

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

NETWORK SIMULATION
CRADLE

A thesis
submitted in partial fulfilment

of the requirements for the degree
of

Doctor of Philosophy in Computer Science
at the

University of Waikato
by

SAM JANSEN

The University of Waikato
2008

ii

Abstract

This thesis proposes the use of real world network stacks instead of protocol

abstractions in a network simulator, bringing the actual code used in computer

systems inside the simulator and allowing for greater simulation accuracy.

Specifically, a framework called theNetwork Simulation Cradleis created that

supports the kernel source code from FreeBSD, OpenBSD and Linux to make the

network stacks from these systems available to the popular network simulator ns-2.

Simulating with these real world network stacks reveals situations where the result

differs significantly from ns-2’s TCP models. The simulatednetwork stacks are

able to be directly compared to the same operating system running on an actual

machine, making validation simple. When measuring the packet traces produced

on a test network and in simulation the results are nearly identical, a level of

accuracy previously unavailable using traditional TCP simulation models. The

results of simulations run comparing ns-2 TCP models and ourframework are

presented in this dissertation along with validation studies of our framework

showing how closely simulation resembles real world computers.

Using real world stacks to simulate TCP is a complementary approach to using the

existing TCP models and provides an extra level of validation. This way of

simulating TCP and other protocols provides the network researcher or engineer

new possibilities. One example is using the framework as a protocol development

environment, which allows user-level development of protocols with a standard set

of reproducible tests, the ability to test scenarios which are costly or impossible to

build physically, and being able to trace and debug the protocol code without

affecting results.

iii

iv

Acknowledgements

Undoubtedly there is one person without whom this dissertation would never have

come to be: my supervisor, colleague and friend Tony McGregor. Thank you for

encouraging me, for believing in me, for giving me the chance. Thank you for the

ever insightful words over the years.

I was lucky enough to be a part of a great research group duringmy PhD; it was in

the labs of WAND network research group that the majority of the research was

done, even though I spent large amounts of time overseas. Thanks to those who

were a part of the sometimes late evenings, the discussions over coffee or on the

way to the bakery, and the much needed time away from computers. I’m glad and

proud to be a part of WAND.

A three-month visit to Intel Research Cambridge turned intomoving to the United

Kingdom for a much longer time. Thanks Andrew, Madeleine andMichael for

making me feel a part of the place. While the research lab has sadly closed its

doors, the memory of my time there will live on.

I’d like to acknowledge all of those in Cambridge who have endured tales of my

writing and encouraged me. It would have been easy to lose sight of the final goal

of finishing the dissertation without the constant positivefeedback I received from

you all. Last but certainly not least: Zoe, for being there, for putting up with my

mind wandering off topics at hand to think about my thesis once again, for

everything.

