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Abstract

Transfer learning has recently become the dominant paradigm of natural language
processing. Models pre-trained on unlabeled data can be fine-tuned for downstream
tasks based on only a handful of examples. A long-term goal is to develop models
that acquire new information at scale without incurring negative transfer and that
generalize systematically to new settings. Modular deep learning has emerged as a
promising solution to these challenges, by updating parameter-efficient units of com-
putation locally and asynchronously. These units are often implemented as modules
that are interlaid between layers, interpolated with pre-trained parameters, or con-
catenated to the inputs. Conditioned on tasks or examples, information is routed to
multiple modules through a fixed or learned function, followed by an aggregation of
their outputs. This property enables compositional generalization, by disentangling
knowledge and recombining it in new ways.

In this thesis, we provide a unified view of modularity in natural language proces-
sing, spanning across four dimensions; specifically, we disentangle modularity into
computation functions, routing functions, aggregation functions, and the training
setting. Along those axes, we propose multiple contributions: a research framework
which encompasses all dimensions; a novel attention-based aggregation function
which combines the knowledge stored within different modules; routing mechanisms
for out of distribution generalization in cross-lingual transfer scenarios; a dataset
and modular training strategies for multimodal and multilingual transfer learning;
a modular pre-training strategy to tackle catastrophic interference of heterogeneous
data.
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Chapter 1

Introduction

Transfer learning has recently become pervasive in natural language processing
(Ruder et al., 2019; Brown et al., 2020). In its most successful incarnation, it consists
of pre-training a model on vast amounts of raw data in a self-supervised fashion.
Subsequently, this model can be fine-tuned for new tasks based on a small number
of labelled examples. Despite its success, this paradigm for transfer learning suffers
from a series of limitations. Firstly, in multi-task fine-tuning, the learning signals
from different tasks may (catastrophically) interfere with each other (McCloskey and
Cohen, 1989). Similarly, in a continuous learning setting, adapting to new examples
can result in catastrophic forgetting of knowledge acquired from previous examples
(Sutton, 1986; French, 1999).1 Secondly, in settings where the training and evalua-
tion distributions are not identical, these models fail in generalizing systematically
(Lake and Baroni, 2018; Hupkes et al., 2020). This hampers the deployment of these
models in real-world applications where distribution shifts are common, as it makes
them brittle and inaccurate.

In contrast, many biological and artificial systems do not suffer from these weak-
nesses by virtue of their modularity (Fodor, 1983; Ballard, 1986). Artificial systems,
such as programming languages and computer hardware, are similarly designed in
a modular fashion (Booch et al., 2008; Baldwin et al., 2000) because this modular
design favours consistency, ease of adaptation, and interpretability. Consequently,
previous work explored the idea of designing neural networks that are explicitly
modular (Jacobs et al., 1991a; Rosenbaum et al., 2017; Ponti, 2021). This has the
goal of achieving not only functional specialization (Zhang et al., 2022b), but also
re-usability and composability. In particular, these methods involve identifying 1)
modules in a neural network that can be updated locally and asynchronously, with-
out affecting the rest of the parameters; 2) a routing function that allocates a subset
of modules to each example or task; and 3) an aggregation function that aggregates
the outputs of the active modules. Each of these three ingredients can be deter-
mined a priori or learned in an end-to-end fashion. We provide several case studies
of different configurations of these components in figure 1.1.
1 These phenomena have also been referred to as spatial and temporal ‘crosstalk ’ (Jacobs et al.,

1991b).
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Chapter 1. Introduction

(a) MAD-X (b) Polytropon (c) MoE

Figure 1.1: Case studies of modular deep learning. 1.1a) MAD-X (Pfeiffer et al.,
2020b) uses Adapter layers with fixed routing for zero-shot cross-lingual transfer.
1.1b) Polytropon (Ponti et al., 2022) uses low-rank adapters (LoRA; Hu et al., 2022)
with hard learned routing for few-shot task adaptation. 1.1c) Sparse Transformer
MoE (Fedus et al., 2021) use Multi-Layer Perceptrons with top-k soft routing, in
order to scale to larger model sizes. Green components illustrate different routing
functions (see § 3), magenta - purple components illustrate modular parts of the
model. The three representative models illustrated here are only a fraction of possi-
ble configurations from the ‘configuration manifold’ that can be created by varying
the components surveyed in Chapters 2-5.

The main goals of a modular design of neural architectures are the following:
positive transfer, compositionality, and parameter efficiency. Firstly, modularity en-
courages positive transfer by encoding similar functions with the same module. At
the same time, it prevents interference and forgetting by allocating distinct functions
to different dedicated modules (Jacobs et al., 1991b). For instance, massively mul-
tilingual models are known to suffer from a ‘curse’ of interference (Conneau et al.,
2020) due to the conflicting information that the gradient from each language-specific
loss carries (Wang et al., 2021). A possible solution is augmenting these entangled,
fully shared models with specialised modules responsible for individual languages
(Pfeiffer et al., 2020b, 2022c). Secondly, modules representing different skills of
tasks or features of examples can be composed to generalize systematically. This is
crucial in two main settings, which correspond to two aspects of compositionality:
one is the ability to re-combine, i.e. zero-shot transfer to tasks consisting of new
subsets of learned skills, or examples consisting of new subsets of observed features
(Hupkes et al., 2020). For instance, while modules for the Guaraní language and
dependency parsing can only be trained separately due to the lack of annotated
data, they can be composed to perform inference on this unobserved task–language
combination (Pfeiffer et al., 2020b). Thirdly, an additional advantage of modular
neural architectures is that they can be updated locally and asynchronously, without
affecting the rest of the network. As a consequence, fine-tuning a model towards a
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1.1. Thesis Outline and Taxonomy

specific task only requires storing a parameter-efficient module rather than a sep-
arate copy of the entire model. What is more, modules can be added or removed
on-the-fly in an incremental manner, adjusting the model capacity according to the
task complexity. This ability is known as conditional computation (Bengio et al.,
2016).

In this thesis, we first offer a unified view of modular deep learning, illustrating
how many families of methods can be defined by four key components: 1) how they
implement modules, which constitute the minimum unit of computation; 2) how
they select active modules through a routing function; 3) how module outputs are
aggregated; and 4) how the modules are trained with the rest of the model. We then
discuss the different contributions we have made to each of these axes of modularity.

1.1 Thesis Outline and Taxonomy

In order to provide a unified view of the varied landscape of modular deep learning,
we ‘dissect’ existing models into four independent dimensions of variation, structured
into their respective chapters of this thesis. We classify the individual contributions
as part of each of the dimensions, as illustrated in Figure 1.2. We conclude the
thesis and provide an outlook on possible future work in Chapter 12.

Chapter 2 - Computation function: How is each module implemented? A
module may consist of any component of a neural architecture, such as multiple
copies of a model (Jacobs et al., 1991a) or one of its layers (Fedus et al., 2021).
We distinguish between interpolation of parameters (parameter composition), con-
catenation with input features (input composition), and function composition by
stacking neural modules.

Chapter 3 - Routing function: How are active modules selected? Under
fixed routing, we categorise approaches where the routing function is fixed. This
assumes that the information captured by each module as well as the identity of the
tasks where a module should be active is known a priori. In learned routing, the
parameters of the routing mechanism are learned as part of the model. In this case,
routing is soft if all modules are ranked through a continuous score, or hard if each
module is given a binary score (active or inactive).

Chapter 4 - Aggregation function: How are the outputs of the active modules
aggregated? We differentiate between methods that compose the outputs of the
active modules deterministically (e.g., based on a weighted average) from those
where the aggregation function is implemented as a learnable neural network.

Chapter 5 - Training setting: How are the modules trained? Some methods,
such as MoEs, train the modules (and possibly the routing function) jointly with
the shared weights of a base model. As an alternative, transfer learning approaches
introduce modules after pre-training weights and adapt them during fine-tuning.
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(f) Chapter 11

Figure 1.2: The organization and contributions of this thesis. We first introduce the
four dimension of modularity in Chapter 2 - Computation Function, Chapter 3
- Routing Function, Chapter 4 - Aggregation Function, Chapter 5 - Training
Setting. The subsequent Chapters 6 - 11 individually contribute to these dimen-
sions, as illustrated above. Finally in Chapter 12 we conclude the thesis and provide
an outlook on possible future work.

1.2 Notation

More formally, let a neural network fθ : X → Y be decomposed into a composition
of functions fθ1 ⊙ fθ2 ⊙ · · · ⊙ fθl , where ⊙ stands for function composition. The
sub-functions refer to the model’s l layers, each with a unique indexed sequence of
parameters θi, i = 1, . . . , l. In turn, these can be further decomposed recursively
into their constituent functions: for instance, a Transformer layer (Vaswani et al.,
2017) includes linear mappings for the query, key, value, and output, as well as a
non-linear feed-forward network, and highway connections. We further denote the
values of the parameters at initialisation as θ0, and the parameters after convergence
are denoted as θ⋆.

Given a module with parameters ϕ, it can modify the i-th sub-function with
input x in different ways:

1. parameter composition: f ′
i(x) = fθi⊕ϕ(x), where ⊕ stands for an operation

that interpolates the parameters, such as element-wise addition.

2. input composition: f ′
i(x) = fθi([x, ϕ]), where [·, ·] stands for concatenation.
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1.2. Notation

x ∈ X Input data
y ∈ Y Output data
h ∈ H Hidden representation
t ∈ T Task index
f : X ∪H → Y ∪H A computation function
θ Shared parameters
F = {ϕ1, . . . , ϕ|F|} Set of module parameters
α ∈ A Vector of routing scores (for a single task)
A ∈ R|T |×|F| Matrix of routing scores (for all tasks)
r : X ∪H → A A routing function
ρ Routing parameters
⊕ Element-wise addition
[·, ·] Concatenation
⊙ Function composition

Table 1.1: Notation and definitions.

3. function composition: f ′
i(x) = fθi ⊙ fϕ(x), where the outputs of the first and

second function are combined in some way.

For each i-th sub-function, multiple modules from an inventory F = fϕ1 , . . . , fϕ|F|
can be selected through a routing function r(·), which returns a score αi for each
module fϕi

conditioned on metadata. Metadata can consist of individual tokens xt,
an example x, or the current task t ∈ T . Note that α can be fixed a priori through
expert knowledge or learned through an appropriate parameterisation rρ(·), where ρ
refers to (learnable) parameters of the routing function. Often, the routing function
takes special forms:

1. In hard routing, α ∈ {0, 1}|F| is a discrete binary vector.

2. In soft routing, α ∈ [0, 1]|F| is a continuous probability distribution, such that∑
i αi = 1.

3. Finally, α ∈ R|F| can be an unnormalised score vector. This is the case in
linear hyper-networks, where α is usually interpreted as a task embedding
and the row-wise stacked module parameters [ϕ1, . . . , ϕ|F|] act as a generating
function.

Finally, the output of each module is combined through an aggregation function.2
For instance, a common deterministic aggregation function is averaging:

f ′
i(x;F , θi) =

∑

ϕj∈F
r(ϕj) f(x; θi, ϕj) (1.1)

2 To avoid clutter in terminology, throughout this work we use the term composition to refer to
the computation function (Section 2), and the term aggregation to refer to different approaches
of combining the outputs of different modules (Section 4).
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Chapter 1. Introduction

Given shared parameters θ and an inventory of modules F , we first sample a
task t, and an input–output pair (x,y). We then obtain routing scores α using the
routing function r. We now compute the hidden representation hi of each module ϕi

and aggregate them (in this case, based on the routing scores). We finally perform a
gradient update on the module parameters in F and the routing parameters ρ. Other
settings such as joint training of shared and modular parameter are also common
(see chapter 5).
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Chapter 2

Computation Function

The computation function determines the design of a module. Modules can take a
plethora of shapes, such as layers of MLPs (Rosenbaum et al., 2017; Kirsch et al.,
2018; Chang et al., 2018), independent RNNs (Goyal et al., 2021), independent
CNNs (Parascandolo et al., 2018), or special-purpose architectures (Andreas et al.,
2016). However, modules are most often integrated into a base architecture whose
parameters are fully shared. We identify three core types of computation functions
that compose the module with the model’s sub-functions: parameter composition,
input composition, and function composition. We provide example illustrations
of the three computation functions (in addition to a hyper-network) as part of a
Transformer architecture in figure 2.1.

2.1 Parameter Composition

Parameter composition methods augment a base model with sufficient capacity with
task-specific components on the level of individual weights.

2.1.1 Sparse Subnetworks

A common inductive bias on the module parameters ϕ is to make them sparse. This
is based on the assumption that only a small number of parameters of an over-
parameterized model will be relevant for a particular task, and that similar tasks
share similar sub-networks. This is the case for language subnetworks (Stanczak
et al., 2022; Foroutan et al., 2022) in multilingual language models (Conneau et al.,
2020). The most common method to induce sparsity is via pruning. For a general
overview of pruning and other sparse methods, we direct the reader to Hoefler et al.
(2021).

Pruning can be seen as the application of a binary mask b ∈ {0, 1}|θ| that se-
lectively keeps or removes each connection in a neural network and produces a
subnetwork. Weights are commonly pruned based on their magnitude (Han et al.,
2016). After training a model, the trained weights are sorted based on their ab-
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Chapter 2. Computation Function

(a) Parameter Com-
position

(b) Input Composi-
tion

(c) Function Compo-
sition

(d) Hyper-Network

Figure 2.1: Different modular designs for Transformer architectures; best viewed
in colour. Task-specific modular components are illustrated in magenta and pur-
ple, respectively. (a) Parameter Composition (§ 2.1): A sparse sub-network in
the linear layer as part of multi-head-attention. (b) Input Composition (§ 2.2):
Prefix-tuning (Li and Liang, 2021) extends the input by prepending embeddings
to the key and value matrices in the Transformer layer. (c) Function Composi-
tion (§ 2.3): Task-specific bottleneck layers are inserted in each layer that transform
the hidden representations (Houlsby et al., 2019). (d) Hyper-Network (§ 2.4): A
small separate neural network generates modular parameters conditioned on meta-
data. We show its application to function composition but it is compatible with all
computation functions.

solute magnitude and a fraction of the lowest-magnitude weights are selected for
removal. As pruning generally leads to a loss in performance due to the change in
network connections, the non-pruned weights are typically re-trained. In practice,
rather than pruning all weights in a single run, iterative pruning (Han et al., 2015;
Frankle and Carbin, 2019) where a model is pruned over multiple iterations often
performs better. Pruning with a binary mask b can be seen as adding a task-specific
parameter vector ϕ to the parameters of an existing model f ′

θ = fθ+ϕ where ϕi = 0 if
bi = 0.1 Compared to other modular approaches, subnetworks typically do not dis-
tinguish between the parameters of different functions fθi and compose the module
parameters ϕ with the parameters of the entire model θ.

ϕ is typically obtained by pruning the lowest-magnitude weights for each task
and re-training the non-pruned components (Mallya and Lazebnik, 2018; Sun et al.,
2020a; Lin et al., 2021).2 If a sparse model is desired at runtime, the pruned weights
can be removed entirely by multiplying the binary mask with the existing weights:
f ′
θ = fθ◦b+ϕ where ◦ is the element-wise or Hadamard product. Sparse subnetworks

that match the performance of full-parameter models are also known as ‘winning

1 For simplicity, we use ϕi to refer to the i-th value of ϕ rather than the i-th module.
2 In practice, this is achieved by masking the gradient based on the binary mask b ◦ ∇θL(fθ,D)

where L is a loss function and D is a dataset (Ansell et al., 2022).
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2.1. Parameter Composition

tickets’ (Figure 2.1a; Frankle and Carbin, 2019). Manessi et al. (2018) and Mehta
(2019) observe that sparse subnetworks transfer well across computer vision tasks
while Chen et al. (2020) find that subnetworks trained on masked language modeling
(MLM) transfer to NLP tasks in general.

Pruning a randomly initialized model may be sensitive to the choice of hyper-
parameters, so it is more common to prune a pre-trained model (Sun et al., 2020a).
First-order (gradient-based) pruning can be used to capture the change from the pre-
trained model weights (Molchanov et al., 2017; Sanh et al., 2020). In Lottery Ticket
Sparse Fine-Tuning (SFT; Ansell et al., 2022), the weights that are not selected are
frozen instead of being pruned after rewinding the model to its initial state. Thus,
the fine-tuned subset of weights creates a sparse vector of difference with respect to
the shared model.

Alternatively, the parameters ϕ of the subnetwork itself can be fixed. As the
number of possible subnetworks grows combinatorially with the number of model
parameters, there are subnetworks that achieve good performance even for randomly
initialized, fixed models (Zhou et al., 2019). ϕ in this case consists only of the binary
mask b: f ′

θ = fθ◦b. b can be first learned as a real-valued mask and then binarized
(Mallya et al., 2018). A fixed underlying model can accommodate a potentially un-
limited number of task-specific binary masks that exist in super-position (Wortsman
et al., 2020).

2.1.2 Structured Composition

Beyond individual weights, sets of parameters can also be composed. There are
many approaches, which modify only certain parts of the model associated with a
pre-defined group G: f ′

i = fθi+ϕi
∀f ′

i ∈ G. The most common setting is for each group
to correspond to a layer l and to only update the parameters of certain layers such
as the last one (Donahue et al., 2014). Groups can also relate to more fine-grained
parts of the model. For instance, a group G consisting of a model’s bias parameters
is a practical choice as this removes the need to store the model’s intermediate
activations (Cai et al., 2020; Ben Zaken et al., 2022). Such structure can also be
combined with sparse methods by encouraging sharing masks between groups (Guo
et al., 2021).

2.1.3 Low-Rank Composition

Similar to sparsity, another useful prior is for the module parameters ϕi to lie in
a low-dimensional subspace. Li et al. (2018) show that models can be optimised
in a low-dimensional, randomly-oriented subspace rather than the full parameter
space. In this setting, the module parameters ϕ ∈ Rd are low-dimensional compared
to the model parameters θ ∈ RD and d ≪ D. A random matrix M ∈ Rd×D can
be used to project from d to D: f ′

θ = fθ+ϕM. M is typically obtained via the
Fastfood transform (Le et al., 2013) and is factorized as random linear matrices.
Specifically, M = HGΠHB consists of a Hadamard matrix H, a random diagonal
matrix with independent standard normal entries G, a random diagonal matrix with
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Chapter 2. Computation Function

equal probability ±1 entries B, and a random permutation matrix Π.

The minimum d that achieves within 90% of the full-parameter model perfor-
mance is known as the intrinsic dimensionality of a given task. Aghajanyan et al.
(2021) investigate the intrinsic dimensionality of various NLP tasks and pre-trained
models and identify d as low as 200. However, storing the random matrices results
in a substantial memory overhead and is slow to train (Mahabadi et al., 2021a). To
save space, a decomposition via low-rank matrices A ∈ Rr×k and B ∈ Rd×r can
be applied to certain groups G: f ′

i = fθi+vec (BiAi) ∀f ′
i ∈ G where r is the rank of

the matrix, k is the hidden dimensionality, and vec is the vectorization of a matrix.
LoRA (Hu et al., 2022) applies this low-rank decomposition to the weight matrices
in the self-attention module of the Transformer.

2.2 Input Composition

Input composition methods augment a function’s input x by concatenating it with
a learnable parameter vector ϕi: f ′

i(x) = fθi([ϕi,x]). The most common input
to augment is the original input fed to the model’s first layer f1. The standard
prompting setting for language models (Brown et al., 2020) can be seen as finding
a task-specific discrete text prompt—optionally together with few-shot examples—
that, when embedded using the model’s embedding layer, will yield a vector ϕ that
elicits the desired behaviour (Gao et al., 2021; Liu et al., 2021a). Similar methods
have been extended to encoder models (Schick and Schütze, 2021a,b). However,
models have been shown to be sensitive to the formulation of the prompt as well as
to the set and order of few-shot examples (Lu et al., 2022).

Instead, a continuous prompt vector ϕ can be learned directly and concatenated
with the input (Lester et al., 2021; Liu et al., 2021b; Zhong et al., 2021; Ham-
bardzumyan et al., 2021). However, as ϕ is only concatenated with the first layer’s
input, the model has limited capacity to adapt to a specific task. As a result, such
continuous (also called soft) prompts perform poorly at smaller model sizes and on
some harder tasks (Mahabadi et al., 2021a; Liu et al., 2022c). To mitigate this,
initialisation via multi-task learning has been proposed (Vu et al., 2022).

As an alternative, module vectors ϕi can be learned for each layer of the model:
f ′
i(x) = fθi([ϕi,x]) (Figure 2.1b; Li and Liang, 2021; Liu et al., 2022c). While this

increases the number of parameters, it provides the model with more flexibility to
adapt to a given task. In practice, module parameters in the form of prefix vec-
tors ϕi = P i

k,P
i
v ∈ Rl×d are prepended to the keys and values of every multi-head

attention layer. Attention is defined as fi(x) = Attn(xW i
q ,CW i

k,CW i
v) where

Wq,Wk,Wv ∈ Rd×dh are the projections that produce the queries, keys, and val-
ues and C ∈ Rm×d is a sequence of context vectors. Prefix tuning thus takes the
following form: f ′

i(x) = Attn(xW i
q , [P

i
k,CW i

k], [P
i
v ,CW i

v ]) . Overall, input com-
position methods based on multi-layer prefix tuning (Li and Liang, 2021; Yang and
Liu, 2022) can be seen as a generalisation of continuous prompting methods.
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2.3. Function Composition

(a) Sequen-
tial Bottleneck
Adapter

(b) Parallel Bottleneck
Adapter (c) IA3

Figure 2.2: Different approaches of function composition. a) Sequential Bot-
tleneck Adapter: The first adapter architecture proposed for transformers which
consists of two bottleneck layers placed after the multi-head attention (MHA) and
feed-forward (FF) layers (Houlsby et al., 2019). b) Parallel Bottleneck Adapter:
Bottleneck layers processed in parallel to the MHA and FF layers of the pre-trained
transformer components (Rebuffi et al., 2018; Stickland and Murray, 2019; He et al.,
2022a). c) IA3: Rescaling operations performed within the MHA and FF layers (Liu
et al., 2022b).

2.3 Function Composition

While parameter composition deals with individual weights and input composition
methods act only on a function’s input, function composition methods are the most
general as they augment the model with new task-specific functions (see Figure 2.1c):
f ′
i(x) = fθi(x)⊙ fϕi

(x).

2.3.1 Representation Composition

We can design modules fϕi
that are composed with an existing model’s functions

fθi . As the main purpose of such modules is the adaptation of a pre-trained model
to new tasks and domains, they are also known as ‘adapters’. We provide examples
of different adapters in figure 2.2.

The adapter’s design and the way it is composed with the model’s functions is
often modality-specific. In computer vision, the adapter typically consists of a 1× 1
convolution, i.e., fϕi

(x) = α ∗ x where α is a bank of 1 × 1 filters and ∗ is the
convolution operation (Rebuffi et al., 2017). The module is then inserted between
the convolutional blocks of a pre-trained ResNet (He et al., 2016) or another pre-
trained model. In reinforcement learning, adapters have been used to reduce the
dimensionality of lateral connections (Rusu et al., 2016).
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Chapter 2. Computation Function

In NLP, a bottleneck architecture has become popular which consists of a down-
and up-projection, coupled with an intermediate activation function σ: fϕi

(x) =
WD(σ(W Ux)) where WD ∈ Rk×d and W U ∈ Rd×k, k is the dimensionality of the
input (typically the hidden dimension), and d is the bottleneck dimension. σ is
commonly a non-linearity such as a ReLU unit (Figure 2.2a; Houlsby et al., 2019;
Pfeiffer et al., 2020b). In a Transformer model, adapters are placed after the multi-
head attention and/or feed-forward layers (Houlsby et al., 2019; Bapna and Firat,
2019; Pfeiffer et al., 2021b).

Other variants for σ such as the identity function, multi-head attention, and
multi-head attention with shared projection matrices have also been explored (Stick-
land and Murray, 2019). Mahabadi et al. (2021a) propose Compacter, a hyper-
complex, low-rank adapter that reparameterises W in the adapter as: W =

∑n
i=1 Ai⊗

Bi where Ai ∈ Rn×n is shared across layers (n is a hyper-parameter) and Bi ∈ R k
n
× d

n

is parameterised as a low-rank matrix Bi = sit
⊤
i (r is the rank of Bi).

Adapters can be routed sequentially or in parallel. Sequential adapters, are in-
serted between existing functions: f ′

i(x) = fϕi
(fθi(x)) (Rebuffi et al., 2017; Houlsby

et al., 2019).3 Parallel adapters are applied in parallel to a model’s functions:
f ′
i(x) = fθi(x) + fϕi

(x) (Figure 2.2b; Rebuffi et al., 2018; Stickland and Murray,
2019; He et al., 2022a).

2.3.2 Rescaling

Instead of learning a transformation function, the representations can also be di-
rectly transformed via element-wise multiplication with learned parameters: f ′

i(x) =
fθi(x) ◦ ϕi. In computer vision, such task-specific rescaling is typically applied to
batch normalization parameters (Bilen and Vedaldi, 2017). In NLP, similar rescaling
can be applied to the layer normalization parameters (Houlsby et al., 2019). IA3

(Figure 2.2c; Liu et al., 2022b) multiplies learned vectors with the keys and values
in self-attention blocks and the intermediate activations in position-wise feedforward
networks in the Transformer. Rescaling allows the model to select parameters that
are more and less important for a given task and is compatible with other methods
such as LoRA (Figure 2.1b; Hu et al., 2022). Multiplication with a binary mask can
be seen as a special case of rescaling that incorporates sparsity. Similarly, Strezoski
et al. (2019) multiply a task-specific random binary mask b with a function’s input
x at every layer.

2.4 Module Parameter Generation

In most of the previous approaches, the parameters of different modules ϕ1, . . . , ϕ|F|
are optimised separately. However, particularly when modules are applied to an ex-
isting model, the modules may benefit from sharing an underlying structure. Rather
than learning ϕi directly, a small neural network can be used to generate the module
parameters instead. Such a neural network that generates the parameters of another

3 We omit the residual connection for simplicity.
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model is known as a hyper-network (Ha et al., 2017). The hyper-network is usually
parameterised as a one-hidden layer MLP.

Hyper-networks are most effective when they generate module parameters condi-
tioned on relevant inputs (Figure 2.1d). For instance, in conditional batch normali-
sation (De Vries et al., 2017), batch normalisation rescaling parameters are generated
based on a question embedding obtained via an LSTM. Feature-wise linear modu-
lation (FiLM; Perez et al., 2018) and self-modulation (Chen et al., 2019) generate
an element-wise affine transformation that is applied to image features, conditioned
on a question embedding and generator input respectively.

Hyper-networks have been used to generate a diverse set of module parameters
ϕi, including classifier heads (Ponti et al., 2021), continuous prompts (He et al.,
2022b), and adapter layers (Üstün et al., 2020; Ansell et al., 2021b; Mahabadi et al.,
2021b), most commonly conditioned on task (Mahabadi et al., 2021b) or language
embeddings (Üstün et al., 2020; Baziotis et al., 2022). Such task or language em-
beddings can themselves be learned directly, or generated, for instance, based on
the typological features of a language (Üstün et al., 2020; Ansell et al., 2021b).

To make the hyper-network more parameter-efficient, the same network can be
used to generate multiple modules for the same task by conditioning it on the module
position in addition to the task index (Mahabadi et al., 2021b). If additional side
information is available, this can be integrated into the hyper-network via bi-linear
interaction (Chen et al., 2019) or concatenation (Üstün et al., 2022). Conditioning
on multiple inputs may allow the hyper-network to generalise to new combinations
at inference time. A hyper-network is also helpful when the direct optimisation of
module parameters is unstable, as in the case of prefix vectors (Li and Liang, 2021;
Liu et al., 2021b).

2.5 Contributions

In what follows, we discuss this thesis’ contributions to the computation function
axis of modularity, as illustrated in Figure 1.2:

• In Pfeiffer et al. (Chapter 6; 2020a) we propose a framework which integrates
many different composition functions. The framework incorporates low-rank
composition (LoRA; Hu et al., 2022), input composition (Prefix-Tuning Li and
Liang, 2021), and representation composition (Bottleneck Adapter, Parallel
Adapter, Compacter; Houlsby et al., 2019; He et al., 2022a; Mahabadi et al.,
2021a) function. The AdapterHub is continuously extended to new modular
architectures, making it an easy-to-use framework for modular and parameter-
efficient research.

• In Pfeiffer et al. (Chapter 7; 2021b) we propose a new bottleneck-adapter
variant which places the bottleneck layer only after the feed-forward layer of
the vanilla transformer architecture. This simplifies the original architecture
proposed by Houlsby et al. (2019), which additionally places a layer after the
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Chapter 2. Computation Function

multi-head-attention component. We demonstrate that this simplified version
performs on-par with the original variant.
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Chapter 3

Routing Function

A sub-function f(·) of a modular neural network is parameterised by shared weights
θ and module weights ϕi. A decision-making process is required to determine which
modules are active, conditioned on metadata. This process is implemented through
a routing function r(·) that assigns a score αi to each module from an inventory
F = ϕ1, . . . , ϕ|F|. These scores determine which subset of modules is used, which
leads to a sparse architectural design, owing to the fact that inactive modules do
not contribute to the computation. This reduces time complexity while augmenting
the model capacity (Fedus et al., 2022). We provide an overview of different routing
methods in figure 3.1.

When metadata such as expert knowledge about sub-tasks (or skills) involved
in a task is available, r(·) can be designed as a fixed function, that is, each routing
decision is made a priori (Figure 3.1a). For instance, performing dialogue generation
in Swahili, a task module for dialogue generation and a language module for Swahili
can be selected. When no such prior information is available—for instance when
modelling heterogeneous unlabelled data—routing of the sampled examples needs
to be learned (Figures 3.1b-3.1c). In this case, the routing function is conditioned
on either the current example x or metadata, such as the current task index t ∈ T .1

Unfortunately, learned routing significantly increases the difficulty of the learn-
ing problem. In fact, in a multi-task or continual learning setting, similar to the
rest of the model, routing parameters ρ may incur catastrophic interference and
forgetting (McCloskey and Cohen, 1989; French, 1999). Another common failure
mode is module collapse (Kirsch et al., 2018), whereby a one-to-one or one-to-all
mapping between modules and parameters is established. Learning-to-route is cru-
cially under-constrained, as multiple possible ways of decomposing the function into
sub-modules are reasonable (Jacobs et al., 1991a). In the literature, it remains con-
troversial whether learned routing can surpass heuristic fixed routing: Muqeeth et al.
(2022) report negative results, whereas Ponti et al. (2022) find that learned routing
may surpass expert module selection even in settings where tasks are procedurally

1 Alternative strategies which aim at increasing the capacity of the model include random routing
(Zuo et al., 2022; Wang et al., 2022) or routing based on hash functions (Roller et al., 2021).
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(a) Fixed Rout-
ing

(b) Hard
Learned Routing

(c) Soft Learned
Routing

(d) Layer Routing

Figure 3.1: Different routing methods. (a) Fixed Routing: Examples are passed to
modules based on a pre-defined logic, known a priori. (b) Hard Learned Routing:
Learned hard selection modules. (c) Soft Learned Routing: Soft selection and
weighting of modules. (b) Layer Routing: Global routing of modules for multiple
layers of the model.

constructed to require certain skills.

Another aspect of designing a routing function is its level of granularity. Routing
can select modules globally for the entire network, make different allocation decisions
per layer, or even hierarchically select sub-routers (Figure 3.1d). This last method is
also referred to as ‘dispatched routing’ by Rosenbaum et al. (2017). Global routing
is more challenging as the space of potential architectures grows exponentially as
|F|l, where l is the number of layers or sub-functions of the network. Per-layer
routing instead assumes conditional independence among decisions, thus facilitating
scaling. Crucially, routing scores are sometimes not only employed to select a subset
of modules, but also to aggregate their outputs. This second purpose is addressed
in more depth in chapter 4.

3.1 Fixed Routing
When making the routing decision a priori—i.e. when we utilise metadata (e.g.
task identity t) to make the discrete routing decisions before training—we speak
of fixed routing (Figure 3.1a). Here the routing function r(·) simplifies to a k-hot
selection of the respective modules K ⊆ F for the examples with certain metadata:

r(ϕi) =

{
1 if i ∈ K
0 otherwise

(3.1)

This function defines a binary matrix A ∈ {0, 1}|T |×|F|, where the number of rows
corresponds to possible tasks and the number of columns corresponds to the size of
the module inventory.

One simple example of fixed routing in multi-task learning is when all parame-
ters, except the final classification layer, are shared among all tasks (Ruder, 2017).
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3.1. Fixed Routing

Independently from the task identity, the examples are passed through the same net-
work until the penultimate layer. The penultimate layer’s representations are then
routed to their respective final classification layer according to the task identity.
This boils down to setting |K| = 1, with the additional constraint that tasks can-
not share modules, which results in the allocation matrix being an identity matrix,
A = I.

While not immediately apparent, methods which adapt pre-trained models to-
wards individual tasks (Rebuffi et al., 2017, 2018; Houlsby et al., 2019; Bapna and
Firat, 2019; Li and Liang, 2021; Liu et al., 2022b; Hu et al., 2022; Ansell et al., 2022;
Ben Zaken et al., 2022, inter alia)–as discussed in §2–deterministically route rep-
resentations through the newly introduced module fϕ. Given that the pre-trained
weights are frozen and modules trained on different tasks can be plugged in and out,
the components become modular even if they are developed asynchronously and in-
dependently of each other (Pfeiffer et al., 2021b). In a sense, community-based hubs
of pre-trained adapters such as AdapterHub (Pfeiffer et al., 2020a) can be considered
as ever-evolving multi-task models, the development of whose components has been
distributed throughout the community.2 Moreover, since newly introduced weights
are encapsulated between frozen (shared) weights, adapted representations of inter-
mediate layers are implicitly aligned as they are passed as input to the same frozen
components.

Hampshire and Waibel (1992) were possibly among the first to train independent
experts for a series of sub-tasks known a priori. In this case, the subset of experts K
associated with each task t is assumed as given, resulting in the rows of A being k-hot
vectors. In cross-lingual transfer, any problem can be decomposed into a task and
language variety. Fixed routing can select separate language and task components,
and facilitate generalisation to new, unobserved combinations of tasks and languages
at inference time (Pfeiffer et al., 2020b; Ponti et al., 2021; Üstün et al., 2022). In
this case, |K| = 2.

Beyond task identity, routing can be performed based on other metadata such
as language, domain, or modality information. Fan et al. (2021) route determin-
istically for multilingual machine translation where the language family is used to
route examples from different languages, each language family having a specified
module/expert. (Pfeiffer et al., 2022c) add adapters for each language to a multi-
lingual language model during pre-training on unlabelled text. In a similar vein,
(Gururangan et al., 2022) add domain-specific adapters to language models, deter-
ministically routing based on the source domain. This concept was further extended
by Li et al. (2022), who proposed the branch-train-merge method: copies of the same
model are trained on different domains, and subsequently their weights are merged
post hoc. Finally, modality can also inform fixed routing, such as in vision-and-
language models: (Pfeiffer et al., 2022a). This allows for adapting the encoders of
different modality streams.

2 In contrast, combining entire models stored in model repositories via distillation (Khanuja and
Johnson, 2021) or averaging (Matena and Raffel, 2022) is much less efficient and subject to other
limitations (see chapter 4).
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3.2 Learned Routing

When the routing of examples is not decided a priori, a parameterized routing
function rρ(·) needs to learn to route examples conditioned on metadata such as the
task t or the input example x. While this presentation is agnostic to the family
of this function, usually rρ(·) is linear. This prevents the function from entirely
ignoring the metadata it is conditioned upon.

Learning-to-route can roughly be split into hard routing and soft routing (Rosen-
baum et al., 2019). Hard routing methods learn a discrete selection of modules,
thereby simulating the fixed routing scheme, where only a subset of modules is
selected for each decision-making step (Figure 3.1b). Inference for hard routing sys-
tems typically builds on score function estimators (Williams, 1988, 1992) or stochas-
tic re-parameterisation (Jang et al., 2017). On the other hand, soft routing methods
learn a probability distribution over modules (Jacobs et al., 1991a), which is often
interpreted as a score to select the top-k modules (Figure 3.1c; Fedus et al., 2021).

3.2.1 Challenges of Learned Routing

Learned routing introduces a number of challenges, including training instability,
module collapse (Kirsch et al., 2018), and overfitting. These were first systematically
described by Rosenbaum et al. (2019). We follow a similar taxonomy.

Training Instability This emerges especially in settings where modules are jointly
learned from scratch; in this case, the router is required to select a module that has
no clear specialisation at the start of training, which can result in routing dynamics
that never stabilise. Curriculum learning can be used to mitigate this challenge to
some extent (Chang et al., 2018). As an alternative, the learning rate of the router
parameters can be lowered (Rosenbaum et al., 2017) or increased (Ponti et al., 2022)
compared to the modules. This creates a coarse-to-fine dynamic where necessary
skills are determined after or before module specialisation.

Finally, module and router initialisation also likely plays a key role in breaking
symmetries at the beginning of training.

Module Collapse This term describes scenarios where the router falls into a local
optimum where only a small number of modules (in the extreme case, one) from the
available inventory are selected and trained, while not making use of the remaining
modules. This excessively favours exploitation over exploration, possibly leading
to sub-optimal results. Ways to address this problem include encouraging diversity
through rewards (Cases et al., 2019), training the router and modules separately
(Kirsch et al., 2018), and using high-level text features as metadata to condition the
router, e.g. text genre (Cases et al., 2019). The diversity of training tasks also plays
an important role in learning viable routing strategies (Chang et al., 2018; Caccia
et al., 2022). Ahn et al. (2019) fix the routing for the first few iterations following
an ϵ-greedy method for initial exploration of all modules and afterwards switch to
learned routing. Dua et al. (2022) propose tricks to stabilise MoE training, including
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temperature warm-up for sampling domains with fewer examples in unbalanced
distributions.

Overfitting Finally, due to their ability to model specific areas of the input space
independently, deep modular networks risk overfitting to the noise (Rosenbaum
et al., 2019). For instance, routing at the token level was shown to lead to perfor-
mance drops in out-of-domain generalisation for MoEs (Artetxe et al., 2021). For a
similar reason, gains in pre-training do not always translate into gains in fine-tuning
for MoEs (Fedus et al., 2021). Increased robustness can be achieved by routing
conditioned on higher-level metadata if available (Chang et al., 2018; Cases et al.,
2019; Kudugunta et al., 2021). In general, routing should strike the right balance
by affording higher expressivity while not overfitting the training data (Rosenbaum
et al., 2019). In particular, strategies that favour the combinatorial behaviour of
modules yield superior generalisation (Chang et al., 2018; Ponti et al., 2022).

3.2.2 Hard Learned Routing

A model may learn how to select modules through hard routing. This implies that
the choice of whether a module is active or excluded from the computation graph is
binary. Discrete decisions are not amenable to be learned through vanilla gradient
descent: since small perturbations of parameters do not affect the outcome, the
gradient of the loss with respect to the routing parameters is zero. Consequently, al-
ternative strategies such as Reinforcement Learning (e.g. Routing Networks (Rosen-
baum et al., 2017), Modular Networks (Kirsch et al., 2018), Compositional Recur-
sive Learner (CRL; Chang et al., 2018)), Evolutionary Algorithms (e.g. PathNet
(Fernando et al., 2017), µNet (Gesmundo and Dean, 2022a,b)), or Stochastic Re-
parametrization (e.g. AdaShare (Sun et al., 2020b), Polytropon (Ponti et al., 2022;
Caccia et al., 2022)) need to be utilized.

3.2.3 Soft Learned Routing

Mixture of Experts To sidestep discrete selections of modules, several works
propose soft routing methods, where all modules are selected and aggregated ac-
cording to a weighted combination, i.e. a mixture of experts (MoE; Jacobs et al.,
1991b; Jordan and Jacobs, 1994).3 Here, the router learns a probability distribution
over the available modules, i.e. p(F) = rρ(·). Hence, routing and aggregation take
place as:

f ′
i(x) =

∑

ϕj∈F
r(ϕj) f(x; θi, ϕj) (3.2)

In contrast to the discrete selection of hard routing methods, this setup is fully
differentiable, allowing the system to be trained end-to-end. A number of works
(Eigen et al., 2014; Meyerson and Miikkulainen, 2018; Wortsman et al., 2020, inter
3 In the following sections we use the term “expert” and “module” interchangeably to reflect com-

mon practice in the body of research on MoEs.
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alia) train a continuous weighting (i.e. a mixture) of all modules; however, this
limits the degree of modularity as parameters updates are not local; instead, they
always affect all modules. Additionally, activating all modules for each example
significantly increases the computational cost for each forward and backward pass
through the network. To circumvent this, Shazeer et al. (2017) and Lepikhin et al.
(2021) only route to the top-k of |F| modules, where 1 < k < |F|. The output
representations of the k active modules are averaged according to the respective
routing weights, whose sum is re-normalised to 1:

f ′
i(x) =

∑

ϕj∈ topk[r(ϕ)]

r(ϕj)∑
r(ϕ)

f(x; θi, ϕj) (3.3)

Fedus et al. (2021) and Clark et al. (2022) take this idea to the extreme and
demonstrate that even top-1 routing can achieve competitive results for language
modelling. Essentially, this boils down to a differentiable approximation of hard
routing as follows:

f ′
i(x) =

∑

ϕj∈F
f(x; θi, ϕj)1j(argmax[r(ϕ)]) (3.4)

where 1 is the indicator function, which returns 1 if j = argmax[r(ϕ)] and 0
otherwise.

Token-Level Routing MoEs have recently undergone a revival as part of the
efforts to scale Transformers. In particular, MoE Transformers route to a subset of
Feed-Forward Network (FFN) modules per layer instead of a single FFN. The focus
of these works is on computationally efficient training of very large models. This
is achieved by splitting the input tokens across different (hardware-) accelerators.
The MoE routing algorithm is therefore required to (ideally) uniformly distribute
the tokens of all the examples in an input batch across all accelerators, i.e. to load
balance computation across “experts”. The dominating routing strategy is for each
token to choose the top-k experts (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus
et al., 2021; Clark et al., 2022; Yang et al., 2021; Dua et al., 2022; Hazimeh et al.,
2021; Rajbhandari et al., 2022; Riquelme et al., 2021; Du et al., 2022; Zoph et al.,
2022). However, alternative approaches let each expert choose the top-k tokens (You
et al., 2022; Zhou et al., 2022) or globally determine the best routing path (Lewis
et al., 2021).4

However, since routing is conditioned on the token level, and the load balancing
restriction limits the system from routing an entire example to a single module, all
these methods suffer from a series of weaknesses: 1) the experts are limited in terms
of the functions they can learn, e.g. they cannot be chosen based on the semantics
of the entire example (e.g. a sentence); and 2) the system is potentially required

4 For more details on load balancing methods we refer to Fedus et al. (2022) Chapter 4.
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to relearn similar concepts in multiple modules as load balancing hinders the router
from selecting the single best module for longer (e.g., repetitive) sequences. This
is investigated further by (Lewis et al., 2021), who find that sparse models route
syntactically and semantically similar words (in contrast to sentences or phrases)
to the same modules. This sheds light on the limited expressiveness of modules
which are learned on the token-level. Since scaling is the main focus of these works,
their goals are orthogonal to modular approaches centred on parameter efficiency,
transfer–interference trade-offs, and combinatorial generalisation.

Example-Level Routing Nevertheless, one could imagine obtaining the best of
both worlds by hybridising sparse MoE Transformers models with deterministic or
learned routing strategies from section 3.1 and section 3.2.2. Instead of routing each
individual token separately, all tokens of a single example can be routed to the same
experts. Kudugunta et al. (2021) experiment with two versions of example-level
routing for machine translation: In sentence-level routing, they average pool over
the token embeddings, and condition the router on the resulting representation. In
task-level routing a task embedding is trained, based on which the router learns
the distribution over modules. In a similar vein, Gupta et al. (2022) and Xi et al.
(2022) implement task-level routing across modular experts to improve the amount
of knowledge sharing during multi-task learning in the NLP and CV domain, re-
spectively.

Since task identity (or other metadata) is not always given, especially in continual
learning, it can be inferred through an auxiliary model. Van de Ven and Tolias (2019)
refers to this scenario as ‘class-incremental learning ’. For instance, the current task
can be identified based on the lowest predictive uncertainty or an auxiliary task
classifier (Oswald et al., 2020). In these cases, routing can depend on the predicted
task identity.

3.3 Contributions

In this thesis, we predominantly focused on fixed routing strategies as a means to
disentangle knowledge specific information into designated parts of the model. In
what follows, we discuss this thesis’ contributions to the routing function axis of
modularity, as illustrated in Figure 1.2:

• In Pfeiffer et al. (Chapter 6; 2020a) we provide a general framework for fixed
routing for multiple different modular architectures. Routing is performed
based on an id, such as task, or language. The representations are then passed
through the designated components at every layer.

• In Pfeiffer et al. (Chapter 8; 2020b) we propose a fixed routing method which
passes representations through different components based on their language
and task id. By disentangling language from task information through our
proposed fixed routing mechanism we demonstrate improvements in cross-
lingual transfer.
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• In Pfeiffer et al. (Chapter 9; 2021c) we extend the former work by perform-
ing an additional routing step through new language-specific word-embedding
layers.

• In Pfeiffer et al. (Chapter 10; 2022a) we extend the former two works by adding
a vision modality: We not only perform fixed routing through language and
task specific components, but additionally route modality specific representa-
tions (i.e. text and vision) through designated parts of the model.

• While in the previous works we performed fixed routing in post-hoc specializa-
tion, i.e. pre-trained weights are largely frozen, in Pfeiffer et al. (Chapter 11;
2022b) we perform language-specific fixed-routing during pre-training. We
demonstrate that by integrating language specific capacity through modular
components we mitigate catastrophic interference.
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Aggregation Function

While in the previous section on routing we have covered the topic of how to se-
lect different modules during training, we will now focus on how we can aggregate
these functions in order to combine the respective information. It is important to
emphasise that for many approaches, routing and aggregation are inseparable; that
is the selection and aggregation of modules are performed simultaneously. On the
other hand, the strategies for aggregating functions in this section are reminiscent of
the taxonomy previously discussed for composition functions (see §2); while in the
latter we looked into the composition of shared components with modules, in this
section we provide insights into the composition of multiple modular components.

