ : {0, 1}X → {0, 1}
can be used to compactly specify the set C = {x | ρ(x) = 1} and its complement
DC = {x | ρ(x) = 0}, which are often referred to as the care and don’t care
sets [16]. By setting ρ = xy one can disallow the code x = 11 as ρ(11) = 0,
thereby restricting the family of graphs specified by CPOG H to three members
only, which are all shown in Fig. 3.

The size |H| of a CPOG H = (V,E,X, φ, ρ) is defined as:

|H| = |V |+ |E|+ |X|+

∣∣∣∣∣ ⋃
z∈V ∪E

φ(z) ∪ ρ

∣∣∣∣∣ ,
where |{f1, f2, . . . , fn}| stands for the size of the smallest circuit [17] that com-
putes all Boolean functions in the set {f1, f2, . . . , fn}.



4.2 Families of partial orders

A CPOG H = (V,E,X, φ, ρ) is well-formed if every allowed code x produces
an acyclic graph Hx. By computing the transitive closure H∗x one can obtain
a strict partial order, an irreflexive and transitive relation on the set of events
corresponding to vertices of Hx.

We can therefore interpret a well-formed CPOG as a specification of a family
of partial orders. We use the term family instead of the more general term set to
emphasise the fact that partial orders are encoded, that is each partial order H∗x is
paired with the corresponding code x. For example, the CPOG shown in Fig. 3
specifies the family comprising the partial order H∗00, where event a precedes
concurrent events b and c, and two total orders H∗01 and H∗10 corresponding to
sequences acbd and abcd, respectively.

The language L(H) of a CPOG H is the set of all possible linearisations of
partial orders contained in it. For example, the language of the CPOG shown
in Fig. 3 is L(H) = {abc, acb, abcd, acbd}. One of the limitations of the CPOG
model is that it can only describe finite languages. However, this limitation is
irrelevant for the purposes of this paper since event logs are always finite.

It has been demonstrated in [18] that CPOGs are a very efficient model for
representing families of partial orders. In particular, they can be exponentially
more compact than Labelled Event Structures [19] and Petri Net unfoldings [20].
Furthermore, for some applications CPOGs provide more comprehensible models
than other widely used formalisms, such as Finite State Machines and Petri Nets,
as has been shown in [4] and [5]. This motivated the authors to investigate the
applicability of CPOGs to process mining.

4.3 Synthesis

In the previous sections we have demonstrated how one can extract partial orders
from a given CPOG. However, the opposite problem is more interesting: derive
the smallest CPOG description for a given a set of partial orders. This problem
is called CPOG synthesis and it is an essential step in the proposed CPOG-based
approach to process mining.

A number of CPOG synthesis methods have been proposed to date. The
simplest method is based on graph colouring [4] and produces CPOGs with all
conditions having at most one literal. Having at most one literal per condition is
a serious limitation for many applications, but we found that the method works
well for process mining. A more sophisticated approach, which produces CPOGs
with more complex conditions has been proposed in [21], however, it has poor
scalability and cannot be applied to large process mining instances. The most
scalable approach to date, as confirmed by the experiments in §7.3, has been
developed in [22] and is based on simulated annealing. All encoding methods
are supported by open-source modelling framework Workcraft [7], which we
used in our experiments. In general, the CPOG synthesis problem is still in active
research phase and new approximate methods are currently being developed. A
promising direction for overcoming this challenge is based on reducing the CPOG
synthesis problem to the problem of Finite State Machine synthesis [23].



5 From Event Logs to CPOGs

When visualising behaviour of an event log, it is difficult to identify a single
technique that performs well for any given log due to the representational bias
exhibited by existing process discovery algorithms. For example, if the event log
describes a simple workflow behaviour, then the α-algorithm [9] is usually the
best choice. However, if non-local dependencies are present in the behaviour,
the α-algorithm will not be able to find them, and then other approaches, e.g.
based on the theory of regions [12][24][25], may deliver best results. The latter
techniques in turn are not robust when dealing with noisy event logs, for which
other approaches may be more suitable [26][27]. There are many event logs for
which none of the existing process discovery techniques seem to provide a satis-
factory result according to the quality metrics presented in §3; for instance, see
our simple motivating example in §2.