v

vi

Contents

Abstract iii

Acknowledgements v

List of Figures xiv

List of Tables xv

List of Listings xviii

1 Introduction to network simulation 1

1.1 Reasons for simulation . 2

1.2 Validity of simulation results . 5

1.3 The Transmission Control Protocol5

1.4 The network simulator ns-2 . 6

1.5 Real world code . 8

1.5.1 Multiple instances: the re-entrancy problem 9

1.5.2 Kernel code in user space 10

1.6 Problem statement and scope . 10

2 Simulating the Transmission Control Protocol 13

2.1 Research using TCP simulation . 14

2.1.1 TCP under differing conditions 14

2.1.2 TCP modifications . 16

2.1.3 Analytical model validation 18

2.1.4 Discussion . 19

2.2 Network simulators used in TCP research20

2.2.1 ns-2 . 20

vii

2.2.2 ATM-TN . 23

2.2.3 GloMoSim . 25

2.2.4 OPNET . 26

2.2.5 x-Sim . 28

2.2.6 Discussion . 28

2.3 Simulating with real world TCP code 29

2.3.1 Porting the TCP implementation 31

2.3.2 Modifying the operating system 32

2.3.3 Build a supporting framework 34

2.3.4 Discussion . 37

2.4 Summary . 39

3 The Network Simulation Cradle 41

3.1 Simulator integration . 44

3.1.1 Shared libraries . 44

3.1.2 Simulator agent . 45

3.1.3 Interactions . 49

3.2 Global parser . 53

3.2.1 Modifying C global declarations 55

3.2.2 Modifying C global references 59

3.2.3 Implementation of the globaliser 61

3.3 Adding a new stack . 66

3.3.1 Extracting the TCP code 66

3.3.2 Building a standalone TCP implementation 67

3.3.3 Incorporating with the Network Simulation Cradle 69

3.3.4 Configuration issues . 70

3.3.5 Updating an NSC TCP implementation 70

3.3.6 Requirements of the NSC approach 71

3.4 Summary . 72

4 Accuracy of TCP simulation with real code 75

4.1 Introduction to simulation and test bed comparisons 76

4.1.1 Emulating with a test bed network 77

4.1.2 WAND Emulation Network 77

viii

4.1.3 Traffic shaping . 78

4.1.4 Traffic generation and measurement 80

4.2 Packet trace comparisons . 80

4.2.1 Connection establishment 82

4.2.2 Congestion . 89

4.2.3 Summary . 89

4.3 Simulated TCP performance . 92

4.3.1 Performance over a complex topology 92

4.3.2 Uniform random loss . 94

4.4 Summary . 98

5 Variation between TCP implementations 99

5.1 On benchmarking TCP . 100

5.2 New simulation scenarios . 101

5.2.1 Packet reordering . 101

5.2.2 Many TCP flows over a dumbbell topology 102

5.3 Reproduced simulations . 108

5.3.1 TCP fairness on high-speed networks 108

5.3.2 Congestion control comparisons 112

5.3.3 Request latency for a SIP proxy 119

5.4 Summary . 120

6 With more detail comes greater cost 123

6.1 Performance measures covered . 124

6.2 CPU time . 126

6.2.1 Time to simulate simple scenarios 126

6.2.2 Time required to simulate more complex scenarios 132

6.2.3 Profile . 135

6.2.4 Discussion of CPU performance 138

6.3 Memory usage and scalability . 140

6.3.1 Heap use with many TCP flows 141

6.3.2 The effect of increasing the TCP window size 142

6.3.3 Total memory use . 144

6.4 The cost of the globaliser . 145

ix

6.4.1 CPU (online) cost . 145

6.4.2 Offline cost . 147

6.5 Discussion of performance results149

7 Conclusions and future research 153

7.1 Accuracy of simulating with real world TCP code 153

7.1.1 Feasibility . 153

7.1.2 Validity and accuracy . 154

7.1.3 Applicability . 155

7.1.4 Performance and scalability 156

7.1.5 Discussion . 157

7.2 Future research . 157

7.2.1 Simulating the application layer 158

7.2.2 Protocol development environment 158

7.2.3 Network stack additions 158

7.2.4 Automated protocol testing 159

7.3 Conclusions . 160

Appendices 160

A Publications authored 161

A.1 Peer reviewed journal articles .161

A.2 Conference papers . 161

A.3 Conference papers as a secondary author 162

B Network Simulation Cradle manual 163

B.1 Adding a new stack . 163

B.1.1 Initial build process . 163

B.1.2 Shared library creation . 166

B.2 Testing and validation . 169

B.2.1 Initial testing . 170

B.2.2 Validation . 170

C Network simulators 171

C.1 OMNeT++ . 171

x

C.2 SSF . 173

C.3 GTNeTS . 174

C.4 J-Sim . 175

C.5 JiST . 175

C.6 IRLSim . 175

References 177

xi

xii

List of Figures

2.1 ns-2 simulation of TCP Tahoe responding to packet loss [5] 22

2.2 TCP dynamics on an ATM network [26] 24

2.3 TCP throughput during FTP measured from a router [67] 27

2.4 NCTUns simulation architecture (adapted from [104]) 33

2.5 Kernel network stack in user space (adapted from [113]) 35

2.6 FreeBSD network stack in the OMNeT++ simulator [106] 37

3.1 Simulator and Network Simulation Cradle interactions 43

3.2 Globaliser’s parser flow . 61