In particular, the aggregation of modular components can (again) be realised
on the parameter level f ′

i(x) = f
ϕ1
i⊕...⊕ϕ

|F|
i
(x), representation level f ′

i(x) = fθi(x)⊕
fϕ1

i
(x), . . . , f

ϕ
|F|
i
x]), as well as functional level f ′

i(x) = fϕ1
i
⊙...⊙f

ϕ
|F|
i
(x). We discuss

these different strategies in the following sections.

4.1 Parameter Interpolation

A natural strategy to aggregate information from multiple modules is interpolating
their weights. However, given that neural architectures differ, and representations
might not necessarily be equivalent (e.g. under invariance to invertible linear trans-
forms) even if the model architectures are the same (Kornblith et al., 2019), naively
aggregating module weights may have catastrophic consequences. However, recent
work on linear mode connectivity (Frankle et al., 2020) suggests that under certain
conditions, it is in fact possible to interpolate between multiple models, which has
positive ramifications for modular aggregation methods. To understand these con-
ditions, we first provide a brief introduction to the constraints for which parameter
aggregation is permissible.
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4.1.1 Mode connectivity

This phenomenon, where the minima found by two networks are connected by a path
of non-increasing error, has been the subject of research for many years (Freeman and
Bruna, 2017; Draxler et al., 2018; Garipov et al., 2018; Nagarajan and Kolter, 2019).
However, most works demonstrate that mode paths are in fact not linear. While
(Nagarajan and Kolter, 2019) find linear paths between networks, their experimental
setup requires to initialise models with the same set of weights. Frankle et al.
(2020) and Neyshabur et al. (2020) demonstrate that this linear mode connectivity
phenomenon is closely linked to the Lottery Ticket Hypothesis (Frankle and Carbin,
2019), which suggests that only a small subset of randomly initialised weights are
the main drivers for the final performance of a model—the so-called winning tickets
(see section 2.1). When interpolating between models trained on different tasks
but initialised with the same set of weights, the models tend to stay in the same
loss basin, indicated by the lack of a sudden increase in loss when interpolating
the weights. Consequently, a common assumption is that the flatness of the basin
of the loss landscape translates to better generalisation capabilities of a model.
However, Ainsworth et al. (2022) argue that the success of such interpolation is
strongly connected to the inherent bias of the optimiser being used, and not the
neural network architecture itself.

4.1.2 Weight Interpolation

Building on the findings of interpolating the weights of models, (Ansell et al., 2022)
propose Lottery Ticket Sparse Fine-Tuning (LT-SFT), described in ??. In particular,
they identify language-, and task-specific sub-networks ϕl and ϕt. For instance, they
extract task modules ϕt using the weight difference of the parameters of an initial
model θ0 and the weights θ⋆ after fine-tuning on a target task: ϕt = θ⋆−θ0. These can
be aggregated by simply adding them to the base model, i.e. θ′ = θ0+ϕl+ϕt. Instead
of identifying task adaptations on subsets of model parameters, Ilharco et al. (2022)
propose to edit entire models with further arithmetic operations. For example,
tasks can include toxic language generation and general language modelling. By
performing the arithmetic negation operation θ′ = θ0 + (ϕgeneral − ϕtoxic), their new
model fθ′(x) generates less toxic text.1

4.2 Representation Interpolation
Closely related to parameter interpolation, representation interpolation consists of
interpolating the outputs of individual modules. Crucially, both operations are
equivalent if the functions are linear: (αiΦi + αjΦj)x = αiΦix + αjΦjx. However,
this does not hold true for non-linear functions, e.g. if the module is an adapter
layer (Houlsby et al., 2019). In particular, at the i-th sub-function of the model,
where multiple modules ϕ ∈ Fi exist, the representations are passed through the
(active) modules, outputting |Fi| (latent) representations h1, . . . ,h|Fi|.

1 The method has been heavily influenced by the word analogy task (i.e., ‘word arithmetics’)
(Mikolov et al., 2013); vec(‘King’) − vec(‘Man’) + vec(‘Woman’) ≈ vec(‘Queen’), with vec(·)
denoting word embeddings of the respective words.
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4.2.1 Weighted Representation Averaging

One way of performing aggregation is to learn the weights α to interpolate over the
hidden representations:

f ′
i(x) =

|Fi|∑

j

αjhj (4.1)

with αj being a module-specific scalar weighting. This aggregation is equivalent
to equation (3.2) when interpreting each weight αj as the output of a router, i.e.
αj = r(ϕj), as discussed in section 3.2.3 for MoE routing. Consequently, all soft-
learned routing approaches (e.g. MoE) that do not perform top1 routing (see § 3.2.3)
also determine how to aggregate the representations of different modules.

As an extension to the traditional MoE aggregation/routing function, Ma et al.
(2018) propose to learn one aggregation function per task t in a multi-task setup.
Gururangan et al. (2022) pre-train modular components for different textual domains
d ∈ D. When utilising the pre-trained modules on unseen data, they weight the
output representations hd of the respective domain modules ϕd according to the
posterior distribution over the input examples, i.e. p(D | x):

f ′
i(x) =

∑

d∈D
p(d | x)h(i)

d (4.2)

This posterior is inferred through the Bayes rule. This does not require any
auxiliary model, and only relies on the original d-conditioned language model. In
fixed routing, module representations are often averaged without weighting (Zhang
et al., 2022a; Chronopoulou et al., 2022). Similarly, in hard routing methods, the
representations of all active modules are averaged, such as in Polytropon (Ponti
et al., 2022), or summed, as in PathNet (Fernando et al., 2017).2

One disadvantage of simply learning gating parameters is that the weights do
not depend on the hidden representations. Thus, they do not take into account
their information content. This is taken into account by attention-based aggregation
functions.

4.2.2 Attention-Based Representation Aggregation

Instead of inferring the weighting before a module has performed its transformation
on the latent representation, we can make the aggregation decision after we can
identify whether or not the information added by the respective module is ancillary
to the target task.

In AdapterFusion, Pfeiffer et al. (2021b) propose an attention mechanism (Bah-
danau et al., 2015; Vaswani et al., 2017) over the stacked hidden representations Hi

2 Note that the latter strategy leads to high variance in the norms of hidden representations if the
router can select variable-size subsets of modules.
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produced by the modules:

fi(x) = Attn(hi−1Qi,HiKi,HiVi) (4.3)

where Q,K,V ∈ Rd×h are the projections that produce the queries, keys, and
values, and hi−1 is the input representation to each of the modules (i.e., the output
representation of the previous layer). Hi ∈ R|F|×d is a matrix consisting of row-wise
stacking of the output representations h1, . . . ,h|Fi| of each module. In other words,
the input of each module is interpreted as the query and the output of each module
is interpreted as the value and key. The attention mechanism thus learns to attend
over the module representations and weigh them dynamically.

Instead of aggregating module outputs into a single representation, Recurrent
Independent Mechanisms (Goyal et al., 2021) keep sequences of representations for
different modules separate. However, in between the application of computation
functions, they exploit an attention mechanism over hidden representations to enable
sparse communication among modules.

One major disadvantage of both weighted and attention-based representation
averaging, is that—in combination with soft routing—they require a full forward pass
through all modules, even if they contribute only marginally to the final aggregation.
Thus, they incur significant increases in time and space complexity. While this can
be mitigated by pruning (i.e., dropping) some modules during inference (Rücklé
et al., 2021), latency still remains an issue for scalability.

4.3 Function Composition
Finally, aggregation can be achieved on the function level; f ′

i(x) = fϕ1 ⊙ fϕ2(x).
Different aggregation methods infer either a sequence or a (tree) structure that
determines the order of the aggregation.

4.3.1 Sequential Aggregation

By performing a forward pass through multiple modules, where the input to the next
module is the output of the previous one, the respective hidden representations are
sequentially transformed: f ′

i(x) = fϕ1(fϕ2(. . . (fϕ|F|(x)))). This form of information
aggregation is often chosen in conjunction with fixed routing, as discussed in § 3.1,
given that the routing order is determined by the role of each module (e.g. language
and task adapters).

Pfeiffer et al. (2020b, 2021d) propose a two-stage setup where language-specific
components are disentangled from task-specific components, in order to perform
zero-shot cross-lingual transfer. First, language (adapter) modules fϕls

and fϕlt
are

trained on monolingual unlabelled data for the source language s and the target
language t, respectively. Then, in the second stage, the language component fϕls

is inserted but frozen, and a new (adapter) module is added for a task fϕt and
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trained on annotated data for the source language: fϕt(fϕls
(x)). Since this effectively

disentangles language from task information, this also enables zero-shot inference on
the target language t without annotated data. In particular, fϕls

is substituted with
fϕlt

, thereby hierarchically aggregating the information from the respective modular
components: fϕt(fϕlt

(x)).

Parovic et al. (2022) extend this concept through bilingual modules instead of
language-specific ones, which facilitate bridging between the source and target lan-
guages. Similarly, Stickland et al. (2021) propose to disentangle l language module
fϕl

and d domain module fϕd
= for multilingual multi-domain machine translation:

fϕd
(fϕl

(x)).

4.3.2 Hierarchical Aggregation

The semantic parse induced by Neural Module Networks (Andreas et al., 2016)
provides a graphical structure for module aggregation. While all leaf nodes find
objects by identifying regions of an image through attention, intermediate nodes
either transform or combine these representations (depending on the arity of the
node). Finally, the root predicts the label by describing or measuring the attended
objects.

4.4 Hypernetworks

Finally, hypernetworks aggregate information from different ‘modules’, i.e. task
embeddings, by combining them before feeding them as input to the parameter
generator. For instance, in (Ponti et al., 2021) task and language embeddings are
concatenated in the input when training a multilingual multi-task architecture where
the encoder is fully shared and the hypernetwork generates the classifier head. By
recombining embeddings appropriately, this method allows for inferring the param-
eters of unseen task–language combinations. Similar combinations of embeddings
have been used to generate adapters in multilingual (Üstün et al., 2020; Ansell et al.,
2021b) and multi-task settings (Mahabadi et al., 2021b; Pilault et al., 2021). Con-
trary to modular adapters, hypernetworks facilitate multi-source language and task
training as they allow for soft weight sharing while preventing negative interference.
Moreover, task embeddings can straightforwardly encapsulate side information (such
as the typological features of a language) in the form of initialisation or regularisers
(Ansell et al., 2021b).

4.5 Contributions

In this thesis, we predominantly focused on fixed routing strategies as a means to
disentangle knowledge specific information into designated parts of the model. In
what follows, we discuss this thesis’ contributions to the aggregation function axis
of modularity, as illustrated in Figure 1.2:

• In Pfeiffer et al. (Chapter 6; 2020a) we provide a general framework for
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dynamic aggregation of modular components. Arbitrary architectures can be
combined in mixtures where representations can be sequentially aggregated.

• As discussed earlier, in Pfeiffer et al. (Chapter 7; 2021b) we propose an atten-
tion mechanism (Bahdanau et al., 2015; Vaswani et al., 2017) over the stacked
hidden representations Hi produced by the modules:
fi(x) = Attn(hi−1Qi,HiKi,HiVi)
where Q,K,V ∈ Rd×h are the projections that produce the queries, keys,
and values, and hi−1 is the input representation to each of the modules (i.e.,
the output representation of the previous layer). Hi ∈ R|F|×d is a matrix
consisting of row-wise stacking of the output representations h1, . . . ,h|Fi| of
each module. In other words, the input of each module is interpreted as the
query and the output of each module is interpreted as the value and key. The
attention mechanism thus learns to attend over the module representations
and weigh them dynamically.

• As discussed earlier, in Pfeiffer et al. (Chapter 8; 2020b) and Pfeiffer et al.
(Chapter 9; 2021c) we propose a two-stage setup where language-specific com-
ponents are disentangled from task-specific components, in order to perform
zero-shot cross-lingual transfer. First, language (adapter) modules fϕls

and
fϕlt

are trained on monolingual unlabelled data for the source language s and
the target language t, respectively. Then, in the second stage, the language
component fϕls

is inserted but frozen, and a new (adapter) module is added for
a task fϕt and trained on annotated data for the source language: fϕt(fϕls

(x)).
Since this effectively disentangles language from task information, this also en-
ables zero-shot inference on the target language t without annotated data. In
particular, fϕls

is substituted with fϕlt
, thereby hierarchically aggregating the

information from the respective modular components: fϕt(fϕlt
(x)).

• In Pfeiffer et al. (Chapter 10; 2022a) we extend the former two works by
adding a vision modality: We not only perform sequential aggregation through
language and task specific components, but additionally through modality
specific (i.e. text and vision) components.
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Training Setting

The final concept which influences modularity is the imposed training strategy. We
can categories these strategies into methods where 1) all modules are jointly trained,
and 2) where modularity is added post-hoc. However, it is important to note that
these strategies do not necessarily rule each other out, as they can be combined.

5.1 Joint Training

Many multi-task learning works have proposed to integrate task-specific parameter-
ized components into neural network architectures as means to mitigate catastrophic
forgetting or interference (McCloskey and Cohen, 1989; French, 1999). Conceptu-
ally, in scenarios where the goal is to train one model on multiple tasks, the idea
is to train (sub-)modules that are optimized only on single tasks. Here, a number
of works propose to integrate task-specific layers to which examples are routed in a
fixed (Hampshire and Waibel, 1992; Rajendran et al., 2017, inter alia; see § 3.1 for
more details) or learned (Jacobs et al., 1991b,a; Shazeer et al., 2017, inter alia; see
§ 3.2.3 for more details) fashion. While in the past these approaches have predom-
inantly focused on mitigating the aforementioned issues, these methods essentially
result in modular models, as task-specific information is stored in ‘explicit’ parts of
the architecture. For instance, (Pfeiffer et al., 2022c) add language-specific layers
during multilingual pre-training, and demonstrate that this setup not only mitigates
catastrophic interference between languages, but also prepares the model to be ex-
tended to more languages later; new modular components are added later in the
respective slots for new languages. Similarly, (Alet et al., 2018) learn to select a set
of modules for each task via meta-learning. Starting with a simple module struc-
ture and network initialisation, they sample structures using simulated annealing
(Kirkpatrick et al., 1983) and perform a step of gradient descent on the network
parameters for a set of meta-training tasks.

Joint training on a subset of tasks can also be useful to warm-up the base model
so that new modules may be more easily added to it (Sun et al., 2020a) and may
provide a useful initialisation for modular parameters (Vu et al., 2022).
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5.2 Post-Hoc Adaptation

Recently, transfer learning has become the dominating strategy for state-of-the-art
results on most tasks. Auxiliary self-supervised objectives are utilised to pre-train
models on a large amount of data. Subsequently, the model’s weights are fine-
tuned on the target tasks, which achieves peak results (Howard and Ruder, 2018;
Devlin et al., 2019). Updating a small set of parameters of these large models has
been demonstrated to perform equally well as full model fine-tuning, leading to an
emergence of parameter-efficient fine-tuning strategies.

Most methods discussed in § 2 that are applied to large pre-trained models can be
considered as post-hoc adaptation. Modularity can be achieved through parame-
ter composition (§ 2.1) using sparse subnetworks (Mehta, 2019; Chen et al., 2020),
structured composition (Donahue et al., 2014; Cai et al., 2020; Ben Zaken et al., 2022;
Guo et al., 2021), or low-rank composition (Li et al., 2018; Hu et al., 2022), input
composition (§ 2.2) by augmenting the function’s input (Brown et al., 2020; Li
and Liang, 2021), and function composition (§ 2.3) through representation com-
position (Rebuffi et al., 2017; Houlsby et al., 2019) and rescaling (Liu et al., 2022b).
Essentially, all of these methods can be realized as hyper-networks (§ 2.4) and are
tightly connected as they adapt the weights of a model pre-trained on a auxiliary
task, and only update a very small fraction of the entire model’s weights. By only
fine-tuning task-specific weights which are encapsulated by freezing weights which
are shared across multiple tasks, we essentially create modular and ‘aggregatable’
components (Pfeiffer et al., 2021b).

5.3 Contributions

In this thesis, we predominantly focused on post-hoc adaptation strategies as a
means to disentangle knowledge specific information into designated parts of the
model. In what follows, we discuss this thesis’ contributions to the training setting
axis of modularity, as illustrated in Figure 1.2:

• In Pfeiffer et al. (Chapter 6; 2020a) we provide a general framework for post-
hoc adaptation. Pre-trained transformer-based models can be extended with
different modular and parameter-efficient architectures.

• In Pfeiffer et al. (Chapter 8; 2020b) we propose to sequentially extend a mul-
tilingual model with new parameters for each dataset we train on. We stack
and freeze the parameters of previous iterations, thereby disentangling the new
information from information trained earlier. Here the sequence of datasets is
intermediate multilingual training and subsequent task adaptation.

• In Pfeiffer et al. (Chapter 10; 2022a) we extend the former work by adding
a vision modality: We freeze and unfreeze modality-specific (i.e. text and
vision) components to extend multilingual models to become multimodal, and
vise-versa, multimodal models to become multilingual.
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5.3. Contributions

• In Pfeiffer et al. (Chapter 11; 2022b) we demonstrate that by integrating
language specific capacity during multilingual pre-training we mitigate catas-
trophic interference. We show that it is possible to extend multilingual models
to more languages through post-hoc adaptation; i.e. new modular components
are added to the model for new languages later. We demonstrate, that this
setup allows the extension to more languages, without any drop in performance
in comparison to languages that the model was pre-trained on.
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Abstract
The current modus operandi in NLP involves
downloading and fine-tuning pre-trained mod-
els consisting of hundreds of millions, or
even billions of parameters. Storing and
sharing such large trained models is expen-
sive, slow, and time-consuming, which im-
pedes progress towards more general and ver-
satile NLP methods that learn from and for
many tasks. Adapters—small learnt bottle-
neck layers inserted within each layer of a pre-
trained model— ameliorate this issue by avoid-
ing full fine-tuning of the entire model. How-
ever, sharing and integrating adapter layers is
not straightforward. We propose AdapterHub,
a framework that allows dynamic “stiching-
in” of pre-trained adapters for different tasks
and languages. The framework, built on top
of the popular HuggingFace Transformers li-
brary, enables extremely easy and quick adap-
tations of state-of-the-art pre-trained models
(e.g., BERT, RoBERTa, XLM-R) across tasks
and languages. Downloading, sharing, and
training adapters is as seamless as possible
using minimal changes to the training scripts
and a specialized infrastructure. Our frame-
work enables scalable and easy access to shar-
ing of task-specific models, particularly in low-
resource scenarios. AdapterHub includes all
recent adapter architectures and can be found
at AdapterHub.ml.

1 Introduction

Recent advances in NLP leverage transformer-
based language models (Vaswani et al., 2017), pre-
trained on large amounts of text data (Devlin et al.,
2019; Liu et al., 2019; Conneau et al., 2020). These
models are fine-tuned on a target task and achieve
state-of-the-art (SotA) performance for most nat-
ural language understanding tasks. Their perfor-
mance has been shown to scale with their size (Ka-
plan et al., 2020) and recent models have reached

∗*Equal contribution.

billions of parameters (Raffel et al., 2019; Brown
et al., 2020). While fine-tuning large pre-trained
models on target task data can be done fairly effi-
ciently (Howard and Ruder, 2018), training them
for multiple tasks and sharing trained models is
often prohibitive. This precludes research on more
modular architectures (Shazeer et al., 2017), task
composition (Andreas et al., 2016), and injecting
biases and external information (e.g., world or lin-
guistic knowledge) into large models (Lauscher
et al., 2019; Wang et al., 2020).

Adapters (Houlsby et al., 2019) have been in-
troduced as an alternative lightweight fine-tuning
strategy that achieves on-par performance to full
fine-tuning (Peters et al., 2019) on most tasks.
They consist of a small set of additional newly
initialized weights at every layer of the transformer.
These weights are then trained during fine-tuning,
while the pre-trained parameters of the large model
are kept frozen/fixed. This enables efficient pa-
rameter sharing between tasks by training many
task-specific and language-specific adapters for the
same model, which can be exchanged and com-
bined post-hoc. Adapters have recently achieved
strong results in multi-task and cross-lingual trans-
fer learning (Pfeiffer et al., 2020a,b).

However, reusing and sharing adapters is not
straightforward. Adapters are rarely released in-
dividually; their architectures differ in subtle yet
important ways, and they are model, task, and lan-
guage dependent. To mitigate these issues and fa-
cilitate transfer learning with adapters in a range of
settings, we propose AdapterHub, a framework that
enables seamless training and sharing of adapters.

AdapterHub is built on top of the popular
transformers framework by HuggingFace1

(Wolf et al., 2020), which provides access to state-
of-the-art pre-trained language models. We en-

1https://github.com/huggingface/transformers
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hance transformers with adapter modules that
can be combined with existing SotA models with
minimal code edits. We additionally provide a web-
site that enables quick and seamless upload, down-
load, and sharing of pre-trained adapters. Adapter-
Hub is available online at: AdapterHub.ml.

AdapterHub for the first time enables NLP re-
searchers and practitioners to easily and efficiently
share and obtain access to models that have been
trained for particular tasks, domains, and languages.
This opens up the possibility of building on and
combining information from many more sources
than was previously possible, and makes research
such as intermediate task training (Pruksachatkun
et al., 2020), composing information from many
tasks (Pfeiffer et al., 2020a), and training models
for very low-resource languages (Pfeiffer et al.,
2020b) much more accessible.

Contributions. 1) We propose an easy-to-use
and extensible adapter training and sharing frame-
work for transformer-based models such as BERT,
RoBERTa, and XLM(-R); 2) we incorporate it into
the HuggingFace transformers framework, re-
quiring as little as two additional lines of code to
train adapters with existing scripts; 3) our frame-
work automatically extracts the adapter weights,
storing them separately to the pre-trained trans-
former model, requiring as little as 1Mb of stor-
age; 4) we provide an open-source framework and
website that allows the community to upload their
adapter weights, making them easily accessible
with only one additional line of code; 5) we in-
corporate adapter composition as well as adapter
stacking out-of-the-box and pave the way for a
wide range of other extensions in the future.

2 Adapters

While the predominant methodology for transfer
learning is to fine-tune all weights of the pre-trained
model, adapters have recently been introduced as
an alternative approach, with applications in com-
puter vision (Rebuffi et al., 2017) as well as the
NLP domain (Houlsby et al., 2019; Bapna and Firat,
2019; Wang et al., 2020; Pfeiffer et al., 2020a,b).

2.1 Adapter Architecture

Adapters are neural modules with a small amount
of additional newly introduced parameters Φ within
a large pre-trained model with parameters Θ. The
parameters Φ are learnt on a target task while keep-
ing Θ fixed; Φ thus learn to encode task-specific

representations in intermediate layers of the pre-
trained model. Current work predominantly fo-
cuses on training adapters for each task separately
(Houlsby et al., 2019; Bapna and Firat, 2019; Pfeif-
fer et al., 2020a,b), which enables parallel training
and subsequent combination of the weights.

In NLP, adapters have been mainly used within
deep transformer-based architectures (Vaswani
et al., 2017). At each transformer layer l, a set of
adapter parameters Φl is introduced. The place-
ment and architecture of adapter parameters Φ
within a pre-trained model is non-trivial and may
impact their efficacy: Houlsby et al. (2019) experi-
ment with different adapter architectures, empiri-
cally validating that a two-layer feed-forward neu-
ral network with a bottleneck works well. While
this down- and up-projection has largely been
agreed upon, the actual placement of adapters
within each transformer block, as well as the in-
troduction of new LayerNorms2 (Ba et al., 2016)
varies in the literature (Houlsby et al., 2019; Bapna
and Firat, 2019; Stickland and Murray, 2019; Pfeif-
fer et al., 2020a). In order to support standard
adapter architectures from the literature, as well as
to enable easy extensibility, AdapterHub provides
a configuration file where the architecture settings
can be defined dynamically. We illustrate the dif-
ferent configuration possibilities in Figure 3, and
describe them in more detail in §3.

2.2 Why Adapters?

Adapters provide numerous benefits over fully fine-
tuning a model such as scalability, modularity, and
composition. We now provide a few use-cases for
adapters to illustrate their usefulness in practice.

Task-specific Layer-wise Representation Learn-
ing. Prior to the introduction of adapters, in order
to achieve SotA performance on downstream tasks,
the entire pre-trained transformer model needs to
be fine-tuned (Peters et al., 2019). Adapters have
been shown to work on-par with full fine-tuning,
by adapting the representations at every layer. We
present the results of fully fine-tuning the model
compared to two different adapter architectures
on the GLUE benchmark (Wang et al., 2018) in
Table 1. The adapters of Houlsby et al. (2019,
Figure 3c) and Pfeiffer et al. (2020a, Figure 3b)
comprise two and one down- and up-projection

2Layer normalization learns to normalize the inputs across
the features. This is usually done by introducing a new set of
features for mean and variance.
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Full Pfeif. Houl.

RTE (Wang et al., 2018) 66.2 70.8 69.8
MRPC (Dolan and Brockett, 2005) 90.5 89.7 91.5
STS-B (Cer et al., 2017) 88.8 89.0 89.2
CoLA (Warstadt et al., 2019) 59.5 58.9 59.1
SST-2 (Socher et al., 2013) 92.6 92.2 92.8
QNLI (Rajpurkar et al., 2016) 91.3 91.3 91.2
MNLI (Williams et al., 2018) 84.1 84.1 84.1
QQP (Iyer et al., 2017) 91.4 90.5 90.8

Table 1: Mean development scores over 3 runs on
GLUE (Wang et al., 2018) leveraging the BERT-Base
pre-trained weights. We present the results with full
fine-tuning (Full) and with the adapter architectures of
Pfeiffer et al. (2020a, Pfeif., Figure 3b) and Houlsby
et al. (2019, Houl., Figure 3c) both with bottleneck size
48. We show F1 for MRPC, Spearman rank correlation
for STS-B, and accuracy for the rest. RTE is a combi-
nation of datasets (Dagan et al., 2005; Bar-Haim et al.,
2006; Giampiccolo et al., 2007).

within each transformer layer, respectively. The
former adapter thus has more capacity at the cost
of training and inference speed. We find that for
all settings, there is no large difference in terms
of performance between the model architectures,
verifying that training adapters is a suitable and
lightweight alternative to full fine-tuning in order
to achieve SotA performance on downstream tasks.

Small, Scalable, Shareable. Transformer-based
models are very deep neural networks with mil-
lions or billions of weights and large storage re-
quirements, e.g., around 2.2Gb of compressed stor-
age space is needed for XLM-R Large (Conneau
et al., 2020). Fully fine-tuning these models for
each task separately requires storing a copy of the
fine-tuned model for each task. This impedes both
iterating and parallelizing training, particularly in
storage-restricted environments.

Adapters mitigate this problem. Depending on
the model size and the adapter bottleneck size, a
single task requires as little as 0.9Mb storage space.
We present the storage requirements in Table 2.
This highlights that > 99% of the parameters re-
quired for each target task are fixed during training
and can be shared across all models for inference.
For instance, for the popular Bert-Base model with
a size of 440Mb, storing 2 fully fine-tuned models
amounts to the same storage space required by 125
models with adapters, when using a bottleneck size
of 48 and adapters of Pfeiffer et al. (2020a). More-
over, when performing inference on a mobile de-
vice, adapters can be leveraged to save a significant
amount of storage space, while supporting a large

Base Large
CRate #Params Size #Params Size

64 0.2M 0.9Mb 0.8M 3.2Mb
16 0.9M 3.5Mb 3.1M 13Mb
2 7.1M 28Mb 25.2M 97Mb

Table 2: Number of additional parameters and com-
pressed storage space of the adapter of Pfeiffer et al.
(2020a) in (Ro)BERT(a)-Base and Large transformer
architectures. The adapter of Houlsby et al. (2019) re-
quires roughly twice as much space. CRate refers to the
adapter’s compression rate: e.g., a. rate of 64 means
that the adapter’s bottleneck layer is 64 times smaller
than the underlying model’s hidden layer size.

number of target tasks. Additionally, due to the
small size of the adapter modules—which in many
cases do not exceed the file size of an image—new
tasks can be added on-the-fly. Overall, these factors
make adapters a much more computationally—and
ecologically (Strubell et al., 2019)—viable option
compared to updating entire models (Rücklé et al.,
2020). Easy access to fine-tuned models may also
improve reproducibility as researchers will be able
to easily rerun and evaluate trained models of pre-
vious work.

Modularity of Representations. Adapters learn
to encode information of a task within designated
parameters. Due to the encapsulated placement of
adapters, wherein the surrounding parameters are
fixed, at each layer an adapter is forced to learn
an output representation compatible with the sub-
sequent layer of the transformer model. This set-
ting allows for modularity of components such that
adapters can be stacked on top of each other, or
replaced dynamically. In a recent example, Pfeiffer
et al. (2020b) successfully combine adapters that
have been independently trained for specific tasks
and languages. This demonstrates that adapters are
modular and that output representations of differ-
ent adapters are compatible. As NLP tasks become
more complex and require knowledge that is not di-
rectly accessible in a single monolithic pre-trained
model (Ruder et al., 2019), adapters will provide
NLP researchers and practitioners with many more
sources of relevant information that can be easily
combined in an efficient and modular way.

Non-Interfering Composition of Information.
Sharing information across tasks has a long-
standing history in machine learning (Ruder, 2017).
Multi-task learning (MTL), which shares a set of
parameters between tasks, has arguably received
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the most attention. However, MTL suffers from
problems such as catastrophic forgetting where in-
formation learned during earlier stages of training
is “overwritten” (de Masson d’Autume et al., 2019),
catastrophic interference where the performance of
a set of tasks deteriorates when adding new tasks
(Hashimoto et al., 2017), and intricate task weight-
ing for tasks with different distributions (Sanh et al.,
2019).

The encapsulation of adapters forces them to
learn output representations that are compatible
across tasks. When training adapters on different
downstream tasks, they store the respective infor-
mation in their designated parameters. Multiple
adapters can then be combined, e.g., with atten-
tion (Pfeiffer et al., 2020a). Because the respective
adapters are trained separately, the necessity of
sampling heuristics due to skewed data set sizes
no longer arises. By separating knowledge extrac-
tion and composition, adapters mitigate the two
most common pitfalls of multi-task learning, catas-
trophic forgetting and catastrophic interference.

Overcoming these problems together with the
availability of readily available trained task-specific
adapters enables researchers and practitioners to
leverage information from specific tasks, domains,
or languages that is often more relevant for a spe-
cific application—rather than more general pre-
trained counterparts. Recent work (Howard and
Ruder, 2018; Phang et al., 2018; Pruksachatkun
et al., 2020; Gururangan et al., 2020) has shown the
benefits of such information, which was previously
only available by fully fine-tuning a model on the
data of interest prior to task-specific fine-tuning.

3 AdapterHub

AdapterHub consists of two core components:
1) A library built on top of HuggingFace
transformers, and 2) a website that dynam-
ically provides analysis and filtering of pre-trained
adapters. AdapterHub provides tools for the entire
life-cycle of adapters, illustrated in Figure 1 and dis-
cussed in what follows: ¬ introducing new adapter
weights Φ into pre-trained transformer weights Θ;
­ training adapter weights Φ on a downstream
task (while keeping Θ frozen); ® automatic extrac-
tion of the trained adapter weights Φ′ and open-
sourcing the adapters; ¯ automatic visualization
of the adapters with configuration filters; ° on-the-
fly downloading/caching the pre-trained adapter
weights Φ′ and stitching the adapter into the pre-
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Figure 1: The AdapterHub Process graph. Adapters Φ
are introduced into a pre-trained transformer Θ (step
¬) and are trained (­). They can then be extracted
and open-sourced (®) and visualized (¯). Pre-trained
adapters are downloaded on-the-fly (°) and stitched
into a model that is used for inference (±).

trained transformer model Θ; ± performing infer-
ence with the trained adapter transformer model.

¬ Adapters in Transformer Layers
We minimize the required changes to existing
HuggingFace training scripts, resulting in only
two additional lines of code. In Figure 2 we
present the required code to add adapter weights
(line 3) and freeze all the transformer weights
Θ (line 4). In this example, the model is pre-
pared to train a task adapter on the binary ver-
sion of the Stanford Sentiment Treebank (SST;
Socher et al., 2013) using the adapter architec-
ture of Pfeiffer et al. (2020a). Similarly, language
adapters can be added by setting the type parameter
to AdapterType.text language, and other
adapter architectures can be chosen accordingly.

While we provide ready-made configuration files
for well-known architectures in the current litera-
ture, adapters are dynamically configurable, which
makes it possible to define a multitude of architec-
tures. We illustrate the configurable components as
dashed lines and objects in Figure 3. The config-
urable components are placements of new weights,
residual connections as well as placements of Lay-
erNorm layers (Ba et al., 2016).

The code changes within the HuggingFace
transformers framework are realized through
MixIns, which are inherited by the respective
transformer classes. This minimizes the amount of
code changes of our proposed extensions and en-
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1 from transformers import AutoModelForSequenceClassification, AdapterType
2 model = AutoModelForSequenceClassification.from_pretrained("roberta-base")
3 model.add_adapter("sst-2", AdapterType.text_task, config="pfeiffer")
4 model.train_adapter(["sst-2"])
5 # Train model ...
6 model.save_adapter("adapters/text-task/sst-2/", "sst-2")
7 # Push link to zip file to AdapterHub ...

Figure 2: ¬ Adding new adapter weights Φ to pre-trained RoBERTa-Base weights Θ (line 3), and freezing Θ (line
4). ® Extracting and storing the trained adapter weights Φ′ (line 7).

capsulates adapters as designated classes. It further
increases readability as adapters are clearly sepa-
rated from the main transformers code base,
which makes it easy to keep both repositories in
sync as well as to extend AdapterHub.

­ Training Adapters
Adapters are trained in the same manner as full fine-
tuning of the model. The information is passed
through the different layers of the transformer
where additionally to the pre-trained weights at ev-
ery layer the representations are additionally passed
through the adapter parameters. However, in con-
trast to full fine-tuning, the pre-trained weights Θ
are fixed and only the adapter weights Φ and the
prediction head are trained. Because Θ is fixed, the
adapter weights Φ are encapsuled within the trans-
former weights, forcing them to learn compatible
representations across tasks.

® Extracting and Open-Sourcing Adapters
When training adapters instead of full fine-tuning,
it is no longer necessary to store checkpoints of the
entire model. Instead, only the adapter weights Φ′,
as well as the prediction head need to be stored, as
the base model’s weights Θ remain the same. This
is integrated automatically as soon as adapters are
trained, which significantly reduces the required
storage space during training and enables storing a
large number of checkpoints simultaneously.

When adapter training has completed, the param-
eter file together with the corresponding adapter
configuration file are zipped and uploaded to a pub-
lic server. The user then enters the metadata (e.g.,
URL to weights, user info, description of train-
ing procedure, data set used, adapter architecture,
GitHub handle, Twitter handle) into a designated
YAML file and issues a pull request to the Adapter-
Hub GitHub repository. When all automatic checks
pass, the AdapterHub.ml website is automatically
regenerated with the newly available adapter, which
makes it possible for users to immediately find
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Figure 3: Dynamic customization possibilities where
dashed lines in (a) show the current configuration op-
tions. These options include the placements of new
weights Φ (including down and up projections as well
as new LayerNorms), residual connections, bottleneck
sizes as well as activation functions. All new weights Φ
are illustrated within the pink boxes, everything outside
belongs to the pre-trained weights Θ. In addition, we
provide pre-set configuration files for architectures in
the literature. The resulting configurations for the archi-
tecture proposed by Pfeiffer et al. (2020a) and Houlsby
et al. (2019) are illustrated in (b) and (c) respectively.
We also provide a configuration file for the architecture
proposed by Bapna and Firat (2019), not shown here.

and use these new weights described by the meta-
data. We hope that the ease of sharing pre-trained
adapters will further facilitate and speed up new
developments in transfer learning in NLP.
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1 from transformers import AutoModelForSequenceClassification, AdapterType
2 model = AutoModelForSequenceClassification.from_pretrained("roberta-base")
3 model.load_adapter("sst-2", config="pfeiffer")

Figure 4: ° After the correct adapter has been identified by the user on the explore page of AdapterHub.ml, they
can load and stitch the pre-trained adapter weights Φ′ into the transformer Θ (line 3).

¯ Finding Pre-Trained Adapters

The website AdapterHub.ml provides a dynamic
overview of the currently available pre-trained
adapters. Due to the large number of tasks in many
different languages as well as different transformer
models, we provide an intuitively understandable
hierarchical structure, as well as search options.
This makes it easy for users to find adapters that
are suitable for their use-case. Namely, Adapter-
Hub’s explore page is structured into three hier-
archical levels. At the first level, adapters can be
viewed by task or language. The second level al-
lows for a more fine-grained distinction separating
adapters into data sets of higher-level NLP tasks
following a categorization similar to paperswith-
code.com. For languages, the second level distin-
guishes the adapters by the language they were
trained on. The third level separates adapters into
individual datasets or domains such as SST for
sentiment analysis or Wikipedia for Swahili.

When a specific dataset has been selected, the
user can see the available pre-trained adapters for
this setting. Adapters depend on the transformer
model they were trained on and are otherwise not
compatible.3 The user selects the model architec-
ture and certain hyper-parameters and is shown the
compatible adapters. When selecting one of the
adapters, the user is provided with additional infor-
mation about the adapter, which is available in the
metadata (see ® again for more information).

° Stitching-In Pre-Trained Adapters

Pre-trained adapters can be stitched into the large
transformer model as easily as adding randomly ini-
tialized weights; this requires a single line of code,
see Figure 4, line 3. When selecting an adapter on
the website (see ¯ again) the user is provided with
sample code, which corresponds to the configura-
tion necessary to include the specific weights.4

3We plan to look into mapping adapters between different
models as future work.

4When selecting an adapter based on a name, we allow for
string matching as long as there is no ambiguity.

± Inference with Adapters

Inference with a pre-trained model that relies on
adapters is in line with the standard inference prac-
tice based on full fine-tuning. Similar to training
adapters, during inference the active adapter name
is passed into the model together with the text to-
kens. At every transformer layer the information
is passed through the transformer layers and the
corresponding adapter parameters.

The adapters can be used for inference in the
designated task they were trained on. To this end,
we provide an option to upload the prediction heads
together with the adapter weights. In addition,
they can be used for further research such as trans-
ferring the adapter to a new task, stacking multi-
ple adapters, fusing the information from diverse
adapters, or enriching AdapterHub with adapters
for other modalities, among many other possible
modes of usage and future directions.

4 Conclusion and Future Work

We have introduced AdapterHub, a novel easy-to-
use framework that enables simple and effective
transfer learning via training and community shar-
ing of adapters. Adapters are small neural modules
that can be stitched into large pre-trained trans-
former models to facilitate, simplify, and speed
up transfer learning across a range of languages
and tasks. AdapterHub is built on top of the com-
monly used HuggingFace transformers, and it
requires only adding as little as two lines of code to
existing training scripts. Using adapters in Adapter-
Hub has numerous benefits such as improved re-
producibility, much better efficiency compared to
full fine-tuning, easy extensibility to new models
and new tasks, and easy access to trained models.

With AdapterHub, we hope to provide a suit-
able and stable framework for the community to
train, search, and use adapters. We plan to continu-
ously improve the framework, extend the composi-
tion and modularity possibilities, and support other
transformer models, even the ones yet to come.
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Abstract

Sequential fine-tuning and multi-task learn-
ing are methods aiming to incorporate knowl-
edge from multiple tasks; however, they suffer
from catastrophic forgetting and difficulties in
dataset balancing. To address these shortcom-
ings, we propose AdapterFusion, a new two
stage learning algorithm that leverages knowl-
edge from multiple tasks. First, in the knowl-
edge extraction stage we learn task specific pa-
rameters called adapters, that encapsulate the
task-specific information. We then combine
the adapters in a separate knowledge composi-
tion step. We show that by separating the two
stages, i.e., knowledge extraction and knowl-
edge composition, the classifier can effectively
exploit the representations learned from mul-
tiple tasks in a non-destructive manner. We
empirically evaluate AdapterFusion on 16 di-
verse NLU tasks, and find that it effectively
combines various types of knowledge at differ-
ent layers of the model. We show that our ap-
proach outperforms traditional strategies such
as full fine-tuning as well as multi-task learn-
ing. Our code and adapters are available at
AdapterHub.ml.

1 Introduction

The most commonly used method for solving
NLU tasks is to leverage pretrained models, with
the dominant architecture being a transformer
(Vaswani et al., 2017), typically trained with a
language modelling objective (Devlin et al., 2019;
Radford et al., 2018; Liu et al., 2019b). Transfer
to a task of interest is achieved by fine-tuning all
the weights of the pretrained model on that single
task, often yielding state-of-the-art results (Zhang
and Yang, 2017; Ruder, 2017; Howard and Ruder,
2018; Peters et al., 2019). However, each task of in-
terest requires all the parameters of the network to
be fine-tuned, which results in a specialized model
for each task.

Feed
Forward

Multi-Head
Attention

Add & Norm

Add & Norm

Add & Norm

AdapterFusion

Adapter

Figure 1: AdapterFusion architecture inside a trans-
former (Vaswani et al., 2017). The AdapterFusion com-
ponent takes as input the representations of multiple
adapters trained on different tasks and learns a parame-
terized mixer of the encoded information.

There are two approaches for sharing informa-
tion across multiple tasks. The first consists of
starting from the pretrained language model and
sequentially fine-tuning on each of the tasks one
by one (Phang et al., 2018). However, as we subse-
quently fine-tune the model weights on new tasks,
the problem of catastrophic forgetting (McCloskey
and Cohen, 1989; French, 1999) can arise, which
results in loss of knowledge already learned from
all previous tasks. This, together with the non-
trivial decision of the order of tasks in which to
fine-tune the model, hinders the effective transfer
of knowledge. Multi-task learning (Caruana, 1997;
Zhang and Yang, 2017; Liu et al., 2019a) is another
approach for sharing information across multiple
tasks. This involves fine-tuning the weights of a
pretrained language model using a weighted sum
of the objective function of each target task simul-
taneously. Using this approach, the network cap-
tures the common structure underlying all the target
tasks. However, multi-task learning requires simul-

50



488

taneous access to all tasks during training. Adding
new tasks thus requires complete joint retraining.
Further, it is difficult to balance multiple tasks and
train a model that solves each task equally well. As
has been shown in Lee et al. (2017), these models
often overfit on low resource tasks and underfit on
high resource tasks. This makes it difficult to ef-
fectively transfer knowledge across tasks with all
the tasks being solved equally well (Pfeiffer et al.,
2020b), thus considerably limiting the applicability
of multi-task learning in many scenarios.

Recently, adapters (Rebuffi et al., 2017; Houlsby
et al., 2019) have emerged as an alternative training
strategy. Adapters do not require fine-tuning of all
parameters of the pretrained model, and instead
introduce a small number of task specific param-
eters — while keeping the underlying pretrained
language model fixed. Thus, we can separately and
simultaneously train adapters for multiple tasks,
which all share the same underlying pretrained pa-
rameters. However, to date, there exists no method
for using multiple adapters to maximize the trans-
fer of knowledge across tasks without suffering
from the same problems as sequential fine-tuning
and multi-task learning. For instance, Stickland
and Murray (2019) propose a multi-task approach
for training adapters, which still suffers from the
difficulty of balancing the various target tasks and
requiring simultaneous access to all target tasks.

In this paper we address these limitations and
propose a new variant of adapters called Adapter-
Fusion. We further propose a novel two stage learn-
ing algorithm that allows us to effectively share
knowledge across multiple tasks while avoiding
the issues of catastrophic forgetting and balancing
of different tasks. Our AdapterFusion architec-
ture, illustrated in Figure 1, has two components.
The first component is an adapter trained on a task
without changing the weights of the underlying lan-
guage model. The second component — our novel
Fusion layer — combines the representations from
several such task adapters in order to improve the
performance on the target task.

Contributions Our main contributions are: (1)
We introduce a novel two-stage transfer learning
strategy, termed AdapterFusion, which combines
the knowledge from multiple source tasks to per-
form better on a target task. (2) We empirically
evaluate our proposed approach on a set of 16 di-
verse NLU tasks such as sentiment analysis, com-
monsense reasoning, paraphrase detection, and rec-

ognizing textual entailment. (3) We compare our
approach with Stickland and Murray (2019) where
adapters are trained for all tasks in a multi-task man-
ner, finding that AdapterFusion is able to improve
this method, even though the model has simultane-
ous access to all tasks during pretraining. (4) We
show that our proposed approach outperforms fully
fine-tuning the transformer model on a single tar-
get task. Our approach additionally outperforms
adapter based models trained both in a Single-Task,
as well as Multi-Task setup.

The code of this work is integrated into the
AdapterHub.ml (Pfeiffer et al., 2020a).

2 Background

In this section, we formalize our goal of transfer
learning (Pan and Yang, 2010; Torrey and Shavlik,
2010; Ruder, 2019), highlight its key challenges,
and provide a brief overview of common methods
that can be used to address them. This is followed
by an introduction to adapters (Rebuffi et al., 2017)
and a brief formalism of the two approaches to
training adapters.

Task Definition. We are given a model that is pre-
trained on a task with training data D0 and a loss
function L0. The weights Θ0 of this model are
learned as follows:

D0 := Large corpus of unlabelled text

L0 := Masked language modelling loss

Θ0 ← argmin
Θ

L0(D0; Θ)

In the remainder of this paper, we refer to this
pretrained model by the tuple (D0, L0).

We define C as the set of N classification tasks
having labelled data of varying sizes and different
loss functions:

C = {(D1, L1), . . . , (DN , LN )}

The aim is to be able to leverage a set of N
tasks to improve on a target task m with Cm =
(Dm, Lm). In this work we focus on the setting
where m ∈ {1, . . . , N}.
Desiderata. We wish to learn a parameterization
Θm that is defined as follows:

Θm ← argmin
Θ′

Lm(Dm; Θ′)

where Θ′ is expected to have encapsulated relevant
information from all the N tasks. The target model
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for task m is initialized with Θ′ for which we learn
the optimal parameters Θm through minimizing
the task’s loss on its training data.