In this section we describe two approaches for translating a given event log L
into a compact CPOG representation H. The first approach, which we call the
exact CPOG mining, treats each trace as a totally ordered sequence of events
and produces a CPOG H such that L = L(H). This approach does not introduce
any new behaviours, hence the discovered models are precise.

The second approach attempts to exploit the concurrency between the events
in order to discover simpler and more general models, hence we call it the
concurrency-aware CPOG mining. This approach may in fact introduce new be-
haviours, which could be interpreted as new possible interleavings of the traces
contained in the given event log L, hence producing a CPOG H that overap-
proximates the log, i.e. L ⊆ L(H). Both approaches satisfy the fitness criteria,
that is, the discovered models cover all traces of the event log.

5.1 Exact CPOG mining

The exact CPOG mining problem is stated as follows: given an event log L,
derive a CPOG H such that L = L(H). This can be trivially reduced to the
CPOG synthesis problem. Indeed, each trace t = e1e2 · · · em can be considered a
total order of events e1 ≺ e2 ≺ · · · ≺ em. Therefore, a log L = {t1, t2, · · · , tn} can
be considered a set of n total orders and its CPOG representation can be readily
obtained via CPOG synthesis. The solution always exists, but it is usually not
unique. If uniqueness is desirable one can fix the assignment of codes to traces,
in which case the result of synthesis can be presented in the canonical form [5].

For example, given event log L = {abcd, cdab, badc, dcba} described in §2,
the exact mining approach produces the CPOG shown in Fig. 1. As has already
been discussed in §2, the resulting CPOG is very compact and provides a more
comprehensible representation of the event log compared to conventional models
used in process mining, such as Petri Nets or BPMNs.

When a given event log contains concurrency, the exact CPOG mining ap-
proach may lead to suboptimal results. For example, consider a simple event log
L = {abcd, acbd}. If we directly synthesise a CPOG by treating each trace of this
log as a total order, we will obtain the CPOG H shown in Fig. 4 (left). Although



Figure 4: CPOG mining from event log L = {abcd, acbd}

L = L(H) as desired, the CPOG uses a redundant variable x to distinguish
between the two total orders even though they are just two possible linearisations
of the same partial order, where a ≺ b, a ≺ c, b ≺ d, and c ≺ d. It is desirable
to recognise and extract the concurrency between events b and c, and use the
information for simplifying the derived CPOG, as shown in Fig. 4 (right). Note
that the simplified CPOG H ′ still preserves the language equality: L = L(H ′).

Since exact CPOG mining is a special case of the general CPOG synthesis
problem (all given partial orders are in fact total orders), it is reasonable to ex-
pect that more efficient methods exist. The authors are unaware of such methods
at present, but believe that this may be an interesting topic for research.

5.2 Concurrency-aware CPOG mining

This section presents an algorithm for extracting concurrency from a given event
log and using this information for simplifying the result of the CPOG mining.
Classic process mining techniques based on Petri Nets generally rely on the
α-algorithm for concurrency extraction [1]. We introduce a new concurrency ex-
traction algorithm, which differs from the classic α-algorithm in two aspects. On
the one hand, it is more conservative when declaring two given events concur-
rent, which may lead to the discovery of more precise process models. On the
other hand, it considers not only adjacent events in a trace as candidates for
the concurrency relation but all event pairs, and therefore can find concurrent
events even when the distance between them in traces is always greater than
one, as we demonstrate below by an example. This method works particularly
well in combination with CPOGs due to their compactness, however, we believe
that it can also be useful in combination with other formalisms.

