741 research outputs found

    Security and Privacy of IP-ICN Coexistence: A Comprehensive Survey

    Full text link
    Internet usage has changed from its first design. Hence, the current Internet must cope with some limitations, including performance degradation, availability of IP addresses, and multiple security and privacy issues. Nevertheless, to unsettle the current Internet's network layer i.e., Internet Protocol with ICN is a challenging, expensive task. It also requires worldwide coordination among Internet Service Providers , backbone, and Autonomous Services. Additionally, history showed that technology changes e.g., from 3G to 4G, from IPv4 to IPv6 are not immediate, and usually, the replacement includes a long coexistence period between the old and new technology. Similarly, we believe that the process of replacement of the current Internet will surely transition through the coexistence of IP and ICN. Although the tremendous amount of security and privacy issues of the current Internet taught us the importance of securely designing the architectures, only a few of the proposed architectures place the security-by-design. Therefore, this article aims to provide the first comprehensive Security and Privacy analysis of the state-of-the-art coexistence architectures. Additionally, it yields a horizontal comparison of security and privacy among three deployment approaches of IP and ICN protocol i.e., overlay, underlay, and hybrid and a vertical comparison among ten considered security and privacy features. As a result of our analysis, emerges that most of the architectures utterly fail to provide several SP features including data and traffic flow confidentiality, availability and communication anonymity. We believe this article draws a picture of the secure combination of current and future protocol stacks during the coexistence phase that the Internet will definitely walk across

    Innovation in the Wireless Ecosystem: A Customer-Centric Framework

    Get PDF
    The Federal Communications Commission’s Notice of Inquiry in GN 09-157 Fostering Innovation and Investment in the Wireless Communications Market is a significant event at an opportune moment. Wireless communications has already radically changed the way not only Americans but people the world over communicate with each other and access and share information, and there appears no end in sight to this fundamental shift in communication markets. Although the wireless communications phenomenon is global, the US has played and will continue to play a major role in the shaping of this market. At the start of a new US Administration and important changes in the FCC, it is most appropriate that this proceeding be launched.

    Network Simulation Cradle

    Get PDF
    This thesis proposes the use of real world network stacks instead of protocol abstractions in a network simulator, bringing the actual code used in computer systems inside the simulator and allowing for greater simulation accuracy. Specifically, a framework called the Network Simulation Cradle is created that supports the kernel source code from FreeBSD, OpenBSD and Linux to make the network stacks from these systems available to the popular network simulator ns-2. Simulating with these real world network stacks reveals situations where the result differs significantly from ns-2's TCP models. The simulated network stacks are able to be directly compared to the same operating system running on an actual machine, making validation simple. When measuring the packet traces produced on a test network and in simulation the results are nearly identical, a level of accuracy previously unavailable using traditional TCP simulation models. The results of simulations run comparing ns-2 TCP models and our framework are presented in this dissertation along with validation studies of our framework showing how closely simulation resembles real world computers. Using real world stacks to simulate TCP is a complementary approach to using the existing TCP models and provides an extra level of validation. This way of simulating TCP and other protocols provides the network researcher or engineer new possibilities. One example is using the framework as a protocol development environment, which allows user-level development of protocols with a standard set of reproducible tests, the ability to test scenarios which are costly or impossible to build physically, and being able to trace and debug the protocol code without affecting results

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    JTP, an energy-aware transport protocol for mobile ad hoc networks (PhD thesis)

    Full text link
    Wireless ad-hoc networks are based on a cooperative communication model, where all nodes not only generate traffic but also help to route traffic from other nodes to its final destination. In such an environment where there is no infrastructure support the lifetime of the network is tightly coupled with the lifetime of individual nodes. Most of the devices that form such networks are battery-operated, and thus it becomes important to conserve energy so as to maximize the lifetime of a node. In this thesis, we present JTP, a new energy-aware transport protocol, whose goal is to reduce power consumption without compromising delivery requirements of applications. JTP has been implemented within the JAVeLEN system. JAVeLEN [RKM+08], is a new system architecture for ad hoc networks that has been developed to elevate energy efficiency as a first-class optimization metric at all protocol layers, from physical to transport. Thus, energy gains obtained in one layer would not be offset by incompatibilities and/or inefficiencies in other layers. To meet its goal of energy efficiency, JTP (1) contains mechanisms to balance end-toend vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgments and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within this ultra low-power multi-hop wireless network system, simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network. JTP has been implemented on the actual JAVeLEN nodes and its benefits have been demonstrated on a real system

    An investigation into the use of B-Nodes and state models for computer network technology and education

    Get PDF
    This thesis consists of a series of internationally published, peer reviewed, conference research papers and one journal paper. The papers evaluate and further develop two modelling methods for use in Information Technology (IT) design and for the educational and training needs of students within the area of computer and network technology. The IT age requires technical talent to fill positions such as network managers, web administrators, e-commerce consultants and network security experts as IT is changing rapidly, and this is placing considerable demands on higher educational institutions, both within Australia and internationally, to respond to these changes

    Software-Defined Networking: A Comprehensive Survey

    Get PDF
    peer reviewedThe Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this - ew paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment

    Revisiting Resource Utilization in The Internet: Architectural Considerations and Challenges

    Get PDF
    The Internet has been a success story for many years. Recently researchers have started to deal with new questions that challenge the effectiveness of the Internet architecture in response to the new demands, e.g. overwhelming traffic growth and latency optimizations. Various proposals ranging from new application level protocols to new network stacks are emerging to help the Internet to keep up with the demand. In this dissertation we look at a few different proposals that deal with improving the speed and resource utilization in the Internet. We first discuss improving the resource utilization in the current Internet by minor changes such as adjusting various parameters in TCP. We then discuss a more radical form of resource utilization through combining the network and the available storage. Combining these two resources, which have traditionally been considered separate, could provide many new speed improvement opportunities. We discuss relaxing the barrier between the storage and the network in the context of Information Centric Networking (ICN), which in itself is an alternative proposals to the current TCP/IP style Internet. With the help of ICN, we propose different forms of in-network caching below the application layer. We argue that, although useful, the new models of utilizing network resource could show to have their own challenges. We namely discuss the resource management and privacy challenges that are introduced with ICN in general and within our proposed solutions in particular. The lack of end-host bindings and the existence of network routable data names in different data chunks make the congestion control, reliability, and privacy in ICN rather different from TCP/IP. We discuss some of these differences and propose solutions that can help addressing each issue in our particular form of ICN-based mechanisms

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions
    • 

    corecore