2.1 Current Approaches to Transfer
Learning

There are two predominant approaches to achieve
sharing of information from one task to another.

2.1.1 Sequential Fine-Tuning
This involves sequentially updating all the weights
of the model on each task. For a set of N tasks,
the order of fine-tuning is defined and at each step
the model is initialized with the parameters learned
through the previous step. However, this approach
does not perform well beyond two sequential tasks
(Phang et al., 2018; Pruksachatkun et al., 2020) due
to catastrophic forgetting.

2.1.2 Multi-Task Learning (MTL)
All tasks are trained simultaneously with the aim
of learning a shared representation that will en-
able the model to generalize better on each task
(Caruana, 1997; Collobert and Weston, 2008; Nam
et al., 2014; Liu et al., 2016, 2017; Zhang and Yang,
2017; Ruder, 2017; Ruder et al., 2019; Sanh et al.,
2019; Pfeiffer et al., 2020b, inter alia).

Θ0→{1,...,N} ← argmin
Θ

(
N∑

n=1

Ln(Dn; Θ0)

)

Where Θ0→{1,...,N} indicates that we start with Θ0

and fine-tune on a set of tasks {1, ..., N}.
However, MTL requires simultaneous access to

all tasks, making it difficult to add more tasks on
the fly. As the different tasks have varying sizes as
well as loss functions, effectively combining them
during training is very challenging and requires
heuristic approaches as proposed in Stickland and
Murray (2019).

2.2 Adapters
While the predominant methodology for transfer
learning is to fine-tune all weights of the pre-
trained model, adapters (Houlsby et al., 2019)
have recently been introduced as an alternative
approach with applications in domain transfer
(Rücklé et al., 2020b), machine translation (Bapna
and Firat, 2019; Philip et al., 2020) transfer learn-
ing (Stickland and Murray, 2019; Wang et al., 2020;
Lauscher et al., 2020), and cross-lingual transfer
(Pfeiffer et al., 2020c,d; Üstün et al., 2020; Vi-
doni et al., 2020). Adapters share a large set of

parameters Θ across all tasks and introduce a small
number of task-specific parameters Φn. While
Θ represents the weights of a pretrained model
(e.g., a transformer), the parameters Φn, where
n ∈ {1, . . . , N}, are used to encode task-specific
representations in intermediate layers of the shared
model. Current work on adapters focuses either on
training adapters for each task separately (Houlsby
et al., 2019; Bapna and Firat, 2019; Pfeiffer et al.,
2020a) or training them in a multi-task setting to
leverage shared representations (Stickland and Mur-
ray, 2019). We discuss both variants below.

2.2.1 Single-Task Adapters (ST-A)
For each of the N tasks, the model is initialized
with parameters Θ0. In addition, a set of new and
randomly initialized adapter parameters Φn are in-
troduced.

The parameters Θ0 are fixed and only the pa-
rameters Φn are trained. This makes it possible to
efficiently parallelize the training of adapters for all
N tasks, and store the corresponding knowledge
in designated parts of the model. The objective for
each task n ∈ {1, . . . , N} is of the form:

Φn ← argmin
Φ

Ln(Dn; Θ0,Φ)

For common adapter architectures, Φ contains
considerably fewer parameters than Θ, e.g., only
3.6% of the parameters of the pretrained model in
Houlsby et al. (2019).

2.2.2 Multi-Task Adapters (MT-A)
Stickland and Murray (2019) propose to train
adapters for N tasks in parallel with a multi-task
objective. The underlying parameters Θ0 are fine-
tuned along with the task-specific parameters in
Φn. The training objective can be defined as:

Θ← argmin
Θ,Φ

(
N∑

n=1

Ln(Dn; Θ0,Φn)

)

where

Θ = Θ0→{1,...,N},Φ1, . . . ,ΦN .

2.2.3 Adapters in Practice
Introducing new adapter parameters in different
layers of an otherwise fixed pretrained model has
been shown to perform on-par with, or only slightly
below, full model fine-tuning (Houlsby et al., 2019;
Stickland and Murray, 2019; Pfeiffer et al., 2020a).
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For NLP tasks, adapters have been introduced for
the transformer architecture (Vaswani et al., 2017).
At each transformer layer l, a set of adapter param-
eters Φl is introduced. The placement and archi-
tecture of adapter parameters Φ within a pretrained
model is non-trivial. Houlsby et al. (2019) experi-
ment with different architectures, finding that a two-
layer feed-foward neural network with a bottleneck
works well. They place two of these components
within one layer, one after the multi-head atten-
tion (further referred to as bottom) and one after
the feed-forward layers of the transformer (further
referred to as top).1 Bapna and Firat (2019) and
Stickland and Murray (2019) only introduce one
of these components at the top position, however,
Bapna and Firat (2019) include an additional layer
norm (Ba et al., 2016).

Adapters trained in both single-task (ST-A) or
multi-task (MT-A) setups have learned the idiosyn-
cratic knowledge of the respective tasks’ training
data, encapsulated in their designated parameters.
This results in a compression of information, which
requires less space to store task-specific knowledge.
However, the distinct weights of adapters prevent
a downstream task from being able to use multi-
ple sources of extracted information. In the next
section we describe our two stage algorithm which
tackles the sharing of information stored in adapters
trained on different tasks.

3 AdapterFusion

Adapters avoid catastrophic forgetting by intro-
ducing task-specific parameters; however, current
adapter approaches do not allow sharing of infor-
mation between tasks. To mitigate this we propose
AdapterFusion.

3.1 Learning algorithm

In the first stage of our learning algorithm, we train
either ST-A or MT-A for each of the N tasks.

In the second stage, we then combine the set of
N adapters by using AdapterFusion. While fixing
both the parameters Θ as well as all adapters Φ, we
introduce parameters Ψ that learn to combine the
N task adapters to solve the target task.

Ψm ← argmin
Ψ

Lm(Dm; Θ,Φ1, . . . ,ΦN ,Ψ)

Ψm are the newly learned AdapterFusion param-
eters for task m. Θ refers to Θ0 in the ST-A

1We illustrate these placements in Appendix Figure 5 (left).

FF Down

FF Up

Query

Add & Norm

SoftMax

Adapter

AdapterFusion

Add & Norm

KeyValue

Figure 2: Our AdapterFusion architecture. This in-
cludes learnable weights Query, Key, and Value. Query
takes as input the output of the pretrained transformer
weights. Both Key and Value take as input the out-
put of the respective adapters. The dot product of the
query with all the keys is passed into a softmax func-
tion, which learns to weight the adapters with respect
to the context.

setting or Θ0→{1,...,N,m} in the MT-A setup. In
our experiments we focus on the setting where
m ∈ {1, ..., N}, which means that the training
dataset of m is used twice: once for training the
adapters Φm and again for training Fusion parame-
ters Ψm, which learn to compose the information
stored in the N task adapters.

By separating the two stages — knowledge ex-
traction in the adapters, and knowledge composi-
tion with AdapterFusion — we address the issues
of catastrophic forgetting, interference between
tasks and training instabilities.

3.2 Components

AdapterFusion learns to compose the N task
adapters Φn and the shared pretrained model Θ, by
introducing a new set of weights Ψ. These param-
eters learn to combine the adapters as a dynamic
function of the target task data.

As illustrated in Figure 2, we define the Adapter-
Fusion parameters Ψ to consist of Key, Value and
Query matrices at each layer l, denoted by Kl, Vl

and Ql respectively. At each layer l of the trans-
former and each time-step t, the output of the feed-
forward sub-layer of layer l is taken as the query
vector. The output of each adapter zl,t is used as in-
put to both the value and key transformations. Sim-
ilar to attention (Bahdanau et al., 2015; Vaswani
et al., 2017), we learn a contextual activation of
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each adapter n using

sl,t = softmax(h>
l,tQl ⊗ z>l,t,nKl), n ∈ {1, ..., N}

z′l,t,n = z>l,t,nVl, n ∈ {1, ..., N}
Z′
l,t = [z′l,t,0, ..., z′l,t,N ]

ol,t = s>l,tZ
′
l,t

Where ⊗ represents the dot product and [·, ·] indi-
cates the concatenation of vectors.

Given the context, AdapterFusion learns a pa-
rameterized mixer of the available trained adapters.
It learns to identify and activate the most useful
adapter for a given input.

4 Experiments

In this section we evaluate how effective Adapter-
Fusion is in overcoming the issues faced by other
transfer learning methods. We provide a brief de-
scription of the 16 diverse datasets that we use for
our study, each of which uses accuracy as the scor-
ing metric.

4.1 Experimental Setup
In order to investigate our model’s ability to over-
come catastrophic forgetting, we compare Fusion
using ST-A to only the ST-A for the task. We also
compare Fusion using ST-A to MT-A for the task
to test whether our two-stage procedure alleviates
the problems of interference between tasks. Fi-
nally, our experiments to compare MT-A with and
without Fusion let us investigate the versatility of
our approach. Gains in this setting would show
that AdapterFusion is useful even when the base
adapters have already been trained jointly.

In all experiments, we use BERT-base-uncased
(Devlin et al., 2019) as the pretrained language
model. We train ST-A, described in Appendix A.2
and illustrated in Figure 5, for all datasets described
in §4.2. We train them with reduction factors2

{2, 16, 64} and learning rate 0.0001 with AdamW
and a linear learning rate decay. We train for a max-
imum of 30 epochs with early stopping. We follow
the setup used in Stickland and Murray (2019) for
training the MT-A. We use the default hyperpa-
rameters3, and train a MT-A model on all datasets
simultaneously.

For AdapterFusion, we empirically find that a
learning rate of 5e − 5 works well, and use this

2A reduction factor indicates the factor by which the hid-
den size is reduced such that the bottle-neck size for BERT
Base with factor 64 is reduced to 12 (768/64 = 12).

3We additionally test out batch sizes 16 and 32.

in all experiments.4 We train for a maximum of
10 epochs with early stopping. While we initialize
Q and K randomly, we initialize V with a diago-
nal of ones and the rest of the matrix with random
weights having a small norm (1e− 6). Multiplying
the adapter output with this value matrix V initially
adds small amounts of noise, but retains the over-
all representation. We continue to regularize the
Value matrix using l2-norm to avoid introducing
additional capacity.

4.2 Tasks and Datasets
We briefly summarize the different types of tasks
that we include in our experiments, and reference
the related datasets accordingly. A detailed descrip-
tions can be found in Appendix A.1.

Commonsense reasoning is used to gauge
whether the model can perform basic reason-
ing skills: Hellaswag (Zellers et al., 2018,
2019), Winogrande (Sakaguchi et al., 2020), Cos-
mosQA (Huang et al., 2019), CSQA (Talmor
et al., 2019), SocialIQA (Sap et al., 2019). Sen-
timent analysis predicts whether a given text has
a positive or negative sentiment: IMDb (Maas
et al., 2011), SST (Socher et al., 2013). Nat-
ural language inference predicts whether one
sentence entails, contradicts, or is neutral to an-
other: MNLI (Williams et al., 2018), SciTail (Khot
et al., 2018), SICK (Marelli et al., 2014), RTE (as
combined by Wang et al. (2018)), CB (De Marn-
effe et al., 2019). Sentence relatedness captures
whether two sentences include similar content:
MRPC (Dolan and Brockett, 2005), QQP5. We
also use an argument mining Argument (Stab et al.,
2018) and reading comprehension BoolQ (Clark
et al., 2019) dataset.

5 Results

We present results for all 16 datasets in Table 1. For
reference, we also include the adapter architecture
of Houlsby et al. (2019), ST-AHoulsby, which has
twice as many parameters compared to ST-A. To
provide a fair comparison to Stickland and Murray
(2019) we primarily experiment with BERT-base-
uncased. We additionally validate our best model
configurations — ST-A and Fusion with ST-A —
with RoBERTa-base, for which we present our re-
sults in Appendix Table 4.

4We have experimented with learning rates {6e−6, 5e−5,
1e− 4, 2e− 4}

5data.quora.com/First-Quora-DatasetReleaseQuestion-
Pairs
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Dataset Head Full ST-A MT-A F. w/ ST-A F. w/ MT-A ST-AHoulsby

MNLI 54.59 84.10 84.32 82.49 ±0.49 84.28 83.05 84.13
QQP 76.79 90.87 90.59 89.47 ±0.60 90.71 90.58 90.63
SST 85.17 ±0.45 92.39 ±0.22 91.85 ±0.41 92.27 ±0.71 92.20 ±0.18 93.00 ±0.20 92.75 ±0.37
WGrande 51.92 ±0.35 60.01 ±0.08 61.09 ±0.11 57.70 ±1.40 60.23 ±0.31 59.32 ±0.30 59.32 ±1.33
IMDB 85.05 ±0.22 94.05 ±0.21 93.85 ±0.07 92.56 ±0.54 93.82 ±0.39 92.66 ±0.32 93.96 ±0.22
HSwag 34.17 ±0.27 39.25 ±0.76 38.11 ±0.14 36.47 ±0.98 37.98 ±0.01 37.36 ±0.10 38.65 ±0.25
SocIQA 50.33 ±2.50 62.05 ±0.04 62.41 ±0.11 61.21 ±0.89 63.16 ±0.24 62.56 ±0.10 62.73 ±0.53
CosQA 50.06 ±0.51 60.28 ±0.40 60.01 ±0.02 61.25 ±0.90 60.65 ±0.55 62.78 ±0.07 61.37 ±0.35
SciTail 85.30 ±2.44 94.32 ±0.11 93.90 ±0.16 94.53 ±0.43 94.04 ±0.23 94.79 ±0.17 94.07 ±0.39
Argument 70.61 ±0.59 76.87 ±0.32 77.65 ±0.34 75.70 ±0.60 77.65 ±0.21 76.08 ±0.27 77.44 ±0.62
CSQA 41.09 ±0.27 58.88 ±0.40 58.91 ±0.57 53.30 ±2.19 59.73 ±0.54 56.73 ±0.14 60.05 ±0.36
BoolQ 63.07 ±1.27 74.84 ±0.24 75.66 ±1.25 78.76 ±0.76 76.25 ±0.19 79.18 ±0.45 76.02 ±1.13
MRPC 71.91 ±0.13 85.14 ±0.45 85.16 ±0.52 81.86 ±0.99 90.29 ±0.84 84.68 ±0.32 86.66 ±0.81
SICK 76.30 ±0.71 87.30 ±0.42 86.20 ±0.00 88.61 ±1.06 87.28 ±0.99 90.43 ±0.30 86.12 ±0.54
RTE 61.37 ±1.17 65.41 ±0.90 71.04 ±1.62 77.61 ±3.21 76.82 ±1.68 79.96 ±0.76 69.67 ±1.96
CB 68.93 ±4.82 82.49 ±2.33 86.07 ±3.87 89.09 ±1.15 92.14 ±0.97 89.81 ±0.99 87.50 ±4.72

Mean 64.17 75.51 76.05 75.80 77.33 77.06 76.32

Table 1: Mean and standard deviation results (development sets) for each of the 16 datasets and the different
architectural setups. The datasets are ordered by their respective training dataset size. Dashed horizontal lines
separate datasizes {> 40k,> 10k,> 5k}, respectively. Each model is initialized with BERT-base (Devlin et al.,
2019) weights. Head indicates training only a classification head on top of fixed BERT weights. For Full training
we fine-tune all weights of BERT. Single-Task Adapters (ST-A) is the training of independently trained adapters
for each task, using the architecture illustrated in Figure 5. Multi-Task Adapters (MT-A) shows results of jointly
trained adapters using the default settings of Stickland and Murray (2019). Fusion w/ ST-A and Fusion w/ MT-A
show the results of AdapterFusion using the respective pre-trained Adapters. ST-AHoulsby shows the results of
ST-Adapters with the architecture proposed by Houlsby et al. (2019). Reported results are accuracy scores.

5.1 Adapters

Training only a prediction-head on the output of a
pretrained model can also be considered an adapter.
This procedure, commonly referred to as training
only the Head, performs considerably worse than
fine-tuning all weights (Howard and Ruder, 2018;
Peters et al., 2019). We show that the performance
of only fine-tuning the Head compared to Full fine-
tuning causes on average a drop of 10 points in
accuracy. This demonstrates the need for more
complex adaptation approaches.

In Table 1 we show the results for MT-A and
ST-A with a reduction factor 16 (see the appendix
Table 3 for more results) which we find has a good
trade-off between the number of newly introduced
parameters and the task performance. Interest-
ingly, the ST-A have a regularization effect on some
datasets, resulting in better performance on average
for certain tasks, even though a much small propor-
tion of weights is trained. On average, we improve
0.66% by training ST-A instead of the Full model.

For MT-A we find that there are considerable
performance drops of more than 2% for CSQA
and MRPC, despite the heuristic strategies for sam-
pling from the different datasets (Stickland and
Murray, 2019). This indicates that these heuristics

only partially address common problems of multi-
task learning such as catastrophic interference. It
also shows that learning a shared representation
jointly does not guarantee the best results for all
tasks. On average, however, we do see a perfor-
mance increase of 0.4% using MT-A over Full fine-
tuning on each task separately, which demonstrates
that there are advantages in leveraging information
from other tasks with multi-task learning.

5.2 AdapterFusion

AdapterFusion aims to improve performance on a
given target task m by transferring task specific
knowledge from the set of all N task adapters,
where m ∈ {1, . . . , N}. We hypothesize that if
there exists at least one task that supports the target
task, AdapterFusion should lead to performance
gains. If no such task exists, then the performance
should remain the same.

Dependence on the size of training data. In Ta-
ble 1 we notice that having access to relevant tasks
considerably improves the performance for the tar-
get task when using AdapterFusion. While datasets
with more than 40k training instances perform well
without Fusion, smaller datasets with fewer train-
ing instances benefit more from our approach. We
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Figure 3: Relative performance difference of the two adapter architectures and the AdapterFusion models over
fully fine-tuned BERT. Fusion improves over its corresponding adapters (ST-A and MT-A) for most tasks.

Fus. w/ ST-A Fus. w/ MT-A
compared to ST-A MT-A ST-A MT-A

MNLI →→ ↗↗ ↘↘ ↗↗
QQP →→ ↗↗ →→ ↗↗
SST ↗↗ →→ ↗↗ ↗↗
Winogrande ↘↘ ↗↗ ↘↘ ↗↗
IMDB ↗↗ ↗↗ ↘↘ →→
HellaSwag →→ ↗↗ ↘↘ ↗↗
SocialIQA ↗↗ ↗↗ →→ ↗↗
CosmosQA ↗↗ ↘↘ ↗↗ ↗↗
SciTail →→ ↗↗ ↗↗ →→
Argument →→ ↗↗ ↘↘ ↗↗
CSQA ↗↗ ↗↗ ↘↘ ↗↗
BoolQ ↗↗ ↘↘ ↗↗ ↗↗
MRPC ↗↗ ↗↗ ↘↘ ↗↗
SICK ↗↗ ↘↘ ↗↗ ↗↗
RTE ↗↗ ↘↘ ↗↗ ↗↗
CB ↗↗ ↗↗ ↗↗ ↗↗
Improved 10/16 11/16 7/16 14/16

Table 2: Performance changes of AdapterFusion com-
pared to ST-A and MT-A. Arrows indicate whether
there has been an improvement ↗↗ (> 0.3), decrease
↘↘ (< −0.3), or whether the results have stayed the
same→→ [−0.3, 0.3].

observe particularly large performance gains for
datasets with less than 5k training instances. For
example, Fusion with ST-A achieves substantial
improvements of 6.5 % for RTE and 5.64 % for
MRPC. In addition, we also see performance gains
for moderately sized datasets such as the common-
sense tasks CosmosQA and CSQA. Fusion with MT-
A achieves smaller improvements, as the model al-
ready includes a shared set of parameters. However,
we do see performance gains for SICK, SocialIQA,
Winogrande and MRPC. On average, we observe
improvements of 1.27% and 1.25% when using
Fusion with ST-A and MT-A, respectively.

Mitigating catastrophic interference. In order
to identify whether our approach is able to mit-
igate problems faced by multi-task learning, we
present the performance differences of adapters and
AdapterFusion compared to the fully fine-tuned
model in Figure 3. In Table 2, we compare Adapter-

Fusion to ST-A and MT-A. The arrows indicate
whether there is an improvement↗↗, decrease↘↘,
or if the the results remain the same→→. We com-
pare the performance of both, Fusion with ST-A
and Fusion with MT-A, to ST-A and MT-A. We
summarize our four most important findings below.

(1) In the case of Fusion with ST-A, for 15/16
tasks, the performance remains the same or im-
proves as compared to the task’s pretrained adapter.
For 10/16 tasks we see performance gains. This
shows that having access to adapters from other
tasks is beneficial and in the majority of cases leads
to better results on the target task. (2) We find
that for 11/16 tasks, Fusion with ST-A improves
the performance compared to MT-A. This demon-
strates the ability of Fusion with ST-A to share
information between tasks while avoiding the in-
terference that multi-task training suffers from. (3)
For only 7/16 tasks, we see an improvement of Fu-
sion with MT-A over the ST-A. Training of MT-A
in the first stage of our algorithm suffers from all
the problems of multi-task learning and results in
less effective adapters than our ST-A on average.
Fusion helps bridge some of this gap but is not able
to mitigate the entire performance drop. (4) In the
case of AdapterFusion with MT-A, we see that the
performances on all 16 tasks improves or stays the
same. This demonstrates that AdapterFusion can
successfully combine the specific adapter weights,
even if the adapters were trained in a multi-task
setting, confirming that our method is versatile.

Summary. Our findings demonstrate that Fusion
with ST-A is the most promising approach to shar-
ing information across tasks. Our approach allows
us to train adapters in parallel and it requires no
heuristic sampling strategies to deal with imbal-
anced datasets. It also allows researchers to easily
add more tasks as they become available, without
requiring complete model retraining.

While Fusion with MT-A does provide gains
over simply using MT-A, the effort required to train
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Figure 4: AdapterFusion activations of pretrained ST-Adapters. Rows indicate the target task m, columns indicate
adapters n. We assume that the softmax activation for Φn,l is high if the information of adapter n is useful for
task m. For our analysis, we calculate the softmax activation for each adapter Φn,l, where n ∈ {1, . . . , N}, and
average over all activations within the same layer l calculated over all instances in the development set.

these in a multi-task setting followed by the Fusion
step are not warranted by the limited gains in per-
formance. On the other hand, we find that Fusion
with ST-A is an efficient and versatile approach to
transfer learning.

6 Analysis of Fusion Activation

We analyze the weighting patterns that are learned
by AdapterFusion to better understand which tasks
impact the model predictions, and whether there
exist differences across BERT layers.

We plot the results for layers 1, 7, 9, and 12 and
ST-A in Figure 4 (see Appendix Figure 6 for the
remaining layers). We find that tasks which do not
benefit from AdapterFusion tend to more strongly
activate their own adapter at every layer (e.g. Argu-
ment, HellaSwag, MNLI, QQP, SciTail). This con-
firms that AdapterFusion only extracts information
from adapters if they are beneficial for the target
task m. We further find that MNLI is a useful inter-
mediate task that benefits a large number of target
tasks, e.g. BoolQ, SICK, CSQA, SST-2, CB, MRPC,
RTE, which is in line with previous work (Phang
et al., 2018; Conneau and Kiela, 2018; Reimers
and Gurevych, 2019). Similarly, QQP is utilized
by a large number of tasks, e.g. SICK, IMDB, RTE,
CB, MRPC, SST-2. Most importantly, tasks with
small datasets such as CB, RTE, and MRPC often
strongly rely on adapters trained on large datasets
such as MNLI and QQP.

Interestingly, we find that the activations in layer
12 are considerably more distributed across multi-
ple tasks than adapters in earlier layers. The poten-
tial reason for this is that the last adapters are not
encapsulated between frozen pretrained layers, and
can thus be considered as an extension of the pre-

diction head. The representations of the adapters
in the 12th layer might thus not be as comparable,
resulting in more distributed activations. This is
in line with Pfeiffer et al. (2020d) who are able to
improve zero-shot cross-lingual performance con-
siderably by dropping the adapters in the last layer.

7 Contemporary Work

In contemporaneous work, other approaches for
parameter efficient fine-tuning have been proposed.
Guo et al. (2020) train sparse “diff” vectors which
are applied on top of pretrained frozen parameter
vectors. Ravfogel and Goldberg (2021) only fine-
tune bias terms of the pretrained language mod-
els, achieving similar results as full model fine-
tuning. Li and Liang (2021) propose prefix-tuning
for natural language generation tasks. Here, con-
tinuous task-specific vectors are trained while the
remaining model is kept frozen. These alternative,
parameter-efficient fine-tuning strategies all encap-
sulate the idiosyncratic task-specific information
in designated parameters, creating the potential for
new composition approaches of multiple tasks.

Rücklé et al. (2020a) analyse the training and
inference efficiency of adapters and AdapterFu-
sion. For AdapterFusion, they find that adding
more tasks to the set of adapters results in a linear
increase of computational cost, both for training
and inference. They further propose approaches to
mitigate this overhead.

8 Conclusion and Outlook

8.1 Conclusion
We propose a novel approach to transfer learning
called AdapterFusion which provides a simple and
effective way to combine information from several
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tasks. By separating the extraction of knowledge
from its composition, we are able to effectively
avoid the common pitfalls of multi-task learning,
such as catastrophic forgetting and interference be-
tween tasks. Further, AdapterFusion mitigates the
problem of traditional multi-task learning in which
complete re-training is required, when new tasks
are added to the pool of datasets.

We have shown that AdapterFusion is compati-
ble with adapters trained in both single-task as well
as multi-task setups. AdapterFusion consistently
outperforms fully fine-tuned models on the target
task, demonstrating the value in having access to
information from other tasks. While we observe
gains using both ST-A as well as MT-A, we find
that composing ST-A using AdapterFusion is the
more efficient strategy, as adapters can be trained
in parallel and re-used.

Finally, we analyze the weighting patterns of in-
dividual adapters in AdapterFusion which reveal
that tasks with small datasets more often rely on
information from tasks with large datasets, thereby
achieving the largest performance gains in our ex-
periments. We show that AdapterFusion is able
to identify and select adapters that contain knowl-
edge relevant to task of interest, while ignoring the
remaining ones. This provides an implicit no-op
option and makes AdapterFusion a suitable and
versatile transfer learning approach for any NLU
setting.

8.2 Outlook

Rücklé et al. (2020a) have studied pruning a large
portion of adapters after Fusion training. Their re-
sults show that removing the less activated adapters
results in almost no performance drop at inference
time while considerably improving the inference
speed. They also provide some initial evidence that
it is possible to train Fusion with a subset of the
available adapters in each minibatch, potentially
enabling us to scale our approach to large adapter
sets — which would otherwise be computationally
infeasible. We believe that such extensions are a
promising direction for future work.

Pfeiffer et al. (2020d) have achieved consider-
able improvements in the zero-shot cross-lingual
transfer performance by dropping the adapters in
the last layer. In preliminary results, we have ob-
served similar trends with AdapterFusion when the
adapters in the last layer are not used. We will
investigate this further in future work.
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A Appendices

A.1 Datasets

Commonsense Reasoning We work with a large
number of datasets, all of which have emerged re-
cently in this domain, ranging from sentence level
and document level classification to multiple choice
questions. The next sentence prediction task Hel-
laSWAG (Zellers et al., 2019) is a more difficult
version of the previously released SWAG dataset
(Zellers et al., 2018). Winogrande (Sakaguchi et al.,
2020) is a large scale and adversarially filtered
(Zellers et al., 2018) adaptation of the Winograd
Schema Challenge (Levesque, 2011). Cosmos QA
(Huang et al., 2019) is a commonsense reading
comprehension dataset which requires reasoning
over larger text passages. Social IQA (Sap et al.,
2019) is a multiple choice dataset which requires
reasoning over social interactions between humans.
Commonsense QA (Talmor et al., 2019) is a mul-
tiple choice dataset based on ConceptNet (Speer
et al., 2017), which requires reasoning over general
knowledge.

Sentiment Analysis We conduct experiments on
two binary sentiment classification tasks on long
and short text passages. IMDb (Maas et al., 2011)
consists of long movie reviews and SST-2 (Socher

et al., 2013) consists of short movie reviews from
Rotten Tomatoes6.

Natural Language Inference (NLI) The goal is
to classify whether two sentences entail, contradict,
or are neutral to each other. For this we conduct
experiments on MultiNLI (Williams et al., 2018),
a multi-genre dataset, SciTail (Khot et al., 2018)
a NLI dataset on scientific text, SICK (Marelli
et al., 2014) a NLI dataset with relatedness scores,
the composition of Recognizing Textual Entailment
(RTE) datasets provided by Wang, Singh, Michael,
Hill, Levy, and Bowman (2018), as well as the
Commitment Bank (CB) (De Marneffe et al., 2019)
three-class textual entailment dataset.

Sentence Relatedness We include two semantic
relatedness datasets which capture whether or not
two text samples include similar content. Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005) consists of sentence pairs which
capture a paraphrase/semantic equivalence relation-
ship. Quora Question Pairs (QQP) targets dupli-
cate question detection.7

Misc The Argument Aspect corpus (Stab et al.,
2018) is a three-way classification task to pre-
dict whether a document provides arguments for,
against or none for a given topic (Nuclear Energy,
Abortion, Gun-Control, etc). BoolQ (Clark et al.,
2019) is a binary reading comprehension classifica-
tion task for simple yes, no questions.

A.2 What Is The Best Adapter Setup?

As described in §2.2.3, the placement of adapter pa-
rameters Φ within a pretrained model is non-trivial,
and thus requires extensive experiments. In order
to identify the best ST-A setting, we run an exhaus-
tive architecture search on the hyperparameters —
including the position and number of adapters in
each transformer layer, the position and number
of pretrained or task dependent layer norms, the
position of residual connections, the bottleneck re-
duction factors {2, 8, 16, 64}, and the non linear-
ity {ReLU, LeakyReLU, Swish} used within the
adapter. We illustrate this in Figure 5. This grid
search includes the settings introduced by Houlsby
et al. (2019) and Bapna and Firat (2019). We per-
form this search on three diverse tasks8 and find

6www.rottentomatoes.com
7data.quora.com/First-Quora-DatasetReleaseQuestion-

Pairs
8SST-2, Commonsense QA, and Argument.
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Figure 5: Different architectural components of the
adapter. On the left, we show all components for which
we conduct an exhaustive search (dashed lines). On the
right, we show the adapter architecture that performs
the best across all our tasks.

that across all three tasks, the same setup obtains
best results. We present our results on the SST-
2, Argument, and CSQA datasets in Figures 7, 8,
and 9 respectively, at different granularity levels.
We find that in contrast to Houlsby et al. (2019),
but in line with Bapna and Firat (2019), a single
adapter after the feed-forward layer outperforms
other settings. While we find that this setting per-
forms on-par with that of Houlsby et al. (2019), it
requires only half the number of newly introduced
adapters as compared to them, resulting in a more
efficient setting in terms of number of operations.

For the single-task adapter setting, we thus per-
form all subsequent experiments with the best ar-
chitecture illustrated in Figure 5 on the right and a
learning rate of 1e− 4. In order to reproduce the
multi-task results in Stickland and Murray (2019)
and build upon them, for experiments involving
multi-task training, we adopt their architecture as
described in §2.2.3.

A.3 AdapterFusion Activations of all Layers

We present the cross-product of activations of
AdapterFusion of all layers for BERT-Base and
ST-A16 in Figure 6, as an extension to Figure 4.

A.4 BERT-base ST-A with Reduction Factors
{2, 16, 64}

We present the ST-A results with different capacity
leveraging BERT-base weights in Table 3. Reduc-
tion factors 2, 16, and 64 amount to dense adapter
dimensions 384, 48, and 12 respectively.

A.5 ST-A and Fusion with ST-A Results with
RoBERTa-base

In order to validate our findings of our best
setup—ST-A—we re-evaluate our results leverag-
ing RoBERTa-base weights. We present our re-
sults in Table 4. Similar to our findigs with BERT-
base, especially datasets with less data profit from
AdapterFusion. We find that, in contrast to BERT-
base, RoBERTa-base does not perform well with
high capacity adapters with reduction factor 2.
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Figure 6: AdapterFusion activations in the 12 BERT-base layers. Target tasks are presented in rows, whereas the
set of adapters are displayed in columns. Black squares indicate that an adapter has not been activated, whereas
white cells indicate full activation.
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Figure 8: Results of the grid search on the Argument dataset over the architecture settings illustrated on the left of
Figure 5. As we go from (a) to (c), the best performing setting is used for further search over other hyperparameters.
We find that the best performing architecture is Top Adapter Only with Pretrained LayerNorm Before & After
including No New LayerNorm. This Architecture is illustrated on the right of Figure 5.
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Figure 9: Results of the grid search on the CSQA dataset over the architecture settings illustrated on the left of
Figure 5. As we go from (a) to (c), the best performing setting is used for further search over other hyperparameters.
We find that the best performing architecture is Top Adapter Only with Pretrained LayerNorm Before & After
including No New LayerNorm. This Architecture is illustrated on the right of Figure 5.
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Dataset ST-A2 ST-A16 ST-A64

MultiNLI 84.60 84.32 84.08
QQP 90.57 90.59 89.73
SST 92.66 ±0.32 91.85 ±0.41 92.01 ±0.33
Winogrande 62.11 ±0.09 61.09 ±0.11 59.70 ±0.06
IMDB 94.20 ±0.28 93.85 ±0.07 93.90 ±0.14
HellaSwag 39.45 ±0.20 38.11 ±0.14 38.28 ±0.37
SocialIQA 60.95 ±0.15 62.41 ±0.11 62.23 ±0.73
CosmosQA 59.32 ±0.24 60.01 ±0.02 60.65 ±0.34
SciTail 94.44 ±0.81 93.90 ±0.16 93.82 ±0.49
Argument 76.83 ±0.21 77.65 ±0.34 77.64 ±0.56
CSQA 57.83 ±0.23 58.91 ±0.57 58.88 ±0.40
BoolQ 77.14 ±1.10 75.66 ±1.25 76.07 ±0.54
MRPC 86.13 ±1.59 85.16 ±0.52 85.58 ±0.32
SICK 87.50 ±0.14 86.20 ±0.00 85.70 ±0.42
RTE 70.68 ±4.57 71.04 ±1.62 69.16 ±1.59
CB 87.85 ±2.94 86.07 ±3.87 84.28 ±4.79

Mean 76.39 76.05 75.73

Table 3: Mean and standard deviation results (development sets) for each of the 16 datasets and reduction factors
{2, 16, 64} for ST-A. Each model is initialized with BERT-base (Devlin et al., 2019) weights. The datasets are
ordered by their respective training dataset size. Dashed horizontal lines separates datasizes {> 40k,> 10k,> 5k}
respectively.

Dataset Head Full ST-A2 ST-A16 ST-A64 F. w/ ST-A16 ST-AHoulsby
16

MultiNLI 56.84 86.42 85.56 86.06 85.86 86.20 86.57
QQP 71.40 91.07 90.88 ±0.07 90.27 89.39 ±0.63 90.28 90.66
SST 81.86 ±0.21 94.29 ±0.22 93.71 ±0.29 93.80 ±0.23 93.35 ±0.43 93.67 ±0.13 94.17 ±0.15
Winogrande 51.93 66.77 51.27 ±0.78 65.58 ±0.53 62.43 66.01 ±0.47 63.46 ±6.38
IMDB 85.40 96.00 95.70 95.78 ±0.13 95.80 95.78 ±0.19 95.68 ±0.26
HellaSwag 41.16 63.53 61.09 ±0.08 61.57 ±0.14 61.18 ±0.21 61.52 ±0.07 61.21 ±0.37
SocialIQA 46.87 69.44 69.24 70.14 ±0.40 70.21 70.13 ±0.11 70.78 ±0.17
CosmosQA 41.88 ±0.29 68.52 ±0.49 68.01 ±0.94 68.76 ±0.53 68.62 ±0.55 68.64 ±0.04 69.18 ±0.34
SciTail 49.57 94.47 94.24 94.59 ±0.64 94.32 94.44 ±0.09 94.09 ±0.39
Argument 66.22 ±0.62 78.04 ±0.42 78.60 ±0.34 78.50 ±0.45 78.53 ±0.59 77.98 ±0.24 78.42 ±0.44
CSQA 41.37 ±0.34 65.81 ±0.59 66.11 ±0.60 66.30 ±0.38 64.03 ±0.27 66.52 ±0.18 67.53 ±0.70
BoolQ 62.17 81.89 80.86 ±0.86 80.83 ±0.27 80.17 ±0.25 80.86 ±0.15 81.11 ±0.54
MRPC 68.38 ±0.00 89.11 ±0.93 89.11 ±0.51 88.72 ±0.71 87.10 ±1.67 89.65 ±0.50 89.17 ±1.06
SICK 56.40 86.60 84.80 85.40 ±0.32 85.40 85.76 ±0.26 85.88 ±0.46
RTE 55.81 ±2.92 72.34 ±11.02 61.80 ±12.47 75.30 ±0.61 73.86 ±1.55 78.79 ±1.12 78.56 ±1.54
CB 59.64 ±11.05 90.00 ±1.60 87.14 ±6.85 89.28 ±2.82 81.07 ±4.82 92.86 ±3.79 89.64 ±3.87

Mean 58.05 81.08 78.63 80.83 79.52 81.41 81.18

Table 4: Mean and standard deviation results of models initialized with RoBERTa-base (Liu et al., 2019b) weights.
Performances are measured on the development sets of the 16 datasets for the different architectural setups.
The datasets are ordered by their respective training dataset size. Dashed horizontal lines separate datasizes
{> 40k,> 10k,> 5k} respectively. Head indicates training only a classification head on top of fixed RoBERTa
weights. For Full training we fine-tune all weights of RoBERTa. Single-Task adapters (ST-A) is the training of
independently trained adapters for each task, using the architecture illustrated in Figure 5, indices {2, 16, 64}
indicate the reduction factor. Fusion w/ ST-A show the results of AdapterFusion using the respective pretrained
adapters. ST-AHoulsby

16 shows the results of ST-A with with architecture proposed by Houlsby et al. (2019).
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Abstract

The main goal behind state-of-the-art pre-
trained multilingual models such as multilin-
gual BERT and XLM-R is enabling and boot-
strapping NLP applications in low-resource
languages through zero-shot or few-shot cross-
lingual transfer. However, due to limited
model capacity, their transfer performance is
the weakest exactly on such low-resource lan-
guages and languages unseen during pretrain-
ing. We propose MAD-X, an adapter-based
framework that enables high portability and
parameter-efficient transfer to arbitrary tasks
and languages by learning modular language
and task representations. In addition, we in-
troduce a novel invertible adapter architecture
and a strong baseline method for adapting a
pretrained multilingual model to a new lan-
guage. MAD-X outperforms the state of the
art in cross-lingual transfer across a represen-
tative set of typologically diverse languages on
named entity recognition and causal common-
sense reasoning, and achieves competitive re-
sults on question answering. Our code and
adapters are available at AdapterHub.ml.

1 Introduction

Current deep pretrained multilingual models (De-
vlin et al., 2019; Conneau and Lample, 2019)
achieve state-of-the-art results on cross-lingual
transfer, but do not have enough capacity to repre-
sent all languages. Evidence for this is the impor-
tance of the vocabulary size (Artetxe et al., 2020)
and the curse of multilinguality (Conneau et al.,
2020), a trade-off between language coverage and
model capacity. Scaling up a model to cover all
of the world’s 7,000+ languages is prohibitive. At
the same time, limited capacity is an issue even
for high-resource languages where state-of-the-art
multilingual models underperform their monolin-
gual variants (Eisenschlos et al., 2019; Virtanen
et al., 2019; Nozza et al., 2020), and performance

decreases further with lower-resource languages
covered by the pretrained models. Moreover, the
model capacity issue is arguably most severe for
languages that were not included in the training
data at all, and pretrained models perform poorly
on those languages (Ponti et al., 2020b).

In this paper, we propose Multiple ADapters
for Cross-lingual transfer (MAD-X), a modular
framework that leverages a small number of extra
parameters to address the fundamental capacity
issue that limits pretrained multilingual models.
Using a state-of-the-art multilingual model as the
foundation, we adapt the model to arbitrary tasks
and languages by learning modular language- and
task-specific representations via adapters (Rebuffi
et al., 2017; Houlsby et al., 2019), small bottleneck
layers inserted between a model’s weights.

In particular, using a recent efficient adapter vari-
ant (Pfeiffer et al., 2020a; Rücklé et al., 2020),
we train 1) language-specific adapter modules via
masked language modelling (MLM) on unlabelled
target language data, and 2) task-specific adapter
modules via optimising a target task on labelled
data in any source language. Task and language
adapters are stacked as in Figure 1, allowing us
to adapt the pretrained multilingual model also
to languages that are not covered in the model’s
(pre)training data by substituting the target lan-
guage adapter at inference.

In order to deal with a mismatch between the
shared multilingual vocabulary and target language
vocabulary, we propose invertible adapters, a new
type of adapter that is well suited to performing
MLM in another language. Our framework goes
beyond prior work on using adapters for cross-
lingual transfer (Bapna and Firat, 2019; Artetxe
et al., 2020) by enabling adaptation to languages
unseen during pretraining and without learning ex-
pensive language-specific token-level embeddings.

We compare MAD-X against state-of-the-art
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cross-lingual transfer methods on the standard
WikiANN NER dataset (Pan et al., 2017; Rahimi
et al., 2019) and the XCOPA dataset (Ponti et al.,
2020a) for causal commonsense reasoning, rely-
ing on a representative set of typologically di-
verse languages which includes high-resource, low-
resource, as well as languages unseen by the pre-
trained model. MAD-X outperforms the baselines
on seen and unseen high-resource and low-resource
languages. On the high-resource languages of the
challenging XQuAD QA dataset (Artetxe et al.,
2020), our framework achieves competitive perfor-
mance while being more parameter-efficient.

Another contribution of our work is a simple
method of adapting a pretrained multilingual model
to a new language, which outperforms the standard
setting of transferring a model only from labelled
source language data.

In sum, our contributions are as follows. 1) We
propose MAD-X, a modular framework that miti-
gates the curse of multilinguality and adapts a mul-
tilingual model to arbitrary tasks and languages.
Both code and adapter weights are integrated
into the AdapterHub.ml repository (Pfeiffer et al.,
2020b).1 2) We propose invertible adapters, a
new adapter variant for cross-lingual MLM. 3) We
demonstrate strong performance and robustness
of MAD-X across diverse languages and tasks.
4) We propose a simple and more effective base-
line method for adapting a pretrained multilingual
model to target languages. 5) We shed light on the
behaviour of current methods on languages that are
unseen during multilingual pretraining.

2 Related Work

Cross-lingual Representations Research in mod-
ern cross-lingual NLP is increasingly focused on
learning general-purpose cross-lingual representa-
tions that can be applied to many tasks, first on
the word level (Mikolov et al., 2013; Gouws et al.,
2015; Glavaš et al., 2019; Ruder et al., 2019; Wang
et al., 2020) and later on the full-sentence level
(Devlin et al., 2019; Conneau and Lample, 2019;
Cao et al., 2020). More recent models such as mul-
tilingual BERT (Devlin et al., 2019)—large Trans-
former (Vaswani et al., 2017) models pretrained
on large amounts of multilingual data—have been
observed to perform surprisingly well when trans-
ferring to other languages (Pires et al., 2019; Wu
and Dredze, 2019; Wu et al., 2020) and the cur-

1https://github.com/Adapter-Hub/adapter-transformers

rent state-of-the-art model, XLM-R is competitive
with the performance of monolingual models on the
GLUE benchmark (Conneau et al., 2020). Recent
studies (Hu et al., 2020), however, indicate that
state-of-the-art models such as XLM-R still per-
form poorly on cross-lingual transfer across many
language pairs. The main reason behind such poor
performance is the current lack of capacity in the
model to represent all languages equally in the vo-
cabulary and representation space (Bapna and Firat,
2019; Artetxe et al., 2020; Conneau et al., 2020).

Adapters Adapter modules have been originally
studied in computer vision tasks where they have
been restricted to convolutions and used to adapt a
model for multiple domains (Rebuffi et al., 2017,
2018). In NLP, adapters have been mainly used
for parameter-efficient and quick fine-tuning of a
base pretrained Transformer model to new tasks
(Houlsby et al., 2019; Stickland and Murray, 2019)
and new domains (Bapna and Firat, 2019), avoid-
ing catastrophic forgetting (McCloskey and Co-
hen, 1989; Santoro et al., 2016). Bapna and Firat
(2019) also use adapters to fine-tune and recover
performance of a multilingual NMT model on high-
resource languages, but their approach cannot be
applied to languages that were not seen during pre-
training. Artetxe et al. (2020) employ adapters to
transfer a pretrained monolingual model to an un-
seen language but rely on learning new token-level
embeddings, which do not scale to a large number
of languages. Pfeiffer et al. (2020a) combine the
information stored in multiple adapters for more
robust transfer learning between monolingual tasks.
In their contemporaneous work, Üstün et al. (2020)
generate adapter parameters from language embed-
dings for multilingual dependency parsing.

3 Multilingual Model Adaptation for
Cross-lingual Transfer

Standard Transfer Setup The standard way of
performing cross-lingual transfer with a state-of-
the-art large multilingual model such as multilin-
gual BERT or XLM-R is 1) to fine-tune it on la-
belled data of a downstream task in a source lan-
guage and then 2) apply it directly to perform in-
ference in a target language (Hu et al., 2020). A
downside of this setting is that the multilingual ini-
tialisation balances many languages. It is thus not
suited to excel at a specific language at inference
time. We propose a simple method to ameliorate
this issue by allowing the model to additionally
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adapt to the particular target language.

Target Language Adaptation Similar to fine-
tuning monolingual models on the task domain
(Howard and Ruder, 2018), we propose to fine-
tune a pretrained multilingual model via MLM on
unlabelled data of the target language prior to task-
specific fine-tuning in the source language. A disad-
vantage of this approach is that it no longer allows
us to evaluate the same model on multiple target
languages as it biases the model to a specific target
language. However, this approach might be prefer-
able if we only care about performance in a specific
(i.e., fixed) target language. We find that target lan-
guage adaptation results in improved cross-lingual
transfer performance over the standard setting (§6).
In other words, it does not result in catastrophic
forgetting of the multilingual knowledge already
available in the pretrained model that enables the
model to transfer to other languages. In fact, exper-
imenting with methods that explicitly try to prevent
catastrophic forgetting (Wiese et al., 2017) led to
worse performance in our experiments.

