153 research outputs found

    Deep Learning for Text Style Transfer: A Survey

    Full text link
    Text style transfer is an important task in natural language generation, which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural language processing, and recently has re-gained significant attention thanks to the promising performance brought by deep neural models. In this paper, we present a systematic survey of the research on neural text style transfer, spanning over 100 representative articles since the first neural text style transfer work in 2017. We discuss the task formulation, existing datasets and subtasks, evaluation, as well as the rich methodologies in the presence of parallel and non-parallel data. We also provide discussions on a variety of important topics regarding the future development of this task. Our curated paper list is at https://github.com/zhijing-jin/Text_Style_Transfer_SurveyComment: Computational Linguistics Journal 202

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Asking for Help with a Cost in Reinforcement Learning

    Get PDF
    Reinforcement learning (RL) is a powerful tool for developing intelligent agents, and the use of neural networks makes RL techniques more scalable to challenging real-world applications, from task-oriented dialogue systems to autonomous driving. However, one of the major bottlenecks to the adoption of RL is efficiency, as it often takes many time steps to learn an acceptable policy. To address this problem, we investigate the idea of allowing the agent to ask for advice from a teacher. We formalize this concept in a framework called ask-for-help RL, which entails augmenting a Markov decision process with a teacher-query action that can be taken at a fixed cost in any state. In this task, the agent faces a dilemma between exploration, exploitation, and teacher-querying. To make this trade-off, we propose an action selection strategy that is rooted in the classical notion of value-of-information, and suggest a practical implementation that is based on deep Q-learning. This algorithm, called VOE/Q, can jointly decide between taking a particular environment action or querying the teacher, and is sensitive to the query cost. We then perform experiments in two domains: a maze navigation task and the Atari game Freeway. When the teacher is excluded, the algorithm shows substantial gains over many other exploration strategies from the literature. With the teacher included, we again find that the algorithm outperforms baselines. By taking advantage of the teacher, higher cumulative reward can be achieved than with standard RL alone. Together, our results point to a promising approach to both RL and ask-for-help RL

    Enhancing the Reasoning Capabilities of Natural Language Inference Models with Attention Mechanisms and External Knowledge

    Get PDF
    Natural Language Inference (NLI) is fundamental to natural language understanding. The task summarises the natural language understanding capabilities within a simple formulation of determining whether a natural language hypothesis can be inferred from a given natural language premise. NLI requires an inference system to address the full complexity of linguistic as well as real-world commonsense knowledge and, hence, the inferencing and reasoning capabilities of an NLI system are utilised in other complex language applications such as summarisation and machine comprehension. Consequently, NLI has received significant recent attention from both academia and industry. Despite extensive research, contemporary neural NLI models face challenges arising from the sole reliance on training data to comprehend all the linguistic and real-world commonsense knowledge. Further, different attention mechanisms, crucial to the success of neural NLI models, present the prospects of better utilisation when employed in combination. In addition, the NLI research field lacks a coherent set of guidelines for the application of one of the most crucial regularisation hyper-parameters in the RNN-based NLI models -- dropout. In this thesis, we present neural models capable of leveraging the attention mechanisms and the models that utilise external knowledge to reason about inference. First, a combined attention model to leverage different attention mechanisms is proposed. Experimentation demonstrates that the proposed model is capable of better modelling the semantics of long and complex sentences. Second, to address the limitation of the sole reliance on the training data, two novel neural frameworks utilising real-world commonsense and domain-specific external knowledge are introduced. Employing the rule-based external knowledge retrieval from the knowledge graphs, the first model takes advantage of the convolutional encoders and factorised bilinear pooling to augment the reasoning capabilities of the state-of-the-art NLI models. Utilising the significant advances in the research of contextual word representations, the second model, addresses the existing crucial challenges of external knowledge retrieval, learning the encoding of the retrieved knowledge and the fusion of the learned encodings to the NLI representations, in unique ways. Experimentation demonstrates the efficacy and superiority of the proposed models over previous state-of-the-art approaches. Third, for the limitation on dropout investigations, formulated on exhaustive evaluation, analysis and validation on the proposed RNN-based NLI models, a coherent set of guidelines is introduced

    Artificial Collective Intelligence Engineering: a Survey of Concepts and Perspectives