4.1 Topology used in the WAND Emulation Network 78

4.2 Example tcptrace time sequence graph81

4.3 Simulated vs. measured connection establishment graphs: FreeBSD 83

4.4 Simulated vs. measured connection establishment graphs: Linux . . 84

4.5 Simulated vs. measured connection establishment graphs: OpenBSD 85

4.6 Time difference vs. packet number for FreeBSD traces 86

4.7 Simulated vs. measured TCP packet loss response for FreeBSD . . 90

4.8 Simulated vs. measured TCP packet loss response for Linux 91

4.9 Multi-bottleneck scenario (adapted from [155]) 93

4.10 TCP goodput over a multi-bottleneck topology 95

4.11 TCP goodput vs. loss rate . 97

5.1 TCP goodput under packet reordering 102

5.2 Simulation scenario . 103

5.3 TCP performance comparisons with cumulative graphs 105

5.4 Mean goodput difference as flows and bandwith is varied 107

5.5 Ratio of throughputs of competing TCP flows [175] 109

5.6 Fairness between two TCP flows as path propagation delay is varied 111

xiii

5.7 TCP over 10Mb/s bottleneck with reverse traffic [53] 113

5.8 TCP over 10Mb/s bottleneck with reverse traffic 114

5.9 TCP goodput vs. number of traversed hops [53] 117

5.10 TCP goodput vs. number of traversed hops118

5.11 Simulation topology used for SIP simulations (adaptedfrom [180]) . 119

5.12 Average SIP request latency for increasing loss rates 121

6.1 Simulated time vs. real time for a single TCP flow 128

6.2 CPU time to simulate many flows 129

6.3 Time to simulate and goodput with a varying MTU131

6.4 CPU time to simulate increasing amounts of data 132

6.5 Simulation times for complex scenarios 133

6.6 Peak heap usage for increasing number of flows 142

6.7 Peak heap usage for increasing window size 143

6.8 Measured offline globaliser costs148

xiv

List of Tables

1.1 Simulator popularity by citations 7

3.1 Number of declarations and references of global variables 53

3.2 Number of support functions in the NSC shared libraries 68

3.3 Number of lines of code used in the NSC stack support code 69

4.1 Emulation network RTT measurements 79

4.2 TCP performance during 5% bidirectional loss [162] 96

5.1 Simulation machines used . 103

6.1 Performance testing setup . 126

6.2 ns-2 profile using NSC: Linux 2.6 TCP 137

6.3 ns-2 profile using NSC: FreeBSD TCP 137

6.4 ns-2 profile using original TCP agents138

6.5 Heap usage per TCP flow . 142

6.6 Heap usage / window size for ns-2 and NSC 143

6.7 Memory footprint for ns-2 and NSC 144

6.8 Globaliser runtime CPU overhead 146

6.9 Codebases used for globaliser testing 147

xv

xvi

Listings

1.1 Example ns-2 simulation script . 6

3.1 ns-2 simulation script using a TCP model48

3.2 Using NSC TCP models in a ns-2 simulation script 49

3.3 Example cradle code to connect a socket (from Linux 2.6 shared

library) . 51

3.4 Aggregating globals into a structure 54

3.5 Modifying a variable into an array 55

3.6 globaliser input and output for a single variable 55

3.7 Array initialisation . 56

3.8 Corrected array initialisation .. 56

3.9 Unbounded array initialisation .57

3.10 Array initialisation solution .. . 57

3.11 Indexing a modified array . 58

3.12 Structure redefinition . 58

3.13 typedef of array element type . 58

3.14 Indexing a variable reference with a function 60

3.15 Self-referential initialisation 60

3.16 Self-referential initialisation error 60

3.17 Inline code block from Linux . 63

3.18 gcc attribute use from FreeBSD 63

3.19 Additional gcc keywords . 64

3.20 gcc inline assembly . 64

3.21 Type name parsing problem . 64

3.22 Section attribute object file placement 65

3.23 globaliser section support .66

3.24 Compiling a C file with gcc and the globaliser 69

xvii

4.1 Linux 2.6tcp_grow_window code 88

5.1 Weka output for information gain attribute evaluator 105

5.2 Weka output for CFS attribute evaluator 106

5.3 Information gain attribute evaluator for differences data 106

B.1 FreeBSD kernel source directory 164

B.2 Stub function from the FreeBSD support code 166

B.3 Compiling a C file with gcc and the globaliser 169

xviii

Chapter 1

Introduction to network simulation

With the rise of the Internet over the past decades has come anincreasing

importance on design and testing of network protocols, the languages which allow

computing components to communicate. Before a new protocolis accepted as a

standard, sufficient testing must be done such that the protocol is believed to

behave correctly under the varying conditions found on the Internet. Modifications

to existing protocols also require testing for the same reason.