Nevertheless, the proposed simple adaptation
method inherits the fundamental limitation of the
pretrained multilingual model and the standard
transfer setup: the model’s limited capacity hinders
effective adaptation to low-resource and unseen
languages. In addition, fine-tuning the full model
does not scale well to many tasks or languages.

4 Adapters for Cross-lingual Transfer

Our MAD-X framework addresses these deficien-
cies and can be used to effectively adapt an ex-
isting pretrained multilingual model to other lan-
guages. The framework comprises three types of
adapters: language, task, and invertible adapters.
As in previous work (Rebuffi et al., 2017; Houlsby
et al., 2019), adapters are trained while keeping the
parameters of the pretrained multilingual model
fixed. Our framework thus enables learning lan-
guage and task-specific transformations in a modu-
lar and parameter-efficient way. We show the full
framework as part of a standard Transformer model
in Figure 1 and describe the three adapter types.

4.1 Language Adapters

For learning language-specific transformations, we
employ a recent efficient adapter architecture pro-
posed by Pfeiffer et al. (2020a). Following Houlsby
et al. (2019) they define the interior of the adapter
to be a simple down- and up-projection combined

Embeddings

Inv MLM En Adap

Embeddings

Inv MLM En Adap

T

...

Feed
Forward

Multi-Head
Attention

Add & Norm

Add & Norm

Add & Norm

Lang Qu AdaptLang En Adapt

Task NER Adapt

Embeddings

Embeddings

Inv En 
Adap

Inv Qu 
Adap

Inv En 
Adap

Inv Qu 
Adap

-1-1

Figure 1: The MAD-X framework inside a Trans-
former model. Input embeddings are fed into the in-
vertible adapter whose inverse is fed into the tied out-
put embeddings. Language and task adapters are added
to each Transformer layer. Language adapters and in-
vertible adapters are trained via masked language mod-
elling (MLM) while the pretrained multilingual model
is kept frozen. Task-specific adapters are stacked on top
of source language adapters when training on a down-
stream task such as NER (full lines). During zero-shot
cross-lingual transfer, source language adapters are re-
placed with target language adapters (dashed lines).

with a residual connection.2 The language adapter
LAl at layer l consists of a down-projection D ∈
Rh×d where h is the hidden size of the Transformer
model and d is the dimension of the adapter, fol-
lowed by a ReLU activation and an up-projection
U ∈ Rd×h at every layer l:

LAl(hl, rl) = Ul(ReLU(Dl(hl))) + rl (1)

where hl and rl are the Transformer hidden state
and the residual at layer l, respectively. The resid-
ual connection rl is the output of the Transformer’s
feed-forward layer whereas hl is the output of the
subsequent layer normalisation (see Figure 1).

We train language adapters on unlabelled data
of a language using MLM, which encourages them
to learn transformations that make the pretrained
multilingual model more suitable for a specific lan-
guage. During task-specific training with labelled
data, we use the language adapter of the correspond-
ing source language, which is kept fixed. In order to
perform zero-shot transfer to another language, we

2Pfeiffer et al. (2020a) perform an extensive hyperparam-
eter search over adapter positions, activation functions, and
residual connections within each Transformer layer. They
arrive at an architecture variant that performs on par with that
of Houlsby et al. (2019), while being more efficient.
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Figure 2: The invertible adapter (a) and its inverse (b).
The input is split and transformed by projections F and
G, which are coupled in an alternating fashion. | indi-
cates the splitting of the input vector, and [ ] indicates
the concatenation of two vectors. + and − indicate
element-wise addition and subtraction, respectively.

simply replace the source language adapter with
its target language component. For instance, as
illustrated in Figure 1, we can simply replace a
language-specific adapter trained for English with
a language-specific adapter trained for Quechua
at inference time. This, however, requires that the
underlying multilingual model does not change dur-
ing fine-tuning on the downstream task. In order to
ensure this, we additionally introduce task adapters
that capture task-specific knowledge.

4.2 Task Adapters

Task adapters TAl at layer l have the same architec-
ture as language adapters. They similarly consist of
a down-projection D ∈ Rh×d, a ReLU activation,
followed by an up-projection. They are stacked
on top of the language adapters and thus receive
the output of the language adapter LAl as input,
together with the residual rl of the Transformer’s
feed-forward layer3:

TAl(hl, rl) = Ul(ReLU(Dl(LAl))) + rl (2)

The output of the task adapter is then passed
to another layer normalisation component. Task
adapters are the only parameters that are updated
when training on a downstream task (e.g., NER)
and aim to capture knowledge that is task-specific
but generalises across languages.

3Initial experiments showed that this residual connection
performs better than one to the output of the language adapter.

4.3 Invertible Adapters
The majority of the “parameter budget” of pre-
trained multilingual models is spent on token em-
beddings of the shared multilingual vocabulary. De-
spite this, they underperform on low-resource lan-
guages (Artetxe et al., 2020; Conneau et al., 2020),
and are bound to fare even worse for languages not
covered by the model’s training data.

In order to mitigate this mismatch between multi-
lingual and target language vocabulary, we propose
invertible adapters. They are stacked on top of
the embedding layer while their respective inverses
precede the output embedding layer (see Figure 1).
As input and output embeddings are tied in multi-
lingual pretrained models, invertibility allows us to
leverage the same set of parameters for adapting
both input and output representations. This is cru-
cial as the output embeddings, which get discarded
during task-specific fine-tuning might otherwise
overfit to the pretraining task.

To ensure this invertibility, we employ Non-
linear Independent Component Estimation (NICE;
Dinh et al., 2015). NICE enables the invertibil-
ity of arbitrary non-linear functions through a set
of coupling operations (Dinh et al., 2015). For
the invertible adapter, we split the input embed-
ding vector ei of the i-th token into two vectors of
equal dimensionality e1,i, e2,i ∈ Rh/2.4 For two
arbitrary non-linear function F and G, the forward
pass through our invertible adapter Ainv() is:

o1 = F (e2) + e1; o2 = G(o1) + e2
o = [o1, o2]

(3)

where o is the output of the invertible adapter Ainv

and [·, ·] indicates concatenation of two vectors.
Correspondingly, the inverted pass through the

adapter, thus A−1inv, is computed as follows:

e2 = o2 −G(o1); e1 = o1 − F (e2)
e = [e1, e2].

(4)

e is the output of A−1Inv(). For the non-linear trans-
formations F and G, we use similar down- and up-
projections as for the language and task adapters:

F (x) = UF (ReLU(DF (x)))
G(x) = UG(ReLU(DG(x))).

(5)

where DF ,DG ∈ R
h
4
×h

2 and UF ,UG ∈ R
h
2
×h

4

and x is a placeholder for e1, e2, o1 and o2. We
4For brevity, we further leave out the dependency on i.
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illustrate the complete architecture of the invertible
adapter and its inverse in Figure 2.

The invertible adapter has a similar function to
the language adapter, but aims to capture token-
level language-specific transformations. As such, it
is trained together with the language adapters using
MLM on unlabelled data of a specific language.
During task-specific training we use the fixed in-
vertible adapter of the source language, and replace
it with the target-language invertible during zero-
shot transfer. Importantly, our invertible adapters
are much more parameter-efficient compared to
the approach of Artetxe et al. (2020), which learns
separate token embeddings for every new language.

An Illustrative Example We provide a brief walk-
through example from Figure 1. Assuming English
(En) as the source language and Quechua (Qu)
as the target language, we first pretrain invertible
adapters AEn

Inv and AQu
Inv, and language adapters

AEn
Lang and AQu

Lang with MLM for which the output
of the last layer is passed through AEn

Inv
−1. We then

train a task adapter for the NER task ANER
Task on the

English NER training set. During training, em-
beddings are passed through AEn

Inv. At every layer
of the model the data is first passed through the
fixed AEn

Lang and then into the NER adapter ANER
Task .

For zero-shot inference, the English invertible and
language adapters AEn

Inv and AEn
Lang are replaced

with their Quechua counterparts AQu
Inv and AQu

Lang

while the data is still passed through the NER task
adapter ANER

Task .

5 Experiments

Data We conduct experiments on three tasks:
Named entity recognition (NER), question an-
swering (QA), and causal commonsense reason-
ing (CCR). For NER, we use the WikiANN (Pan
et al., 2017) dataset, which was partitioned into
train, development, and test portions by Rahimi
et al. (2019). For QA, we employ the XQuAD
dataset (Artetxe et al., 2020), a cross-lingual ver-
sion of SQuAD (Rajpurkar et al., 2016). For CCR,
we rely on XCOPA (Ponti et al., 2020a), a cross-
lingual version of COPA (Roemmele et al., 2011).

Languages The partitioned version of WikiANN
covers 176 languages. In order to obtain a compre-
hensive comparison to state-of-the-art cross-lingual
methods under different evaluation conditions, we
select languages based on: a) variance in data
availability (by selecting languages with a range

Language
ISO
code

Language
family

# of Wiki
articles

Covered
by SOTA?

English en Indo-European 6.0M X
Japanese ja Japonic 1.2M X
Chinese zh Sino-Tibetan 1.1M X
Arabic ar Afro-Asiatic 1.0M X
Javanese jv Austronesian 57k X
Swahili sw Niger-Congo 56k X
Icelandic is Indo-European 49k X
Burmese my Sino-Tibetan 45k X
Quechua qu Quechua 22k
Min Dong cdo Sino-Tibetan 15k
Ilokano ilo Austronesian 14k
Mingrelian xmf Kartvelian 13k
Meadow Mari mhr Uralic 10k
Maori mi Austronesian 7k
Turkmen tk Turkic 6k
Guarani gn Tupian 4k

Table 1: Languages in our NER evaluation.

of respective Wikipedia sizes); b) their presence
in pretrained multilingual models; more precisely,
whether data in the particular language was in-
cluded in the pretraining data of both multilingual
BERT and XLM-R or not; and c) typological di-
versity to ensure that different language types and
families are covered. In total, we can discern four
categories in our language set: 1) high-resource lan-
guages and 2) low-resource languages covered by
the pretrained SOTA multilingual models (i.e., by
mBERT and XLM-R); as well as 3) low-resource
languages and 4) truly low-resource languages not
covered by the multilingual models. We select
four languages from different language families for
each category. We highlight characteristics of the
16 languages from 11 language families in Table 1.

We evaluate on all possible language pairs (i.e.,
on the Cartesian product), using each language as
a source language with every other language (in-
cluding itself) as a target language. This subsumes
both the standard zero-shot cross-lingual transfer
setting (Hu et al., 2020) as well as the standard
monolingual in-language setting.

For CCR and QA, we evaluate on the 12 and 11
languages provided in XCOPA and XQuAD respec-
tively, with English as source language. XCOPA
contains a typologically diverse selection of lan-
guages including two languages (Haitian Creole
and Quechua) that are unseen by our main model.
XQuAD comprises slightly less typologically di-
verse languages that are mainly high-resource.
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Model en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn avg

XLM-RBase 44.2 38.2 40.4 36.4 37.4 42.8 47.1 26.3 27.4 18.1 28.8 35.0 16.7 31.7 20.6 31.2 32.6
XLM-RBase MLM-SRC 39.5 45.2 34.7 17.7 34.5 35.3 43.1 20.8 26.6 21.4 28.7 22.4 18.1 25.0 27.6 24.0 29.0
XLM-RBase MLM-TRG 54.8 47.4 54.7 51.1 38.7 48.1 53.0 20.0 29.3 16.6 27.4 24.7 15.9 26.4 26.5 28.5 35.2

MAD-XBase – LAD – INV 44.5 38.6 40.6 42.8 32.4 43.1 48.6 23.9 22.0 10.6 23.9 27.9 13.2 24.6 18.8 21.9 29.8
MAD-XBase – INV 52.3 46.0 46.2 56.3 41.6 48.6 52.4 23.2 32.4 27.2 30.8 33.0 23.5 29.3 30.4 28.4 37.6
MAD-XBase 55.0 46.7 47.3 58.2 39.2 50.4 54.5 24.9 32.6 24.2 33.8 34.3 16.8 31.7 31.9 30.4 38.2

mBERT 48.6 50.5 50.6 50.9 45.3 48.7 51.2 17.7 31.8 20.7 33.3 26.1 20.9 31.3 34.8 30.9 37.1
MAD-XmBERT 52.8 53.1 53.2 55.5 46.3 50.9 51.4 21.0 37.7 22.1 35.0 30.0 18.6 31.8 33.0 25.1 38.6

XLM-RLarge 47.10 46.52 46.43 45.15 39.21 43.96 48.69 26.18 26.39 15.12 22.80 33.67 19.86 27.70 29.56 33.78 34.6
MAD-XLarge 56.30 53.37 55.6 59.41 40.40 50.57 53.22 24.55 33.89 26.54 30.98 33.37 24.31 28.03 30.82 26.38 39.2

Table 2: NER F1 scores averaged over all 16 target languages when transferring from each source language (i.e.
the columns are source languages). The vertical dashed line distinguishes between languages seen in multilingual
pretraining and the unseen ones (see also Table 1).

5.1 Baselines

The baseline models are based on different ap-
proaches to multilingual model adaptation for
cross-lingual transfer, discussed previously in §3.

XLM-R The main model we compare against is
XLM-R (Conneau et al., 2020), the current state-of-
the-art model for cross-lingual transfer (Hu et al.,
2020). It is a Transformer-based model pretrained
for 100 languages on large cleaned Common Crawl
corpora (Wenzek et al., 2020). For efficiency, we
use the XLM-R Base configuration as the basis for
most of our experiments. However, we note that
the main idea behind the MAD-X framework is
not tied to any particular pretrained model, and
the framework can be easily adapted to other pre-
trained multilingual models as we show later in
§6 (e.g., multilingual BERT). First, we compare
against XLM-R in the standard setting where the
entire model is fine-tuned on labelled data of the
task in the source language.

XLM-RBase MLM-SRC; XLM-RBase MLM-
TRG In §3, we have proposed target language adap-
tation as a simple method to adapt pretrained mul-
tilingual models for better cross-lingual generali-
sation on the downstream task. As a sanity check,
we also compare against adapting to the source lan-
guage data; we expect it to improve in-language
performance but not to help with transfer. In partic-
ular, we fine-tune XLM-R with MLM on unlabelled
source language (XLM-RBase MLM-SRC) and tar-
get language data (XLM-RBase MLM-TRG) prior
to task-specific fine-tuning.

5.2 MAD-X: Experimental Setup

For the MAD-X framework, unless noted other-
wise, we rely on the XLM-R Base architecture; we
evaluate the full MAD-X, MAD-X without invert-

ible adapters (–INV), and also MAD-X without
language and invertible adapters (– LAD – INV).
We use the Transformers library (Wolf et al., 2020)
for all our experiments. For fine-tuning via MLM
on unlabelled data, we train on the Wikipedia data
of the corresponding language for 250,000 steps,
with a batch size of 64 and a learning rate of 5e− 5
and 1e−4 for XLM-R (also for the -SRC and -TRG

variants) and adapters, respectively. We train mod-
els on NER data for 100 epochs with a batch size
of 16 and 8 for high-resource and low-resource lan-
guages, respectively, and a learning rate of 5e− 5
and 1e− 4 for XLM-R and adapters, respectively.
We choose the best checkpoint for evaluation based
on validation performance. Following Pfeiffer et al.
(2020a), we learn language adapters, invertible
adapters, and task adapters with dimensionalities of
384, 192 (384 for both directions), and 48, respec-
tively. XLM-R Base has a hidden layer size of 768,
so these adapter sizes correspond to reductions of
2, 2, and 16.

For NER, we conduct five runs of fine-tuning on
the WikiAnn training set of the source language—
except for XLM-RBase MLM-TRG for which we
conduct one run for efficiency purposes for every
source language–target language combination. For
QA, we conduct three runs of fine-tuning on the En-
glish SQuAD training set, evaluate on all XQuAD
target languages, and report mean F1 and exact
match (EM) scores. For CCR, we conduct three
runs of fine-tuning on the respective English train-
ing set, evaluate on all XCOPA target languages,
and report accuracy scores.

6 Results and Discussion

Named Entity Recognition As our main sum-
mary of results, we average the cross-lingual trans-
fer results of each method for each source language
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across all 16 target languages on the NER dataset.
We show the aggregated results in Table 2. More-
over, in the appendix we report the detailed results
for all methods across each single language pair,
as well as a comparison of methods on the most
common setting with English as source language.

In general, we observe that XLM-R perfor-
mance is indeed lowest for unseen languages (the
right half of the table after the vertical dashed line).
XLM-RBase MLM-SRC performs worse than
XLM-R, which indicates that source-language fine-
tuning is not useful for cross-lingual transfer in
general.5 On the other hand, XLM-RBase MLM-
TRG is a stronger transfer method than XLM-R
on average, yielding gains in 9/16 target languages.
However, its gains seem to vanish for low-resource
languages. Further, there is another disadvantage,
outlined in §3: XLM-RBase MLM-TRG requires
fine-tuning the full large pretrained model sepa-
rately for each target language in consideration,
which can be prohibitively expensive.

MAD-X without language and invertible
adapters performs on par with XLM-R for almost
all languages present in the pretraining data (left
half of the table). This mirrors findings in the mono-
lingual setting where task adapters have been ob-
served to achieve performance similar to regular
fine-tuning while being more parameter-efficient
(Houlsby et al., 2019). However, looking at unseen
languages, the performance of MAD-X that only
uses task adapters deteriorates significantly com-
pared to XLM-R. This shows that task adapters
alone are not expressive enough to bridge the dis-
crepancy when adapting to an unseen language.

Adding language adapters to MAD-X improves
its performance across the board, and their use-
fulness is especially pronounced for low-resource
languages. Language adapters help capture the
characteristics of the target language and con-
sequently provide boosts for unseen languages.
Even for high-resource languages, the addition of
language-specific parameters yields substantial im-
provements. Finally, invertible adapters provide
further gains and generally outperform only using
task and language adapters: for instance, we ob-
serve gains with MAD-X over MAD-X –INV on
13/16 target languages. Overall, the full MAD-X
framework improves upon XLM-R by more than
5 F1 points on average.

5However, there are some examples (e.g., JA, TK) where it
does yield slight gains over the standard XLM-R transfer.
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Figure 3: Relative F1 improvement of MAD-XBase

over XLM-RBase in cross-lingual NER transfer.

To demonstrate that our framework is model-
agnostic, we also employ two other strong multi-
lingual models, XLM-RLarge and mBERT as foun-
dation for MAD-X and show the results in Table
2. MAD-X shows consistent improvements even
over stronger base pretrained models.

For a more fine-grained impression of the per-
formance of MAD-X in different languages, we
show its relative performance against XLM-R in
the standard setting in Figure 3. We observe the
largest differences in performance when transfer-
ring from high-resource to low-resource and un-
seen languages (top-right quadrant of Figure 3),
which is arguably the most natural setup for cross-
lingual transfer. In particular, we observe strong
gains when transferring from Arabic, whose script
might not be well represented in XLM-R’s vo-
cabulary. We also detect strong performance in
the in-language monolingual setting (diagonal) for
the subset of low-resource languages. This indi-
cates that MAD-X may help bridge the perceived
weakness of multilingual versus monolingual mod-
els. Finally, MAD-X performs competitively even
when the target language is high-resource.6

Causal Commonsense Reasoning We show re-
sults on transferring from English to each target
language on XCOPA in Table 3. For brevity, we
only show the results of the best fine-tuning set-

6In the appendix, we also plot relative performance of
the full MAD-X method (with all three adapter types) ver-
sus XLM-RBase MLM-TRG across all language pairs. The
scores lead to similar conclusions as before: the largest bene-
fits of MAD-X are observed for the set of low-resource target
languages (i.e., the right half of the heatmap). The scores also
again confirm that the proposed XLM-RBase MLM-TRG
transfer baseline is more competitive than the standard XLM-
R transfer across a substantial number of language pairs.
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Model en et ht id it qu sw ta th tr vi zh avg

XLM-RBase 66.8 58.0 51.4 65.0 60.2 51.2 52.0 58.4 62.0 56.6 65.6 68.8 59.7
XLM-RBase MLM-TRG 66.8 59.4 50.0 71.0 61.6 46.0 58.8 60.0 63.2 62.2 67.6 67.4 61.2

MAD-XBase 68.3 61.3 53.7 65.8 63.0 52.5 56.3 61.9 61.8 60.3 66.1 67.6 61.5

Table 3: Accuracy scores of all models on the XCOPA test sets when transferring from English. Models are first
fine-tuned on SIQA and then on the COPA training set.

en ar de el es hi ru th tr vi zh avg

XLM-RBase 83.6 / 72.1 66.8 / 49.1 74.4 / 60.1 73.0 / 55.7 76.4 / 58.3 68.2 / 51.7 74.3 / 58.1 66.5 / 56.7 68.3 / 52.8 73.7 / 53.8 51.3 / 42.0 70.6 / 55.5
XLM-RBase MLM-TRG 84.7 / 72.6 67.0 / 49.2 73.7 / 58.8 73.2 / 55.7 76.6 / 58.3 69.8 / 53.6 74.3 / 57.9 67.0 / 55.8 68.6 / 53.0 75.5 / 54.9 52.2 / 43.1 71.1 / 55.7

MAD-XBase – INV 83.3 / 72.1 64.0 / 47.1 72.0 / 55.8 71.0 / 52.9 74.6 / 55.5 67.3 / 51.0 72.1 / 55.1 64.1 / 51.8 66.2 / 49.6 73.0 / 53.6 50.9 / 40.6 67.0 / 53.2
MAD-XBase 83.5 / 72.6 65.5 / 48.2 72.9 / 56.0 72.9 / 54.6 75.9 / 56.9 68.2 / 51.3 73.1 / 56.7 67.8 / 55.9 67.0 / 49.8 73.7 / 53.3 52.7 / 42.8 70.3 / 54.4

Table 4: F1 / EM scores on XQuAD with English as the source language for each target language.

ting from Ponti et al. (2020a)—fine-tuning first on
SIQA (Sap et al., 2019) and on the English COPA
training set—and report other possible settings in
the appendix. Target language adaptation outper-
forms XLM-RBase while MAD-XBase achieves
the best scores. It shows gains in particular for
the two unseen languages, Haitian Creole (ht) and
Quechua (qu). Performance on the other languages
is also generally competitive or better.

Question Answering The results on XQuAD
when transferring from English to each target lan-
guage are provided in Table 4. The main finding is
that MAD-X achieves similar performance to the
XLM-R baseline. As before, invertible adapters
generally improve performance and target language
adaptation improves upon the baseline setting. We
note that all languages included in XQuAD can
be considered high-resource, with more than 100k
Wikipedia articles each (cf. Wikipedia sizes of
NER languages in Table 1). The corresponding
setting can be found in the top-left quadrant in Fig-
ure 3 where relative differences are comparable.

These and XCOPA results demonstrate that,
while MAD-X excels at transfer to unseen and low-
resource languages, it achieves competitive perfor-
mance even for high-resource languages and on
more challenging tasks. These evaluations also hint
at the modularity of the adapter-based MAD-X ap-
proach, which holds promise of quick adaptation
to more tasks: we use exactly the same language-
specific adapters in NER, CCR, and QA for lan-
guages such as English and Mandarin Chinese that
appear in all three evaluation language samples.

7 Further Analysis

Impact of Invertible Adapters We also analyse
the relative performance difference of MAD-X
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Figure 4: Cross-lingual NER performance of MAD-X
transferring from English to the target languages with
invertible and language adapters trained on target lan-
guage data for different numbers of iterations. Shaded
regions denote variance in F1 scores across 5 runs.

Model + Params % Model

MAD-XBase 8.25M 3.05
MAD-XBase – INV 7.96M 2.94
MAD-XBase – LAD – INV 0.88M 0.32

Table 5: Number of parameters added to XLM-R Base,
and as a fraction of its parameter budget (270M).

with and without invertible adapters for each source
language–target language pair on the NER data
set (see Section D in the appendix). Invertible
adapters improve performance for many transfer
pairs, and particularly when transferring to low-
resource languages. Performance is only consis-
tently lower with a single low-resource language as
source (Maori), likely due to variation in the data.

Sample Efficiency The main adaptation bottle-
neck of MAD-X is training language adapters and
invertible adapters. However, due to the modularity
of MAD-X, once trained, these adapters have an
advantage of being directly reusable (i.e., “plug-
and-playable”) across different tasks (see the dis-
cussion in §6). To estimate the sample efficiency of
adapter training, we measure NER performance on
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several low-resource target languages (when trans-
ferring from English as the source) conditioned on
the number of training iterations. The results are
given in Figure 4. They reveal that we can achieve
strong performance for the low-resource languages
already at 20k training iterations, and longer train-
ing offers modest increase in performance.

Moreover, in Table 5 we present the number
of parameters added to the original XLM-R Base
model per language for each MAD-X variant. The
full MAD-X model for NER receives an additional
set of 8.25M adapter parameters for every language,
which makes up only 3.05% of the original model.

8 Conclusion

We have proposed MAD-X, a general modular
framework for transfer across tasks and languages.
It leverages a small number of additional parame-
ters to mitigate the capacity issue which fundamen-
tally hinders current multilingual models. MAD-X
is model-agnostic and can be adapted to any current
pre-trained multilingual model as foundation. We
have shown that it is particularly useful for adapt-
ing to languages not covered by the multilingual
model’s training model, while also achieving com-
petitive performance on high-resource languages.

In future work, we will apply MAD-X to other
pre-trained models, and employ adapters that are
particularly suited for languages with certain prop-
erties (e.g. with different scripts). We will also eval-
uate on additional tasks, and investigate leverag-
ing pre-trained language adapters from related lan-
guages for improved transfer to truly low-resource
languages with limited monolingual data.
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Marinela Parovic, Roi Reichart, and Anna Korhonen.
2020b. Parameter space factorization for zero-shot
learning across tasks and languages. Transactions of
the Association for Computational Linguistics 2020.

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019.
Massively multilingual transfer for NER. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 151–164.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages
2383–2392.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-
9 December 2017, Long Beach, CA, USA, pages
506–516.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2018. Efficient parametrization of multi-
domain deep neural networks. In 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 8119–8127.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In Logical Formalizations of Commonsense
Reasoning, Papers from the 2011 AAAI Spring Sym-
posium, Technical Report SS-11-06, Stanford, Cali-
fornia, USA, March 21-23, 2011.
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gan Funtowicz, and Jamie Brew. 2020. Hugging-
Face’s Transformers: State-of-the-art Natural Lan-
guage Processing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (System Demonstrations), EMNLP 2020,
Virtual Conference, 2020.

Shijie Wu, Alexis Conneau, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Emerging cross-
lingual structure in pretrained language models. In
Proceedings of the 58th Conference of the Associa-
tion for Computational Linguistics, ACL 2020, Vir-
tual Conference, July 6-8, 2020, pages 6022–6034.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:
The surprising cross-lingual effectiveness of BERT.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 833–844.

A Evaluation data

• Named Entity Recognition (NER). Data:
WikiANN (Rahimi et al., 2019). Available
online at:
www.amazon.com/clouddrive/share/

d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN.

• Causal Commonsense Reasoning (CCR).
Data: XCOPA (Ponti et al., 2020a). Avail-
able online at:
github.com/cambridgeltl/xcopa

• Question Answering (QA). Data: XQuAD
(Artetxe et al., 2020). Available online at:
github.com/deepmind/xquad

B NER zero-shot results from English

We show the F1 scores when transferring from
English to the other languages averaged over five
runs in Table 6.

C NER results per language pair

We show the F1 scores on the NER dataset across
all combinations of source and target language
for all of our comparison methods in Figures
5 (XLM-RBase), 6 (XLM-RBase MLM-SRC),
7 (XLM-RBase MLM-TRG), 8 (MAD-XBase –
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en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn avg

mBERT 84.8 26.7 38.5 38.7 57.8 66.0 65.7 42.9 54.9 14.20 63.5 31.1 21.8 46.0 47.2 45.4 44.0
XLM-R 83.0 15.2 19.6 41.3 56.1 63.5 67.2 46.9 58.3 20.47 61.3 32.2 15.9 41.8 43.4 41.0 41.6
XLM-RBase MLM-SRC 84.2 8.45 11.0 27.3 44.8 57.9 59.0 35.6 52.5 21.4 60.3 22.7 22.7 38.1 44.0 41.7 36.5
XLM-RBase MLM-TRG 84.2 9.30 15.5 44.5 50.2 77.7 71.7 55.5 68.7 47.6 84.7 60.3 43.6 56.3 56.4 50.6 52.8

MAD-X – LAD – inv 82.0 15.6 20.3 41.0 54.4 66.4 67.8 48.8 57.8 16.9 59.9 36.9 14.3 44.3 41.9 42.9 41.9
MAD-X – INV 82.2 16.8 20.7 36.9 54.1 68.7 71.5 50.0 59.6 39.2 69.9 54.9 48.3 58.1 53.1 52.8 50.3
MAD-X 82.3 19.0 20.5 41.8 55.7 73.8 74.5 51.9 66.1 36.5 73.1 57.6 51.0 62.1 59.7 55.1 53.2

Table 6: NER F1 scores for zero-shot transfer from English.

LAD – INV), 9 (MAD-XBase – INV), 10 (MAD-
XBase), 11 (mBERT), 12 (MAD-XmBERT ) , 13
(XLM-RLarge), and 14 (MAD-XmBERT ). Each
score is averaged over five runs.

D Relative improvement of MAD-X over
baselines in cross-lingual NER
transfer

We show the heatmaps which depict relative F1
improvements of the full MAD-XBase framework
in the cross-lingual NER transfer task over: (a)
the baseline model XLM-RBase MLM-TRG (Fig-
ure 15) and (b) the MAD-XBase variant without in-
vertible adapters: MAD-XBase –INV (Figure 16).

The heatmap which depicts relative F1 improve-
ments of the full MAD-XmBERT framework over
mBERT can be found in Figure 17.

Finally, the heatmap which depicts relative F1
improvements of the full MAD-XLarge framework
over XLM-RLarge can be found in Figure 18.

E XCOPA results for all settings

We show the results on XCOPA for all fine-tuning
settings in Table 7.
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en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn
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80.4 8.3 10.3 23.5 42.7 57.9 56.1 24.5 54.1 19.1 51.7 21.6 20.0 30.3 38.6 37.8
35.9 73.3 53.1 14.3 23.4 22.0 26.7 44.2 33.4 9.4 29.5 21.4 7.8 13.6 25.5 14.2
37.5 48.7 80.0 12.9 25.8 29.4 31.5 40.4 37.5 15.7 35.0 20.2 11.4 21.4 41.1 23.8
20.8 4.4 9.4 88.6 16.8 12.5 25.5 24.0 18.4 2.8 6.9 30.1 2.7 15.9 9.9 9.6
37.5 1.8 3.6 28.8 52.8 34.7 46.4 21.8 28.4 19.1 21.8 24.4 30.0 23.9 31.4 37.4
47.8 6.6 8.2 24.6 41.9 84.1 49.5 25.3 35.1 24.0 46.8 27.0 30.0 29.4 33.9 40.5
51.7 9.5 14.6 26.0 47.5 53.9 81.8 40.6 50.1 24.1 40.8 34.4 37.8 32.6 45.2 46.5
13.3 4.2 7.5 10.3 12.1 12.6 23.9 60.8 10.6 5.6 15.0 15.2 14.6 18.5 17.9 8.1
24.2 0.3 0.9 20.5 26.3 24.3 21.6 16.3 53.6 12.5 35.9 11.3 17.8 19.4 23.2 18.8
9.7 0.5 1.4 4.3 13.7 15.0 17.9 4.4 9.5 36.2 5.4 4.2 25.0 13.6 15.5 17.3

17.2 4.5 5.6 4.2 14.6 21.4 12.0 10.3 16.2 10.5 62.9 9.6 22.1 14.8 20.8 8.5
16.1 1.2 2.8 11.8 19.8 13.7 25.5 18.3 17.2 12.2 7.3 50.8 25.4 19.0 16.0 16.8
10.3 0.9 1.9 4.2 8.1 13.9 11.6 1.8 14.2 15.6 6.5 2.3 83.7 10.8 17.2 12.2
16.0 5.8 8.7 13.7 15.9 16.5 31.4 23.1 14.9 18.2 11.6 24.6 8.7 57.1 23.5 25.1
26.5 1.3 3.0 12.0 26.6 29.6 30.4 15.3 26.1 14.6 24.2 14.3 20.3 18.2 56.5 29.6
27.2 0.9 2.5 13.7 26.6 26.2 33.2 18.6 29.2 18.5 19.6 15.1 25.3 20.8 35.2 50.6

Figure 5: Mean F1 scores of XLM-RBase in the standard setting (XLM-RBase) for cross-lingual transfer on NER.
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84.0 9.4 11.2 24.6 42.8 51.9 49.3 21.5 54.6 14.8 62.5 19.3 15.8 27.6 39.9 37.6
44.6 72.3 51.5 16.8 32.0 30.8 31.2 43.8 40.2 9.8 34.0 23.9 13.9 28.6 39.3 26.7
41.6 46.8 81.9 12.8 22.8 32.2 32.8 31.9 41.0 21.3 40.3 21.9 9.0 26.2 41.4 31.4
29.2 3.6 6.1 90.4 11.3 17.1 17.7 6.4 21.2 1.3 12.7 16.5 3.3 8.4 20.7 8.6
48.3 0.2 0.5 33.0 71.5 46.6 52.2 22.7 33.9 20.1 42.2 18.1 34.8 29.7 39.2 41.9
55.2 5.7 5.1 30.5 41.0 88.4 51.9 19.6 44.0 16.7 42.8 23.3 30.2 25.5 37.5 47.0
55.4 9.6 12.2 21.4 50.1 53.6 86.7 21.9 56.2 23.5 43.9 25.3 30.4 30.3 49.1 50.3
20.4 0.7 1.8 16.4 21.8 18.4 32.2 71.3 16.9 6.8 11.6 10.0 27.4 25.4 15.6 16.3
35.5 0.4 1.3 27.4 26.7 34.4 34.9 19.3 70.7 16.1 28.7 20.7 15.2 22.3 33.8 37.8
22.0 0.7 2.5 6.2 14.1 15.6 27.7 3.7 10.9 66.9 3.9 8.2 25.4 11.9 20.9 26.8
36.2 1.7 1.9 17.0 23.1 40.5 27.5 16.7 31.4 14.4 78.2 11.0 15.9 22.0 29.8 31.5
23.9 0.1 0.5 15.9 25.5 21.8 37.1 19.6 24.2 10.1 8.5 74.9 24.8 24.1 18.1 28.6
17.6 0.4 1.1 9.0 8.9 18.8 18.3 2.4 15.8 9.4 13.2 5.4 85.6 7.9 19.6 22.1
25.0 1.6 1.7 12.1 13.5 18.5 29.2 13.6 23.9 13.8 15.5 17.5 4.3 71.4 24.0 25.2
39.5 2.3 3.0 23.6 28.2 36.0 34.8 21.0 29.7 16.9 31.1 19.0 19.9 23.2 70.8 43.0
33.7 0.1 0.2 14.5 27.5 27.6 31.0 6.7 36.0 17.7 21.8 10.5 14.8 15.8 40.4 62.6

Figure 6: Mean F1 scores of XLM-RBase with MLM fine-tuning on source language data (XLM-RBase MLM-
SRC) for cross-lingual transfer on NER.
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en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn
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84.2 9.3 15.5 44.5 50.2 77.8 71.8 55.6 68.7 47.6 84.8 60.3 43.7 56.3 56.5 50.7
47.5 67.6 61.5 26.0 46.6 44.3 62.7 54.9 47.9 38.5 44.7 47.9 15.4 42.4 60.9 49.8
48.5 55.8 81.9 23.1 40.9 53.8 61.2 58.5 47.2 48.9 54.5 49.1 77.5 46.4 70.8 56.6
46.6 10.6 14.9 90.4 60.5 67.1 68.6 57.9 56.0 35.6 62.3 55.8 40.0 40.3 54.0 56.5
47.7 0.1 0.1 47.5 70.6 58.6 46.5 34.6 56.9 27.4 47.1 49.8 22.6 35.2 31.1 43.3
54.9 9.7 18.2 48.8 46.9 88.4 66.6 50.0 61.3 36.7 75.2 52.4 25.6 38.8 38.7 57.7
59.7 14.4 17.9 53.5 53.8 56.6 87.4 54.7 72.0 47.5 50.0 59.0 58.5 49.0 56.9 56.7
25.6 5.2 8.3 8.1 19.5 22.5 41.3 70.3 7.3 21.1 5.9 25.8 0.0 19.5 30.5 9.3
39.7 0.3 0.2 35.2 38.0 35.2 45.2 26.8 70.7 18.8 23.3 25.9 14.9 16.9 32.9 44.6
15.4 0.0 0.1 4.2 12.1 25.3 34.8 21.1 10.3 67.0 2.8 5.2 13.7 11.1 24.8 17.9
36.9 1.4 7.0 20.8 26.4 46.6 32.3 29.3 24.5 12.8 85.3 36.0 6.6 14.8 25.7 31.3
30.0 0.8 4.4 28.1 19.2 45.4 45.8 30.4 7.7 24.0 8.4 74.9 31.4 11.1 15.1 18.7
17.9 0.2 0.1 6.9 11.6 12.1 23.7 10.2 8.1 24.8 2.8 5.0 88.1 5.8 23.9 13.5
22.3 0.6 2.0 20.6 25.3 21.9 52.8 21.1 28.7 23.6 14.2 30.0 28.6 70.7 40.6 19.6
30.2 2.0 4.6 17.2 33.0 31.8 33.3 7.1 31.6 32.0 19.0 34.6 15.2 23.7 70.8 37.2
35.9 0.1 0.6 27.5 38.6 29.7 52.0 17.8 31.1 36.6 10.8 25.4 24.7 23.6 36.1 66.2

Figure 7: Mean F1 scores of XLM-RBase with MLM fine-tuning on target language data (XLM-RBase MLM-
TRG) for cross-lingual transfer on NER.
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82.0 15.6 20.4 41.0 54.5 66.4 67.8 48.8 57.8 16.9 59.9 36.9 14.3 44.3 41.9 42.9
41.7 64.8 55.3 25.7 34.4 33.9 50.6 52.8 41.6 15.5 39.8 32.1 15.7 27.1 43.7 42.7
43.5 47.2 75.1 24.7 37.8 37.1 53.0 48.5 41.5 19.5 44.5 32.5 18.3 29.4 51.5 46.2
46.3 10.8 20.6 87.9 52.4 44.0 65.3 55.3 54.8 12.8 43.7 52.9 16.0 29.5 46.3 46.3
40.7 0.7 1.8 31.7 59.0 39.9 51.6 29.7 37.7 19.3 31.0 32.0 32.2 31.7 35.3 43.8
56.5 11.6 18.6 38.2 49.3 87.6 62.8 37.9 45.1 21.2 55.5 38.7 32.6 39.4 47.6 46.3
56.9 18.1 25.3 48.4 56.6 60.6 83.6 52.0 59.5 27.7 47.3 57.8 41.3 40.9 51.0 50.8
20.4 3.2 9.4 21.3 20.7 20.8 37.6 62.4 21.0 16.4 24.2 31.1 13.3 25.1 31.6 23.2
31.1 0.3 1.3 23.0 28.6 19.9 26.2 19.2 56.6 17.3 26.6 15.2 10.9 20.4 25.6 29.7
10.8 0.6 0.8 1.7 6.8 12.5 12.3 4.0 10.2 26.9 9.5 3.4 21.2 14.1 17.2 18.0
27.5 6.0 8.5 14.7 19.1 34.2 22.0 16.4 32.4 13.5 67.5 19.6 21.9 31.2 26.9 21.5
30.6 2.9 7.9 22.8 26.7 27.4 38.4 31.6 34.4 14.3 21.7 58.3 27.1 31.5 31.4 38.6
10.1 0.2 2.0 3.4 8.2 9.7 12.0 10.0 14.0 9.8 5.4 6.6 76.9 10.3 17.0 15.2
22.2 5.8 8.8 15.4 24.2 24.8 31.6 28.2 28.1 17.7 24.9 28.4 13.6 56.0 29.7 34.3
23.1 0.3 1.4 10.9 23.4 21.1 23.5 13.9 25.3 14.3 21.6 13.7 11.8 18.3 45.5 32.5
27.3 0.7 3.2 12.9 23.8 21.5 35.0 17.8 32.8 17.5 22.6 21.5 10.8 23.3 31.3 48.1

Figure 8: Mean F1 scores of our framework without language adapters and invertible adapters (MAD-XBase –
LAD – INV) for cross-lingual transfer on NER.
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82.2 16.9 20.7 36.9 54.1 68.7 71.5 50.0 59.6 39.2 69.9 54.9 48.3 58.1 53.1 52.9
41.1 65.4 57.2 24.9 39.8 46.1 54.3 56.1 45.0 36.7 39.8 48.0 24.1 49.4 59.9 48.9
47.8 49.0 77.4 20.4 41.4 48.5 55.2 53.6 38.7 43.2 45.8 47.0 16.9 47.6 55.5 50.8
56.3 16.9 23.3 89.1 65.3 62.2 75.5 55.6 65.9 40.7 63.3 66.9 57.3 49.4 59.0 53.9
40.3 4.2 13.0 37.8 71.6 54.2 57.6 39.2 46.7 35.3 48.7 46.2 33.0 45.5 49.4 43.1
55.1 7.7 13.2 38.7 54.7 89.6 66.4 46.1 54.1 31.5 74.2 51.4 45.7 49.4 53.0 47.0
56.2 14.0 21.7 42.6 59.4 58.8 85.9 48.1 61.4 43.3 56.3 67.3 51.3 52.8 61.5 58.1
14.8 2.3 7.2 11.5 19.4 19.0 37.0 66.5 10.9 19.4 8.4 32.3 37.4 33.8 30.1 21.6
33.8 3.5 4.6 29.2 32.9 32.5 37.9 31.4 73.0 28.8 34.4 39.5 31.6 31.0 33.4 40.5
25.3 0.6 2.3 12.3 23.5 24.6 39.4 33.8 27.3 57.4 14.4 41.1 33.0 27.7 34.2 39.3
33.9 5.8 10.0 19.5 26.4 44.7 38.0 24.5 36.3 21.8 81.8 24.0 25.1 34.1 32.2 35.0
32.7 4.2 10.2 23.7 32.3 28.0 45.8 37.1 38.1 37.6 24.7 71.2 31.9 35.6 38.0 37.9
18.0 3.0 3.7 9.5 16.9 18.7 25.6 24.1 20.0 27.8 11.7 29.7 87.3 20.6 29.2 30.6
24.1 2.4 4.7 17.2 28.5 19.9 42.5 29.2 35.5 28.6 25.2 40.4 29.4 71.0 38.8 31.4
35.1 0.4 3.0 17.8 36.8 26.5 48.7 22.4 29.5 32.0 24.2 31.0 33.8 33.4 72.2 39.4
34.0 0.4 3.8 13.1 32.8 24.9 45.2 25.3 35.9 28.4 14.1 26.5 24.8 35.5 43.8 66.2

Figure 9: Mean F1 scores of our framework without invertible adapters (MAD-XBase – INV) for cross-lingual
transfer on NER.
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82.2 19.0 20.5 41.8 55.7 73.8 74.5 51.9 66.1 36.5 73.1 57.6 51.0 62.1 59.6 55.1
43.8 65.9 58.3 29.1 34.0 53.8 56.5 54.6 45.3 43.5 38.5 53.5 17.2 47.3 57.9 47.2
45.4 47.6 75.4 26.9 39.1 49.2 55.6 49.5 46.6 50.1 44.1 53.9 27.5 40.0 57.8 47.5
56.5 17.5 24.0 89.4 66.2 62.5 75.8 58.9 74.9 40.4 64.4 62.8 73.0 47.4 60.6 56.4
36.3 9.5 13.6 34.7 70.0 51.1 46.9 30.4 53.4 31.0 45.3 46.1 42.9 34.3 43.3 38.6
56.2 11.6 15.3 43.4 59.7 88.6 65.8 47.4 56.2 35.9 75.5 53.2 52.3 47.4 53.7 45.0
56.8 15.9 24.7 42.4 62.0 61.4 86.3 48.8 63.9 46.4 52.5 68.8 63.5 54.8 63.3 60.4
16.0 1.8 5.3 15.5 21.5 18.8 39.1 66.2 14.1 24.0 13.7 35.5 32.8 38.1 34.3 21.6
33.2 5.0 10.0 31.0 33.6 38.0 34.5 30.7 72.4 23.0 32.8 41.0 27.5 35.0 35.0 39.5
22.3 2.5 4.0 11.0 24.5 21.9 36.7 27.6 17.6 58.0 10.5 33.6 26.3 24.9 31.8 33.9
35.4 6.5 7.4 26.9 34.2 45.9 42.6 28.6 38.9 22.0 85.7 30.5 32.5 34.1 34.2 35.3
32.0 6.9 11.2 21.9 36.8 28.6 48.7 37.6 41.2 41.1 20.6 72.0 36.2 36.9 37.9 39.6
8.6 0.7 1.7 5.3 11.0 11.2 16.1 18.3 9.6 20.0 5.6 21.1 89.5 15.3 18.3 16.6

22.5 4.1 8.7 17.8 31.6 28.1 44.9 35.8 37.8 34.4 17.7 48.2 25.7 74.3 42.2 33.5
31.7 2.0 1.9 17.8 35.7 30.1 47.1 26.3 32.6 34.6 32.4 33.2 31.7 38.8 71.0 44.0
33.7 0.1 0.7 15.9 34.6 26.1 49.0 25.7 31.7 33.1 16.3 34.5 37.2 36.0 43.1 68.2

Figure 10: Mean F1 scores of our complete adapter-based framework (MAD-XBase) for cross-lingual transfer on
NER.
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en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn
Target Language
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zh
ar
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mhr
tk
gn
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ce
 L
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e