First, let us introduce convenient operations for extracting subsets of traces
from a given event log L. Given an event e, the subset of L’s traces containing e
will be denoted as Le, while the subset of L’s traces not containing e will be
denoted as Le. Clearly, Le ∪ Le = L. Similarly, given events e and f , the subset
of L’s traces containing both of them with e occurring before f will be denoted
as Le→f . Note that Le ∩Lf = Le→f ∪Lf→e, i.e. if two events appear in a trace,
they must be ordered one way or another. For instance, if L = {abcd, acbd, abce}
then Le = {abce}, La = ∅, La→b = L, and La→d = {abcd, acbd}. An event e is



conditional if Le 6= ∅ and Le 6= L, otherwise it is unconditional. A conditional
event will necessarily have a non-trivial condition (neither 0 nor 1) in the mined
CPOG. Similarly, a pair of events e and f is conditionally ordered if Le→f 6= ∅
and Le→f 6= Le ∩ Lf . Otherwise, e and f are unconditionally ordered.

We say that a conditional event r indicates the order between events e and f
in an event log L if one of the following holds:

– Lr ⊆ Le→f

– Lr ⊆ Lf→e

– Lr ⊆ Le→f

– Lr ⊆ Lf→e

In other words, the existence or non-existence of the event r can be used as
an indicator of the order between the events e and f . For example, if L =
{abcd, acbd, abce}, then e indicates the order between b and c. Indeed, whenever
we observe event e in a trace we can be sure that b occurs before c in that trace:
Le ⊆ Lb→c. This notion leads to a simple concurrency oracle.

Definition 1 (Concurrency oracle). Two events e and f are concurrent if
they are conditionally ordered and no event r indicates their order.

Intuitively, the order between two truly concurrent events should not be indic-
ated by anything, i.e. it should have no side effects. Indeed, if one of the orderings
is in any sense special and there is an indicator of this, then the events are not
really concurrent, or at least they are not always concurrent. CPOGs are cap-
able of expressing such conditional concurrency in a compact form. The indicates
relation has been inspired by and is similar to the reveals relation from [28].

The above concurrency oracle is built on the simplest possible indicator –
a single event whose occurrence happens to distinguish the order between two
other events. We found this oracle to be very useful and efficient in practice, but
it may be too weak in certain cases, in particular, similarly to the α-algorithm
it declares all events concurrent in the motivation example from §2, resulting in
a very imprecise process model a || b || c || d. Fortunately, we can strengthen the
oracle by using second-order relations between events as indicators.

We say that a pair of events (r, s) indicates the order between events e and
f in an event log L if one of the following holds:

– Lr→s ⊆ Le→f

– Lr→s ⊆ Lf→e

In other words, the order between the events r and s can be used as an indicator
of the order between the events e and f . For example, if L = {abcd, cdab, badc, dcba},
then the order between events a and b indicates the order between events c and
d (and vice versa). Indeed, whenever a occurs before b in a trace, we know that c
occurs before d: La→b = Lc→d. We can use such second-order indicates relation
for defining a more conservative concurrency oracle.

Definition 2 (Rank-2 concurrency oracle). Two conditionally ordered events
e and f are concurrent if (i) no event r indicates their order, and (ii) no pair
of events (r, s) indicates their order.



One can consider more sophisticated combinations of events and the order
between them in the definition of the concurrency oracle, hence leading to a
hierarhcy of rank-N oracles. Indeed, the order can be indicated by a triple {r, s, t}
of events, or a combination of an event r and an ordering s→ t, etc. A detailed
investigation of the hierarchy of concurrency oracles is beyond the scope of this
paper, but we believe that the hierarchy may be useful for choosing the right
precision of the obtained models during process discovery.

The following example, suggested by an anonymous reviewer, highlights the
difference between the proposed concurrency oracles and the α-algorithm.

Consider event log L = {xay1y2y3bz, xby1y2y3az, xy1y2y3abz, xy1y2y3baz}.
The α-algorithm does not declare events a and y2 concurrent, because they
never appear adjacent in a trace (i.e. they are not in the so-called directly-follows
relation). The proposed simple oracle however does declare them concurrent; in
fact the whole chain y1≺ y2≺ y3 is declared concurrent to both a and b, hence
compressing the event log into one partial order x ≺ (a || b || y1 ≺ y2 ≺ y3) ≺ z.
The rank-2 oracle is very conservative in this example and does not declare any
events concurrent; indeed, the ordering a → y1 is very rare (it appears only in
the first trace) and can therefore be used as an indicator of a → b, etc. The
sensitivity of rank-N oracles to such rare combinations may be a disadvantage
in some cases. To deal with this problem one can set a threshold for discarding
rare indicators, a common approach when dealing with noisy event logs.