Network protocols are specified in documents often written in plain English. In the

case of the Internet these are released by the Internet Engineering Task Force

(IETF). Even with a controlling body and public feedback on protocols before they

are finalised, protocol specifications include ambiguitieswhich lead to differences

in implementations. Some decisions are left up to the implementer as well,

meaning two implementations that conform to the same specification can have

quite different functionality.

An operating system such as a recent version of Linux contains many network

protocol implementations: IP, UDP, TCP, SCTP, IPX, Appletalk and many others.

These protocols are implemented as part of the operating system in standard C

code. Other protocol implementations run as applications,examples include BGP,

OSPF and DNS. Other operating systems contain similar listsof protocol

implementations, though the implementations themselves differ.

There are two complementary avenues to testing network protocols. The network

protocol can be analysed by building models, either mathematical or procedural in

1

nature. These models can be used to simulate the protocol, allowing quick and

reproducible tests. Further testing is provided by testingthe protocol on real

networks with real protocol implementations; either on an isolated test network or

with limited tests on the Internet. Simulation is often useddue to the difficulty of

running many tests on real hardware.

Simulation requires support software: the simulator itself. The simulator must

have models of the network elements to be simulated. This includes, but is not

limited to, models of the physical aspects of the network (e.g., cables connecting

computers), routing, hosts, applications and protocols. Each of these elements is

an abstract model of what happens in the real world—program code (such as C++)

or mathematical models designed to mimic the important aspects of the behaviour

of the real entity.

The validity of simulation results is dependant on the models in the simulator used.

Researchers validate simulation models by comparing them to real world

measurements and known results. By showing the simulator toperform closely to

real world measurements in various scenarios, it can be concluded that the

simulator has a good chance of simulating further scenariosaccurately. There is

always the possibility that the models present in a simulator are not correct or are

simplified too much to produce useful results for complex situations. The

simulation models often do not capture the implementation differences found as

they are either modelled after a single implementation, or the understanding of the

authors of the model, which can differ from the specification.

The next sections in this chapter introduce the reasons for network simulation,

discuss validity of simulation results, describe TCP and the network simulator ns-2

briefly, introduces using real world code as simulation models, and details the

problem statement and scope of this thesis.

1.1 Reasons for simulation

Network simulation has many benefits over building test networks. Network

simulation is reproducible, does not require a full protocol implementation, is able

to scale to large and complex scenarios, is relatively easy to set up and simpler to

2

record results from.

Simulation is reproducible

Network simulations are designed specifically to be reproducible. This means that

for a given scenario, the result will be the same from run to run given the same

input. An example implementation feature supporting this is the random number

generator used in a simulator. This will be a deterministic pseudo random number

generator that is seeded to a specific value.

Reproducible tests are important when modifying an existing model or debugging.

They allow a developer to test under exactly the same conditions as a previous test.

This allows bugs to be reproduced and specific interactions to be tested.

Simulation models are quick to build

Useful models of network elements can be built in simulationwithout modelling

every aspect that is required in a real system. Many error cases need to be covered

in a real implementation and compatibility with other independent

implementations must be kept. Simulation models are instead built only to work

within a simulator and many assumptions can be made over a real world

implementation. This allows a model developer to build witha higher level of

abstraction; the simulation models are therefore quicker and easier to build.

When developing new protocols, this can be important to showthat the protocol

interacts correctly in a variety of situations without having to spend a large amount

of time developing a full implementation. There are fewer overheads involved in

testing a modification to a protocol in simulation; there is no requirement to install

a new kernel or program on each network host as is necessary with real world tests.