84.7 26.9 40.5 41.1 63.0 68.5 69.6 44.9 60.7 13.6 65.0 32.4 22.5 46.1 52.5 46.3
58.6 73.2 68.8 38.3 54.8 51.6 68.7 49.0 51.3 19.3 41.4 44.6 47.5 34.9 54.9 51.4
59.0 48.3 82.2 40.4 53.6 51.3 68.8 50.6 48.5 22.0 41.7 43.4 33.5 42.8 65.2 59.3
62.9 29.2 48.0 89.8 74.1 59.2 74.2 49.2 59.9 18.2 43.4 44.6 25.0 26.3 51.3 60.4
55.9 26.7 41.7 40.0 74.4 62.8 65.7 40.9 47.0 14.1 47.8 34.0 44.2 32.2 45.4 53.5
62.4 23.0 38.9 36.0 61.8 89.6 65.1 39.2 50.3 18.1 65.3 41.7 45.4 40.7 50.2 52.3
62.4 26.1 43.1 46.1 64.8 63.6 85.5 48.2 63.8 17.7 50.8 45.6 46.5 39.1 58.9 58.6
13.7 1.8 4.2 17.7 15.1 10.7 35.1 69.7 5.9 5.5 6.4 20.4 9.6 31.2 23.1 13.0
42.6 15.8 26.2 25.9 32.4 45.9 41.2 23.6 71.8 9.2 41.9 21.8 19.9 27.0 30.1 34.5
18.4 5.5 10.9 12.2 18.4 18.6 27.7 27.1 19.4 48.3 14.2 13.8 19.1 19.4 31.4 28.3
39.2 12.8 22.2 19.6 30.5 53.7 44.4 34.9 44.4 10.0 80.2 22.1 18.7 35.2 34.9 30.8
22.4 2.2 4.9 22.4 21.9 18.4 43.3 35.1 23.6 12.5 11.8 63.2 37.5 31.8 35.6 32.4
18.8 3.1 7.8 12.6 13.6 17.1 27.7 18.4 15.8 11.6 10.2 18.2 87.1 15.3 26.3 31.1
31.1 8.2 15.0 25.0 29.1 28.3 48.8 35.1 35.6 15.5 22.2 33.0 33.4 61.7 42.2 36.6
35.7 7.7 14.5 23.0 36.3 36.5 51.4 32.0 35.6 20.5 27.6 35.7 45.9 37.4 69.2 48.1
39.9 8.0 15.9 23.0 30.0 31.3 49.5 31.7 42.5 13.4 23.4 30.3 22.5 26.2 44.2 62.9

Figure 11: Mean F1 scores of mBERT for cross-lingual transfer on NER.

en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn
Target Language
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zh
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cdo
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tk
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e

83.7 21.8 37.6 35.6 64.0 67.8 72.9 44.0 73.5 20.2 67.0 46.6 41.8 62.6 54.6 51.8
55.9 69.3 64.0 37.6 53.2 49.8 67.4 46.5 56.9 33.9 41.1 53.5 55.4 47.8 64.7 53.2
57.6 46.0 78.9 34.1 52.5 54.8 69.1 49.2 58.5 36.1 59.1 55.4 30.4 48.2 64.2 57.9
63.8 22.9 43.0 89.0 61.2 62.6 73.3 48.0 63.6 28.1 63.3 55.0 51.6 48.0 63.3 50.6
50.5 13.7 27.1 36.4 73.4 54.9 64.0 41.9 57.2 25.1 58.5 42.3 56.0 43.4 47.1 49.7
57.2 19.3 31.6 31.8 59.8 90.0 67.8 42.6 61.3 31.4 75.0 48.1 46.9 50.5 52.1 49.5
59.6 19.1 31.2 34.2 62.5 50.8 85.3 44.3 69.0 30.2 49.8 51.7 60.2 50.6 62.1 61.8
12.5 2.7 6.2 14.2 20.6 12.7 32.5 61.8 12.1 17.0 13.9 32.5 14.0 32.3 30.9 20.0
42.3 12.9 23.8 23.2 39.5 43.8 47.1 34.2 72.9 17.2 50.4 37.3 35.8 39.5 39.2 43.6
23.7 0.9 4.7 11.0 16.0 16.7 36.9 34.0 17.5 51.8 8.9 27.1 20.0 23.8 33.5 26.3
40.2 10.1 17.9 19.7 37.9 53.2 45.2 27.6 38.0 18.1 79.1 30.2 35.0 32.1 41.8 34.3
27.9 2.9 4.4 23.2 28.2 23.4 47.2 35.6 31.6 31.1 15.4 67.5 33.1 35.8 38.7 33.5
12.3 0.2 0.9 4.5 13.0 11.4 23.2 18.1 14.7 20.8 6.7 15.0 88.0 15.1 25.2 28.0
28.6 4.3 10.1 18.4 34.0 25.9 48.3 38.4 34.9 26.7 13.3 40.4 31.4 70.4 44.0 40.4
38.2 7.3 10.7 17.3 40.5 29.7 53.2 32.0 36.8 31.3 16.5 35.3 27.5 34.6 70.3 47.1
28.2 2.1 4.4 11.4 30.8 21.7 42.2 14.8 32.6 20.0 11.4 26.4 29.3 31.7 37.3 56.9

Figure 12: Mean F1 scores of our complete adapter-based framework (MAD-XmBERT ) for cross-lingual transfer
on NER.
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en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn
Target Language
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84.1 16.9 25.3 50.4 58.8 69.0 74.2 49.6 54.1 15.6 63.9 39.0 31.7 47.8 47.5 45.1
52.4 72.9 61.8 34.8 49.5 52.8 62.3 49.3 42.5 14.6 57.0 38.9 20.3 36.4 53.8 45.3
52.0 52.7 80.4 26.6 48.4 50.1 61.5 54.8 40.0 17.4 58.2 43.3 17.0 32.3 60.1 48.1
55.7 19.1 30.0 90.7 62.6 53.5 69.1 57.0 53.5 6.9 40.0 48.8 31.7 26.7 44.5 46.1
51.5 3.8 5.8 38.2 70.2 54.5 62.8 31.4 44.5 19.1 43.0 41.2 36.3 33.1 43.9 48.0
58.7 11.7 18.7 37.0 54.6 88.4 65.2 38.1 46.6 19.6 57.2 37.3 38.7 34.2 45.0 52.4
60.6 13.3 22.8 53.6 58.5 57.8 86.0 45.6 58.5 23.5 48.5 57.0 43.0 41.7 54.7 53.8
26.0 3.2 7.7 23.3 22.7 25.5 43.6 69.4 23.6 11.2 16.9 27.2 28.2 28.3 34.4 27.6
36.4 1.2 3.0 26.5 30.9 33.8 33.6 19.2 65.5 13.2 40.0 20.0 17.7 26.2 25.3 29.8
14.7 0.3 1.7 5.5 9.9 18.9 21.2 6.1 16.6 47.3 14.8 6.9 17.1 17.5 18.5 24.9
28.6 4.5 6.8 13.5 22.4 34.0 25.6 16.9 33.7 11.2 69.2 16.2 9.6 18.3 30.9 23.4
34.2 4.4 8.8 28.0 37.7 33.3 49.5 33.4 35.5 16.6 29.8 67.5 43.7 36.0 37.2 43.0
18.7 0.1 0.4 9.9 14.3 18.4 23.9 16.5 18.6 18.0 14.5 10.0 86.8 15.9 26.1 25.5
26.3 4.2 8.1 18.2 28.1 25.9 41.0 26.3 32.8 18.2 32.2 34.7 18.1 59.6 33.1 36.3
34.5 1.8 3.9 21.2 34.5 35.2 45.0 22.4 31.5 25.2 30.1 28.4 25.1 28.4 63.4 42.3
39.7 1.6 3.6 23.4 43.7 33.9 51.8 25.4 42.5 19.6 28.0 38.6 41.0 35.0 47.9 64.9

Figure 13: Mean F1 scores of XLM-RLarge for cross-lingual transfer on NER.
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84.2 16.2 25.6 38.6 64.5 76.8 78.9 55.5 73.8 41.7 72.0 54.9 42.0 60.6 63.0 52.4
52.1 73.7 65.9 30.4 51.5 56.9 62.8 55.6 57.0 52.0 53.4 55.2 44.1 39.3 56.0 48.1
56.6 56.1 80.3 26.5 51.0 54.8 68.2 56.1 61.1 54.0 61.4 56.3 43.7 48.1 59.4 56.8
63.1 17.4 28.3 91.4 72.4 65.5 78.9 52.7 78.1 51.7 66.9 68.1 52.5 48.4 64.6 50.5
43.1 0.3 0.8 32.5 73.1 52.3 63.3 30.4 48.2 37.4 47.1 38.1 44.5 39.6 51.4 44.2
57.3 7.2 10.4 34.1 59.7 90.6 69.0 39.5 63.7 48.2 73.9 48.5 48.0 48.0 59.4 51.5
57.4 8.9 15.2 42.8 68.2 50.4 87.7 46.2 65.8 51.3 51.8 64.7 55.6 56.0 65.1 64.3
18.4 1.6 4.6 13.9 28.1 21.8 40.8 58.8 20.3 27.1 13.0 26.8 23.7 30.6 37.0 26.3
31.9 1.0 3.2 20.7 35.6 33.7 45.6 19.6 74.5 38.5 39.8 38.5 39.8 35.3 41.7 42.9
28.4 0.3 0.4 12.8 25.3 24.8 43.5 21.7 22.5 63.7 14.4 29.6 35.2 26.9 35.1 40.1
34.6 1.6 1.8 18.8 37.2 46.5 40.2 16.6 45.3 27.8 81.3 28.5 17.5 33.0 36.9 28.1
29.7 4.2 10.5 18.9 37.4 27.4 46.5 27.8 38.5 40.9 24.0 67.5 37.8 41.9 42.1 38.8
17.6 0.0 0.0 8.6 18.3 16.7 32.4 18.8 23.6 29.0 11.0 29.8 92.0 24.9 34.6 31.6
20.7 1.7 3.3 11.2 26.1 26.6 43.6 26.0 36.5 28.2 21.9 34.3 27.1 67.2 38.2 35.9
31.8 0.1 0.1 15.7 40.8 25.7 47.9 18.9 34.3 39.7 18.9 35.1 28.2 39.7 75.9 40.4
23.5 0.0 0.0 8.9 29.9 22.3 42.2 19.1 33.1 28.3 13.4 28.7 35.6 30.9 39.4 66.7

Figure 14: Mean F1 scores of our complete adapter-based framework (MAD-XLarge) for cross-lingual transfer
on NER.
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Model en et ht id it qu sw ta th tr vi zh avg

XLM-RBase
→COPA 57.6 59.8 49.4 58.0 56.0 50.7 57.2 56.6 52.8 56.2 58.5 56.6 55.8

XLM-RBase MLM-TRG→COPA 57.6 57.8 48.6 60.8 54.4 49.5 55.4 55.8 54.2 54.8 57.6 57.2 55.3
XLM-RBase

→SIQA 68.0 59.4 49.2 67.2 63.6 51.0 57.6 58.8 61.6 60.4 65.8 66.0 60.7
XLM-RBase

→SIQA→COPA 66.8 58.0 51.4 65.0 60.2 51.2 52.0 58.4 62.0 56.6 65.6 68.8 59.7
XLM-RBase MLM-TRG→SIQA→COPA 66.8 59.4 50.0 71.0 61.6 46.0 58.8 60.0 63.2 62.2 67.6 67.4 61.2

MAD-XBase
→COPA 48.1 49.0 51.5 50.7 50.7 49.1 52.7 52.5 48.7 53.3 52.1 50.4 50.7

MAD-XBase
→SIQA 67.6 59.7 51.7 66.2 64.4 54.0 53.9 61.3 61.1 60.1 65.4 66.7 61.0

MAD-XBase
→SIQA→COPA 68.3 61.3 53.7 65.8 63.0 52.5 56.3 61.9 61.8 60.3 66.1 67.6 61.5

Table 7: Accuracy scores of all models on the XCOPA test sets when transferring from English. Models are
either only fine-tuned on the COPA training set (→COPA), only fine-tuned on the SIQA training set (→SIQA) or
fine-tuned first on SIQA and then on COPA (→SIQA→COPA).

en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn
Target Language

en
ja
zh
ar
jv

sw
is

my
qu

cdo
ilo
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mi

mhr
tk
gn

So
ur

ce
 L

an
gu
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e

-2.0 9.7 5.0 -2.8 5.5 -4.0 2.8 -3.6 -2.6 -11.1-11.7 -2.7 7.4 5.8 3.2 4.4
-3.7 -1.7 -3.3 3.1 -12.6 9.5 -6.3 -0.2 -2.6 5.0 -6.2 5.6 1.8 4.9 -3.0 -2.5
-3.1 -8.1 -6.5 3.7 -1.7 -4.6 -5.6 -8.9 -0.5 1.2 -10.4 4.8 -50.0 -6.3 -13.0 -9.1
9.8 7.0 9.2 -1.1 5.7 -4.6 7.2 1.1 18.9 4.7 2.1 7.0 33.0 7.1 6.6 -0.1

-11.4 9.4 13.5 -12.8 -0.6 -7.6 0.4 -4.2 -3.5 3.6 -1.8 -3.7 20.3 -1.0 12.3 -4.7
1.2 1.9 -2.9 -5.5 12.8 0.2 -0.8 -2.6 -5.2 -0.8 0.3 0.8 26.7 8.6 15.0 -12.7
-2.9 1.5 6.8 -11.1 8.2 4.7 -1.1 -5.9 -8.0 -1.1 2.5 9.8 4.9 5.8 6.3 3.7
-9.6 -3.4 -3.1 7.4 2.0 -3.7 -2.2 -4.1 6.7 3.0 7.7 9.7 32.8 18.6 3.8 12.3
-6.5 4.7 9.8 -4.1 -4.4 2.8 -10.7 3.9 1.7 4.3 9.5 15.1 12.6 18.1 2.1 -5.1
6.9 2.5 3.9 6.8 12.5 -3.4 1.8 6.5 7.3 -9.0 7.8 28.4 12.6 13.8 7.0 16.0
-1.5 5.1 0.4 6.1 7.8 -0.7 10.3 -0.7 14.4 9.2 0.4 -5.5 25.9 19.3 8.5 4.0
2.1 6.1 6.8 -6.1 17.6 -16.8 2.9 7.2 33.5 17.1 12.2 -2.9 4.8 25.8 22.8 20.9
-9.3 0.5 1.6 -1.6 -0.6 -0.9 -7.6 8.1 1.6 -4.8 2.8 16.1 1.3 9.5 -5.6 3.2
0.3 3.5 6.6 -2.8 6.2 6.1 -7.8 14.7 9.1 10.8 3.5 18.3 -2.9 3.6 1.6 13.9
1.5 0.0 -2.7 0.7 2.7 -1.6 13.8 19.2 1.0 2.6 13.4 -1.4 16.6 15.1 0.1 6.8
-2.2 0.1 0.1 -11.6 -3.9 -3.6 -3.0 7.9 0.6 -3.5 5.5 9.1 12.5 12.4 7.0 2.0

Figure 15: Relative F1 improvement of MAD-XBase over XLM-RBase MLM-TRG in cross-lingual NER transfer.
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en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn
Target Language
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ja
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ar
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cdo
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mi

mhr
tk
gn
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 L

an
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e

0.0 2.1 -0.2 4.9 1.6 5.0 3.0 2.0 6.5 -2.7 3.2 2.7 2.7 4.0 6.5 2.2
2.7 0.6 1.1 4.2 -5.8 7.6 2.1 -1.4 0.3 6.8 -1.3 5.5 -6.8 -2.1 -2.0 -1.7
-2.4 -1.4 -1.9 6.5 -2.2 0.7 0.4 -4.1 7.9 7.0 -1.7 7.0 10.6 -7.5 2.3 -3.2
0.2 0.6 0.7 0.3 0.9 0.3 0.3 3.3 9.0 -0.3 1.1 -4.1 15.7 -2.0 1.6 2.5
-4.0 5.3 0.6 -3.1 -1.6 -3.1 -10.7 -8.8 6.7 -4.3 -3.3 -0.1 9.8 -11.2 -6.0 -4.5
1.0 3.9 2.1 4.6 5.0 -1.0 -0.6 1.3 2.0 4.3 1.3 1.9 6.6 -1.9 0.7 -1.9
0.6 1.9 3.0 -0.2 2.6 2.6 0.4 0.7 2.5 3.1 -3.8 1.6 12.2 2.0 1.7 2.3
1.1 -0.5 -2.0 4.0 2.1 -0.2 2.1 -0.3 3.1 4.6 5.2 3.2 -4.7 4.3 4.3 0.0
-0.6 1.5 5.3 1.8 0.7 5.5 -3.3 -0.7 -0.6 -5.8 -1.6 1.5 -4.2 4.0 1.6 -1.0
-3.1 2.0 1.7 -1.3 1.0 -2.6 -2.7 -6.1 -9.7 0.7 -3.9 -7.5 -6.7 -2.8 -2.4 -5.4
1.5 0.7 -2.6 7.4 7.8 1.2 4.5 4.1 2.6 0.2 3.8 6.5 7.4 0.0 2.0 0.3
-0.7 2.7 1.0 -1.7 4.5 0.6 3.0 0.6 3.2 3.5 -4.1 0.7 4.4 1.3 -0.0 1.7
-9.3 -2.3 -1.9 -4.3 -6.0 -7.5 -9.5 -5.8 -10.4 -7.8 -6.1 -8.6 2.2 -5.3 -11.0-13.9
-1.5 1.8 4.0 0.7 3.0 8.1 2.4 6.6 2.3 5.9 -7.5 7.9 -3.7 3.3 3.4 2.1
-3.4 1.5 -1.1 -0.0 -1.1 3.6 -1.6 3.9 3.1 2.6 8.2 2.2 -2.1 5.4 -1.3 4.6
-0.3 -0.2 -3.1 2.8 1.9 1.1 3.7 0.4 -4.2 4.7 2.2 8.1 12.4 0.6 -0.7 2.0

Figure 16: Relative F1 improvement of MAD-XBase over MAD-XBase –INV in cross-lingual NER transfer.

en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn
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e

-1.0 -5.1 -2.9 -5.6 1.0 -0.7 3.3 -0.9 12.9 6.6 2.0 14.2 19.3 16.5 2.2 5.5
-2.7 -3.9 -4.8 -0.7 -1.5 -1.8 -1.3 -2.5 5.6 14.6 -0.3 8.9 7.9 12.9 9.8 1.8
-1.4 -2.2 -3.3 -6.3 -1.0 3.5 0.3 -1.4 10.0 14.1 17.4 12.1 -3.1 5.4 -1.0 -1.5
0.8 -6.3 -5.0 -0.8 -13.0 3.4 -0.9 -1.3 3.7 9.9 19.9 10.4 26.5 21.8 12.0 -9.8
-5.4 -13.0-14.5 -3.6 -1.1 -7.8 -1.7 1.0 10.2 11.0 10.8 8.3 11.8 11.2 1.8 -3.8
-5.2 -3.7 -7.3 -4.2 -2.1 0.4 2.7 3.5 11.1 13.3 9.8 6.5 1.5 9.8 1.9 -2.9
-2.8 -7.0 -11.9-11.9 -2.3 -12.8 -0.2 -3.9 5.2 12.5 -1.0 6.1 13.7 11.5 3.3 3.2
-1.2 0.9 2.0 -3.5 5.5 2.0 -2.6 -7.8 6.2 11.5 7.4 12.0 4.3 1.1 7.8 7.0
-0.3 -2.9 -2.5 -2.7 7.1 -2.1 5.9 10.5 1.1 8.0 8.5 15.5 15.8 12.5 9.1 9.1
5.3 -4.5 -6.2 -1.1 -2.4 -1.9 9.1 7.0 -1.9 3.6 -5.3 13.3 0.9 4.3 2.2 -2.1
1.0 -2.7 -4.3 0.1 7.4 -0.5 0.8 -7.2 -6.4 8.1 -1.1 8.1 16.3 -3.1 6.9 3.5
5.5 0.7 -0.5 0.9 6.3 5.1 4.0 0.5 8.0 18.6 3.6 4.4 -4.4 4.0 3.1 1.0
-6.5 -2.9 -6.8 -8.2 -0.7 -5.7 -4.5 -0.3 -1.1 9.2 -3.5 -3.2 0.9 -0.2 -1.1 -3.1
-2.5 -3.9 -5.0 -6.6 4.9 -2.5 -0.5 3.3 -0.7 11.2 -9.0 7.5 -2.0 8.7 1.8 3.8
2.6 -0.3 -3.7 -5.7 4.2 -6.8 1.8 -0.0 1.2 10.8 -11.0 -0.4 -18.4 -2.9 1.1 -1.0

-11.6 -5.9 -11.5-11.7 0.8 -9.6 -7.3 -16.9 -9.9 6.6 -12.0 -3.9 6.8 5.5 -7.0 -6.0

Figure 17: Relative F1 improvement of MAD-XmBERT over mBERT in cross-lingual NER transfer.
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en ja zh ar jv sw is my qu cdo ilo xmf mi mhr tk gn
Target Language
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e

0.2 -0.7 0.3 -11.8 5.8 7.7 4.7 5.9 19.7 26.0 8.1 15.9 10.2 12.8 15.5 7.3
-0.3 0.8 4.0 -4.4 2.0 4.2 0.5 6.3 14.6 37.4 -3.6 16.3 23.7 2.9 2.2 2.8
4.7 3.4 -0.1 -0.1 2.6 4.7 6.7 1.3 21.2 36.6 3.2 13.0 26.8 15.8 -0.7 8.7
7.4 -1.7 -1.6 0.7 9.8 12.1 9.8 -4.3 24.5 44.8 26.9 19.2 20.7 21.7 20.1 4.4
-8.4 -3.5 -5.0 -5.7 2.9 -2.2 0.5 -1.0 3.7 18.3 4.1 -3.1 8.2 6.5 7.5 -3.9
-1.4 -4.4 -8.3 -2.9 5.1 2.2 3.8 1.4 17.1 28.6 16.7 11.2 9.3 13.8 14.4 -1.0
-3.2 -4.4 -7.7 -10.8 9.8 -7.4 1.6 0.6 7.3 27.8 3.4 7.7 12.6 14.2 10.4 10.5
-7.5 -1.7 -3.1 -9.4 5.3 -3.7 -2.8 -10.6 -3.3 15.9 -3.9 -0.5 -4.5 2.2 2.6 -1.3
-4.5 -0.2 0.2 -5.8 4.7 -0.1 12.1 0.4 9.0 25.3 -0.3 18.4 22.1 9.1 16.4 13.1
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Figure 18: Relative F1 improvement of MAD-XLarge over XLM-RLarge in cross-lingual NER transfer.
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Abstract

Massively multilingual language models such
as multilingual BERT offer state-of-the-art
cross-lingual transfer performance on a range
of NLP tasks. However, due to limited ca-
pacity and large differences in pretraining data
sizes, there is a profound performance gap be-
tween resource-rich and resource-poor target
languages. The ultimate challenge is dealing
with under-resourced languages not covered at
all by the models and written in scripts un-
seen during pretraining. In this work, we pro-
pose a series of novel data-efficient methods
that enable quick and effective adaptation of
pretrained multilingual models to such low-
resource languages and unseen scripts. Rely-
ing on matrix factorization, our methods cap-
italize on the existing latent knowledge about
multiple languages already available in the pre-
trained model’s embedding matrix. Further-
more, we show that learning of the new dedi-
cated embedding matrix in the target language
can be improved by leveraging a small num-
ber of vocabulary items (i.e., the so-called
lexically overlapping tokens) shared between
mBERT’s and target language vocabulary. Our
adaptation techniques offer substantial perfor-
mance gains for languages with unseen scripts.
We also demonstrate that they can yield im-
provements for low-resource languages writ-
ten in scripts covered by the pretrained model.

1 Introduction

Massively multilingual language models pretrained
on large multilingual data, such as multilingual
BERT (mBERT; Devlin et al., 2019) and XLM-R
(Conneau et al., 2020a) are the current state-of-the-
art vehicle for effective cross-lingual transfer (Hu
et al., 2020). However, while they exhibit strong
transfer performance between resource-rich and
similar languages (Conneau et al., 2020a; Artetxe
et al., 2020), these models struggle with transfer
to low-resource languages (Wu and Dredze, 2020)
and languages not represented at all in their pre-

Amharic (am)Tibetan (bo)Khmer (km) Divehi (dv)Sinhala (si)
የእግዚአብሔርን ཉྩཡོནིརོདྷཨེཝ មានសេចក្តីត្រិះរិះަެގޔާްއރިޫހްމޖުލްސުީއރ ප්රජාතන්ත්රවාදී
የሚሰጡዋቸውን ྃབ ཱདཱིམཧཱཤྲམཎ ត្រូវអាបត្ដិទុក្កដެވެއަވަންނަގިއޑަަވެނެދ දෙපාර්තමේන්තුව

የእግዚአብሔር བཱདཱིམཧཱཤྲམཎ តាំងឡើងដោយសមុដ្ឋានސްޓިިއރަތުާއޯއޓިސްޮއ පුරාවිද්යාත්මක

ቤተክርስቲያን ཧཱུྃཕཊསྭཱཧ ཱ ពួកឆព្វគ្គិយភិក្ខុަޔާްއރިޫހްމޖުލްސުީއރ ක්රියාකාරිත්වය

ኢትዮጵያውያን ཧཱུྃཧ ཱུྃཕཊ ដែលមិនទាន់ជ្រះថ្លាިާވިއަފްނެގިއޑަަވިބލ ක්රියාකාරීත්වය
በእግዚአብሔር བྷྱཿཤཱནྟིཾ ភិក្ខុត្រូវអាបត្តិަެވެންނތުރާަފތްާނކ විශ්වවිද්යාලයේ
እግዚአብሔርን བཻཌཱུར ྱའི ឃុំមួយស្ថិតនៅក្នុងުެވކެެއޔާްއރިޫހްމޖ දිස්ත්රික්කයේ
ከእግዚአብሔር ེདྷར ྨཱཧ ེཏ របស់ព្រះមានព្រះភាគިިވެންނެގިއޑަަވިބލ සම්පූර්ණයෙන්ම
የመጀመሪያውን ཝཱཧེཏུནྟེ ធ្វើឲ្យជាក់ច្បាស់ީނަވިއަފށްކޮްނޔާަބ පාර්ලිමේන්තුව

ትምህርታቸውን སྤྲེའུའི ធ្វើទុកក្នុងចិត្ަގިއޑަަވެވްނަފުއ විශ්වවිද්යාලය

Amharic Tibetan Divehi 
የእግዚአብሔርን ཉྩཡོནིརོདྷཨེཝ ެގާޔއްރިހޫމްުޖްލސުއީރަ
የሚሰጡዋቸውን ྃབཱདཱིམཧཱཤྲམཎ ވެއެވަަންނަގއިަޑވަެނެދ
የእግዚአብሔር བཱདཱིམཧཱཤྲམཎ ސްޓިއިރަުތއާއޯޓިސްއޮ
ቤተክርስቲያን ཧཱུྃཕཊསྭཱཧཱ ާޔއްރިހޫމްުޖްލސުއީރަ
ኢትዮጵያውያን ཧཱུྃཧཱུྃཕཊ ވާއިފަްނެގއިަޑވަިބިލ

በእግዚአብሔር བྷྱཿཤཱནཾིྟ ވެެންނުތރާފަްތާނަކ
እግዚአብሔርን བཻཌཱུརྱའི ވެެކއެާޔއްރިހޫމްުޖ
ከእግዚአብሔር ེདྷརྨཱཧེཏ ވިެންނެގއިަޑވަިބިލ
የመጀመሪያውን ཝཱཧེཏུནེྟ ީނވައިފަށްޮކްނާޔަބ
ትምህርታቸውን སྤྲེའུའི ަގއިަޑވަވެްނފައު

Figure 1: Example tokens of unseen scripts.

training corpora (Pfeiffer et al., 2020b; Müller et al.,
2021; Ansell et al., 2021). The most extreme chal-
lenge is dealing with unseen languages with unseen
scripts (i.e., the scripts are not represented in the
pretraining data; see Figure 1), where the pretrained
models are bound to fail entirely if they are used
off-the-shelf without any further model adaptation.

Existing work focuses on the embedding layer
and learns either a new embedding matrix for the
target language (Artetxe et al., 2020) or adds new
tokens to the pretrained vocabulary. While the for-
mer has only been applied to high-resource lan-
guages, the latter approaches have been limited
to languages with seen scripts (Chau et al., 2020;
Müller et al., 2021) and large pretraining corpora
(Wang et al., 2020). Another line of work adapts
the embedding layer as well as other layers of the
model via adapters (Pfeiffer et al., 2020b; Üstün
et al., 2020). Such methods, however, cannot be
directly applied to languages with unseen scripts.

In this work, we first empirically verify that
the original tokenizer and the original embedding
layer of a pretrained multilingual model fail for lan-
guages with unseen script. This implies that dedi-
cated in-language tokenizers and embeddings are a
crucial requirement for any successful model adap-
tation. The key challenge is aligning new target
language embeddings to the pretrained model’s rep-
resentations while leveraging knowledge encoded
in the existing embedding matrix. We systematize
existing approaches based on the pretrained infor-
mation they utilize and identify lexically overlap-
ping tokens that are present in both vocabularies
as key carriers of such information (Søgaard et al.,
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2018).1 We then present novel, effective, and data-
efficient methods for adapting pretrained multilin-
gual language models to resource-low languages
written in different scripts. Beyond lexical overlap,
our methods rely on factorized information from
the embedding matrix and token groupings.

We evaluate our approaches in the named entity
recognition (NER) task on the standard WikiAnn
dataset (Rahimi et al., 2019) and Dependency Pars-
ing (DP; Nivre et al., 2016). We use 4 diverse
resource-rich languages as source languages, and
transfer to 17 and 6 resource-poor target languages
respectively, including 5 languages with unseen
scripts (Amharic, Tibetan, Khmer, Divehi, Sinhala).
We show that our adaptation techniques offer un-
matched performance for languages with unseen
scripts. They also yield improvements for low-
resource and under-represented languages written
in scripts covered by the pretrained model.

Contributions. 1) We systematize and com-
pare current model adaptation strategies for low-
resource languages with seen and unseen scripts.
2) We measure the impact of initialization when
learning new embedding layers, and demonstrate
that non-random initialization starting from a sub-
set of seen lexical items (i.e., lexically overlap-
ping vocabulary items) has a strong positive im-
pact on task performance for resource-poor lan-
guages. 3) We propose methods for learning low-
dimensional embeddings, which reduce the num-
ber of trainable parameters and yield more efficient
model adaptation. Our approach, based on ma-
trix factorization and language clusters, extracts
relevant information from the pretrained embed-
ding matrix. 4) We show that our methods out-
perform previous approaches with both resource-
rich and resource-poor languages. They substan-
tially reduce the gap between random and lexically-
overlapping initialization, enabling better model
adaption to unseen scripts.

The code for this work is released at github.com/
Adapter-Hub/UNKs_everywhere.

2 Background: Multilingual Model
Adaptation for Cross-lingual Transfer

Recent language models (Devlin et al., 2019; Con-
neau et al., 2020a), based on Transformer architec-
tures (Vaswani et al., 2017) and pretrained on mas-
sive amounts of multilingual data, have recently

1Even languages with unseen scripts share some tokens,
e.g. numbers, foreign named entities written in their original
scripts, etc. with seen languages.

surpassed (static) cross-lingual word embedding
spaces (Ruder et al., 2019; Glavas et al., 2019)
as the state-of-the-art paradigm for cross-lingual
transfer in NLP (Pires et al., 2019; Wu and Dredze,
2019; Wu et al., 2020; Hu et al., 2020; K et al.,
2020). However, recent studies have also indicated
that even current state-of-the-art models such as
XLM-R (Large) still do not yield reasonable trans-
fer performance across a large number of target
languages (Hu et al., 2020). The largest drops
are reported for resource-poor target languages
(Lauscher et al., 2020), and (even more dramat-
ically) for languages not covered at all during pre-
training (Pfeiffer et al., 2020b).

Standard Cross-Lingual Transfer Setup with a
state-of-the-art pretrained multilingual model such
as mBERT or XLM-R is 1) fine-tuning it on la-
belled data of a downstream task in a source lan-
guage and then 2) applying it directly to perform
inference in a target language (Hu et al., 2020).
However, as the model must balance between many
languages in its representation space, it is not suited
to excel at a specific language at inference time
without further adaptation (Pfeiffer et al., 2020b).

Adapters for Cross-lingual Transfer. Adapter-
based approaches have been proposed as a rem-
edy (Rebuffi et al., 2017, 2018; Houlsby et al.,
2019; Stickland and Murray, 2019; Bapna and Fi-
rat, 2019; Pfeiffer et al., 2020a, 2021). In the cross-
lingual setups, the idea is to increase the multilin-
gual model capacity by storing language-specific
knowledge of each language in dedicated param-
eters (Pfeiffer et al., 2020b; Vidoni et al., 2020).
We start from MAD-X (Pfeiffer et al., 2020b), a
state-of-the-art adapter-based framework for cross-
lingual transfer. For completeness, we provide a
brief overview of the framework in what follows.

MAD-X comprises three adapter types: lan-
guage, task, and invertible adapters; this enables
learning language and task-specific transformations
in a modular and parameter-efficient way. As in
prior work (Rebuffi et al., 2017; Houlsby et al.,
2019), adapters are trained while keeping the pa-
rameters of the pretrained multilingual model fixed.
Language adapters are trained via masked lan-
guage modeling (MLM) on unlabelled target lan-
guage data. Task adapters are trained via task-
specific objectives on labelled task data in a source
language while also keeping the language adapters
fixed. Task and language adapters are stacked: this
enables the adaptation of the pretrained multilin-
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gual model to languages not covered in its pretrain-
ing data. MAD-X keeps the same task adapter
while substituting the source language adapter with
the target language adapter at inference.

In brief, the adapters Al at layer l consist of a
down-projection D ∈ Rh×d where h is the hid-
den size of the Transformer model and d is the
dimension of the adapter, followed by a GeLU ac-
tivation (Hendrycks and Gimpel, 2016) and an up-
projection U ∈ Rd×h at every layer l:

Al(hl, rl) = Ul(GeLU(Dl(hl))) + rl. (1)

hl and rl are the Transformer hidden state and the
residual at layer l, respectively. The residual con-
nection rl is the output of the Transformer’s feed-
forward layer whereas hl is the output of the sub-
sequent layer normalization. For further technical
details, we refer the reader to Pfeiffer et al. (2020b).

Current model adaptation approaches (Chau
et al., 2020; Wang et al., 2020) generally fine-tune
all model parameters on target language data. In-
stead, we follow the more computationally efficient
adapter-based paradigm where we keep model pa-
rameters fixed, and only train language adapters
and target language embeddings. Crucially, while
the current adapter-based methods offer extra ca-
pacity, they do not offer mechanisms to deal with
extended vocabularies of many resource-poor tar-
get languages, and do not adapt their representation
space towards the target language adequately. This
problem is exacerbated when dealing with unseen
languages and scripts.2

3 Cross-lingual Transfer of Lexical
Information

The embedding matrix of large multilingual mod-
els makes up around 50% of their entire parameter
budget (Chung et al., 2021). However, it is not
clear how to leverage this large amount of infor-
mation most effectively for languages that are not
adequately represented in the shared multilingual
vocabulary due to lack of pretraining data.

A key challenge in using the lexical information
encoded in the embedding matrix is to overcome
a mismatch in vocabulary between the pretrained
model and the target language. To outline this is-
sue, in Table 1 we show for the languages in our
NER evaluation the proportion of tokens in each

2An alternative approach based on transliteration (Müller
et al., 2021) side-steps script adaptation but relies on language-
specific heuristics, which are not available for most languages.

Language iso Family Script % % Lex
UNKs Overl.

English* en Indo-Europ. Latin 0% 66%
Chinese* zh Sino-Tibetan Chinese 0% 79%
Japanese* ja Japonic Japanese 0% 99%
Arabic* ar Afro-Asiatic Arabic 1% 6%
Georgian ka Kartvelian Georgian 2% 27%
Urdu ur Indo-Europ. Arabic 5% 34%
Hindi hi Indo-Europ. Devanagari 2% 33%
Min Dong cdo Sino-Tibetan Chinese 6% 53%
Māori mi Austronesian Latin 1% 45%
Ilokano ilo Austronesian Latin 2% 48%
Guarani gn Tupian Latin 3% 42%
Mingrelian xmf Kartvelian Georgian 7% 22%
Sindhi sd Indo-Europ. Arabic 30% 25%
Erzya myv Uralic Cyrilic 1% 33%
Bhojpuri bh Indo-Europ. Devanagari 1% 28%
Wolof wo Niger-Congo Latin 1% 31%
Amharic am Afro-Asiatic Ge’ez 86% 13%
Tibetan bo Sino-Tibetan Tibetan 66% 20%
Khmer km Austroasiatic Khmer 79% 19%
Divehi dv Indo-Europ. Thaana 85% 14%
Sinhala si Indo-Europ. Sinhala 75% 23%

Table 1: Languages in our NER evaluation, together
with their language family and common script. For
each monolingual vocabulary (§4.3), we compute the
proportion of tokens that cannot be composed by the
subword tokens from the original mBERT vocabulary
(UNKs) as well as of lexically overlapping tokens that
are present in both vocabularies. *: For the high-
resource source languages, proportions are calculated
with regard to the tokenizers used by Rust et al. (2021).

0 10 20 30 40 50 60 70 80 90 100
% UNKs

0

20

40

60

F1

cdo

mi
ilo
gn

bo
km

dvsi

ka

ur

hi

xmf

sd

myv

bh

wo

am

Figure 2: mBERT’s zero-shot cross-lingual transfer
performance with respect to the proportion of UNKs in
mBERT’s original vocabulary relative to the target lan-
guage (see Table 1).

language that are effectively unknown (UNK) to
mBERT: they occur in the vocabulary of a sepa-
rately trained monolingual tokenizer (§4.3), but
cannot even be composed by subword tokens from
the original mBERT’s vocabulary. Table 1 also
provides the proportion of lexically overlapping to-
kens, i.e., tokens that are present both in mBERT’s
and monolingual in-language vocabularies. The
zero-shot performance of mBERT generally dete-
riorates with less lexical overlap and more UNKs
in a target language: see Figure 2. Pearson’s ρ
correlation scores between the lexical overlap and
proportion of UNKs (see Table 1) and NER perfor-
mance are 0.443 and −0.798, respectively.
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Method
Special Lexical Latent semantic Language New # of new

Reference
tokens overlap concepts clusters params params

EL-RAND X X′ 7.68M Artetxe et al. (2020)
EL-LEX X X X′ 7.68M Chau et al. (2020); Wang et al. (2020)
MFC
∗ -RAND X X X F′, I′ 1M + C·10k Ours

MFC
∗ -LEX X X X X F′, I′ 1M + C·10k Ours

Table 2: Overview of our methods and related approaches together with the pretrained knowledge they utilize. We
calculate the number of new parameters per language with V ′ = 10k, D = 768, and D′ = 100. We do not include
up-projection matrices G as these are learned only once and make up a comparatively small number of parameters.

Recent approaches such as invertible adapters
(Pfeiffer et al., 2020b) that adapt embeddings in
the pretrained multilingual vocabulary may be able
to deal with lesser degrees of lexical overlap. Still,
they cannot deal with UNK tokens. In the following,
we systematize existing approaches and present
novel ways of adapting a pretrained model to the
vocabulary of a target language that can handle
this challenging setting, present most acutely when
adapting to languages with unseen scripts. We
summarize the approaches in Table 2 based on what
types of pretrained information they utilize. All
approaches rely on a new vocabulary V ′, learned
on the target language data.

3.1 Target-Language Embedding Learning

A straightforward way to adapt a pretrained model
to a new language is to learn new embeddings for
the language. Given the new vocabulary V ′, we
initialize new embeddings X′ ∈ R|V ′|×D for all
V ′ vocabulary items where D is the dimensional-
ity of the existing embeddings X ∈ R|V |×D, and
only initialize special tokens (e.g. [CLS], [SEP])
with their pretrained representations. We train the
new embeddings of the X′ with the pretraining task.
This approach, termed EL-RAND, was proposed
by Artetxe et al. (2020): they show that it allows
learning aligned representations for a new language
but only evaluate on high-resource languages. The
shared special tokens allow the model to access a
minimum amount of lexical information, which can
be useful for transfer (Dufter and Schütze, 2020).
Beyond this, this approach leverages knowledge
from the existing embedding matrix only implicitly
to the extent that the higher-level hidden represen-
tations are aligned to the lexical representations.

3.2 Initialization with Lexical Overlap

To leverage more lexical information, we can ap-
ply shared initialization not only to the special to-
kens but to all lexically overlapping tokens. Let

us denote this vocabulary subset with V ′lex, and
V ′rand = V ′ \ V ′lex. In particular, we initialize
the embeddings of all lexically overlapping tokens
X′lex from V ′lex with their pretrained representa-
tions from the original matrix X, while the tokens
from V ′rand receive randomly initialized embed-
dings X′rand. We then fine-tune all target language
embeddings X′ = X′lex ∪X′rand on the target lan-
guage data. Wang et al. (2020) cast this as ex-
tending V with new tokens. In contrast, we seek
to disentangle the impact of vocabulary size and
pretrained information. As one variant of this ap-
proach, Chau et al. (2020) only add the 99 most
common tokens of a new language to V .

Initialization with lexical overlap, termed EL-
LEX, allows us to selectively leverage the infor-
mation from the pretrained model on a per-token
level based on surface-level similarity. Intuitively,
this should be most useful for languages that are
lexically similar to those seen during pretraining
and have a substantial proportion of lexically over-
lapping tokens. However, such lexical overlap is a
lot rarer for languages that are written in different
scripts. For such languages, relying on surface-
level string similarity alone may not be enough.

3.3 Embedding Matrix Factorization
We therefore propose to identify latent semantic
concepts in the pretrained model’s embedding ma-
trix that are general across languages and useful for
transfer. Further, to allow modeling flexibility we
propose to learn a grouping of similar tokens. We
achieve this by factorizing the pretrained embed-
ding matrix X ∈ R|V |×D into lower-dimensional
word embeddings F ∈ R|V |×D′

and C shared up-
projections G1, . . . ,GC ∈ RD′×D that encode gen-
eral cross-lingual information:

X ≈
∑

c∈C
diag(ic)FGc (2)

D′ is the dimensionality of the lower-dimensional
embeddings. I = [i1, . . . , iC ] ∈ R|V |×C is an
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indicator matrix where iv,c = 1 iff token v is
associated with the c-th up-projection, else 0.3

diag(·) creates a diagonal matrix from a vector,
i.e. diag(ic) ∈ R|V |×|V |.
MF1-∗. In the basic case where C = 1, Eq. (2)
simplifies to X ≈ FG. As X is unconstrained,
we follow Ding et al. (2008) and interpret this
as a semi-non-negative matrix factorization (Semi-
NMF) problem. In Semi-NMF, G is restricted to be
non-negative while no restrictions are placed on the
signs of F. The Semi-NMF is computed via an iter-
ative updating algorithm that alternatively updates
F and G where the Frobenius norm is minimized.4

G is shared across all tokens and thus encodes
general properties of the original embedding matrix
X whereas F stores token-specific information. G
only needs to be pretrained once and can be used
and fine-tuned for every new language. To this end,
we simply learn new low-dimensional embeddings
F′ ∈ R|V ′|×D′

with the pretraining task, which are
up-projected with G and fed to the model.

MFC
KMEANS-∗. When C > 1, each token is associ-

ated with one of C up-projection matrices. Group-
ing tokens and using a separate up-projection ma-
trix per group may help balance sharing informa-
tion across typologically similar languages with
learning a robust representation for each token
(Chung et al., 2020). We propose two approaches
to automatically learn such a clustering.

In our first, pipeline-based approach, we first
cluster X into C clusters using KMeans. For each
cluster, we then factorize the subset of embeddings
Xc associated with the c-th cluster separately using
Semi-NMF equivalently as for MF1-∗.

For a new language, we learn new low-dim em-
beddings F′ ∈ R|V ′|×D′

and a randomly initialized
matrix Z ∈ R|V ′|×C , which allows us to compute
the cluster assignment matrix I′ ∈ R|V ′|×C . Specif-
ically, for token v, we obtain its cluster assignment
as argmax of z′v,·. As argmax is not differen-
tiable, we employ the Straight-Through Gumbel-
Softmax estimator (Jang et al., 2017) defined as:

i′v,c =
exp(log(zv,c) + gc)/τ)∑C
j=1 exp(log(zv,j) + gj)/τ)

, (3)

where τ is a temperature parameter, and g ∈ R|V |
corresponds to samples from the Gumbel distri-

3We use bold upper case letters (X) for matrices, subscripts
with bold letters (xi) for rows or columns and subscripts with
standard weight letters for specific elements (xi, xi,j).

4For more details see Ding et al. (2008).

bution gj ∼ − log(− log(uj)) with uj ∼ U(0, 1)
being the uniform distribution. zv,· can be seen
as “logits” used for assigning the v-th token a
cluster. As τ → 0, the softmax becomes an
argmax and the Gumbel-Softmax distribution ap-
proximates more closely the categorical distribu-
tion. I′ ∈ R|V ′|×C represents the one-hot encoded,
indicator function over possible clusters, with learn-
able parameters Z. As before, i′v,c = 1 iff new
token v is associated with up-projection c, else 0.

MFC
NEURAL-∗. We can also learn the cluster as-

signment and up-projections jointly. Specifically,
we parameterize G in Eq. (2) using a neural net
where we learn the indicator matrix I equivalently
to Eq. (3). The objective minimizes the L2-norm
between the original and predicted embeddings:

L = ||X−
∑

c∈C
diag(ic)FGc||2 (4)

For a new language, we proceed analogously.

MF∗∗-RAND and MF∗∗-LEX. Finally, we can com-
bine different initialization strategies (see §3.1 and
§3.2) with the embedding matrix factorization tech-
nique. We label the variant which relies on random
initialization, see §3.1, as MF1-RAND. The vari-
ant, which relies on lexically overlapping tokens
from §3.2 can leverage both surface-level similarity
as well as latent knowledge in the embedding ma-
trix; we simply initialize the embeddings of over-
lapping lexical tokens (from V ′lex) in F′ with their
low-dim representations from F. The remaining
tokens (from V ′rand) are randomly initialized in F′.