We are now ready to describe the algorithm for concurrency-aware CPOG
mining. The algorithm takes an event log L as input and produces a CPOG H
such that L ⊆ L(H).

1. Extract the concurrency: find all conditionally ordered pairs of events e
and f , such that the order between them is not indicated by any events
or pairs of events (when using the rank-2 oracle). Call the resulting set of
concurrent pairs of events C.

2. Convert each trace t ∈ L into a partial order p by relaxing the corresponding
total order according to the set C. Call the resulting set of partial orders P .

3. Perform the exact CPOG synthesis on the obtained set of partial orders P
to produce the resulting CPOG H.

Note that the resulting CPOG H indeed satisfies the condition L ⊆ L(H),
since we can only add new linearisations into H in step (2) of the algorithm,
when we relax a total order corresponding to a particular trace by discarding
some of the order relations.

Let us now apply the algorithm to the previous examples. Given log L =
{abcd, cdab, badc, dcba} from §2, the algorithm does not find any concurrent pairs,
because the order between each pair of events is indicated by the order between
the complementary pair of events (e.g. La→b = Lc→d). Hence, C = ∅ and the
result of the algorithm coincides with the exact CPOG mining, as shown in §2.
Given log L = {abcd, acbd} from §5.1, the algorithm finds one pair of concurrent
events, namely (b, c), which results in collapsing of both traces of L into the
same partial order with trivial CPOG representation shown in Fig. 4 (right).



6 From Control Flow to Data

As demonstrated in the previous section, one can derive a compact CPOG rep-
resentation from a given event log using CPOG mining techniques. The obtained
representations however rely on opaque Boolean variables, which make the res-
ult difficult to comprehend. For example, Fig. 1(a) provides no intuition on how
a particular variable assignment can be interpreted with respect to the pro-
cess under observation. The goal of this section is to present a method for the
automated extraction of useful data labels from a given event log (in particular
from available event attributes) and using these labels for constructing ‘trans-
parent’ and easy-to-comprehend predicates, which can substitute the opaque
Boolean variables. This is similar to the application of conventional machine
learning techniques for learning ‘decision points’ in process models or in general
for the automated enhancement of a given model by leveraging the available
data present in the event log [1].

More formally, given an event log L and the corresponding CPOG H our goal
is to explain how a particular condition f can be interpreted using data available
in L. Note that f can be as simple as just a single literal x ∈ X (e.g. the arc
a → b in Fig. 1(a)), in which case our goal is to explain a particular Boolean
variable; however, the technique introduced in this section is applicable to any
Boolean function of the CPOG variables f : {0, 1}X → {0, 1}, in particular, one
can use the technique for explaining what the restriction function ρ corresponds
to in the process, effectively discovering the process invariants. We achieve the
goal by constructing an appropriate instance of the classification problem [29].

Let n = |E| be the number of different events in L, and k be the number
of different event attributes available in L. Remember that attributes of an
event e can be accessed via function attr(e), see §3. Hence, every event e in the
log defines a feature vector ê of dimension k where the value at i-th position
corresponds to the value of the i-th attribute4 of e. For instance, the feature
vector ê1 corresponding to the event e1 in Table 1 is (“10-04-2015 9:08am”, 25.0,
17, Low). Some features may need to be abstracted before applying the technique
described below to produce better results, e.g. timestamps may be mapped to
five discrete classes: morning, noon, afternoon, evening and night.

Feature vectors Class

{ê | e ∈ σ ∧ σ ∈ Lf} True

{ê | e ∈ σ ∧ σ ∈ Lf} False

Table 2: Binary classification problem for function f and event log L.