    Full text link
    Collectiveness is an important property of many systems--both natural and artificial. By exploiting a large number of individuals, it is often possible to produce effects that go far beyond the capabilities of the smartest individuals, or even to produce intelligent collective behaviour out of not-so-intelligent individuals. Indeed, collective intelligence, namely the capability of a group to act collectively in a seemingly intelligent way, is increasingly often a design goal of engineered computational systems--motivated by recent techno-scientific trends like the Internet of Things, swarm robotics, and crowd computing, just to name a few. For several years, the collective intelligence observed in natural and artificial systems has served as a source of inspiration for engineering ideas, models, and mechanisms. Today, artificial and computational collective intelligence are recognised research topics, spanning various techniques, kinds of target systems, and application domains. However, there is still a lot of fragmentation in the research panorama of the topic within computer science, and the verticality of most communities and contributions makes it difficult to extract the core underlying ideas and frames of reference. The challenge is to identify, place in a common structure, and ultimately connect the different areas and methods addressing intelligent collectives. To address this gap, this paper considers a set of broad scoping questions providing a map of collective intelligence research, mostly by the point of view of computer scientists and engineers. Accordingly, it covers preliminary notions, fundamental concepts, and the main research perspectives, identifying opportunities and challenges for researchers on artificial and computational collective intelligence engineering.Comment: This is the author's final version of the article, accepted for publication in the Artificial Life journal. Data: 34 pages, 2 figure

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öffentlichen Sektors werden immer größere Datenmengen verfügbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlässlich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren Zusammenhänge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfügbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese können als eine Erweiterung von CNNs von regelmäßigen Gittern auf allgemeine (unregelmäßige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten über Entitäten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden, so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollständig, d. h. es fehlen Fakten. Die manuelle Überprüfung und Erweiterung der Graphen wird aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstützt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der Wissensgraphenvervollständigung lässt sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen Entitäten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame Entitäten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknüpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der Vervollständigung von Wissensgraphen vor. Für das Entity Alignment zeigen wir, wie die Anzahl der benötigten Paare reduziert werden kann, während die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erörtern auch die Leistungsfähigkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. Für die Link Prediction demonstrieren wir, wie die Vorhersage für unbekannte Entitäten zur Trainingszeit verbessert werden kann, indem zusätzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfügbar sind. Gestützt auf Ergebnisse einer groß angelegten experimentellen Studie präsentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugänglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich schlagen wir eine neuartige Metrik für die Bewertung von Ranking-Ergebnissen vor, wie sie für beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in Fällen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen für beide Aufgaben vorkommen

    A Survey of Methods, Challenges and Perspectives in Causality

    Full text link
    Deep Learning models have shown success in a large variety of tasks by extracting correlation patterns from high-dimensional data but still struggle when generalizing out of their initial distribution. As causal engines aim to learn mechanisms independent from a data distribution, combining Deep Learning with Causality can have a great impact on the two fields. In this paper, we further motivate this assumption. We perform an extensive overview of the theories and methods for Causality from different perspectives, with an emphasis on Deep Learning and the challenges met by the two domains. We show early attempts to bring the fields together and the possible perspectives for the future. We finish by providing a large variety of applications for techniques from Causality.Comment: 40 pages, 37 pages for the main paper and 3 pages for the supplement, 8 figures, submitted to ACM Computing Survey

    A Survey of Large Language Models

    Full text link
    Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.Comment: ongoing work; 51 page

    Modular and Parameter-efficient Fine-tuning of Language Models

    Get PDF
    Transfer learning has recently become the dominant paradigm of natural language processing. Models pre-trained on unlabeled data can be fine-tuned for downstream tasks based on only a handful of examples. A long-term goal is to develop models that acquire new information at scale without incurring negative transfer and that generalize systematically to new settings. Modular deep learning has emerged as a promising solution to these challenges, by updating parameter-efficient units of computation locally and asynchronously. These units are often implemented as modules that are interlaid between layers, interpolated with pre-trained parameters, or concatenated to the inputs. Conditioned on tasks or examples, information is routed to multiple modules through a fixed or learned function, followed by an aggregation of their outputs. This property enables compositional generalization, by disentangling knowledge and recombining it in new ways. In this thesis, we provide a unified view of modularity in natural language processing, spanning across four dimensions; specifically, we disentangle modularity into computation functions, routing functions, aggregation functions, and the training setting. Along those axes, we propose multiple contributions: a research framework which encompasses all dimensions; a novel attention-based aggregation function which combines the knowledge stored within different modules; routing mechanisms for out of distribution generalization in cross-lingual transfer scenarios; a dataset and modular training strategies for multimodal and multilingual transfer learning; a modular pre-training strategy to tackle catastrophic interference of heterogeneous data
    corecore