Factorizing the embedding matrix has the addi-
tional benefit of reducing the number of trainable
parameters and correspondingly the amount of stor-
age space required for each additional language.
This is especially true when D � D′.5

4 Experiments

Data. For pretraining, we leverage the Wikipedia
dumps of the target languages. We conduct ex-
periments on named entity recognition (NER) and
dependency parsing (DP). For NER, we use the
WikiAnn (Pan et al., 2017) dataset, partitioned into
train, dev, and test portions by Rahimi et al. (2019).
For DP we use Universal Dependencies (UD; Nivre
et al., 2016, 2020; Zeman et al., 2020).

5For instance, when |V | = |V |′ = 10k, D = 768, and
D′ = 100 as in our experiments we reduce the amount of
storage space required by 82% per language.
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Languages. WikiAnn offers a wide language cov-
erage (176 languages) and, consequently, a number
of language-related comparative analyses. In order
to systematically compare against state-of-the-art
cross-lingual methods under different evaluation
conditions, we identify 1) low-resource languages
where the script has been covered by mBERT but
the model has not been specifically trained on the
language 2) as well as low-resource languages with
scripts not covered at all by pretraining. In each
case, we select four languages, taking into account
variance in data availability and typological diver-
sity. We select four high-resource source languages
(English, Chinese, Japanese, Arabic) in order to
go beyond English-centric transfer. We evaluate
the cross-lingual transfer performance of these 4
languages to the 17 diverse languages. For DP, we
chose the subset that occurs in UD. We highlight
the properties of all 21 languages in Table 1.

4.1 Baselines

mBERT (Standard Transfer Setup). We primar-
ily focus on mBERT as it has been shown to work
well for low-resource languages (Pfeiffer et al.,
2020b). mBERT is trained on the 104 languages
with the largest Wikipedias.6 In the standard cross-
lingual transfer setting (see §2), the full model is
fine-tuned on the target task in the (high-resource)
source language, and is evaluated on the test set of
the target (low-resource) language.

MAD-X. We follow Pfeiffer et al. (2020b) and
stack task adapters on top of pretrained language
adapters (see §2). When training the model on
source language task data, only the task adapter is
trained while the original model weights and the
source language adapter are frozen. At inference,
the source language adapter is replaced with the
target language adapter.

MAD-X 2.0. The adapter in the last transformer
layer is not encapsulated between frozen trans-
former layers, and can thus be considered an ex-
tension of the prediction head. This places no con-
straints on the representation of the final adapter,
possibly decreasing transfer performance when re-
placing the language adapters for zero-shot transfer.
In this work, we thus propose to drop the adapter
in the last transformer layer, and also evaluate this
novel variant of the MAD-X framework.

6See Appendix Table 12 for the list of all 104 covered
languages with corresponding scripts.

4.2 Methods

We experiment with the methods from Table 2 and
discussed in §3, summarized here for clarity.

EL-* We randomly initialize embeddings for all
tokens—except special tokens—in the new vocab-
ulary (EL-RAND) or initialize embeddings of lexi-
cally overlapping tokens with their pretrained rep-
resentations (EL-LEX).

MF1-* We randomly initialize lower-dimensional
embeddings (MF1-RAND) or initialize lexically
overlapping tokens with their corresponding lower-
dimensional pretrained representation (MF1-LEX)
while using a single pretrained projection matrix.

MF10
∗ -* We learn assignments to 10 clusters via

k-means and up-projection matrices via Semi-NMF
(MF10

KMEANS-∗). Alternatively, we learn cluster as-
signments with Gumbel-Softmax and up-projection
matrices jointly (MF10

NEURAL-∗). For new tokens we
use random (MF10

∗ -RAND) or lexical overlap ini-
tialisation (MF10

∗ -LEX).

4.3 Experimental Setup

Previous work generally fine-tunes the entire model
on the target task (Chau et al., 2020; Wang et al.,
2020). To extend the model to a new vocabulary,
Artetxe et al. (2020) alternatingly freeze and fine-
tune embeddings and transformer weights for pre-
training, and target task fine-tuning, respectively.
We find that this approach largely underperforms
adapter-based transfer as proposed by Pfeiffer et al.
(2020b), and we thus primarily focus on adapter-
based training in this work.7

Adapter-Based Transfer. We largely follow the
experimental setup of Pfeiffer et al. (2020b), unless
noted otherwise. We obtain language adapters for
the high-resource languages from AdapterHub.ml
(Pfeiffer et al., 2020a) and train language adapters
and embeddings for the low-resource languages
jointly while keeping the rest of the model fixed.
For zero-shot transfer, we replace the source lan-
guage adapter with the target adapter, and also re-
place the entire embedding layer with the new em-
bedding layer specialized to the target language.
MAD-X 2.0 consistently outperforms MAD-X
(see §5); we thus use this setup for all our methods.

Tokenizer. We learn a new WordPiece tokenizer
for each target language with a vocabulary size of
10k using the HuggingFace tokenizer library.8

7We present results with such full model transfer in §A.1.
8https://github.com/huggingface/tokenizers
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Seen Languages Unseen Languages but Covered Scripts New Scripts Mac.
ka ur hi Avg cdo mi ilo gn xmf sd myv bh wo Avg am bo km dv si Avg Avg

mBERT 64.7 37.3 63.8 55.3 18.3 33.2 45.4 53.7 43.4 12.7 30.7 54.6 24.2 35.1 0.9 17.4 10.7 1.3 2.5 6.6 30.3
MAD-X 63.9 51.4 58.7 58.0 29.1 45.6 45.5 52.7 51.9 34.0 57.8 57.0 49.5 47.0 10.8 24.8 17.6 16.8 16.8 17.4 40.2
MAD-X 2.0 65.6 55.3 61.0 60.6 30.7 50.6 64.0 56.3 52.6 37.1 63.0 59.8 55.5 52.2 10.7 24.7 18.1 22.2 18.7 18.9 43.9

EL-RAND 65.8 47.8 63.8 59.1 38.0 7.3 57.9 48.5 59.4 44.2 35.2 55.5 5.1 39.0 42.9 53.9 59.5 32.7 51.5 48.1 45.2
MF1-RAND 63.5 48.5 57.8 56.6 39.8 19.3 43.6 47.3 57.9 45.1 60.4 44.4 45.0 44.8 42.6 49.0 61.7 43.4 52.1 49.8 48.3
MF10

KMEANS -RAND 64.3 52.6 60.4 59.1 20.7 11.7 51.2 50.8 58.2 45.2 49.0 60.0 42.5 43.2 37.3 37.5 64.2 18.5 47.2 40.9 45.4
MF10

NEURAL -RAND 63.2 49.4 60.6 57.7 40.7 5.5 48.5 52.0 60.4 27.2 46.7 54.5 41.2 41.9 42.7 38.4 63.7 38.7 48.0 46.3 46.0

EL-LEX 69.3 57.9 66.4 64.5 46.8 32.2 58.8 54.1 57.0 44.6 56.3 59.5 50.1 51.0 46.5 51.5 61.0 47.2 56.3 52.5 53.6
MF1-LEX 65.5 54.0 61.5 60.4 46.6 39.8 55.2 54.8 57.2 45.0 55.0 59.1 48.1 51.2 38.6 42.5 63.9 43.8 51.5 48.0 51.2
MF10

KMEANS -LEX 66.3 59.5 61.1 62.3 48.9 47.5 46.4 53.6 56.7 46.2 58.4 61.0 57.9 53.0 45.5 51.6 64.2 44.9 46.2 50.5 53.9
MF10

NEURAL -LEX 67.0 55.8 62.6 61.8 47.8 50.8 53.1 53.9 55.6 46.4 50.4 60.6 51.8 52.3 46.7 43.0 65.2 46.3 51.5 50.5 53.4

(a) Named Entity Recognition: Mean F1 test results for UD averaged over 5 runs and averaged over the 4 source languages.

Seen Languages Unseen Languages but Covered Scripts New Script
hi ur Avg bh myv wo Avg am Macro Avg

UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS

mBERT 45.8 / 29.5 34.9 / 20.5 40.3 / 25.0 33.9 / 18.6 29.7 / 13.0 27.5 / 7.5 30.4 / 13.0 10.1 / 3.8 30.3 / 15.5
MAD-X 2.0 42.0 / 26.1 35.0 / 20.1 38.5 / 23.1 31.0 / 16.2 47.6 / 29.8 35.4 / 18.4 38.0 / 21.4 14.0 / 7.7 34.2 / 19.7

EL-RAND 41.9 / 25.9 32.9 / 18.4 37.4 / 22.1 29.9 / 13.8 45.4 / 23.9 24.3 / 7.2 33.2 / 15.0 30.1 / 11.3 34.1 / 16.7
MF1-RAND 41.7 / 26.2 33.7 / 19.4 37.7 / 22.8 28.7 / 13.7 47.6 / 27.2 32.7 / 15.5 36.3 / 18.8 34.3 / 13.3 36.4 / 19.2
MF10

KMEANS -RAND 40.7 / 25.1 30.4 / 17.7 35.6 / 21.4 31.9 / 16.3 47.8 / 27.7 29.6 / 13.7 36.4 / 19.2 22.6 / 10.1 33.8 / 18.4
MF10

NEURAL -RAND 43.1 / 27.0 34.7 / 20.0 38.9 / 23.5 30.8 / 14.7 48.6 / 28.7 21.7 / 9.4 33.7 / 17.6 32.4 / 12.4 35.2 / 18.7
EL-LEX 41.9 / 26.1 34.0 / 19.6 37.9 / 22.9 30.6 / 16.2 48.8 / 27.7 37.9 / 19.2 39.1 / 21.0 34.0 / 9.9 36.6 / 19.8
MF1-LEX 42.1 / 26.7 34.0 / 20.1 38.0 / 23.4 31.2 / 16.4 49.0 / 28.9 37.6 / 19.5 39.3 / 21.6 34.8 / 12.9 36.8 / 20.8
MF10

KMEANS -LEX 42.2 / 27.0 34.7 / 20.3 38.5 / 23.6 31.1 / 16.4 47.7 / 28.6 33.8 / 17.3 37.5 / 20.8 32.2 / 13.2 37.0 / 20.5
MF10

NEURAL -LEX 43.0 / 27.4 36.1 / 21.2 39.6 / 24.3 30.9 / 16.2 46.8 / 27.6 38.7 / 20.4 38.8 / 21.4 31.4 / 12.1 37.8 / 20.8

(b) Dependency Parsing: Mean UAS and LAS test results for UD averaged over 5 runs and averaged over the 4 source languages.

Table 3: Mean test results for (a) NER and (b) DP. The top group (first two/three rows) includes models, which
leverage the original tokenizer which is not specialized for the target language. The second group (last eight rows)
include models with new tokenizers. We separate models with randomly initialized embeddings (∗-RANDINIT)
from models with lexical init (∗-LEXINIT) by the dashed line. Bold numbers indicate best-scoring models of the
respective group, underlined numbers the best performance overall. Source languages are en, ar, zh, and ja.

Semi-NMF. We factorize the pretrained embed-
ding matrix of mBERT using Semi-NMF (Ding
et al., 2008) leveraging the default implementation
provided by Bauckhage et al. (2011).9 We train
for 3,000 update steps and leverage the correspond-
ing matrices F and G as initialization for the new
vocabulary. We choose the reduced embedding
dimensionality D′ = 100. F is only used when
initializing the (lower-dimensional) embedding ma-
trix with lexically overlapping representations.

Masked Language Modeling. For MLM pretrain-
ing we leverage the entire Wikipedia corpus of the
respective language. We train for 200 epochs or
∼100k update steps, depending on the corpus size.
The batch size is 64; the learning rate is 1e− 4.

Task Fine-tuning. Our preliminary experiments
suggested that fine-tuning the model for a smaller
number of epochs leads to better transfer perfor-
mance in low-resource languages in general. We
thus fine-tune all the models for 10 epochs, eval-
uating on the source language dev set after every
epoch. We then take the best-performing model ac-
cording to the dev F1 score, and use it in zero-shot

9https://github.com/cthurau/pymf

transfer. We train all the models with a batch size
of 16 on high resource languages. For NER we use
learning rates 2e− 5 and 1e− 4 for full fine-tuning
and adapter-based training, respectively. For DP,
we use a transformer-based variant (Glavas and
Vulic, 2021) of the standard deep biaffine attention
dependency parser (Dozat and Manning, 2017) and
train with learning rates 2e− 5 and 5e− 4 for full
fine-tuning and adapter-based training respectively.

5 Results and Discussion

The main results are summarised in Table 3a for
NER, and in Table 3b for DP. First, our novel
MAD-X 2.0 considerably outperforms the MAD-
X version of Pfeiffer et al. (2020b). However, while
both MAD-X versions improve over mBERT for
unseen scripts, the performance remains quite low
on average. The corresponding mBERT tokenizer
is not able to adequately represent unseen scripts:
many tokens are substituted by UNKs (see Table 1),
culminating in the observed low performance.

For our approaches that learn new embedding
matrices, we observe that for languages seen during
pretraining, but potentially underrepresented by the
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ka ur hi cdo mi ilo gn xmf sd myv bh wo am bo km dv si

Numbers 11% 8% 6% 26% 17% 8% 8% 15% 9% 11% 11% 7% 13% 9% 3% 12% 9%
Lat Char 4% 3% 3% 2% 2% 2% 2% 5% 4% 3% 4% 3% 8% 5% 5% 7% 4%
Lat (S)W 10% 9% 7% 54% 61% 64% 65% 10% 10% 9% 26% 71% 19% 30% 31% 17% 30%
Oth Char 55% 36% 48% 18% 19% 26% 25% 60% 39% 26% 24% 18% 60% 52% 61% 63% 57%
Oth (S)W 20% 43% 36% 0% 1% 0% 0% 10% 38% 51% 35% 1% 0% 3% 0% 1% 0%

Table 4: Grouping of tokens that lexically overlap between the original mBERT tokenizer and the tokenizer of the
target language. Numbers includes all tokens which include at least one number; Lat Char indicates all Latin tokens
of length 1; Lat (S)W includes all (sub)words that include a Latin character but are of length > 1. Consequently,
Oth Char and Oth (S)W consists of characters and (sub)words respectively, which do not include Latin characters.

cdo mi ilo gn bo km dv si

Northumberland Massachusetts Melastomataceae establecimiento University languages government International
Massachusetts Encyclopedia munisipalidad vicepresidente Therefore language Chinese Bangladesh
International Pennsylvania Internasional Internacional suffering formula govern wikipedia
Pennsylvania Jacksonville internasional internacional existence disease system Australia
Philadelphia Turkmenistan International Independencia practice control ation Zimbabwe

Table 5: Longest lexically overlapping (sub)words.

model (e.g. Georgian (ka), Urdu (ur), and Hindi
(hi)), the proposed methods outperform MAD-X
2.0 for all tasks. This is in line with contemporary
work (Rust et al., 2021), which emphasizes the
importance of tokenizer quality for the downstream
task. Consequently, for unseen languages with
under-represented scripts, the performance gains
are even larger, e.g., we see large improvements
for Min Dong (cdo), Mingrelian (xmf), and Sindhi
(sd). For unseen languages with the Latin script,
our methods perform competitively (e.g. Maori
(mi), Ilokano (ilo), Guarani (gn), and Wolof (wo)):
this empirically confirms that the Latin script is
adequately represented in the original vocabulary.
The largest gains are achieved for languages with
unseen scripts (e.g. Amharic (am), Tibetan (bo),
Khmer (km), Divehi (dv), Sinhala (si)), as these
languages are primarily represented as UNK tokens
by the original mBERT tokenizer.

We observe improvements for most languages
with lexical overlap initialization. This adds fur-
ther context to prior studies which found that a
shared vocabulary is not necessary for learning mul-
tilingual representations (Conneau et al., 2020b;
Artetxe et al., 2020): while it is possible to gen-
eralize to new languages without lexical overlap,
leveraging the overlap still offers additional gains.

The methods based on matrix factorization
(MF∗∗-∗) improve performance over full-sized em-
bedding methods (EL∗∗-∗), especially in the set-
ting without lexical overlap initialization (∗-RAND).
This indicates that by factorizing the information
encoded in the original embedding matrix we are

able to extract relevant information for unseen lan-
guages. Combining matrix factorization with lexi-
cal overlap initialization (MF∗∗-LEX), zero-shot per-
formance improves further for unseen languages
with covered scripts. This suggests that the two
methods complement each other. For 6/9 of these
languages, we find that encoding the embeddings
in multiple up-projections (MF10

∗ -∗) achieves the
peak score. This in turn verifies that grouping
similar tokens improves the robustness of token
representations (Chung et al., 2020). For unseen
languages with covered scripts, this model variant
also outperforms MAD-X 2.0 on average.

For languages with unseen scripts we find that
MF has smaller impact. While the encoded infor-
mation supports languages similar to those seen by
the model in pretraining, languages with unseen
scripts are too distant to benefit from this latent mul-
tilingual knowledge. Surprisingly, lexical overlap
is helpful for languages with unseen scripts.

Overall, we observe that both MF10
KMEANS-∗ and

MF10
NEURAL-∗ perform well for most languages,

where the KMEANS variant performs better for NER
and the NEURAL variant performs better for UD.

6 Further Analysis

6.1 Lexically Overlapping (Sub)Words
We perform a quantitative analysis of lexically over-
lapping tokens, i.e. that occur both in mBERT’s
and monolingual in-language vocabularies; see Ta-
ble 4. For languages with scripts not covered by
the mBERT tokenizer, most lexically-overlapping
tokens are single characters of a non-Latin script.
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Seen Languages Unseen Languages but Covered Scripts New Scripts
ka ur hi cdo mi ilo gn xmf sd myv bh wo am bo km dv si

MF10
KMEANS -LEX 100 66.3 59.5 61.1 48.9 47.5 46.4 53.6 56.7 46.2 58.4 61.0 57.9 45.5 51.6 64.2 44.9 46.2

MF10
KMEANS -LEX 300 65.1 46.8 56.8 26.6 5.5 53.7 10.0 52.2 43.5 37.4 53.2 3.7 21.5 7.4 63.9 38.8 51.2

Table 6: Mean F1 test results averaged over 5 runs and the 4 high-resource source languages English, Chinese,
Japanese, and Arabic. The first row presents results with 100-, the second row 300-dimensional embeddings.
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Figure 3: Sample efficiency. For "MF" we leverage the
MF10

KMEANS-LEX setting.

We further present the top 5 longest lexically
overlapping (sub) words for four languages with
scripts covered during pretraining (Min Dong,
Maori, Ilokano, and Guarani) and four languages
with unseen scripts (Tibetan, Khmer, Divehi, Sin-
hala) in Table 5. We observe that frequent lexically
overlapping tokens are named entities in the Latin
script, indicating that NER may not be the best
evaluation task to objectively assess generalization
performance to such languages. If the same named
entities also occur in the training data of higher-
resource languages, the models will be more suc-
cessful at identifying them in the unseen language,
which belies a lack of deeper understanding of the
low-resource language. This might also explain
why greater performance gains were achieved for
NER than for DP.

6.2 Sample Efficiency
We have further analyzed the sample efficiency of
our approaches. We find that EL-LEX is slightly
more sample-efficient than MF10

KMEANS-LEX, where
the latter outperforms the former with more data
available. In Figure 3 we plot the zero-shot trans-
fer performance where the adapters and embed-
dings were pretrained on different amounts of data.
We further find that lower-dimensional embeddings
tend to outperform higher-dimensional embeddings
for the majority of languages. In Table 6 we com-
pare 300 with 100 dimensional embeddings for the
MF10

KMEANS-LEX approach.

6.3 Script Clusters

We analyzed the KMeans clusters based on the to-
kens that consist of characters of a certain script in
Figure 4 of the Appendix. We find distinct script-
based groups; For instance, 5 clusters consist pri-
marily of Latin-script tokens10, two clusters pre-
dominantly consist of Chinese, and a few Korean
tokens. Interestingly, 2 clusters consisted of Cyrilic,
and Arabic scripts as well as scripts used predomi-
nantly in India, varying slightly in their distribution.
Lastly, one cluster included tokens of all except the
Latin script.

7 Conclusion

We have systematically evaluated strategies for
model adaptation to unseen languages with seen
and unseen scripts. We have assessed the impor-
tance of the information stored within the original
embedding matrix by means of leveraging lexically
overlapping tokens, and extracting latent seman-
tic concepts. For the latter, we have proposed a
new method of encoding the embedding matrix into
lower- dimensional embeddings and up-projections.
We have demonstrated that our methods outper-
form previous approaches on NER and dependency
parsing for both resource-rich and resource-poor
scenarios, reducing the gap between random and
lexical overlap initialisation, and enabling more
effective model adaptation to unseen scripts.
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Erika Rimkutė, Larissa Rinaldi, Laura Rituma,
Luisa Rocha, Mykhailo Romanenko, Rudolf Rosa,
Valentin Ros, ca, Davide Rovati, Olga Rudina, Jack
Rueter, Shoval Sadde, Benoît Sagot, Shadi Saleh,
Alessio Salomoni, Tanja Samardžić, Stephanie
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A Appendices

A.1 Full Model Transfer
For comparability with previous work, which gen-
erally fine-tunes the entire model (Chau et al., 2020;
Wang et al., 2020), we follow Artetxe et al. (2020)
and learn a new embedding matrix for the tar-
get language while freezing the pretrained trans-
former weights. For training on the target task, we
fine-tune the transformer weights of the pretrained
model while keeping the original embedding layer
frozen. For zero-shot transfer, we replace the exist-
ing with the new embedding matrix trained on the
target language.

A.2 Results: Named Entity Recognition
We present non-aggregated NER transfer perfor-
mance when transferring from English, Chinese,
Japanese, and Arabic in Tables 7, 8, 9, and 10 re-
spectively. 12Ad indicates whether (3) or not (7)
an adapter is placed in the 12th transformer layer.
We additionally present the results for full model
fine-tuning (FMT-∗).

A.3 Results: Dependency Parsing
We present non-aggregated DP transfer perfor-
mance when transferring from English, Chinese,
Japanese, and Arabic in Tables 11a, 11b, 11c, and
11d respectively.

A.4 Script Clusters
We present the groups of scripts within the 10
KMeans clusters in Figure 4. We follow Ács (2019)
in grouping the scripts into languages.

A.5 Language information
Table 12 lists all 104 languages and corresponding
scripts which mBERT was pretrained on.

A.6 Hardware Setup
All experiments were conducted on a single
NVIDIA V100 GPU with 32 Gb of VRAM.
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Figure 4: Number of tokens of each script grouped into the 10 KMeans clusters. We follow (Ács, 2019) in splitting
the utf-8 tokens into scripts.
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12
A

d Seen Languages Unseen Languages but Covered Scripts New Scripts
ka ur hi Avg cdo mi ilo gn xmf sd myv bh wo Avg am bo km dv si Avg

mBERT 64.3 34.3 65.3 54.6 17.3 22.2 62.7 46.7 34.4 12.1 47.2 48.8 26.7 35.4 0.0 11.4 4.9 0.3 0.3 3.4
MAD-X 3 64.8 44.5 60.7 56.7 25.1 38.4 61.2 52.7 46.0 25.3 47.7 52.1 47.1 43.9 14.5 20.4 14.5 13.9 16.7 16.0
MAD-X 2.0 7 67.4 54.4 64.3 62.1 24.5 51.8 79.2 54.4 49.0 30.9 58.1 55.6 56.8 51.1 8.0 16.6 18.4 23.0 22.0 17.6

FMT-RANDINIT 65.1 48.9 63.3 59.1 26.9 12.6 67.1 20.9 54.6 37.5 8.0 47.1 10.9 31.7 28.6 29.3 51.6 27.0 50.0 37.3
EL-RAND 3 66.6 35.0 62.9 54.8 33.5 11.0 58.8 49.0 47.8 37.5 20.0 53.6 4.1 35.0 36.8 40.2 57.6 35.5 48.4 43.7
EL-RAND 7 70.1 39.2 67.5 58.9 34.0 16.4 66.6 53.0 57.9 39.7 35.1 56.4 4.9 40.4 46.4 50.8 61.4 38.9 52.6 50.0
MF1-RAND 3 62.1 46.2 61.2 56.5 29.5 28.1 51.4 41.6 47.3 40.8 38.5 33.8 29.0 37.8 39.6 39.3 54.7 35.4 46.6 43.1
MF1-RAND 7 67.2 51.5 63.2 60.6 33.3 33.7 58.0 48.6 56.1 44.3 55.2 43.2 41.8 46.0 43.3 42.1 63.4 41.6 54.7 49.0
MF10

KMEANS -RAND 3 63.2 52.0 61.4 58.9 28.4 7.2 52.8 45.6 51.3 15.3 30.0 47.8 32.8 34.6 37.4 34.1 55.1 33.7 44.4 40.9
MF10

KMEANS -RAND 7 67.3 55.5 63.9 62.3 35.1 6.3 65.0 57.3 59.1 20.4 44.8 55.2 42.6 42.9 46.8 41.8 60.1 37.5 51.0 47.4
MF10

NEURAL -RAND 3 63.9 51.7 62.6 59.4 14.0 4.1 57.0 49.4 48.2 35.6 23.6 52.4 34.8 35.5 31.6 32.0 58.3 17.2 35.6 34.9
MF10

NEURAL -RAND 7 68.4 56.3 62.8 62.5 16.0 4.7 65.9 56.4 57.6 42.2 39.1 58.5 44.8 42.8 37.3 31.0 61.7 18.9 42.2 38.2
FMT-LEXINIT 67.6 51.8 63.1 60.9 42.2 31.3 72.4 47.6 56.7 35.6 53.1 53.4 45.6 48.7 34.9 25.9 49.9 43.9 55.4 42.0
EL-LEX 3 70.1 51.4 65.2 62.2 42.5 37.9 56.8 50.8 52.5 41.1 38.8 56.1 54.2 47.9 40.0 41.9 60.8 43.3 52.6 47.7
EL-LEX 7 73.1 56.0 69.2 66.1 42.9 34.3 66.1 54.9 56.9 44.0 50.8 59.4 61.4 52.3 46.5 46.6 60.0 48.3 60.3 52.3
MF1-LEX 3 66.4 41.1 62.0 56.5 41.3 37.2 57.1 46.5 47.0 35.7 29.5 50.6 36.5 42.4 36.4 40.0 59.1 35.6 44.1 43.0
MF1-LEX 7 71.0 51.7 65.6 62.8 43.3 55.6 64.9 57.5 53.2 42.1 47.5 57.4 45.9 51.9 43.1 41.8 63.1 44.0 53.6 49.1
MF10

KMEANS -LEX 3 68.0 56.4 63.7 62.7 38.1 45.5 60.2 47.8 46.5 39.8 33.5 52.2 50.1 46.0 42.2 36.8 61.6 39.1 50.5 46.0
MF10

KMEANS -LEX 7 71.0 58.0 65.8 64.9 44.7 65.7 67.1 55.5 55.2 43.9 41.0 57.3 59.2 54.4 49.0 36.3 65.3 45.5 55.3 50.3
MF10

NEURAL -LEX 3 65.7 53.6 60.2 59.8 43.7 51.1 52.7 51.0 46.7 41.1 46.6 55.9 48.8 48.6 43.8 37.3 58.9 39.1 41.1 44.0
MF10

NEURAL -LEX 7 70.6 60.5 63.9 65.0 45.3 65.0 61.9 53.6 53.0 43.2 56.9 60.2 60.2 55.5 53.5 46.1 61.1 44.5 43.2 49.7

Table 7: Mean F1 NER test results averaged over 5 runs transferring from high resource language English to the
low resource languages. 12Ad indicates whether (3) or not (7) an adapter is placed in the 12th transformer layer.
The top group (first three rows) includes models which leverage the original tokenizer which is not specialized
for the target language. The second group (last 18 rows) include models with new tokenizers. Here we separate
models with randomly initialized embeddings (∗-RANDINIT) from models with lexical initialization (∗-LEXINIT)
by the dashed line. We additionally present the results for full model fine-tuning (FMT-∗).

12
A

d Seen Languages Unseen Languages but Covered Scripts New Scripts
ka ur hi Avg cdo mi ilo gn xmf sd myv bh wo Avg am bo km dv si Avg

mBERT 66.0 33.3 60.2 53.2 21.2 42.3 42.6 59.5 49.1 14.2 29.4 60.1 25.1 38.2 0.2 13.1 21.8 1.4 2.0 7.7
MAD-X 3 62.9 50.8 54.1 55.9 32.2 42.5 40.6 56.4 57.3 44.4 68.6 63.1 55.1 51.1 14.6 24.4 24.1 19.8 18.9 20.4
MAD-X 2.0 7 63.9 52.4 55.7 57.3 37.0 42.1 64.7 57.9 54.9 42.8 72.0 63.8 60.1 55.1 13.5 29.0 23.0 21.5 20.2 21.4

FMT-RANDINIT 64.6 37.2 56.5 52.8 36.7 4.1 48.1 15.7 57.8 45.8 7.0 48.9 15.8 31.1 26.4 28.8 53.0 31.1 41.6 36.2
EL-RAND 3 62.8 43.7 57.2 54.6 41.4 6.8 51.7 45.5 57.4 48.1 38.7 58.4 13.4 40.2 41.8 49.8 51.6 30.1 54.3 45.5
EL-RAND 7 63.0 48.3 59.3 56.9 44.8 4.4 54.3 47.5 60.1 47.0 46.5 58.6 8.7 41.3 43.5 51.8 53.6 29.7 51.3 46.0
MF1-RAND 3 59.3 38.1 50.3 49.2 38.2 10.0 34.7 44.4 54.1 46.5 59.8 43.0 47.8 42.1 41.6 49.1 59.7 42.3 53.6 49.2
MF1-RAND 7 59.5 42.8 52.9 51.7 44.2 10.2 35.9 44.3 54.2 44.8 64.2 43.4 47.4 43.2 43.9 48.6 55.9 45.3 52.4 49.2
MF10

KMEANS -RAND 3 60.0 40.7 55.5 52.1 38.6 1.0 43.2 44.4 64.3 28.6 55.0 61.0 50.9 43.0 39.3 23.5 63.7 34.6 45.0 41.2
MF10

KMEANS -RAND 7 59.6 43.9 56.8 53.4 48.1 3.1 47.6 50.3 63.1 33.0 60.6 59.7 51.9 46.4 44.9 25.3 62.1 37.5 45.7 43.1
MF10

NEURAL -RAND 3 62.5 44.1 54.1 53.5 21.3 2.2 44.7 46.1 58.4 50.8 39.7 63.9 47.6 41.6 37.5 38.7 65.4 18.3 50.8 42.1
MF10

NEURAL -RAND 7 62.1 50.0 56.3 56.1 20.7 4.1 49.7 51.4 57.9 52.5 48.2 65.6 48.3 44.3 38.3 42.9 64.3 18.1 52.5 43.2
FMT-LEXINIT 67.1 36.9 60.2 54.7 59.6 15.6 49.3 55.4 57.3 45.5 52.3 64.6 50.4 50.0 29.3 31.3 58.2 45.2 48.6 42.5
EL-LEX 3 68.9 49.7 61.7 60.1 51.4 26.6 54.3 53.5 54.6 48.4 59.7 62.2 59.3 52.2 43.9 47.1 60.2 48.3 55.7 51.0
EL-LEX 7 68.0 53.1 64.0 61.7 54.7 24.4 54.4 55.3 52.4 48.4 60.7 59.6 58.1 52.0 48.0 53.5 60.7 50.3 54.8 53.5
MF1-LEX 3 61.8 42.8 56.4 53.7 51.2 16.3 47.2 49.7 52.6 47.2 56.2 60.0 53.7 48.2 41.5 39.4 61.4 41.7 44.8 45.8
MF1-LEX 7 61.9 47.8 57.7 55.8 48.2 18.8 51.5 55.8 54.9 46.7 61.3 60.4 52.6 50.0 42.9 41.9 58.3 44.8 49.6 47.5
MF10

KMEANS -LEX 3 62.9 47.2 58.3 56.1 49.2 31.8 53.8 53.2 51.1 50.1 56.0 61.6 58.5 51.7 42.7 43.6 62.4 46.9 50.0 49.1
MF10

KMEANS -LEX 7 63.3 50.9 59.8 58.0 51.8 29.6 52.5 55.3 51.5 50.7 59.9 65.1 56.0 52.5 44.9 44.4 61.0 49.9 48.0 49.6
MF10

NEURAL -LEX 3 62.6 55.1 55.6 57.8 52.9 32.3 40.0 54.4 59.4 53.4 61.1 60.8 67.4 53.5 44.3 50.1 65.7 40.9 53.4 50.9
MF10

NEURAL -LEX 7 63.7 57.1 58.4 59.7 54.1 34.2 42.0 54.6 59.0 49.6 63.4 62.9 66.9 54.1 41.5 53.8 62.3 45.4 49.6 50.5

Table 8: Mean F1 NER test results averaged over 5 runs transferring from high resource language Chinese to the
low resource languages. 12Ad indicates whether (3) or not (7) an adapter is placed in the 12th transformer layer.
The top group (first three rows) includes models which leverage the original tokenizer which is not specialized
for the target language. The second group (last 18 rows) include models with new tokenizers. Here we separate
models with randomly initialized embeddings (∗-RANDINIT) from models with lexical initialization (∗-LEXINIT)
by the dashed line. We additionally present the results for full model fine-tuning (FMT-∗).
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12
A

d Seen Languages Unseen Languages but Covered Scripts New Scripts
ka ur hi Avg cdo mi ilo gn xmf sd myv bh wo Avg am bo km dv si Avg

mBERT 64.2 35.5 59.8 53.2 17.7 42.6 39.5 50.2 46.5 14.2 23.9 56.0 21.6 34.7 3.4 23.2 6.2 1.4 7.6 8.3
MAD-X 3 62.7 49.8 55.9 56.1 29.7 43.8 28.3 48.0 53.2 34.2 58.0 54.7 52.9 44.7 6.0 31.4 22.4 16.7 17.2 18.7
MAD-X 2.0 7 64.7 52.5 57.8 58.3 31.8 46.6 43.5 54.6 51.7 40.0 60.6 59.9 50.8 48.8 7.2 31.2 22.7 24.4 22.1 21.5

FMT-RANDINIT 64.2 36.4 60.2 53.6 33.3 3.8 49.7 15.5 56.1 47.2 11.7 54.6 12.7 31.6 27.5 33.0 58.5 30.4 52.5 40.4
EL-RAND 3 63.0 37.1 58.2 52.8 35.8 3.9 47.3 43.7 50.1 41.6 22.5 54.7 5.7 33.9 34.9 50.6 52.7 32.3 44.6 43.0
EL-RAND 7 65.6 43.1 60.7 56.5 37.4 2.6 52.6 47.4 58.1 46.7 31.2 56.8 4.3 37.5 40.3 53.5 60.7 32.3 52.8 47.9
MF1-RAND 3 60.8 43.1 52.7 52.2 36.7 9.1 32.4 42.0 55.2 42.1 57.1 43.1 46.7 40.5 37.2 48.3 56.8 37.9 50.6 46.2
MF1-RAND 7 63.5 44.6 55.7 54.6 43.3 12.2 28.9 44.9 57.7 48.5 62.4 46.0 55.9 44.4 41.4 46.8 57.6 40.1 52.8 47.7
MF10

KMEANS -RAND 3 58.8 36.5 56.5 50.6 34.5 0.9 24.0 45.7 57.8 20.6 27.3 52.4 42.2 33.9 33.5 39.9 61.9 34.7 40.7 42.1
MF10

KMEANS -RAND 7 64.4 39.0 58.4 53.9 40.3 1.3 31.3 48.8 57.0 26.5 46.1 55.5 43.8 39.0 36.2 40.7 63.6 37.0 47.2 44.9
MF10

NEURAL -RAND 3 59.4 37.4 55.4 50.7 22.6 2.6 29.3 44.8 52.1 45.5 28.3 58.5 41.3 36.1 31.0 42.4 63.9 17.0 45.5 40.0
MF10

NEURAL -RAND 7 62.8 44.4 56.7 54.6 19.5 3.7 32.6 46.0 57.3 44.5 45.4 62.3 42.9 39.4 33.8 40.1 63.7 18.2 44.5 40.0
FMT-LEXINIT 66.1 40.4 62.0 56.2 52.4 13.7 45.5 52.8 56.7 43.0 61.2 64.0 50.2 48.9 31.5 30.0 60.7 40.2 53.9 43.3
EL-LEX 3 60.3 51.7 61.8 57.9 42.3 20.1 55.3 47.5 50.8 42.7 60.9 59.8 55.2 48.3 39.8 44.8 60.2 39.9 52.7 47.5
EL-LEX 7 68.8 52.5 62.9 61.4 46.6 22.6 51.3 50.4 55.0 44.7 60.1 63.4 56.0 50.0 45.0 47.3 61.7 45.4 57.7 51.4
MF1-LEX 3 62.7 47.4 58.6 56.2 47.0 22.1 38.0 49.6 51.6 42.0 57.1 59.2 55.2 46.9 34.9 41.4 63.3 41.1 43.0 44.8
MF1-LEX 7 64.6 52.1 59.4 58.7 48.8 26.7 43.0 51.0 55.1 44.6 58.3 63.1 57.3 49.8 32.2 42.0 63.8 43.1 50.4 46.3
MF10

KMEANS -LEX 3 62.2 46.9 57.4 55.5 43.2 33.6 31.8 46.1 53.5 42.3 35.8 60.2 55.8 44.7 37.8 41.9 60.9 44.7 50.5 47.2
MF10

KMEANS -LEX 7 67.0 51.5 59.4 59.3 51.2 45.8 35.6 49.9 55.0 45.8 50.5 64.3 56.7 50.5 42.6 38.7 63.6 44.3 51.2 48.1
MF10

NEURAL -LEX 3 62.1 49.2 56.4 55.9 45.1 20.5 29.2 47.1 51.3 45.9 48.2 62.3 62.2 45.8 33.6 50.4 67.1 40.0 45.9 47.4
MF10

NEURAL -LEX 7 66.2 52.4 58.5 59.0 48.4 36.0 29.6 51.5 54.9 46.8 56.3 63.6 65.9 50.3 38.1 54.7 64.6 43.6 46.8 49.6

Table 9: Mean F1 NER test results averaged over 5 runs transferring from high resource language Japanese to the
low resource languages. 12Ad indicates whether (3) or not (7) an adapter is placed in the 12th transformer layer.
The top group (first three rows) includes models which leverage the original tokenizer which is not specialized
for the target language. The second group (last 18 rows) include models with new tokenizers. Here we separate
models with randomly initialized embeddings (∗-RANDINIT) from models with lexical initialization (∗-LEXINIT)
by the dashed line. We additionally present the results for full model fine-tuning (FMT-∗).

12
A

d Seen Languages Unseen Languages but Covered Scripts New Scripts
ka ur hi Avg cdo mi ilo gn xmf sd myv bh wo Avg am bo km dv si Avg

mBERT 64.4 46.2 70.0 60.2 17.0 25.8 36.7 58.4 43.6 10.3 22.3 53.2 23.6 32.3 0.0 21.9 9.8 1.9 0.3 6.8
MAD-X 3 65.3 60.6 64.1 63.4 29.5 57.8 52.0 53.5 51.2 32.3 57.0 57.9 43.2 48.3 7.9 22.9 9.6 16.8 14.4 14.3
MAD-X 2.0 7 66.5 61.9 66.1 64.9 29.5 61.8 68.7 58.4 54.8 34.8 61.3 59.8 54.5 53.7 14.1 22.0 8.5 20.0 10.4 15.0

FMT-RANDINIT 64.3 44.0 66.9 58.4 37.2 2.0 59.6 20.0 64.9 41.1 9.1 55.8 4.9 32.7 30.2 38.3 56.7 31.7 54.7 42.3
EL-RAND 3 61.8 59.1 64.9 61.9 31.8 6.7 52.7 43.3 55.4 38.0 29.4 48.6 3.0 34.3 36.9 59.8 61.4 27.7 44.3 46.0
EL-RAND 7 64.4 60.7 67.8 64.3 35.9 5.9 58.1 45.9 61.5 43.6 27.8 50.4 2.8 36.9 41.4 59.4 62.2 30.1 49.2 48.5
MF1-RAND 3 61.8 52.9 57.8 57.5 36.4 18.5 46.8 49.3 59.0 39.0 57.5 40.3 34.2 42.3 36.4 58.2 66.7 45.2 47.0 50.7
MF1-RAND 7 63.8 55.1 59.5 59.5 38.4 21.4 51.8 51.6 63.5 42.8 59.8 44.9 35.0 45.5 42.0 58.4 69.8 46.7 48.6 53.1
MF10

KMEANS -RAND 3 60.4 55.5 61.5 59.1 32.3 10.5 43.5 47.6 60.0 25.5 29.7 44.2 21.0 34.9 36.6 46.5 68.3 40.1 46.3 47.5
MF10

KMEANS -RAND 7 61.3 59.4 63.5 61.4 39.3 11.4 49.9 51.4 62.4 28.8 35.3 47.8 26.6 39.2 43.1 45.7 69.1 42.7 48.2 49.8
MF10

NEURAL -RAND 3 62.9 56.4 63.2 60.8 24.5 65.0 49.0 46.1 58.1 40.7 56.9 49.0 29.5 46.6 35.0 35.0 65.5 15.5 43.2 38.8
MF10

NEURAL -RAND 7 64.1 59.6 65.8 63.2 26.8 34.2 56.6 49.2 59.8 41.5 63.4 53.7 33.8 46.6 39.6 36.1 67.1 18.9 49.6 42.3
FMT-LEXINIT 64.3 47.6 67.5 59.8 47.0 28.5 68.9 53.4 66.0 43.3 49.1 57.5 43.0 50.7 34.6 32.1 62.6 45.9 50.4 45.2
EL-LEX 3 62.0 68.0 67.1 65.7 40.7 47.5 52.1 54.3 58.4 35.8 53.8 53.5 24.8 46.8 46.1 59.2 61.5 42.1 52.4 52.3
EL-LEX 7 67.5 70.0 69.5 69.0 42.9 47.7 63.4 55.7 63.6 41.4 53.6 55.4 25.1 49.9 46.5 58.6 61.8 44.8 52.3 52.8
MF1-LEX 3 63.3 63.4 61.7 62.8 41.0 58.9 53.6 50.1 64.7 40.3 54.8 53.9 31.3 49.8 33.5 38.9 67.8 42.4 47.3 46.0
MF1-LEX 7 64.7 64.3 63.4 64.1 46.3 58.1 61.3 54.6 65.7 46.4 53.1 55.5 36.5 53.1 36.1 44.4 70.2 43.1 52.2 49.2
MF10

KMEANS -LEX 3 64.8 61.9 64.2 63.7 35.9 52.0 56.0 51.7 57.5 41.5 50.3 51.1 30.3 47.4 46.2 52.6 69.2 44.1 49.2 52.3
MF10

KMEANS -LEX 7 66.5 62.9 65.4 64.9 43.3 62.0 57.5 55.0 60.7 45.2 50.1 55.9 35.1 51.6 50.5 52.4 70.9 45.5 51.6 54.2
MF10

NEURAL -LEX 3 63.4 66.5 63.4 64.4 44.7 38.6 40.7 52.0 58.7 42.5 52.9 54.6 34.8 46.6 46.4 53.4 64.3 44.4 42.5 50.2
MF10

NEURAL -LEX 7 64.7 68.3 63.7 65.5 47.9 54.9 52.0 54.6 59.8 45.3 57.0 57.3 38.7 51.9 48.9 51.9 68.6 46.2 45.3 52.2

Table 10: Mean F1 NER test results averaged over 5 runs transferring from high resource language Arabic to the
low resource languages. 12Ad indicates whether (3) or not (7) an adapter is placed in the 12th transformer layer.
The top group (first three rows) includes models which leverage the original tokenizer which is not specialized
for the target language. The second group (last 18 rows) include models with new tokenizers. Here we separate
models with randomly initialized embeddings (∗-RANDINIT) from models with lexical initialization (∗-LEXINIT)
by the dashed line. We additionally present the results for full model fine-tuning (FMT-∗).
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Seen Languages Unseen Languages but Covered Scripts New Script
hi ur Avg bh myv wo Avg am

UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS

mBERT 48.0 / 34.4 36.4 / 23.9 42.2 / 29.2 33.0 / 18.3 33.6 / 14.3 33.0 / 9.3 33.2 / 14.0 15.5 / 12.6
MAD-X 2.0 44.6 / 31.2 37.6 / 23.9 41.1 / 27.5 29.5 / 16.1 60.5 / 43.2 50.5 / 33.8 46.8 / 31.1 11.7 / 9.6

EL-RAND 45.9 / 32.5 38.2 / 23.9 42.1 / 28.2 29.9 / 13.6 57.8 / 35.0 33.2 / 11.1 40.3 / 19.9 26.4 / 13.0
MF1-RAND 45.3 / 33.3 37.8 / 25.2 41.6 / 29.3 26.6 / 13.3 62.7 / 41.5 42.2 / 27.2 43.8 / 27.3 32.7 / 15.5
MF10

KMEANS -RAND 46.3 / 33.1 37.8 / 25.6 42.1 / 29.3 31.4 / 16.0 62.9 / 42.8 24.9 / 13.7 39.7 / 24.1 29.7 / 14.9
MF10

NEURAL -RAND 42.6 / 30.5 33.7 / 22.6 38.1 / 26.5 33.2 / 17.8 61.6 / 41.5 38.3 / 22.2 44.4 / 27.2 28.4 / 12.7
EL-LEX 47.1 / 33.1 38.1 / 24.9 42.6 / 29.0 31.3 / 17.2 63.3 / 40.9 51.3 / 34.0 48.6 / 30.7 32.4 / 9.1
MF1-LEX 45.8 / 33.5 38.1 / 26.2 42.0 / 29.8 33.2 / 17.6 62.6 / 42.4 50.0 / 35.2 48.6 / 31.8 35.1 / 16.1
MF10

KMEANS -LEX 46.0 / 33.4 38.8 / 26.5 42.4 / 30.0 33.1 / 17.7 64.2 / 44.5 52.6 / 35.9 50.0 / 32.7 27.7 / 14.1
MF10

NEURAL -LEX 45.1 / 32.9 36.8 / 25.1 41.0 / 29.0 32.1 / 17.0 62.3 / 42.9 45.2 / 29.6 46.5 / 29.8 29.6 / 15.3

(a) Zero-shot DP scores. Source language: English.