The key observation for the proposed method is that all traces in the log L
can be split into two disjoint sets, or classes, with respect to the given function f :
i) set Lf , containing the traces where f evaluates to 1, and ii) set Lf containing
the traces where f evaluates to 0. This immediately leads to an instance of the
binary classification problem on n feature vectors, as illustrated in Table 2. In

4 We assume a total order on the set of event attributes.
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Figure 5: Decision tree built for function f = x in the CPOG of Fig. 1(a).

other words, every event belonging to a trace where the function f evaluates to
1 is considered to belong to the class we learn, that is, the class labelled as True
in Table 2 (the remaining events do not belong to this class). Several methods
can be applied to solve this problem, including decision trees [30], support vector
machines [31], and others. In this work we focus on decision trees as they provide
a convenient way to extract predicates defined on event attributes, which can
be directly used for substituting opaque CPOG conditions. The method is best
explained by way of an example.

Consider the event log in Table 1, which contains a few data attributes for
each event. The traces underlying the log are {abcd, cdab, badc, dcba}. Fig. 1(a)
shows the corresponding CPOG produced by the CPOG mining techniques
presented in the previous section. Let us try to find an interpretation of the
variable x by applying the above procedure with f = x. The set Lf equals to
La→b, i.e. it contains traces 1 and 2, wherein event a occurs before event b and
therefore f = 1. Therefore, feature vectors ê1-ê8 provide the positive instances
of the class to learn (the first eight events of the log belong to traces 1 and 2),
while feature vectors ê9-ê16 provide the negative ones. The decision tree shown
in Fig. 5 is a possible classifier for this function, which has been derived auto-
matically using machine learning software Weka [32]. By combining the paths
in the tree that lead to positively classified instances, one can derive the follow-
ing predicate for f : risk = low ∨ (risk = medium ∧ temperature > 23.5). This
predicate can be used to substitute the opaque variable x in the mined CPOG.

One can use the same procedure for deriving the explanation for all variables
and/or conditions in a CPOG, thereby providing a much more comprehensible
representation for the event log. Note that for complementary functions, taking
the negation of the classification description will suffice, e.g. x in Fig. 1(a) can be
substituted with predicate risk 6= low ∧ (risk 6= medium ∨ temperature ≤ 23.5).
Alternatively, one can derive the predicate for a complementary function by
combining paths leading to the negative instances; for example, for f = x the
resulting predicate is risk = high ∨ (risk = medium ∧ temperature ≤ 23.5).



The learned classifier can be tested for evaluating the quality of representa-
tion of the learned concept. If the quality is unacceptable then the corresponding
condition may be left unexplained in the CPOG. Therefore in general the data
extraction procedure may lead to partial results when the process contains con-
cepts which are ‘difficult to learn’. For example, in the discussed case study the
condition f = y could not be classified exactly.

A coarse-grain alternative to the technique discussed in this section is to
focus on case attributes instead of event attributes. Case attributes are attributes
associated with a case (i.e., a trace) as a whole instead to individual events [1].
Furthermore, the two approaches can be combined with the aim of improving
the quality of obtained classifiers.

7 Tool support and experiments

The techniques presented in this paper have been implemented as a plugin for
the Workcraft framework [7][33], which is a collection of opensource tools for
design, verification and analysis of concurrent systems. In this section we will de-
scribe our backend tools, frontend capabilities, and will analyse the performance
of the current implementation on a set of realistic process mining benchmarks.

7.1 Backend tools

We rely on three backend tools: PGminer [8], Scenco [34] and Weka [35].
PGminer is a contribution of this paper, developed specifically for the effi-

cient concurrency-aware mining of CPOGs from event logs as described in §5.2.
It can handle event logs with multiple occurrences of an event in a trace, by
splitting such traces into scenarios that are free from event repetitions, which is
essential for our current implementation (this is further discussed in §7.2). An
important feature of the tool is that the results are represented in an algebraic
form using the algebra of Parameterised Graphs introduced in [5] (hence the
name, PGminer). This avoids the quadratic explosion of the representation due
to transitive arcs appearing after the concurrency extraction step. PGminer has
been implemented as a process mining library written in Haskell [36] and can be
run as a standalone command line tool or via the Workcraft frontend.