Seen Languages Unseen Languages but Covered Scripts New Script
hi ur Avg bh myv wo Avg am

UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS

mBERT 53.1 / 28.7 38.7 / 19.4 45.9 / 24.1 37.8 / 16.8 33.0 / 16.1 28.2 / 9.2 33.0 / 14.0 7.7 / 0.6
MAD-X 2.0 48.2 / 25.0 39.2 / 19.1 43.7 / 22.0 33.4 / 14.8 52.5 / 32.4 37.6 / 20.1 41.2 / 22.5 12.6 / 9.8

EL-RAND 46.2 / 22.7 34.1 / 15.7 40.1 / 19.2 30.0 / 10.0 49.6 / 25.8 22.7 / 6.9 34.1 / 14.2 27.3 / 11.0
MF1-RAND 48.0 / 25.5 36.0 / 17.7 42.0 / 21.6 29.9 / 12.2 54.5 / 32.0 34.6 / 17.3 39.7 / 20.5 33.8 / 13.7
MF10

KMEANS -RAND 46.5 / 25.0 35.7 / 17.8 41.1 / 21.4 29.5 / 11.4 54.9 / 32.6 22.8 / 11.4 35.7 / 18.5 34.3 / 13.3
MF10

NEURAL -RAND 44.3 / 22.9 31.7 / 15.3 38.0 / 19.1 32.2 / 13.6 53.6 / 31.7 29.9 / 15.6 38.6 / 20.3 32.9 / 11.7
EL-LEX 47.1 / 24.6 36.9 / 17.7 42.0 / 21.1 31.6 / 14.0 53.5 / 29.6 40.3 / 20.9 41.8 / 21.5 34.4 / 10.8
MF1-LEX 47.4 / 26.1 36.8 / 18.3 42.1 / 22.2 31.3 / 13.9 54.3 / 32.7 39.5 / 21.2 41.7 / 22.6 37.6 / 14.8
MF10

KMEANS -LEX 47.6 / 25.8 38.4 / 18.9 43.0 / 22.4 33.5 / 14.3 54.5 / 32.7 40.5 / 22.5 42.8 / 23.2 28.4 / 11.2
MF10

NEURAL -LEX 45.0 / 24.8 36.7 / 18.4 40.9 / 21.6 32.2 / 14.6 53.0 / 31.3 35.0 / 19.1 40.1 / 21.7 34.2 / 15.4

(b) Zero-shot DP scores. Source language: Chinese.

Seen Languages Unseen Languages but Covered Scripts New Script
hi ur Avg bh myv wo Avg am

UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS

mBERT 57.0 / 40.7 43.7 / 29.8 50.3 / 35.2 45.9 / 30.6 27.7 / 9.3 18.9 / 2.3 30.9 / 14.0 10.0 / 0.9
MAD-X 2.0 55.5 / 38.3 45.4 / 30.4 50.5 / 34.3 42.6 / 27.2 37.9 / 19.7 22.2 / 6.1 34.2 / 17.7 12.3 / 9.7

EL-RAND 55.7 / 38.4 44.5 / 28.1 50.1 / 33.2 42.4 / 24.9 31.8 / 9.5 16.3 / 1.9 30.2 / 12.1 36.9 / 14.3
MF1-RAND 53.1 / 36.7 42.7 / 27.4 47.9 / 32.1 38.5 / 23.9 36.6 / 14.6 21.1 / 4.3 32.0 / 14.3 36.6 / 15.2
MF10

KMEANS -RAND 54.6 / 38.0 44.6 / 28.7 49.6 / 33.3 41.3 / 25.9 36.6 / 15.5 14.1 / 2.3 30.7 / 14.6 33.1 / 14.0
MF10

NEURAL -RAND 52.2 / 35.8 40.9 / 26.7 46.6 / 31.3 42.9 / 27.5 35.5 / 15.0 18.8 / 4.3 32.4 / 15.6 29.0 / 10.2
EL-LEX 52.9 / 36.3 45.1 / 29.1 49.0 / 32.7 40.6 / 27.1 34.9 / 13.3 22.6 / 5.3 32.7 / 15.2 37.6 / 11.6
MF1-LEX 53.1 / 36.8 44.2 / 28.6 48.7 / 32.7 41.5 / 27.0 36.1 / 14.8 23.9 / 5.6 33.8 / 15.8 31.2 / 12.5
MF10

KMEANS -LEX 53.4 / 37.8 45.7 / 30.4 49.6 / 34.1 41.9 / 27.0 36.9 / 16.2 23.6 / 5.6 34.1 / 16.3 40.9 / 16.5
MF10

NEURAL -LEX 53.5 / 37.9 44.5 / 29.2 49.0 / 33.5 41.3 / 27.0 35.6 / 16.7 20.4 / 4.8 32.4 / 16.1 32.6 / 14.5

(c) Zero-shot DP scores. Source language: Japanese.

Seen Languages Unseen Languages but Covered Scripts New Script
hi ur Avg bh myv wo Avg am

UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS

mBERT 25.1 / 14.2 20.9 / 8.9 23.0 / 11.6 18.9 / 8.7 24.5 / 12.3 29.9 / 9.1 24.4 / 10.0 7.3 / 1.1
MAD-X 2.0 19.8 / 9.8 17.9 / 7.0 18.8 / 8.4 18.8 / 6.7 39.7 / 23.7 31.2 / 13.6 29.9 / 14.6 19.4 / 1.5

EL-RAND 19.7 / 10.0 15.0 / 6.0 17.4 / 8.0 17.5 / 6.6 42.2 / 25.5 25.2 / 8.9 28.3 / 13.7 30.0 / 6.7
MF1-RAND 20.3 / 9.4 18.4 / 7.3 19.4 / 8.4 19.7 / 5.3 36.7 / 20.7 33.1 / 13.3 29.8 / 13.1 34.0 / 8.9
MF10

KMEANS -RAND 25.1 / 11.9 20.9 / 7.9 23.0 / 9.9 21.0 / 5.5 40.0 / 23.8 25.1 / 10.0 28.7 / 13.1 32.7 / 7.6
MF10

NEURAL -RAND 23.8 / 11.4 15.3 / 6.3 19.5 / 8.9 19.1 / 6.1 40.3 / 22.6 31.2 / 12.7 30.2 / 13.8 0.0 / 5.8
EL-LEX 20.5 / 10.6 15.8 / 6.8 18.1 / 8.7 19.0 / 6.7 43.3 / 26.9 37.2 / 16.6 33.2 / 16.8 31.4 / 8.3
MF1-LEX 22.0 / 10.5 16.9 / 7.1 19.5 / 8.8 18.9 / 7.3 42.8 / 25.6 36.9 / 16.1 32.9 / 16.3 35.4 / 8.0
MF10

KMEANS -LEX 25.2 / 12.8 21.7 / 8.8 23.4 / 10.8 15.1 / 5.6 31.6 / 17.0 38.0 / 17.5 28.2 / 13.4 28.7 / 6.6
MF10

NEURAL -LEX 25.3 / 12.5 21.0 / 8.3 23.2 / 10.4 18.9 / 6.8 39.9 / 23.5 34.5 / 15.9 31.1 / 15.4 32.4 / 7.7

(d) Zero-shot DP scores. Source language: Arabic.

Table 11: Mean UAS and LAS test results for UD averaged over 5 runs transferring from the high-resource source
languages (a) English, (b) Chinese, (c) Japanses, and (d) Arabic. The top group (first two rows) includes models
which leverage the original tokenizer which is not specialized for the target language. The second group (last
four rows) include models with new tokenizers. Here we separate models with randomly initialized embeddings
(∗-RANDINIT) from models with lexical initialization (∗-LEXINIT) by the dashed line.

105



10203

Language Language code Script

Afrikaans af Latin
Albanian sq Latin
Arabic ar Arabic
Aragonese an Latin
Armenian hy Armenian
Asturian ast Latin
Azerbaijani az Latin
Bashkir ba Cyrillic
Basque eu Latin
Bavarian bar Latin
Belarusian be Cyrillic
Bengali bn Bengali
Bishnupriya-manipuri bpy Bengali
Bosnian bs Latin
Breton br Latin
Bulgarian bg Cyrillic
Burmese my Myanmar
Catalan ca Latin
Cebuano ceb Latin
Chechen ce Cyrillic
Chinese-simplified zh-Hans Chinese
Chinese-traditional zh-Hant Chinese
Chuvash cv Cyrillic
Croatian hr Latin
Czech cs Latin
Danish da Latin
Dutch nl Latin
English en Latin
Estonian et Latin
Finnish fi Latin
French fr Latin
Galician gl Latin
Georgian ka Georgian
German de Latin
Greek el Greek
Gujarati gu Gujarati
Haitian ht Latin
Hebrew he Hebrew
Hindi hi Devanagari
Hungarian hu Latin
Icelandic is Latin
Ido io Latin
Indonesian id Latin
Irish ga Latin
Italian it Latin
Japanese ja Japanese
Javanese jv Latin
Kannada kn Kannada
Kazakh kk Cyrillic
Kirghiz ky Cyrillic
Korean ko Korean
Latin la Latin

Language Language code Script

Latvian lv Latin
Lithuanian lt Latin
Lombard lmo Latin
Low-saxon nds Latin
Luxembourgish lb Latin
Macedonian mk Cyrillic
Malagasy mg Latin
Malay ms Latin
Malayalam ml Malayalam
Marathi mr Devanagari
Minangkabau min Latin
Mongolian mn Cyrillic
Nepali ne Devanagari
Newar new Devanagari
Norwegian-bokmal nb Latin
Norwegian-nynorsk nn Latin
Occitan oc Latin
Persian fa Arabic
Piedmontese pms Latin
Polish pl Latin
Portuguese pt Latin
Punjabi pa Gurmukhi
Romanian ro Latin
Russian ru Cyrillic
Scots sco Latin
Serbian sr Cyrillic
Serbo-croatian hbs Latin
Sicilian scn Latin
Slovak sk Latin
Slovenian sl Latin
South-azerbaijani azb Arabic
Spanish es Latin
Sundanese su Latin
Swahili sw Latin
Swedish sv Latin
Tagalog tl Latin
Tajik tg Cyrillic
Tamil ta Tamil
Tatar tt Cyrillic
Telugu te Telugu
Thai th Thai
Turkish tr Latin
Ukrainian uk Cyrillic
Urdu ur Arabic
Uzbek uz Latin
Vietnamese vi Latin
Volapuk vo Latin
Waray-waray war Latin
Welsh cy Latin
West fy Latin
Western-punjabi lah Arabic
Yoruba yo Latin

Table 12: List of languages used in the pretraining. Taken from Chung et al. (2020)
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Abstract

Recent advances in multimodal vision and lan-
guage modeling have predominantly focused
on the English language, mostly due to the
lack of multilingual multimodal datasets to
steer modeling efforts. In this work, we ad-
dress this gap and provide xGQA, a new mul-
tilingual evaluation benchmark for the visual
question answering task. We extend the es-
tablished English GQA dataset (Hudson and
Manning, 2019) to 7 typologically diverse lan-
guages, enabling us to detect and explore cru-
cial challenges in cross-lingual visual ques-
tion answering. We further propose new
adapter-based approaches to adapt multimodal
transformer-based models to become multilin-
gual, and—vice versa—multilingual models
to become multimodal. Our proposed meth-
ods outperform current state-of-the-art multi-
lingual multimodal models (e.g., M3P) in zero-
shot cross-lingual settings, but the accuracy
remains low across the board; a performance
drop of around 38 accuracy points in target lan-
guages showcases the difficulty of zero-shot
cross-lingual transfer for this task. Our results
suggest that simple cross-lingual transfer of
multimodal models yields latent multilingual
multimodal misalignment, calling for more so-
phisticated methods for vision and multilin-
gual language modeling.1

1 Introduction

Transformer-based architectures (Vaswani et al.,
2017) have become ubiquitous in NLP (Devlin
et al., 2019; Liu et al., 2019; Conneau et al., 2020,
inter alia) and in computer vision (CV) (Carion
et al., 2020; Dosovitskiy et al., 2021), offering un-
matched task performance. Having a shared archi-
tecture for multiple modalities opened up possibil-
ities for effective fusion of information, yielding
impressive performance gains across various mul-
timodal tasks such as image captioning, phrase

1The xGQA dataset is available online at: https://
github.com/Adapter-Hub/xGQA.
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Who is flying through the sky? 
Wer fliegt durch die Luft?
আকােশর মেধধ্যে িদেয় ĺক উড়েছ?
Quem está voando pelo céu?
Кто летает по небу?
谁在天空中飞过？

누가 하늘을 날고 있습니까?
Siapa yang sedang terbang melintasi langit?

Skateboarder

Figure 1: Example taken from the xGQA dataset with
the same question uttered in 8 languages.

grounding, visual question answering, referring ex-
pression comprehension and image-text retrieval
(Lu et al., 2019; Tan and Bansal, 2019; Li et al.,
2020b; Zhang et al., 2021; Ni et al., 2021; Kamath
et al., 2021; Miech et al., 2021; Frank et al., 2021;
Bugliarello et al., 2021; Radford et al., 2021; Jia
et al., 2021; Eichenberg et al., 2021; Singh et al.,
2021; Fu et al., 2021; Yang et al., 2021; Yuan et al.,
2021; Wang et al., 2021a; Li et al., 2021; Geigle
et al., 2022, inter alia). Yet, progress in this area
has been limited mostly to the English language,
as the main multimodal datasets consist only of
English text. Due to the scarcity of multilingual
evaluation benchmarks, there has been limited de-
velopment of models that tackle this joint problem.

Aiming to address this gap, in this paper we pro-
pose xGQA, a multilingual evaluation benchmark
for the visual question answering task, extending
the monolingual English-only GQA dataset (Hud-
son and Manning, 2019). For xGQA we manually
translate and adapt the balanced GQA test-dev set
into 7 new languages from 7 language families,
covering 5 distinct scripts; see Figure 1 and Ta-
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ble 1 later. In addition, we provide new fixed data
splits to guide cross-lingual few-shot learning ex-
periments, where only a small number of examples
in the target language are utilized.

As pretraining is (i) notoriously computation-
ally expensive for high-resource languages and (ii)
only limited amounts of multilingual multimodal
resources are available, we also propose compu-
tationally efficient adapter-based (Houlsby et al.,
2019) approaches as additional baselines for con-
structing multilingual multimodal models. In a
nutshell, we extend multimodal models pretrained
only on English text (Zhang et al., 2021) to be-
come multilingual and—vice versa—multilingual
models (Devlin et al., 2019) to become multimodal.
To this end, we follow the approaches of Artetxe
et al. (2020) and Pfeiffer et al. (2020b, 2021) and
extend monolingual and multilingual models to
new languages and scripts via learning new tok-
enizers and corresponding word-embedding matri-
ces, as well as adapters for the target languages.
To transfer the respective multilingual multimodal
adapter-based models to the target task, we pro-
pose a novel modality-specific split architecture,
which uses modality dependent adapter weights
(see Figure 2 for an illustration of the architecture).

Our results clearly indicate that the proposed
adapter-based architecture outperforms the recent
state-of-the-art pretrained multilingual multimodal
M3P model (Ni et al., 2021) in zero-shot cross-
lingual settings. However, the overall performance
of zero-shot transfer remains low across the board,
with an average drop of around 38 accuracy points
across target languages. Using a small number of
target language examples in a few-shot setup con-
siderably improves performance for all approaches,
but cross-lingual transfer performance still lags
substantially behind source language performance.
This demonstrates the inherent difficulty of the task,
even though the corresponding questions are ar-
guably simple as they are template based and only
contain 8.5 words on average (see Figure 1).

Contributions. 1) We propose the first evaluation
benchmark for cross-lingual visual question an-
swering, covering 7 diverse target languages; 2) we
propose novel adapter-based approaches for the
creation of multilingual multimodal models; 3) we
systematically benchmark state-of-the-art and new
multilingual multimodal models in zero-shot and
few-shot learning setups, demonstrating the diffi-
culty of the proposed task and serving as strong

reference points for future work; 4) we provide a
thorough analysis of the different approaches, high-
lighting the aspects and question types that lead to
the most common model failures, again motivating
future work in this domain.

2 Background and Related Work

Multilingual Language Models. Pretrained mul-
tilingual transformer-based LMs such as mBERT
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020) adopt the same pretraining regime as their
respective monolingual counterparts: BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019).
They are pretrained via self-supervised masked lan-
guage modelling objective (MLM) on concatenated
text corpora of more than 100 languages, where
text is tokenized using WordPiece, SentencePiece
or BytePair encodings. These multilingual mod-
els have been shown to work surprisingly well for
cross-lingual tasks, despite the fact that they do
not rely on direct cross-lingual supervision (e.g.,
parallel data, translation dictionaries; Pires et al.,
2019; Wu and Dredze, 2019; Artetxe et al., 2020;
Hu et al., 2020; K et al., 2020; Rust et al., 2021).

Vision and Language Models. Most transformer-
based multimodal models (Lu et al., 2019; Tan and
Bansal, 2019; Chen et al., 2020; Li et al., 2020a;
Gan et al., 2020; Li et al., 2020b; Bugliarello et al.,
2021; Ni et al., 2021, inter alia) jointly encode text
tokens and image region features by preprocess-
ing images using object detection models—such
as Faster R-CNN (Ren et al., 2015)—to extract
features for regions of interest (RoI) (Anderson
et al., 2018). The image region features are passed
through an affine layer, which learns to project the
region features to the joint embedding space of the
multimodal transformer. The bounding box coor-
dinates of the RoI act as positional embeddings
for the visual features. As such, they undergo an
affine transformation to the embedding space and
are combined with their respective image region
representation. The position-aware image region
embeddings get passed into the transformer. The
multi-head attention then attends over all text and
image inputs at every layer, learning a joint repre-
sentation of both modalities. On the other hand,
Kamath et al. (2021) avoid using object detectors as
a black-box for pre-extracting these region features
and instead make it a central part of the multimodal
transformer architecture. Training the object de-
tector end-to-end with the multimodal transformer
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adds flexibility and better representation capacity.
Similar to MLM, multimodal transformer-based

models are trained with self-supervised objectives
such as masked feature regression, masked ob-
ject detection, masked attribute detection, and con-
trastive losses such as cross-modality matching
(Tan and Bansal, 2019). Typically, image caption-
ing datasets are used for pretraining such as COCO
(Lin et al., 2014), Flickr30k (Plummer et al., 2015),
Conceptual Captions (CC) (Sharma et al., 2018),
and SBU (Ordonez et al., 2011). Similar to uni-
modal language models, the [CLS] token is used as
a contextual representation for classification tasks.

Multilingual multimodal models have also been
proposed recently: M3P (Ni et al., 2021) is trained
on the Wikipedias of 50 different languages and the
English multimodal CC dataset. In order to align
tokens of languages other than English with im-
age representations, M3P utilizes a code-switching
mechanism, where words of the English CC exam-
ples are randomly replaced with words from corre-
sponding bilingual dictionaries. In UC2, Zhou et al.
(2021) augment English multimodal datasets with
other languages via machine translation and pro-
pose masked region-to-token modeling and visual
translation language modeling.2

Adapters (Rebuffi et al., 2017; Houlsby et al.,
2019) have been introduced as a more efficient fine-
tuning strategy for transfer learning in NLP and CV.
Instead of fine-tuning all the weights of a pretrained
model on the target task, small feed-forward layers
are introduced at each layer of the pretrained model.
During task fine-tuning, only the adapter weights
are updated, while the pretrained parameters re-
main fixed/frozen. Adapters have been shown to
be very training efficient (Rücklé et al., 2021), and
among an increasing amount of applications they
can be utilized to transfer between domains (Rücklé
et al., 2020) and tasks (Poth et al., 2021), and in
machine translation (Bapna and Firat, 2019; Philip
et al., 2020; Le et al., 2021) and cross-lingual trans-
fer (Pfeiffer et al., 2020b, 2021; Üstün et al., 2020;
Ansell et al., 2021, inter alia) scenarios.

Datasets. Pretraining and fine-tuning data for
multilingual multimodal models is typically based
on (multimodal information from) Wikipedia
(WikiCaps, WIT, Schamoni et al., 2018; Srini-
vasan et al., 2021), or on available downstream
task data. Multi30k (Elliott et al., 2016) is a multi-

2The model weights of UC2 were not released by the time
of experimentation.

lingual image captioning dataset for retrieval-type
questions, covering English, German, French, and
Czech; GEM (Su et al., 2021) covers image and
video retrieval tasks across 20 and 30 different lan-
guages, respectively; HowTo100M (Huang et al.,
2021) is a multilingual and multimodal pretrain-
ing dataset for image and video retrieval; Multi-
Subs (Wang et al., 2021b) focuses on fill-in-the-
blank tasks and lexical translation, covering En-
glish, Spanish, German, Portuguese, and French.
Gao et al. (2015); Shimizu et al. (2018) propose
bilingual visual question answering datasets for
English, and Chinese and Japanese respectively.
In contemporary work Liu et al. (2021) propose
MaRVL, a binary multilingual question answering
dataset similar to NLVR2 (Suhr et al., 2019), span-
ning 5 typologically diverse languages (Chinese,
Tamil, Swahili, Indonesian, and Turkish).

Previous datasets predominantly focus on (ar-
guably simpler) retrieval-type tasks, only cover a
small set of similar languages (e.g., Multi30k, Mul-
tiSubs), or only cover binary questions. In contrast,
we propose the first multilingual visual question
answering dataset, which covers a typologically
more diverse set of languages.

Most recently, IGLUE (Bugliarello et al.,
2022)—a multilingual multimodal benchmark that
integrates xGQA—was proposed: IGLUE brings
together visual question answering, cross-modal
retrieval, grounded reasoning, and grounded entail-
ment tasks across 20 diverse languages.

3 xGQA

The original English GQA dataset (Hudson and
Manning, 2019) was constructed by leveraging Vi-
sual Genome scene graphs (Krishna et al., 2017).
An English question engine that utilizes content
(i.e. information about objects, attributes, and rela-
tions provided) and structure (a linguistic grammar
that couples hundreds of structural patterns and
detailed lexical semantic resources) was used to
generate over 22 million diverse questions, which
are visually grounded in the image scene graphs.
As the questions are automatically generated using
templates, they do not necessarily reflect the wide
spectrum of natural language, making any assump-
tions on the performance in the wild difficult.

Each question is associated with additional meta-
data such as structural types: (1) verify for yes/no
questions (e.g. "Do you see any cats?"), (2) query
for all open questions (e.g. "Who is wearing
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Language iso Family Script Speakers

English en IE:Germanic Latin 400M
German de IE:Germanic Latin 95M
Portuguese pt IE:Romance Latin 250M
Russian ru IE:Slavic Cyrillic 150M
Indonesian id Austronesian Latin 43M
Bengali bn IE:Iranian Bengali 230M
Korean ko Koreanic Korean 77M
Chinese zh Sino-Tibetan Chinese 1.2B

Table 1: Languages covered by xGQA. IE stands for
Indo-European.

jeans?"), (3) choose for questions that present two
alternatives to choose from (e.g. “Is it red or
blue?”), (4) logical which involve logical infer-
ence (e.g. "Is the field soft and snowy"), and (5)
compare for comparison questions between two or
more objects (e.g. "Are all the animals zebras?").
For further details regarding the metadata, we refer
the reader to Hudson and Manning (2019).

Dataset Design. The principal objective when de-
vising xGQA was to create a genuinely typologi-
cally diverse multimodal and multilingual evalua-
tion benchmark for visual question answering. We
utilize the balanced3 test-dev set of GQA, which
consists of 12,578 questions about 398 images.4

Due to the defined structural patterns, the formu-
lation of the questions is simple, with an average
length of 8.5 words.5 The resulting xGQA dataset
covers translations in 7 languages, each represent-
ing a distinct language family, and contains exam-
ples written in 5 different scripts (see Table 1).

Few-Shot Data Splits. In order to conduct cross-
lingual few-shot learning experiments, we provide
new data splits of different sizes. We split on im-
ages and add all questions associated with the im-
age to the respective set. The development and test
sets consist of 50 and 300 images, respectively. The
training splits consist of 1, 5, 10, 20, 25, and 48
images, see Table 2. We ensure that the distribution

3To reduce biases in the conditional answer distribution
Hudson and Manning (2019) utilize the structural metadata to
downsample and create balanced datasets that are more robust
against shortcuts and guesses.

4We chose to translate the test-dev set of GQA, as the
labels for test-std are not released.

5For this reason, we chose to hire university students that
are currently conducting their (Computer Science or Computa-
tional Linguistics) studies in English and are all fluent English
speakers to translate the question into their native language.
They were paid above the minimum hourly wage of the coun-
try of their respective university. After all questions have been
translated, another, independent native speaker then verified
the translations based on random spot checks.

Set Test Dev Train

#Img 300 50 1 5 10 20 25 48
#Ques 9666 1422 27 155 317 594 704 1490

Table 2: Few-shot dataset sizes. The GQA test-dev set
is split into new development, test sets, and training
splits of different sizes. We maintain the distribution of
structural types in each split.

of structural types within each set is maintained.
xGQA is the first truly typologically diverse mul-

tilingual multimodal benchmark, unlocking new ex-
perimentation and analysis opportunities in cross-
lingual zero-shot and few-shot scenarios. While
the questions in xGQA are intuitive and easy for
humans to solve, we later show that current state-
of-the-art models still have difficulty with transfer.

4 Baselines

To analyze the performance and current gaps on
xGQA, we first evaluate the recently proposed M3P
model, which has been pretrained on multilingual
and multimodal data. However, pretraining is com-
putationally expensive and only limited amounts
of multilingual multimodal resources are available.
Therefore, we further propose new and more ef-
ficient approaches that (1) extend state-of-the-art
multilingual language models to the multimodal
domain and (2) provide multilingual capabilities to
state-of-the-art multimodal models.

Unless noted otherwise, we follow the predom-
inant fine-tuning strategy for GQA; a prediction
head is placed on top of the output of a pretrained
transformer. All possible 1853 answers of the GQA
task are mapped to a class label. The question as-
sociated with an image together with the position-
aware region features are passed as input to the
transformer, supervised using a cross-entropy loss.6

4.1 Multimodal→Multilingual
OSCAR+Emb. To extend a monolingual trans-
former LM to a multilingual domain, Artetxe et al.
(2020) fine-tune a new word-embedding layer in
the target language. Inspired by this idea, we now
describe how we extend the current state-of-the-
art monolingual multimodal transformer model
OSCAR+ (Zhang et al., 2021) to learn new em-
beddings for the target languages.

In the language-extension phase, we replace the
embedding matrix of OSCAR+ with a randomly

6For instance, we use this strategy to fine-tune all parame-
ters of M3P on the GQA training data.
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Figure 2: Architecture of an adapter-based multilingual
multimodal model. Text and image inputs share the
weights of the multi-head attention (MHA) and feed-
forward (FFN) layers, as well as the language and
multimodal align adapters. Each modality is passed
through a modality specific task adapter, the outputs
of which are concatenated.

initialized embedding matrix.7 The transformer
weights are frozen while only the newly introduced
embeddings are fine-tuned on unlabeled text data
of the target language with the MLM objective.

In the target-task phase, the original OSCAR+
model is fine-tuned on the English training data of
GQA, where the transformer layers are fine-tuned,
but the embedding layer is frozen. During infer-
ence, the embedding layer is replaced with the tar-
get language’s embedding layer.

OSCAR+Ada. We extend this by adding adapters.
In the language-extension phase we follow Pfeif-

fer et al. (2021) in order to extend the model to
the target languages. Similar to OSCAR+Emb, we
train a new embedding layer. We further add lan-
guage adapters at every transformer layer. Given
that OSCAR+ is trained on English text, we fol-
low Pfeiffer et al. (2020b) when training English
language adapter modules, without replacing the
embedding matrix. The transformer weights are
frozen while only the newly introduced embeddings
and language adapter weights are fine-tuned on un-
labeled text data of the language.

For the target-task phase, we propose a novel
modality-split architecture (see Figure 2) inspired
by the cross-lingual transfer method of Pfeiffer et al.
(2020b). At each transformer layer, text and image
representations are passed through the pretrained

7Following Pfeiffer et al. (2021), we copy the embeddings
of lexically overlapping tokens (if such tokens exist) from the
original embedding space to the new embedding space, as it
typically works better than fully random initialization.

multi-head attention (MHA) and feed-forward
(FFN) layers. Both image and text representations
are also passed through the pre-trained language
adapters. Each modality is then passed through
modality-specific text and image task adapters
and next through a shared multimodal alignment
adapter.8 We follow Pfeiffer et al. (2020b), freez-
ing transformer, embedding and language adapter
weights during training, thus fine-tuning only the
task and multimodal aligner adapter weights, to-
gether with the prediction head. At inference time,
the embedding layer and the language adapters are
replaced with the target language weights.

4.2 Multilingual→Multimodal
mBERTAda. For experiments where we extend
a multilingual model to become multimodal, we
utilize mBERT (Devlin et al., 2019).

Given that mBERT is able to represent many
different languages, it is not necessary to learn new
embedding layers for the target languages in the
language-extension phase. Instead, we utilize the
mBERT-compatible language adapters available on
AdapterHub.ml (Pfeiffer et al., 2020a).9

For the target-task phase, we follow OSCAR+
for the image representation layer, where image
features are combined with their respective posi-
tional information and passed through an affine
transformation layer. We experiment with the same
adapter architecture from Figure 2, as described for
OSCAR+Ada. We again freeze transformer, embed-
ding and language adapter weights during training.
However, in contrast to OSCAR+∗, we randomly
initialize and fine-tune the affine image transforma-
tion layer. We also fine-tune the task, multimodal
aligner adapter weights, and prediction head, all on
the GQA task. At inference time, the embedding
layer and the language adapters are replaced with
the corresponding target language weights.

5 Experimental Setup

5.1 Language-Extension Phase
For OSCAR+Emb and OSCAR+Ada, we follow the
general setups proposed by Pfeiffer et al. (2020b,

8We have compared multiple different architectures as il-
lustrated in Figure 6 in the Appendix, finding this setup to
perform best. We present results of the alternative architec-
tures also in the Appendix.

9While all xGQA languages already have readily available
language adapters on AdapterHub, any hypothetical exten-
sion of experiments to languages without such adapters would
involve training their dedicated language adapters, e.g., fol-
lowing the procedure of Pfeiffer et al. (2020b).
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2021). We train a new word-piece tokenizer for
each target language with a vocabulary size of 30k.
We fine-tune the randomly initialized embedding
layer, and (for OSCAR+Ada) adapter layers for
100k update steps with a batch size of 64 and a
learning rate of 1e−4. For mBERTAda, we utilize
the language adapters from AdapterHub.ml.

5.2 Fine-tuning on GQA
We follow the standard setup proposed by Li et al.
(2020b), passing the representation of the [CLS] to-
ken through a prediction head. We fine-tune the re-
spective models using a cross-entropy loss with la-
bels being all possible answers in the GQA dataset.
Following prior work (Li et al., 2020b), we use
a batch size of 192 and train for 5 epochs on the
unbalanced GQA training portion.

M3P. We fine-tune all weights of the pretrained
model with a learning rate of 3e−5.
OSCAR+Emb, OSCAR+Ada, and mBERTAda.
We use the pretrained weights and image region
features provided by Zhang et al. (2021). However,
we do not pass the object attribute labels as inputs
to the model. The object attribute labels are in En-
glish and utilizing them in cross-lingual scenarios
is non-trivial.10 We leave this for future work.

For the OSCAR+Emb setting, we fine-tune the
transformer weights and the prediction head and
freeze the embedding layer, using a learning rate
of 3e−5. For the OSCAR+Ada and mBERTAda

settings, we add adapter layers as described in §4.1
and illustrated in Figure 2. We freeze all pretrained
weights–including embeddings, transformer lay-
ers, and language adapters–and only fine-tune the
newly introduced adapters and the prediction head.
For mBERTAda, we also add and train the affine im-
age transformation layer. We fine-tune the adapter-
based models with a learning rate of 1e−4.

5.3 Zero-Shot Cross-Lingual Transfer
For zero-shot cross-lingual evaluation, we utilize
the model fine-tuned on the GQA training data and
evaluate on the multilingual xGQA test data. The
model checkpoint that performed best on the En-
glish GQA validation data is selected for transfer.

M3P. As the model is pre-trained to cover, among
others, xGQA languages, no additional steps are
required for cross-lingual transfer.

10The replaced tokenizer and embedding representations of
the target language potentially do not adequately represent En-
glish terms, resulting in a misalignment between the question
(in the target language) and the object attributes (in English).

OSCAR+Emb. We replace the English embedding
layer with the target-language embedding layer.

OSCAR+Ada. We replace the English embedding
and language adapter layers with the embedding
and adapters layers of the target language.

mBERTAda. We replace the language adapter lay-
ers with the adapters layers of the target language.

5.4 Few-Shot Cross-Lingual Transfer

For few-shot cross-lingual scenarios we follow
Lauscher et al. (2020) and start from the same fine-
tuned model as for zero-shot transfer (see §5.3).
We then fine-tune the same parts of the model as
when training on the English training data as in
§5.2, but on the small portions of multimodal data
available in the target language. We train on the
different data splits, consisting of 1, 5, 10, 15, 20,
25, and 48 images (see Table 2). We experiment
with training for a different number of epochs (5,
10) using different learning rates (1e−5 and 5e−5
for M3P and OSCAR+Emb, and 5e−5 and 1e−4
for OSCAR+Ada and mBERTAda). We find that
training for longer and with a larger learning rate
performed best for all settings.

6 Results and Discussion

The main results are presented in Table 3 (zero-shot
experiments) and in Table 4 (few-shot).

6.1 Zero-Shot Cross-Lingual Transfer

One of our core findings is that multimodal zero-
shot cross-lingual transfer is extremely difficult; we
witness an average drop in accuracy of more than
38 points on the target languages of the xGQA
dataset compared to English GQA scores (e.g.,
compare the results with M3P).

While, as expected, OSCAR+ achieves the best
accuracy on the English test set, the massively
multilingual models—M3P and mBERT—perform
considerably better in cross-lingual transfer.11 This

11The superior accuracy of OSCAR+ on the English test
set is expected as the model was pretrained on large English
multimodal data. We find that fine-tuning all transformer
weights (OSCAR+Emb) achieves slightly better results than
only training adapter weights (OSCAR+Ada). Our slightly
lower scores compared to results by Zhang et al. (2021) can be
explained by us (1) not fine-tuning the embedding layer, and
(2) not utilizing the attribute labels. Further, previous works
that focus only on English add the official validation set to
the training set, use the official test-dev set as their dev set,
and report their test scores of the official GQA test benchmark
test-std for which labels are not available. Our scores follow
the training splits, where we use the official test-dev set as the
final test set, as described before in §3.
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model en de pt ru id bn ko zh mean

M3P 58.43 ±1.4 23.93 ±3.2 24.37 ±4.0 20.37 ±3.4 22.57 ±6.1 15.83 ±3.6 16.90 ±3.8 18.60 ±1.0 20.37
OSCAR+Emb 62.23 ±0.3 17.35 ±1.0 19.25 ±0.4 10.52 ±4.0 18.26 ±0.4 14.93 ±2.0 17.10 ±1.8 16.41 ±3.2 16.26
OSCAR+Ada 60.30 ±0.4 18.91 ±0.8 27.02 ±2.3 17.50 ±1.2 18.77 ±0.3 15.42 ±2.0 15.28 ±2.7 14.96 ±2.1 18.27
mBERTAda 56.25 ±0.5 29.76 ±2.3 30.37 ±1.8 24.42 ±1.1 19.15 ±2.8 15.12 ±1.9 19.09 ±0.9 24.86 ±1.8 23.25

Table 3: Zero-shot transfer results when transferring from English GQA. Average accuracy and standard deviation
are reported. Best results are highlighted in bold; mean scores are not averaged over the source language (English).
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Figure 3: Zero-shot accuracy across different lan-
guages and structural question types from xGQA.

indicates, that joint multilingual pretraining is im-
portant and a simple multilingual adapter-based or
embedding-based extension of monolingual mod-
els achieves inferior cross-lingual performance.

While the pretraining method M3P achieves bet-
ter accuracy on the English test set, the adapter-
based multimodal extension of mBERT outper-
forms M3P in cross-lingual transfer. We hypothe-
size that, when fine-tuning all transformer weights
on monolingual multimodal data, the cross-lingual
alignment breaks within M3P. However, this does
not happen in adapter-based settings, as the multi-
lingual weights are frozen and thus remain intact.

Analysis of Structural Question Types. Figure 3
depicts our analysis of the structural question types
in zero-shot experiments. We observe large drops
in accuracy especially for query and choose type
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Figure 4: Few-shot accuracy (with 48 images) across
different languages and question types from xGQA.

questions. Query type questions are free-form and
thus semantically the most difficult to answer, even
in the source language (English). This explains
the overall low accuracy across all approaches in
zero-shot settings for this question type.

This is in stark contrast with the choose-type
questions, which the models perform very well on
in the source language. However, we report a sub-
stantial accuracy drop in zero-shot cross-lingual
transfer. This decrease is most likely due to the
nature of the question formulation and the mod-
elling implementation. Choose-type questions are
formulated such that the answer to the question is
a word or phrase which appears in the question, i.e.
"Is it red or blue?". The label classes, and conse-
quently the prediction head, are constructed as a
set of all answers appearing in the dataset. This
means that the model learns a distributed repre-
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Lang Model # Training Images
0 1 5 10 20 25 48

de

M3P 24.78 31.49 39.31 41.05 42.22 42.54 43.16
OSCAR+Emb 17.49 17.84 29.09 34.48 37.35 38.45 41.08
OSCAR+Ada 17.84 21.40 31.26 35.84 37.92 38.46 40.58
mBERTAda 32.41 33.87 37.44 39.15 40.65 41.63 42.71

pt

M3P 26.73 32.98 37.23 39.07 40.92 41.05 43.06
OSCAR+Emb 19.36 22.55 32.42 36.37 39.01 40.15 43.27
OSCAR+Ada 24.58 29.61 34.73 37.46 38.82 39.70 41.75
mBERTAda 31.45 33.27 37.31 38.88 40.51 41.03 42.62

ru

M3P 24.29 32.32 36.71 38.53 39.94 40.13 41.85
OSCAR+Emb 7.98 17.32 23.72 28.21 32.15 32.87 36.84
OSCAR+Ada 16.38 19.74 27.42 30.17 33.22 34.21 37.28
mBERTAda 25.51 26.47 31.69 32.47 34.93 35.53 37.42

id

M3P 18.74 31.37 37.24 38.65 41.07 42.00 43.12
OSCAR+Emb 17.89 21.09 29.76 33.59 36.69 37.31 40.51
OSCAR+Ada 18.52 23.94 31.45 34.60 37.26 37.97 40.60
mBERTAda 19.77 31.99 34.49 36.26 39.15 39.81 40.88

bn

M3P 17.59 17.33 26.94 31.09 34.58 35.27 37.96
OSCAR+Emb 13.35 17.40 21.67 26.61 31.94 32.78 36.97
OSCAR+Ada 13.96 15.60 22.35 27.20 31.25 31.81 35.45
mBERTAda 13.38 11.33 23.10 26.55 31.60 32.26 34.18

ko

M3P 19.70 22.94 32.28 35.50 37.72 37.84 38.61
OSCAR+Emb 15.11 16.43 19.99 24.78 29.48 30.43 35.59
OSCAR+Ada 12.25 15.48 20.73 25.97 31.37 32.20 35.41
mBERTAda 19.92 17.71 27.83 31.27 34.44 35.03 36.51

zh

M3P 19.66 27.76 36.15 38.21 40.48 40.53 42.55
OSCAR+Emb 12.66 14.77 19.17 22.13 27.97 29.08 33.24
OSCAR+Ada 13.20 15.12 19.67 22.74 26.81 28.19 31.69
mBERTAda 26.16 23.47 32.93 35.82 38.22 37.89 39.57

Table 4: Average accuracy of few-shot results, utiliz-
ing different amounts of training data. The 0 column
presents the best zero-shot results. These models are
used as initialization for the subsequent few-shot exper-
iments. Bold numbers indicate the best scores.

sentation of each answer in its final layer. Con-
sequently, in cross-lingual transfer, the model is
required to automatically align the question’s op-
tions "red" or "blue" (translated in their respective
language), with their English latent representation
of the model’s prediction head. The very low re-
sults in this category indicate that this cross-lingual
word alignment breaks in zero-shot scenarios.

Overall, zero-shot transfer with our proposed
multimodal adapter-based extension of mBERT
(mBERTAda) achieves the best accuracy, with al-
most 3 points increase over M3P and almost 5
points increase over OSCAR+. However, the over-
all accuracy of all approaches remains low in com-
parison to the results in English. This indicates
that zero-shot multimodal cross-lingual transfer is
extremely difficult, most likely due to the misalign-
ment issue between visual and cross-lingual inter-
nal representations. To investigate this conjecture
further, we run similar tests in few-shot setups,
which should potentially mitigate the misalignment
issue observed in zero-shot setups.

6.2 Few-Shot Cross-Lingual Transfer
The main results of few-shot experiments are pro-
vided in Table 4, while the plot illustrating the im-

pact of different amounts of training data is shown
in Figure 5. One crucial finding is that, as expected,
utilizing an increasing amount of data instances in
the target language consistently improves accuracy
for all methods. This culminates in an improve-
ment of up to 20 accuracy points when specializ-
ing the model with only 48 images in the target
language. This indicates that a small number of
target-language examples supports the models in
partially repairing its internal cross-lingual multi-
modal alignment. Interestingly, we find that with
as little as 5 images, and their corresponding ques-
tions, M3P begins to outperform mBERTAda—the
best performing zero-shot model.

We again analyze the impact of few-shot learn-
ing on accuracy across different structural ques-
tion types, with the results depicted in Figure 4.
The overall accuracy increases across all types
compared to zero-shot scenarios (cf., Figure 3).
However, the most pronounced gains are reported
for query and chose-type questions, on which the
model performed the worst in zero-shot setups.
This implies the improved alignment between la-
tent multimodal and multilingual representations,
achieved via fine-tuning the model on a small
amount of examples in the target language.

6.3 Language Transfer

We witness cross-lingual transfer capability pat-
terns similar to those shown by previous work,
where our models perform best on typologically
close languages (Pires et al., 2019; Lauscher et al.,
2020). Our models transfer best to German (de)
and Portuguese (pt), both being part of the Indo-
European (IE) language family and also sharing
the same script (Latin) with the source language
English (en). We see a small drop in accuracy
for Russian (ru), Indonesian (id), and Chinese (zh)
and a larger drop in accuracy for Bengali (bn) and
Korean (ko). All of these languages are typologi-
cally different to the source language and in most
cases do not share the same script. These differ-
ences highlight the importance of language diver-
sity in cross-lingual transfer. Our benchmark thus
enables experimentation and evaluation of multilin-
gual multimodal models on a representative set of
truly typologically diverse languages.

7 Contemporary Work

With the recent rise in interest in multilingual vi-
sion and language learning, contemporary work has
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M3P

mBERTAda

Figure 5: Few-shot accuracy with different training
dataset sizes of the different approaches. Scores are
averaged over all languages.

already further analyzed and extended the proposed
xGQA dataset. We provide a brief description and
pointers to this work in what follows.

Further Analysis. Liu et al. (2022) provide an
extensive analysis of multilingual and multimodal
models trained on cross-lingual visual question an-
swering, and propose several approaches to miti-
gate the multilingual misalignment problem dis-
cussed in §6.1. Their results suggest that stan-
dard approaches taken from text-only cross-lingual
transfer scenarios (Pires et al., 2019; Hu et al.,
2020) do not leverage the full multilingual capa-
bility of the pretrained models. Interestingly, they
find that a deeper prediction head does not have any
measurable impact on the model’s performance in
the source language, while at the same time it con-
siderably improves zero-shot transfer results across
all target languages.

Translated Test Data. Bugliarello et al. (2022)
propose the first benchmark for transfer learning
across modalities, tasks, and languages, covering
visual question answering, cross-modal retrieval,
grounded reasoning, and grounded entailment tasks
across 20 diverse languages. They extend the
xGQA dataset by providing machine translated test-
set questions and evaluate state-of-the-art monolin-
gual multimodal models in a translate-test setup.
In this setting, they achieve slightly better results.
However, the performance remains to fall behind
source language performance. The translate-test
data can be found at iglue-benchmark.github.io.

8 Conclusion

We have proposed xGQA, a first cross-lingual eval-
uation benchmark for the visual question answering
task. xGQA extends the English GQA dataset with
development and test data in 7 more typologically

diverse languages, covering 5 different scripts. As
additional baselines, we have further proposed new
adapter-based methods to extend unimodal multi-
lingual models to become multimodal and—vice-
versa—monolingual multimodal models to become
multilingual. Our results have indicated that 1) ef-
ficient adapter-based methods slightly outperform
the pretrained multilingual multimodal model M3P
in zero-shot scenarios, but 2) the overall zero-shot
cross-lingual transfer yields harsh accuracy drops
compared to the English performance for all mod-
els in comparison. Further, accuracy can be par-
tially recovered via few-shot learning, where small
amounts of training data are available in the target
language. However, the large gaps remain, suggest-
ing the inherent complexity of the cross-lingual
task despite it being extremely intuitive and easy
to solve by (bilingual) humans.

We hope that our dataset and error analysis will
motivate future work on this task and, more broadly,
in the exciting emerging domain of multilingual
multimodal representation learning.
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A Appendix

We experiment with different multimodal adapter
architectures as illustrated in Figure 6. In initial
experiments we find that splitting the modalities
(settings 2-5) outperforms a joint adapter (setting
1). However, a joint "alignment" architectures
(settings 4-5) outperform settings where we only
use modality-specific adapters (settings 2-3). We
more thoroughly investigate settings 4-5 and re-
port scores in Table 5. Interestingly, we find that
when only using the language adapter for the tex-
tual inputs, cross-lingual accuracy drops for both
OSCAR+ and mBERT; The difference is more pro-
nounced for OSCAR+. We speculate that this is
due to a latent misalignment of the representation
spaces, partly due to the residual connection. Due
to the better performance of setting 5 on average,
we have reported scores of this architecture in the
main paper (as illustrated in Figure 2).
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model Setting en de pt ru id bn ko zh mean

OSCAR+Ada 4 60.21 18.60 25.48 8.22 17.79 10.47 9.97 12.54 14.72
OSCAR+Ada 5 60.30 18.91 27.02 17.50 18.77 15.42 15.28 14.96 18.27
mBERTAda 4 57.83 27.86 28.88 22.87 20.86 14.74 18.30 24.39 22.56
mBERTAda 5 56.25 29.76 30.37 24.42 19.15 15.12 19.09 24.86 23.25

Table 5: Zero-shot transfer results on xGQA for the different adapter architecture settings (as illustrated in Figure 6)
when transferring from English GQA. Average accuracy is reported. Best results for each language and model type
are highlighted in bold; mean scores are not averaged over the source language (English).
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Figure 6: The different multimodal multilingual adapter architectures we experimented with. The best performing
architecture was setting 5, for which we present results in the main paper.
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Abstract

Multilingual pre-trained models are known to
suffer from the curse of multilinguality, which
causes per-language performance to drop as
they cover more languages. We address this is-
sue by introducing language-specific modules,
which allows us to grow the total capacity of
the model, while keeping the total number of
trainable parameters per language constant. In
contrast with prior work that learns language-
specific components post-hoc, we pre-train the
modules of our Cross-lingual Modular (X-
MOD) models from the start. Our experiments
on natural language inference, named entity
recognition and question answering show that
our approach not only mitigates the negative
interference between languages, but also en-
ables positive transfer, resulting in improved
monolingual and cross-lingual performance.
Furthermore, our approach enables adding lan-
guages post-hoc with no measurable drop in
performance, no longer limiting the model us-
age to the set of pre-trained languages.

1 Introduction

Recent work on multilingual NLP has focused on
pre-training transformer-based models (Vaswani
et al., 2017) on concatenated corpora of a large
number of languages (Devlin et al., 2019; Conneau
et al., 2020). These multilingual models have been
shown to work surprisingly well in cross-lingual
settings, despite the fact that they do not rely on
direct cross-lingual supervision (e.g., parallel data
or translation dictionaries; Pires et al., 2019; Wu
and Dredze, 2019; Artetxe et al., 2020; Hu et al.,
2020; K et al., 2020; Rust et al., 2021).

However, recent work has uncovered fundamen-
tal limitations of multilingual transformers. Con-
neau et al. (2020) observe that pre-training a model
with a fixed capacity on an increasing amount of
languages only improves its cross-lingual perfor-
mance up to a certain point, after which perfor-

∗ Work done while interning at Meta AI.
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Figure 1: A transformer layer of our proposed modular
architecture. The dark blue and green components illus-
trate the modular layers, which are language specific.
The Multi-Head Attention and Feed-Forward compo-
nents are shared by all languages.

mance drops can be measured—a phenomenon
known as the curse of multilinguality (Figure 2).
As such, prior work had to find a trade-off between
supporting more languages and obtaining better
performance on a smaller set of languages.

In this work, we address this problem by in-
troducing language-specific, modular components
during pre-training (Figure 1). Our Cross-lingual,
Modular (X-MOD) language model shares the ma-
jority of the transformer parameters between all pre-
training languages, while providing each language
with individual capacity to learn idiosyncratic in-
formation without increasing the total number of
trainable parameters per language. While previous
adapter-based approaches (Figure 3a) extend pre-
trained multilingual language models (LMs) with
modular components after pre-training, we add
modular components during pre-training, thereby
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Figure 2: Average (a) perplexity and (b) transfer performance on XNLI and NER across pre-trained languages
when training on an increasing number of languages. Each model has seen the same amount of examples in
each language. Lower perplexity and higher downstream score indicate better performance. Refer to Figure 4 for
per-task performance, and Appendix A for per-language performance.

preparing the model to be extended to new lan-
guages post-hoc. Our experiments on natural lan-
guage inference (NLI), named entity recognition
(NER), and question answering (QA) demonstrate
that our modular architecture not only is effective at
mitigating interference between languages, but also
achieves positive transfer, resulting in improved
monolingual and cross-lingual performance. In ad-
dition, we show that X-MOD can be extended to
unseen languages, with no measurable drop in per-
formance, by learning its corresponding modules
and leaving the shared parameters frozen. All in
all, we propose a multilingual architecture that can
scale to a large number of languages without any
loss in performance, and can be further extended
to new languages after pre-training.1

2 Background and related work

We provide a background on multilingual and mod-
ular language modelling, as well as approaches that
extend LMs to new languages.

2.1 Multilingual transformers

Recent LMs (Devlin et al., 2019; Conneau et al.,
2020), based on transformer architectures (Vaswani
et al., 2017) and pre-trained on massive amounts
of multilingual data, have surpassed (static) cross-
lingual word embedding spaces (Ruder et al., 2019;
Glavas et al., 2019) for cross-lingual transfer in
NLP (Pires et al., 2019; Wu and Dredze, 2019;
Wu et al., 2020; Hu et al., 2020; K et al., 2020).
Transformer-based models are 1) pre-trained on
textual corpora using Masked Language Modelling

1Code and pre-trained models are available at:
https://github.com/pytorch/fairseq/tree/main/examples/xmod.

Emb

Head

...

Emb

Head

...

Emb

Head

...

Emb

Head

...

1 2 1 2

(a) Adapter-based

Emb

Head

...

Emb

Head

...

Emb

Head

...

Emb

Head

...

1 2 1 2

(b) X-MOD

Figure 3: Our proposed architecture in comparison
to adapter-based approaches. (a) Previous approaches
¬ utilize non-modular pre-trained transformer models
and ­ extend them with modular adapter components.
(b) We ¬ pre-train the transformer with modular units
from the get-go, preparing the model to be ­ extended
with additional modular units later on. Yellow and
light blue components indicate standard Multi-Head
Attention and Feed-Forward layers. The remaining
(non-gray) components are bottleneck (modular) units.
Grayed-out components are frozen.

(MLM). They are then 2) fine-tuned on labelled
data of a downstream task in a source language and
3) directly applied to perform inference in a target
language (Hu et al., 2020).

2.2 Modular language models

Modular approaches have a long standing history
in NLP, preceding pre-trained models (Andreas
et al., 2016). They have recently re-gained in-
terest for transformer-based models, where mix-
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ture of experts (MoE; Shazeer et al., 2017) ap-
proaches have enabled training trillion parame-
ters models in a distributed fashion (Fedus et al.,
2021). More recently modular MoE approaches
have been shown to improve domain-specific pre-
training of LMs (Gururangan et al., 2021). In a
similar trend, ‘expert’ modules have been added
to (non-modular) pre-trained LMs post-hoc, pre-
dominantly referred to as adapters (Rebuffi et al.,
2017, 2018; Houlsby et al., 2019). Next to being ex-
tremely parameter (Houlsby et al., 2019; Mahabadi
et al., 2021a; He et al., 2022) and training efficient
(Pfeiffer et al., 2020a; Rücklé et al., 2021), these
modular approaches allow models to be extended
to new data settings (Chen et al., 2019; Rücklé
et al., 2020), where newly learned knowledge can
be combined (Stickland and Murray, 2019; Wang
et al., 2021a; Pfeiffer et al., 2021a; Lauscher et al.,
2020a; Mahabadi et al., 2021b; Poth et al., 2021),
or stacked for combinatory cross-lingual (Pfeiffer
et al., 2020b, 2021b; Üstün et al., 2020; Vidoni
et al., 2020; Ansell et al., 2021b,a; Wang et al.,
2021b) as well as NMT scenarios (Bapna and Fi-
rat, 2019; Philip et al., 2020; Chronopoulou et al.,
2020; Le et al., 2021; Üstün et al., 2021; Stickland
et al., 2021; Garcia et al., 2021).

2.3 Weaknesses, improvements, and
extensions of language models

Next to the curse of multilinguality, recent works
have shown substantially reduced cross-lingual and
monolingual abilities of models for low-resource
languages with smaller pre-training data (Wu and
Dredze, 2020; Hu et al., 2020; Lauscher et al.,
2020b; Artetxe et al., 2020; Pfeiffer et al., 2020b,
2021b; Chau et al., 2020b; Ponti et al., 2020).

K et al. (2020); Artetxe et al. (2020) show that a
shared vocabulary is not necessary for cross-lingual
transfer. Chung et al. (2021) demonstrate that de-
coupling the input embeddings from the predic-
tion head improves the performance on a number
of downstream tasks. Dufter and Schütze (2020)
show that the number of parameters and training
duration is interlinked with the model’s multilin-
gual capability. Chung et al. (2020); Rust et al.
(2021) show that the tokenizer plays an important
role in the per-language downstream task perfor-
mance, which Clark et al. (2022); Xue et al. (2022);
Tay et al. (2021) take to the extreme by proposing
tokenizer-free approaches.

To extend a monolingual LM to other languages,

Artetxe et al. (2020) train a new embedding layer
with a corresponding target-language tokenizer,
while freezing the pre-trained transformer weights.
Tran (2020) extend a monolingual model to new
languages using bilingual corpora. Wang et al.
(2020); Chau et al. (2020a) extend the vocabu-
lary of multilingual models with a small number
of target-language tokens, to improve the perfor-
mance in the target language. Muller et al. (2021)
propose a transliteration based approach, Vernikos
and Popescu-Belis (2021) propose subword map-
pings, and Pfeiffer et al. (2020b, 2021b); Vidoni
et al. (2020); Ansell et al. (2021b) propose adapter-
based approaches to extend multilingual models to
unseen languages.

While these approaches achieve considerable
performance gains over unseen languages, they are
outperformed by standard full fine-tuning methods
for seen languages. One can further argue that, as
the pre-trained models have already been cursed by
multilinguality, the adapter-based approaches build
upon sub-optimal parameter initializations.2 In our
work, we consequently aim to 1) modularize the
model from the start to prepare the model to be 2)
extendable to new languages post-hoc.

3 Proposed approach

We propose X-MOD, a modular multilingual archi-
tecture that combines shared and language-specific
parameters. In contrast to prior work, we pre-
train modular models from the get-go. Our mod-
els can be extended to new languages after pre-
training, and used for cross-lingual transfer learn-
ing in downstream tasks.
Architecture. As illustrated in Figure 1, we
extend the transformer-based architecture from
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) by incorporating language-
specific modules—bottleneck feed-forward layers—
at every transformer layer. We learn a separate
module for each language, whereas the attention
and feed-forward components are shared. While
the total number of parameters of the model grows
linearly with the number of languages, the train-
ing and inference cost does not increase (as mea-
sured in FLOPs), as only the module in the relevant
language is used for each input. Inspired by the
adapter3 architecture of Pfeiffer et al. (2021a) we

2We investigate this claim further in §6.2.
3The term ‘adapter’ refers to newly introduced layers

within a pre-trained (frozen) model. These layers adapt the
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place our ‘modules’ after the LayerNorm of the
feed-forward transformer block, and the residual
connection is placed after the LayerNorm;4 the Lay-
erNorm before and after the modular component is
shared.5

Pre-training procedure. Similar to Conneau et al.
(2020), we pre-train our model on MLM on com-
bined monolingual corpora in multiple languages.
Examples of each language are passed through
the shared embedding matrix as well as the multi-
head attention and feed-forward components at
each layer. As each layer contains a language-
specific modular component, the examples are
routed through the respective designated modular
bottleneck layer. Given that each example only
requires access to a single module, modules can
be efficiently stored on only a subset of GPUs in
distributed training.

Extending to new languages. The modular de-
sign of our model allows us to extend it to new
languages after pre-training. To that end, we learn
new embeddings and adapter modules for the tar-
get language through MLM, while the rest of the
components are frozen.6 Consequently, we are able
to extend the model to a new language by learning
a small number of new parameters, without affect-
ing performance in the set of pre-trained languages.
Following Pfeiffer et al. (2021b), we learn a new
subword vocabulary for the added languages, and
initialize the embeddings of lexically overlapping
tokens from the original embedding matrix.

Fine-tuning on downstream tasks. To transfer
the models to cross-lingual downstream tasks, we
fine-tune the shared weights only on the source
language data, while keeping the modular compo-
nents and the embedding layer frozen. We follow
the standard fine-tuning procedure of adding a pre-
diction head on top of the CLS token. We then
replace the source language modules (as well as
embedding layer for added languages) with the tar-
get language parameters, passing the text of the
target language through the model.7

representations of the pre-trained mode; we train these mod-
ular components together with the transformer weights, and
therefore refer to them as modules.

4We find that the residual connection proposed by Pfeiffer
et al. (2021a) results in training instabilities when trained
together with the transformer weights.

5Preliminary results showed that sharing the LayerNorm
results in better cross-lingual transfer performance.

6Following Artetxe et al. (2020) we train positional em-
beddings.

7We initially also experimented with stacking adapters on

4 Experimental design

We detail the baseline and models (§4.1), and their
training (§4.2) and evaluation settings (§4.3).

4.1 Model variants

We pre-train separate models for all combinations
along the following axes:
X-MOD vs. SHARED. To evaluate the effective-
ness of our X-MOD model, we aim to compare
ourselves to a conventional non-modular architec-
ture. However, simply removing the modular com-
ponent would be unfair, as the number of FLOPs
and trainable parameters per language would not
be the same—both in terms of pre-training, as
well as fine-tuning. Consequently, for our base-
line model—where all parameters should be fully
shared between all languages—we include a single
bottleneck layer right after the Feed-Forward com-
ponent. Effectively, this is the same architecture
as our X-MOD model, just with a single module
that is shared by all languages. We refer to this
as the SHARED model throughout this paper.8 To
extend the SHARED model to unseen languages,
we follow Artetxe et al. (2020) and only learn a
new embedding layer, freezing the transformer pa-
rameters. To fine-tune the SHARED model on a
downstream task, we freeze the embedding layer,
as well as the (single) module, thereby fine-tuning
an equal amount of parameters on the downstream
task as the X-MOD model.9

13 vs. 30 vs. 60 vs. 75 languages. So as to under-
stand how each approach is affected by the curse
of multilinguality, we pre-train the X-MOD and
SHARED models on 4 increasing sets of languages.
We start with an initial set of 13 typologically di-
verse languages that we evaluate on, and add addi-
tional languages for larger sets of 30, 60, and 75
languages. In addition, we keep a set of 7 held-out
languages that we extend the pre-trained models
to. Table 1 lists the specific languages in each

top of the language modules similar to Pfeiffer et al. (2020b,
2021b). While this approach is considerably more parameter
efficient, we find that fine-tuning all shared weights slightly
outperformed the adapter-based approach.

8Extending the total number of shared parameters would
be unfair, as X-MOD and SHARED would not have the same
FLOPs nor the same number of trainable parameters when
fine-tuning.

9Adapter-based approach such as MAD-X (Pfeiffer et al.,
2020b) would be an alternative. However, this would require
training on languages twice—once during pre-training, and
once when adding adapters—which is not directly comparable
to X-MOD. Nonetheless, we report results in §6.2.
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Pre-trained
languages

13-LANGS en, ar, fr, hi, ko, ru, th, vi, ta, id, fi, sw, ka

30-LANGS 13-LANGS + cs, eu, hr, hu, hy, it, lt, ml, mn, ms, pl, ro, si, sk, sq, sv, tl

60-LANGS 30-LANGS + af, am, be, bn, ca, cy, da, eo, et, fa, ga, gl, gu, ha, is, ku, la, lv, mk, ne, nl, no, ps,
pt, sa, sd, sl, so, sr, te

75-LANGS 60-LANGS + as, br, bs, fy, gd, jv, kn, mg, mr, om, or, pa, su, xh, yi,

Added languages bg, de, el, es, tr, ur, zh,

Table 1: Selection of languages. We pre-train different models on 4 sets of languages, and further extend them to
a set of held-out languages post-hoc. We evaluate on XNLI (languages in bold), NER (underlined languages) and
XQuAD/MLQA (languages in italic). For more details about the language selection, see Appendix C.

group. The selection and split of initial as well as
added languages is motivated by typological and
geographical diversity, as well as the availability of
downstream task evaluation data.

Controlling for total vs. per-language updates.
Conneau et al. (2020) investigated the effect of
adding more languages during pre-training, while
training on an equal number of update steps. How-
ever, increasing the number of languages while
keeping the number of updates constant results in
the model seeing less data in each individual lan-
guage. As such, it remains unclear if the curse of
multilinguality happens because of negative inter-
ference, or simply because the number of updates
for each specific language is smaller. So as to un-
derstand this, we compare (1) training on an equal
number of update steps and (2) training on an equal
number of seen examples per language. We start
with the set of 13 languages (Table 1) and train the
respective models for 125k update steps. When
adding more languages, we compare (1) training
models on each set of languages for 125k update
steps, and (2) increasing the number of update steps
such that the models are trained on the same num-
ber of examples in each of the initial 13 languages.
For the latter, this amounts to training for 195k,
265k and 269k update steps, respectively.

4.2 Training details

Data and hyperparameters. We sample lan-
guages with α = 0.7 and train our models with
a batch size of 2048 across 64 V100 GPUs on
the CC100 dataset (Conneau et al., 2020) using
fairseq (Ott et al., 2019). All our models extend the
base transformer architecture, with 12 layers and
768 dimensions. Modules are implemented with
a bottleneck size of 384. The shared transformer
weights account for 270M parameters, whereas
each individual module accounts for 7M parame-
ters. We train our models with a linear learning

rate decay peaking at 7e−4 during pre-training and
1e−4 when adding languages.

Vocabulary. As we aim to identify the impact
of modularity on the curse of multilinguality, we
control for consistent tokenization across the differ-
ent axes. We therefore tokenize using the XLM-R
vocabulary for all our pre-training experiments.10

However, for languages added post-hoc, we learn a
new SentencePiece tokenizer for each of the target
language,11 as the languages potentially use scripts
unseen by the original tokenizer.

4.3 Evaluation

We conduct experiments on NLI, NER, and QA.
In all cases, we fine-tune the model on English
and measure the zero-shot transfer performance in
other languages. For NLI we train on MultiNLI
(Williams et al., 2018) and evaluate on XNLI (Con-
neau et al., 2018). For QA, we train on SQuAD
(Rajpurkar et al., 2016) and evaluate on XQuAD
(Artetxe et al., 2020) and MLQA (Lewis et al.,
2020). For NER, we use WikiANN (Pan et al.,
2017; Rahimi et al., 2019). We experiment with
learning rates 1e−4, 3e−4, and 5e−4 and train for
3 or 5 epochs for QA and 5 or 10 epochs for NER
and NLI. For NER and NLI we take the hyperpa-
rameter setting performing best on the development
sets, averaged across the pre-trained languages (Ta-
ble 1). For SQuAD we take the best performing
checkpoint evaluated on the English development
set, and report the cross-lingual test set results.12

All results are averaged across 5 random seed runs.

10Rust et al. (2021) have previously demonstrated the im-
pact of the multilingual tokenizer on the downstream task
performance: languages underrepresented in the sub-word
vocabulary exhibit considerable performance drops when com-
pared to vocabularies dedicated to the respective language.

11We train the new tokenizers for a vocabulary size of 30k.
12In contrast to NER and NLI, the cross-lingual evaluation

benchmarks of SQuAD do not provide a development set for
each target language on the basis of which the best checkpoint
can be selected. Consequently, we select the checkpoint based
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(a) All models are trained for 125k update steps. Models trained on more languages have seen less examples in each language.
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(b) Models trained on more languages are trained longer. All models have seen the same amount of examples in each language.

Figure 4: Test set results on XNLI (top) and NER (bottom) for models trained on different numbers of languages.
Source Language (English) only includes scores of the source language. Average Pre-Trained Languages includes
all evaluation languages that the model was pre-trained on. Average Added Languages includes all languages that
were added to the model after pre-training. Scores are averaged across all languages and random seeds.

5 Results and discussion

We present results for pre-trained languages in §5.1
and added languages in §5.2.

5.1 Pre-trained languages

In Figure 4 we plot downstream task results of
models pre-trained on different amounts of lan-
guages. Table 2 reports the individual language per-
formance for the models trained on 60 languages.

The Curse of Multilinguality. Conneau et al.
(2020) showed that multilingual LMs trained on in-
creasing amounts of languages, while maintaining
the number of update steps, exhibit drops in down-
stream task XNLI performance. We reproduce
these results, both in terms of language modelling
perplexity (Figure 2a),13 as well as downstream

on the best performance on the English development set.
13For per-language perplexity see Appendix A.

task performance on XNLI and NER (Figure 4a).
We further find that the curse of multilinguality
does not only happen because the total number of
update steps per language decreases, but also when
all SHARED models are trained on the same num-
ber of examples per language (Figure 4b). This
confirms that fully shared architectures suffer from
negative interference.

Lifting the Curse. While for the SHARED model
we witness negative interference between lan-
guages in terms of perplexity, the X-MOD model is
able to maintain performance, and even improves
for a subset of languages. We observe similar
patterns in the downstream task performance: In
both our experimental setups—(1) we control for
the number of update steps (Figure 4a); (2) we
control for the number of per-language seen ex-
amples (Figure 4b)—our X-MOD model—in con-
trast to the SHARED model—is able to maintain, or
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en ar fr hi ko ru th vi ta id fi sw ka avg

NER X-MOD 81.4 78.9 77.2 70.1 53.0 59.1 2.8 66.2 51.1 50.5 78.6 73.4 67.3 62.8
SHARED 81.5 74.1 74.7 64.4 46.0 58.3 4.0 63.7 52.5 51.5 74.4 57.2 61.5 58.8

XNLI X-MOD 84.4 71.2 77.6 68.3 - 74.1 71.7 73.4 - - - 66.9 - 73.5
SHARED 82.8 69.2 75.6 66.6 - 73.2 68.5 72.5 - - - 62.1 - 72.5

XQuAD X-MOD 85.1 68.1 - 67.5 - 75.0 66.3 74.9 - - - - - 72.8
SHARED 83.8 64.6 - 65.8 - 72.7 63.0 72.6 - - - - - 70.4

MLQA X-MOD 80.1 58.6 - 60.7 - - - 67.5 - - - - - 66.7
SHARED 79.6 53.6 - 58.7 - - - 64.9 - - - - - 64.2

Table 2: Pre-trained language results for the modular and shared model variants, pre-trained on the set of 60
languages for 265k update steps. For NER and MLQA we report F1, for XNLI accuracy scores. Scores are
averaged across all 5 random seeds of the best hyperparameter setting, evaluated on the development set.

bg de el es tr ur zh avg

NER X-MOD 77.6 75.1 75.2 71.9 72.6 54.7 21.6 64.1
SHARED 74.9 66.3 69.6 49.1 64.8 50.4 9.2 54.9

XNLI X-MOD 77.4 75.4 76.2 78.5 72.4 64.9 73.8 74.1
SHARED 76.3 74.1 74.9 77.3 71.0 64.3 71.4 72.8

MLQA X-MOD - 63.8 - 68.6 - - 61.7 64.8
SHARED - 58.9 - 66.7 - - 56.5 60.7

Table 3: Results for added languages, for models pre-
trained on the set of 60 languages for 265k update steps.
We report F1 and accuracy scores which are averaged
across all 5 random seeds of the best hyperparameter
setting on the development set.

even outperform model variants trained on less lan-
guages. These results demonstrate that the added
per-language capacity is sufficient for the model to
adequately represent all languages.

Surprisingly, X-MOD not only maintains per-
formance, but actually slightly improves while we
increase the number of languages we pre-train on.
This is even the case for settings where the model
sees less examples in the target language. This
suggests that increasing the language diversity can
have a positive impact on the model’s cross-lingual
representation capability.

X-MOD vs SHARED. Overall, the X-MOD model
pre-trained on 60 languages achieves the best cross-
lingual performance.14 Our results on XNLI, NER,
MLQA, and XQuAD in Table 2 demonstrate con-
sistent performance gains over the SHARED model
for every task and across (almost) all high- as well
as low-resource languages.

14We find that the X-MOD model trained on 75 languages
is less stable than the versions trained on less languages. We
think that this can be attributed to the 15 added languages
being extremely low resource—we only train for an additional
4k update steps—resulting in the respective randomly initial-
ized modules being updated very infrequently. This variance
could potentially be mitigated by training for longer.

5.2 Extending to unseen languages

We further evaluate the cross-lingual performance
of languages added in the second step; (1) on the
architectural side—comparing the SHARED with
the X-MOD modelling variant—and (2) by com-
paring the performance when pre-training on the
language, vs. when adding the language post-hoc.

Modular vs Shared. We evaluate if the additional
per-language capacity improves the extendability
of the X-MOD model. On the right in Figure 4a
we plot the results for added languages on XNLI
(top) and NER (bottom). Similarly, we plot the
results for the models where we control for the
number of seen examples per target language in
Figure 4b. We find that the X-MOD model consis-
tently outperforms the SHARED model, with a peak
performance when pre-training on 60 languages,
demonstrating that the language specific capacity
is beneficial for adding new languages post-hoc.
We report results for the 60 language versions in
Table 3, demonstrating the consistent advantage of
the X-MOD over the SHARED model.

Pre-training vs Adding Languages. To evaluate
if there is a measurable difference on downstream
performance for languages that we pre-train on vs.
those we add post-hoc, we train 2 models on differ-
ent initial sets of languages, adding the respectively
missing ones in the second step. So as to under-
stand if the typological similarity of languages has
impact on the downstream task performance, we
split the initial and added languages (Table 1) of
our previous experiments into two parts. The first
split consists of languages where the model was
pre-trained on at least one language of the same
language family (e.g. English vs. German). The
second split consists of languages that are part of
a unique language family, i.e. the model was not
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Model 1 pre-trained Model 2 pre-trained

Figure 5: XNLI test set accuracy of X-MOD mod-
els pre-trained on different languages in comparison to
those added post-hoc (Table 4).

Language iso Family Script Model 1 Model 2

English en IE: Germanic Latin pre-train add
German de IE: Germanic Latin add pre-train
French fr IE: Romance Latin pre-train add
Spanish es IE: Romance Latin add pre-train
Russian ru IE: Slavic Cyrillic pre-train add
Ukranian uk IE: Slavic Cyrillic add pre-train
Hindi hi IE: Iranian Devanagari pre-train add
Urdu ur IE: Iranian Arabic add pre-train
Arabic ar Afro-Asiatic Arabic pre-train add
Hebrew he Afro-Asiatic Hebrew add pre-train

Vietnamese vi Austro-Asiatic Latin pre-train add
Thai th Kra-Dai Thai pre-train add
Korean ko Koreanic Korean pre-train add
Japanese ja Japonic Japanese add pre-train
Greek el IE: Hellenic Greek add pre-train
Turkish tr Turkic Latin add pre-train

Table 4: Selection of 2 sets of languages that we either
pre-train on, or add post-hoc. The last 6 languages in
the list are part of language families which are unique
in the total list of languages we pre-train on (Table 1),
i.e. none of our models was pre-trained on a language
of the same family.

pre-trained on a language of the same family (Ta-
ble 4). Consequently, we pre-train two models on
two sets of languages, adding the respective other
set post-hoc.15

Our XNLI results (Figure 5) demonstrate that
the per-language performance is on par when pre-
training vs. when adding the language post-hoc.16

We also find that the family does not have a measur-
able effect on the performance of the language. Our
results therefore suggest that it is sufficient to train
X-MOD on only a subset of languages for which
sufficient pre-training data exists. Essentially, X-

15In previous experiments, the modular model trained on
60 languages achieved the best performance. Therefore, the
models in these experiments are also trained on 60 languages.
Both models are trained on the same additional languages, i.e.
the 60-LANGS of Table 1, where only the 13-LANGS differ.

16The models have seen an equal amount of examples in
the respective languages in each case.
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Figure 6: Results on XNLI when when pre-training on
13 languages for 125k and 250k update steps.

MOD has the potential to cover all languages of the
world, as the model has the capability to be adapted
to new languages post-hoc.

6 Further analysis

We further analyze the impact of the number of
update steps on X-MOD (§6.1) and compare our
method to adapter-based approaches (§6.2).

6.1 The importance of update steps

In Figure 4 we have witnessed a slight edge of
the SHARED model over the X-MOD model, when
training on only 13 languages and only training
for 125k update steps. Dufter and Schütze (2020)
found that it requires a large number of update steps
for a model pre-trained on multiple languages to
become multilingual; with the added per-language
capacity we hypothesize that update steps also play
an important role for modular models. We com-
pare the downstream task performance of mod-
els pre-trained on 13 languages, when training for
125k with 250k update steps in Figure 6. When
training for longer we find that the X-MOD model
begins to outperforms the SHARED model in the
source language, while almost closing the gap in
the cross-lingual setting. This supports the hypoth-
esis that the X-MOD model requires more update
steps when training only on a small number of lan-
guages, in order for modularity to “kick-in”.

6.2 X-MOD vs. Adapters

As illustrated in Figure 3, from an architecture per-
spective X-MOD is similar to previously proposed
multilingual Adapter-based methods (MAD-X;
Pfeiffer et al., 2020b). MAD-X utilizes a pre-
trained massively multilingual transformer-based
model and fine-tunes newly introduced adapter
weights on languages the model has seen during
pre-training, and ones the model has not been
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Figure 7: Comparison on XNLI of X-MOD and shared
models with an Adapter baseline, all models are pre-
trained for 125k update steps.

trained on. For a fair comparison in terms of seen
examples and number of update steps we train a
transformer model without module components
(shared_nm) for 100k update steps on the respec-
tive languages (Table 1). We subsequently train
adapters on each of the target languages for an-
other 25k update steps.17 We report results in com-
parison to X-MOD in Figure 7, here results for
shared_nm are for a model that was trained for
125k update steps to instantiate a fair comparison.

Our results demonstrate that the additional capac-
ity of adapters added after pre-training is not able
to mitigate the curse of multilinguality which has al-
ready had a catastrophic impact on the shared trans-
former weights; the performance of the adapters
strongly correlates with the performance of the cor-
responding fully shared model shared_nm. Conse-
quently, adding language-specific capacity during
pre-training is important, as the curse of multilin-
guality cannot be lifted post-hoc.

7 Conclusions

In this paper, we have evaluated the effectiveness
of modular multilingual language modelling across
multiple axes. We have demonstrated that by
providing additional per-language capacity, while
maintaining the total number of trainable parame-
ters per language, we are not only able to mitigate
negative interference between languages, but ad-
ditionally achieve positive transfer. Our results
suggest that it is sufficient to train our proposed
X-MOD model only on a subset of languages for
which sufficient amounts of textual data is avail-

17We follow Pfeiffer et al. (2020b) and train adapter weights
with a learning rate of 0.0001. While they have found that
cross-lingual transfer performance of adapters converges at
∼20k update-steps, we would like to stress that our experi-
mental setup is only one of multiple different valid versions.
A more thorough investigation to find the optimal number of
update steps for pre-training and subsequent adapter training
is necessary, which was out of scope for this work.

able. Unseen languages can be added post-hoc,
with no measurable drop in performance on XNLI.
By pre-training the model in a modular fashion, we
thus mitigate negative interference of idiosyncratic
information, while simultaneously preparing the
model to be extendable to unseen languages.

While in this work we have simulated language
adding scenarios with a held out set of languages, in
future work we aim to evaluate the performance on
truly low-resource languages such as MasakhaNER
(Adelani et al., 2021) and AmericasNLI (Ebrahimi
et al., 2021). We further aim to evaluate the cross-
lingual transfer performance from typologically
more diverse source languages, besides English.
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A Additional results

We report MLQA and XQuAD results on pre-
trained languages in Tables 5 and 6, respectively,
and MLQA results on added languages in Table 7.
Table 8 report NER results on more languages.

Figures 9, 10 and 11 report per-language results
as we increase the amount of languages on lan-
guage modeling perplexity, XNLI and NER, re-
spectively.

B Intermediate checkpoints

Our results in §6.1 suggest that, when the number
of languages is small, X-MOD becomes more com-
petitive with SHARED as the number of training
steps increases. So as to understand if this behav-
ior also holds for models covering more languages,
we evaluate intermediate checkpoints for the 60-
LANG model on XNLI. As shown in Figure 8,
we find that the X-MOD model continuously out-
performs the SHARED model. This suggests that
the SHARED model immediately suffers from neg-
ative interference between languages, while the
added, language-specific components of the X-
MOD model are able to mitigate the curse of mul-
tilinguality, resulting in considerable performance
gains at all evaluated checkpoints.

C Language selection

We provide more details about our selection of
languages in Table 9.
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Figure 8: Results on XNLI using intermediate check-
points of the models trained on 60 languages.

en ar hi vi avg
F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM

X-MOD 80.1 / 66.9 58.6 / 38.9 60.7 / 42.4 67.5 / 46.1 66.7 / 48.6
SHARED 79.6 / 66.5 53.6 / 33.9 58.7 / 40.4 64.9 / 43.8 64.2 / 46.2

Table 5: Average F1 and Exact Match results for pre-
trained languages, on the test set of MLQA for the
X-MOD and SHARED model variants, pre-trained on
the set of 60 languages for 265k update steps. Bold
numbers indicate better performance for the respective
language.

en ar hi ru th vi avg
F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM

X-MOD 85.1 / 73.4 68.1 / 52.4 67.5 / 50.3 75.0 / 57.8 66.3 / 52.6 74.9 / 54.6 72.8 / 56.9
SHARED 83.8 / 72.1 64.6 / 48.5 65.8 / 48.3 72.7 / 54.5 63.0 / 48.0 72.6 / 52.1 70.4 / 53.9

Table 6: Average F1 and Exact Match results for pre-
trained languages, on the test set of XQuAD for the
X-MOD and SHARED model variants, pre-trained on
the set of 60 languages for 265k update steps. Bold
numbers indicate better performance for the respective
language.

de es zh avg
F1 / EM F1 / EM F1 / EM F1 / EM

X-MOD 63.8 / 48.9 68.8 / 50.3 61.7 / 36.4 64.8 / 45.2
SHARED 58.9 / 44.1 66.7 / 48.3 56.5 / 32.2 60.7 / 41.5

Table 7: Average F1 and Exact Match results for added
languages, on the test set of MLQA for the X-MOD
and SHARED model variants, pre-trained on the set of
60 languages for 265k update steps. Bold numbers in-
dicate better performance for the respective language.
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en af ar bn et eu fa fi fr hi hu id it ka ko ru sw ta th vi avg

X-MOD 81.4 78.9 43.5 63.2 76.2 62.2 44.3 78.6 77.2 70.1 78.3 50.5 78.7 67.3 53.0 59.1 73.4 51.1 2.8 66.2 62.8
SHARED 81.5 74.1 44.2 62.4 70.7 58.1 40.3 74.4 74.7 64.4 74.2 51.5 75.5 61.5 46.0 58.3 57.2 52.5 4.0 63.7 59.5

Table 8: Average F1 results for pre-trained languages, on the test set of NER for the X-MOD and SHARED model
variants, pre-trained on the set of 60 languages. Bold numbers indicate better performance for the respective
language.
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Figure 9: Perplexity when training on more languages. Each model has seen the same amount of examples in
each language. Lower perplexity indicates better performance.
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Language iso Family Script 13 30 60 75

Afrikaans af IE:Germanic Latin X X
Albanian sq IE:Albanian Latin X X X
Amharic am Afro-Asiatic Amharic X X
Arabic ar Afro-Asiatic Arabic X,(+) X,(+) X,(+) X,(+)
Armenian hy IE:Armenian Armenian X X X
Assamese as IE:Iranian Assamese X
Basque eu Isolate Latin X X X
Belarusian be IE:Slavic Cyrillic X X
Bengali bn IE:Iranian Bengali X X
Bosnian bs IE:Slavic Latin X
Breton br IE:Celtic Latin X
Bulgarian bg IE:Slavic Cyrillic + + + +
Catalan ca IE:Romance Latin X X
Chinese zh Sino-Tibetan Chinese + + + +
Croatian hr IE:Slavic Latin X X X
Czech cs IE:Slavic Latin X X X
Danish da IE:Germanic Latin X X
Dutch nl IE:Germanic Latin X X
English en IE:Germanic Latin X,(+) X,(+) X,(+) X,(+)
Estonian et Uralic Latin X X
Esperanto eo Constructed Latin X X
Finnish fi Uralic Latin X X X X
French fr IE:Romance Latin X,(+) X,(+) X,(+) X,(+)
Frisian fy IE:Germanic Latin X
Galician gl IE:Romance Latin X X
Georgian ka Kartvelian Georgian X X X X
German de IE:Germanic Latin +,(X) +,(X) +,(X) +,(X)
Greek el IE:Hellenic Greek +,(X) +,(X) +,(X) +,(X)
Gujarati gu IE:Iranian Gujarati X X
Hausa ha Afro-Asiatic Latin X X
Hebrew he Afro-Asiatic Hebrew +,(X) +,(X) +,(X) +,(X)
Hindi hi IE:Iranian Devanagari X,(+) X,(+) X,(+) X,(+)
Hungarian hu Uralic Latin X X X
Icelandic is IE:Germanic Latin X X
Indonesian id Austronesian Latin X X X X
Irish ga IE:Celtic Latin X X
Italian it IE:Romance Latin X X X
Japanese ja Japonic Japanese +,(X) +,(X) +,(X) +,(X)
Javanese jv Austronesian Latin X
Kannada kn Dravidian Kannada X
Korean ko Koreanic Korean X,(+) X,(+) X,(+) X,(+)
Kurdish ku IE:Iranian Latin X X
Latin la IE:Romance Latin X X

Language iso Family Script 13 30 60 75

Latvian lv IE:Slavic Latin X X
Lithuanian lt IE:Slavic Latin X X X
Macedonian mk IE:Slavic Cyrillic X X
Malagasy mg Austronesian Latin X
Malay ms Austronesian Latin X X X
Malayalam ml Dravidian Malayalam X X X
Marathi mr IE:Iranian Devanagari X
Mongolian mn Mongolian Cyrillic X X X
Nepali ne IE:Iranian Devanagari X X
Norwegian no IE:Germanic Latin X X
Oriya or IE:Iranian Odia X
Oromo om Afro-Asiatic Ge’ez X
Pashto ps IE:Iranian Arabic X X
Persian fa IE:Iranian Arabic X X
Polish pl IE:Slavic Latin X X X
Portuguese pt IE:Romance Latin X X
Punjabi pa IE:Iranian Gurmukhi X
Romanian ro IE:Romance Latin X X X
Russian ru IE:Slavic Cyrillic X,(+) X,(+) X,(+) X,(+)
Sanskrit sa IE:Iranian Devanagari X X
Scottish Gaelic gd IE:Germanic Latin X
Serbian sr IE:Slavic Cyrillic X X
Sindhi sd IE:Iranian Arabic X X
Sinhala si IE:Iranian Sinhala X X X
Slovak sk IE:Slavic Latin X X X
Slovenian sl IE:Slavic Latin X X
Somali so Afro-Asiatic Latin X X
Spanish es IE:Romance Latin +,(X) +,(X) +,(X) +,(X)
Sundanese su Austronesian Latin X
Swahili sw Niger-Congo Latin X X X X
Swedish sv IE:Germanic Latin X X X
Tagalog tl Austronesian Latin X X X
Tamil ta Dravidian Tamil X X X X
Telugu te Dravidian Telugu X X
Thai th Kra-Dai Thai X,(+) X,(+) X,(+) X,(+)
Turkish tr Turkic Latin +,(X) +,(X) +,(X) +,(X)
Ukrainian uk IE:Slavic Cyrillic +,(X) +,(X) +,(X) +,(X)
Urdu ur IE:Iranian Arabic +,(X) +,(X) +,(X) +,(X)
Vietnamese vi Austroasiatic Latin X,(+) X,(+) X,(+) X,(+)
Welsh cy IE:Celtic Latin X X
Xhosa xh Niger-Congo Latin X
Yiddish yi IE:Germanic Hebrew X

Table 9: List of languages we pre-train Xon or add + in the different sets (13, 30, 60, 75). (·) indicates the
respectively different pre-training/added languages of models 1 and 2 as described in §5.2 and Table 4. IE stands
for Indo-European.
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Chapter 12

Conclusion and Future Work

12.1 Conclusion

While transfer learning has been the dominating paradigm in natural language pro-
cessing in recent years, with the ever increasing size of pre-trained models and their
necessity to perform well in out-of-distribution scenarios, parameter-efficient and
modular strategies have since emerged as promising research directions. In this
thesis, we have disentangled modularity in natural language processing across four
axes: computation functions, routing functions, aggregation functions, and the train-
ing setting. Along those axes we have made multiple contributions.

We have proposed a novel framework (AdapterHub; Chapter 6) which has con-
tinuously be extended to incorporate different computation functions, such as LoRA
(Hu et al., 2022), bottleneck adapters (Houlsby et al., 2019), parallel adapters (He
et al., 2022a), Prefix-Tuning (Li and Liang, 2021), inter alia. The framework allows
for simple fixed routing, based on an input-id to route through designate parts of the
model. Different architectures can be seamlessly combined, allowing for seamless ag-
gregation such as sequential composition of modular components. The AdapterHub
consequently provides a easy-to-use framework for the training setting of post-hoc
adaptation.

We have proposed a novel computation function as well aggregation function in
Chapter 7. The computation function simplifies previously proposed methods, while
the aggregation function is the first which performs post-hoc composition using an
attention mechanism.

In Chapters 8 - 10 we propose novel fixed routing as well as sequential aggrega-
tion mechanisms to disentangle language, task, and modality specific information
into designated modular components. We demonstrate that by training modality,
language, and task-specific components while freezing shared weights, we perform
better in out-of-distribution scenarios, such as cross-lingual and cross-modal scenar-
ios.
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12.2. Future Work

Finally, in Chapter 11 we investigated the impact of modularizing transformer
based models during multilingual pre-training. While the majority of parameters
are shared, we perform fixed routing to language-specific modular components. We
demonstrate that modular pre-training mitigates catastrophic interference between
languages, while preparing the model to be extended to more languages post-hoc.

12.2 Future Work

While in recent times modularity has been a hot-topic in research, there remain
many interesting open research questions along the axes of modularity introduced
in this thesis. We provide an overview of some of these directions for future work in
what follows.

In Chapter 2 we introduced different computation functions, where methods have
predominant focused either on parameter composition or on function composition.
Naturally, a combination of these two orthogonal concepts can be imagined. If sparse
subnetworks are trained within parameter-efficient function composition methods,
such as bottleneck-adapters, efficient aggregation of these modular components can
be envisioned. The combination of which would potentially allow for more flexibility
and computational efficiency during training as significantly less parameters need to
be investigated.

In Chapter 3 we have discussed different routing methods. Here, the dominating
strategy to disentangle knowledge into modular parts of the model has been to utilize
fixed routing strategies. However, this limits the usability of the proposed methods
as they cannot be used on data which lacks the necessary meta data; when training
on heterogeneous data, necessary labels, such as domain data, often do not exist.
While learned routing methods do not require this meta data to perform routing
a-priori, these methods suffer from training difficulties (as discussed in § 3.2). This
opens up potential research directions aiming at improving the modularity capabil-
ities of models during pre-training using learned routing mechanisms. Finally, there
does not exist a benchmark or even a metric which compares routing mechanisms
from a modularity perspective, which the research community desperately needs if
this research thread receives more interest in upcoming years.

In Chapter 4 we have introduced different methods which combine the knowl-
edge from multiple modular components. Here, one line of research has focused on
performing arithmetic operations on sparse subnetworks. These arithmetic opera-
tions are based on an inductive bias placed upon the method by the user, i.e. the
notion of subtracting and adding knowledge is strongly biased, especially because
these methods are applied across all parameters and not only those which hold the
information worth “subtracting”. Future research can potentially focus on learning
to compose the information within subnetworks directly, in order to improve the
aggregation for out of distribution generalization.

Finally, in Chapter 5 we have discussed modular training strategies. Here a re-
cent research thread around model merging has emerged (Wortsman et al., 2022, ;
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Chapter 12. Conclusion and Future Work

inter alia). Simultaneously, integrating modular components for multi-task learning
has been of interest to researchers for many years. Both methods are a means to
cover many tasks within a single model, ideally achieving cross-task improvements,
while mitigating performance drops in the individual tasks. These research threads
have the potential of being merged, i.e. modular multi-task learning models can be
envisioned which have specific components designed to be merged later. This po-
tentially allows for an architecture which can be computationally efficiently trained
while covering many modalities.
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Appendix A

Data Handling

In accordance with DFG’s “Principles for the Handling of Research Data”,1 we en-
sured the long-term preservation of research data and/or experimental software that
has been developed as part of this dissertation. We made this data openly accessi-
ble when possible. The following software has been made available for the scientific
community (see the repositories for licensing details):

• Chapter 6: https://github.com/Adapter-Hub

• Chapter 7: https://github.com/Adapter-Hub/adapter-transformers

• Chapter 8: https://github.com/Adapter-Hub/adapter-transformers

• Chapter 9: https://github.com/Adapter-Hub/adapter-transformers

• Chapter 10: https://github.com/Adapter-Hub/xGQA

• Chapter 11: https://github.com/facebookresearch/fairseq

All publications related to this thesis are publicly available on the ACL Anthol-
ogy (aclweb.org/anthology/):

• Chapter 6: https://aclanthology.org/2020.emnlp-demos.7/

• Chapter 7: https://aclanthology.org/2021.eacl-main.39/

• Chapter 8: https://aclanthology.org/2020.emnlp-main.617/

• Chapter 9: https://aclanthology.org/2021.emnlp-main.800/

• Chapter 10: https://aclanthology.org/2022.findings-acl.196/

• Chapter 11: https://aclanthology.org/2022.naacl-main.255/

1 https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/
forschungsdaten/leitlinien_forschungsdaten.pdf
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Moreover, all research results of the aforementioned publications are documented
in the present thesis, which is archived by the Universitäts- und Landesbibliothek
Darmstadt.
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