Scenco is a collection of CPOG synthesis algorithms that have been de-
veloped in a series of publications and integrated in Workcraft: graph col-
ouring based single literal synthesis [4], SAT-based synthesis [21], and heuristic
synthesis [22]. We use Scenco for encoding collections of partial orders produced
by PGminer. As discussed in §7.3, CPOG synthesis is the main bottleneck of the
current process mining implementation. Our future work will be dedicated to the
development of a custom CPOG synthesis algorithm specialised for collections
of partial orders obtained from process logs after concurrency extraction.

Weka is a collection of opensource machine learning and data mining al-
gorithms. In the current workflow Weka is used for extracting meaningful con-
ditions from event log data, as discussed in §6. Our future work includes integra-
tion of Weka into Workcraft for better interoperability with other methods.



7.2 Details of current implementation

Workcraft [7][33] is a collection of software tools united by a common model-
ling infrastructure and a graphical user interface. Workcraft suppors several
interpreted graph models: Petri Nets, Finite State Machines, digital circuits,
dataflow structures, xMAS communication networks, and CPOGs, the latter
being particularly important for this work. It provides a unified frontend for
visual editing and simulation of interpreted graph models, as well as facilities
for processing these models by established model-checking and synthesis tools.

Workcraft features a plugin for CPOGs, providing an interface which al-
lows a user to create and edit CPOGs by using a graphical editor, or by describing
graphs algebraically using the algebra of parameterised graphs [5]. It is possible
to convert between the graphical and algebraic representations automatically.

The authors developed a process mining plugin for Workcraft that provides
the functionality for importing event logs, manipulating them in the graphical ed-
itor, performing concurrency extraction using PGminer, and synthesising com-
pact CPOG models using Scenco.

An event log can be imported either directly, in which case each trace is
treated as a total order of events, or indirectly via PGminer, in which case the
log undergoes the concurrency extraction procedure leading to a more compact
representation and allowing for handling bigger event logs. The current imple-
mentation treats multiple occurrences of the same event as different events, e.g.,
trace (a, b, a, b, c, b, c) is interpreted as (a1, b1, a2, b2, c1, b3, c2). This can have a
negative impact on the concurrency extraction procedure; to avoid this PG-
miner provides a method for spliting traces into scenarios which are free from
repeated events. For the example at hand this leads to splitting the trace into
three sub-traces (a, b), (a, b, c), and (b, c), i.e. whenever a current sub-trace can-
not be extended without repeating an event, a new sub-trace is started.

A collection of partial orders can be synthesised into a compact CPOG
model using the Scenco plugin. Our experiments have shown that only heur-
istic CPOG synthesis [22] can cope with event logs of realistic sizes. Other,
more sophisticated encoding methods are not scalable enough. Once a CPOG
representation of an event log is obtained, the user can analyse it visually and
investigate the meaning of encoding variables using the CPOG projection func-
tionality provided in Workcraft or by performing data mining in Weka.

7.3 Experiments

Table 3 summarises the experimental results. All benchmark logs come from the
process mining community: artificial logs derived from the simulation of a process
model (Caise2014, BigLog1, Log1, Log2), a real-life log containning the jobs sent
to a copy machine (DigitalCopier), a software log (softwarelog), and real-life
logs in different other contexts [37] (documentflow, incidenttelco, purchasetopay,
svn log, telecom). Some of the logs are challenging even for prominent process
mining software, and they were therefore chosen as a realistic challenge for testing
the capabilities of the developed tools. Note that the ‘# events’ column reports
the number of different events after cyclic traces are split by PGminer.



Log parameters Tool runtime CPOG size
Benchmark File # # # partial Direct Indirect Concurrency CPOG # # #

size traces events orders import import extraction encoding arcs vars gates

BigLog1-100 21Kb 100 22 16 <1 sec <1 sec <1 sec 1 sec 33 5 103

BigLog1-500 102Kb 500 22 27 3 sec <1 sec <1 sec 1 sec 37 5 174

BigLog1-1000 204Kb 1000 22 26 6 sec <1 sec <1 sec 2 sec 37 5 149

Caise2014 25Kb 100 40 401 2 sec 88 sec 1 sec - - - -

softwarelog 4Kb 5 210 167 <1 sec 1 sec <1 sec 19 sec 464 8 1751

DigitalCopier-300 70Kb 300 33 15 9 sec <1 sec <1 sec 2 sec 37 4 56

DigitalCopier 173Kb 750 33 9 35 sec <1 sec <1 sec 1 sec 45 4 78

documentflow 208Kb 12391 70 651 2 min 11 sec 1 sec - - - -

incidenttelco-100 17Kb 100 20 25 <1 sec <1 sec <1 sec 4 sec 61 5 225

incidenttelco 161Kb 956 22 77 8 sec 1 sec <1 sec 8 sec 97 7 641

Log1-filtered 3.6Mb 5000 47 402 - 3 min 13 sec - - - -

Log2 2Mb 10000 22 32 8.25 min 1 sec 1 sec 1 sec 38 5 194

purchasetopay 232Kb 10487 21 20 3.7 min 1 sec <1 sec 1 sec 34 5 140

svn log 24Kb 765 13 92 3 sec 1 sec <1 sec 2 sec 69 7 581

telecom 15Kb 1000 38 122 2 sec 1 sec <1 sec 4 sec 194 7 937

Table 3: Summary of experimental results

As can be seen from the table, there are normally a lot more traces than
partial orders, thanks to the successful concurrency extraction by PGminer.
However, two cases, namely ‘Caise2014’ and ‘softwarelog’, are exceptions: they
contain traces with particularly many event repetitions which leads to a signi-
ficant increase of the logs due to the log splitting heuristic described in §7.2.

The experiments show that PGminer, when used as a standalone com-
mand line tool, is very scalable and can efficiently handle most logs (see column
‘Concurrency extraction’). Indeed, most execution times are below or around 1
second, and only ‘Log1-filtered’ (a 3.6Mb log) takes 13 seconds to be processed.

Workcraft is less scalable, as one would expect from a feature-rich graph-
ical editor. Direct import of some logs takes minutes and ‘Log1-filtered’ cannot
be directly imported at all. Indirect import of logs, which is performed by in-
voking PGminer first, is more scalable: all logs can be imported this way with
most execution times being around 1 second.

CPOG synthesis is currently the bottleneck of the presented process mining
approach. It is a hard computational problem and even heuristic solutions do not
currently scale well; in particular, cases with more than 200 partial orders could
not be handled. Note that synthesised CPOGs are typically sparse; the number
of vertices |V | coincides with the number of events in a log, and as can be seen
from the table, the number of arcs |E| in resulting CPOGs is often close to |V |.
The sparseness of CPOGs synthesised from event logs should be exploited by
future synthesis tools.

8 Related work and discussion

Process mining is a vibrant research field and there are a few relevant research
works that are worth discussing and comparing with the proposed CPOG-based
representation of event logs. [38] is very close to our work in spirit: it convincingly
advocates for using event structures as a unified representation of process models



and event logs. As has been recently shown in [18], CPOGs can be exponentially
more compact than event structures, therefore we believe that the approach
presented in [38] can benefit from the extra compactness provided by CPOGs.

The authors of [39] introduce trace alignment, a technique for aligning traces
of an event log thereby producing a better visual representation. It uses a matrix
representation where rows correspond to traces and columns correspond to po-
sitions within each trace. Trace alignment is a powerful visualisation technique
that aims to maximise the consensus of the event positions across different traces.
In contrast to CPOGs, trace alignment does not compress the information en-
countered in the traces, nor does it provide a bridge between the control flow and
data as proposed in this paper. Furthermore, the trace alignment matrix is a final
process mining representation, whilst CPOGs are intended as an intermediate
representation and can be used to algebraically operate on event logs.

Another relevant research direction [40][41] relies on the notion of partially-
ordered event data and introduces techniques for conformance checking of this
type of event representations. In particular, [40] presents the notion of partially-
ordered trace (p-trace). As in the case of CPOGs, a p-trace allows for explicit
concurrency between events of the same trace. P-traces can be computed by
careful inspection of the event timestamps. The techniques to extract p-traces are
extended in [41] in order to deal with data. However, the use of data attributes
is narrower compared to the approach presented in this paper: data attributes
are split into read/write accesses to data values, and simple rules to extract
concurrency and dependency are introduced to take into account the role of a
data access within a trace. We believe that the techniques for relating control
flow and data presented in this paper may be applied in the scope of [40][41].

As discussed in the previous section, several challenges need to be faced before
the presented techniques can be adopted in industrial process mining solutions,
e.g. the complexity of CPOG synthesis algorithms, the fine-tuning of parameters
of the data mining techniques, and some others. Due to the inability of CPOGs
to directly represent cyclic behavior, we currently only focus on using CPOGs
for visualisation and as an intermediate representation of event logs, which can
be further transformed into an appropriate process mining formalism, such as
Petri Nets or BPMNs. Although some syntactic transformations already exist to
transform CPOGs into contextual Petri Nets [33], we believe that finding new
methods for discovery of process mining models from CPOGs is an interesting
direction for future research.

Another future research direction is to consider CPOGs as compact algebraic
objects that can be used to efficiently manipulate and compare event logs [5].
Since a CPOG corresponding to an event log can be exponentially smaller, this
may help to alleviate the memory requirements bottleneck for current process
mining tools that store ‘unpacked’ event logs in memory.

Event logs are not the only suitable input for the techniques presented in this
paper: we see an interesting link with the work on discovery of frequent episodes,
e.g. as reported recently in [42]. Episodes are partially ordered collections of
events (not activities), and as such they can also be represented by CPOGs. This



may help to compress the information provided by frequent episodes, especially
if one takes into account the fact that current algorithms may extract a large
number of episodes, which then need to be visualised for human understanding.

9 Conclusions

This paper describes the first steps towards the use of CPOGs in the field of
process mining. In particular, the paper presented the automatic derivation of
the control flow part of the CPOG representation from a given event log, and
then the incorporation of meta data contained in the log as conditions of the
CPOG vertices and arcs. We have implemented most of the reported techniques
and some preliminary experiments have been carried out.

The future work includes addressing the challenges described in the previous
section, as well as an evaluation of how derived CPOGs can be useful in practice
for understanding event data.
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38. Marlon Dumas and Luciano Garćıa-Bañuelos. Process mining reloaded: Event

structures as a unified representation of process models and event logs. In Applic-
ation and Theory of Petri Nets and Concurrency, pages 33–48. Springer, 2015.

39. R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Process diagnostics
using trace alignment: Opportunities, issues, and challenges. Inf. Syst., 37(2):117–
141, 2012.

40. Xixi Lu, Dirk Fahland, and Wil M. P. van der Aalst. Conformance checking based
on partially ordered event data. In Business Process Management Workshops -
BPM 2014 International Workshops, Eindhoven, The Netherlands, September 7-8,
2014, Revised Papers, pages 75–88, 2014.

41. Xixi Lu, Ronny Mans, Dirk Fahland, and Wil M. P. van der Aalst. Conformance
checking in healthcare based on partially ordered event data. In Proceedings of the
2014 IEEE Emerging Technology and Factory Automation, ETFA 2014, Barcelona,
Spain, September 16-19, 2014, pages 1–8, 2014.

42. Maikel Leemans and Wil M. P. van der Aalst. Discovery of frequent episodes
in event logs. In Proceedings of the 4th International Symposium on Data-driven
Process Discovery and Analysis (SIMPDA 2014), Milan, Italy, November 19-21,
2014., pages 31–45, 2014.