Simulation is scalable and adaptable

It is possible to simulate many thousands of entities in a network simulator on a

modern desktop computer. The cost of testing an equivalent network in the real

world is much higher: the equivalent is building a network ofthousands of

computers with many routers and switches, then controllingand measuring them

all during testing. Simulations of many network elements involving complex

3

interactions can be performed in reasonable time and effort.

Simulation is able to cope with network elements that are notyet found in the real

world so is suitable for testing protocols for networks which are not yet physically

possible. An example of this is optical network research where new network

architectures are proposed to make use of very high data rates such as 100Gb/s [1],

simulation is often used to test the networking ideas.

Scenarios can be developed rapidly

Network simulations have tools to facilitate the creation of arbitrary topologies and

scenarios. Some simulators use special purpose programming languages while

others have graphical user interfaces. It is possible for a network researcher to

develop a complex scenario in a matter of hours, where creating such a situation in

the real world would require significant resources or may notbe possible. Once a

scenario is created, many simulations can be run with variedparameters to view

how different parameters affect the systems being tested. Arapid development and

feedback cycle is possible with simulation.

Simulation has transparent access to data

Measuring performance metrics on real networks is difficult—protocol

implementations are often in-kernel (making access to statistics for user-level

processes hard) or otherwise inaccessible (such as runningon external hardware).

Measuring extra in-kernel statistics requires either additional software (for

example, Web100 [2]) or custom modifications if there is access to the kernel

source code.

Real networks require that data needs to be recorded from multiple points in the

network, which is difficult. Ensuring the data from these elements is recorded at

the same time is hard due to clock skew between the network elements the data is

recorded from. It is also possible that recording extra information will change the

results due to the processing overhead incurred.

In simulation, the simulator and all models are user-level software, which makes

recording results easy. Recording and processing the statistics is generally

4

convenient due to the predefined data collection routines available in the simulator

being used. As the network runs on simulated time, recordingdata does not affect

the result of the simulation and there are no problems with clock synchronisation.

1.2 Validity of simulation results

Simulation results are only believable if the simulation models being used are

validated. Heidemann, Mills and Kumar [3] define validationas “the process of

assuring that a model provides meaningful answers to the questions being asked.”

Validation provides confidence that the approximations andabstractions used by

simulation models do not substantially alter the answers tothe questions being

asked. The more accurate (and hence valid) simulation models are at predicting the

systems they are modeled after, the more useful they are to simulation practitioners

(though this must be balanced against performance, more accurate models will

often be slower or have higher resource requirements).

Simulations should be backed up by laboratory and Internet experiments where

applicable. Even with thoroughly validated simulation models there are many

possible artefacts of simulation that can produce results inconsistent with reality

(for example, phase effects1 can be more common in simulations as shown by

Floyd [5]).

Floyd also points out that even with the validation efforts put into the TCP models

of ns-2 [5], the validation is not complete and there is less confidence in the

models being valid for an arbitrary user of the simulator than the specific research

carried out by Floyd. The models described are for the Transmission Control

Protocol (TCP) in the network simulator ns-2, both of which are introduced in

following sections.

1.3 The Transmission Control Protocol

TCP is the most common transport protocol used on the Internet, being used to

transport web pages (with HTTP), email (with SMTP), files (with FTP) and much

more. Internet measurements show TCP traffic as being prevalent; Cho, Mitsuya

1Periodicity and resonance in network traffic as described byFloyd and Jacobson [4].

5

and Kato [6] show that greater than 80% of all traffic measuredon a backbone link

between USA and Japan is TCP.

The importance of TCP is reflected by the wealth of research into it. It has been

shown to interact poorly in some situations with several network types such as

asynchronous transfer mode (ATM) networks [7], wireless networks [8] and fast

long distance networks [9]. Many improvements have been suggested over the

original specification [10], some of which have become standards [11,12].

Generally, such modifications and extensions to TCP are tested in simulation

before laboratory or Internet tests. A popular network simulator for TCP research

is ns-2 [13].

1.4 The network simulator ns-2

ns-2 is a discrete event network simulator used widely in research of Internet

protocols and mechanisms such as routing protocols, flow control and congestion

control. ns-2 is written in C++ and uses the OTcl [14] language to control

simulations. An example simulation script is shown in listing 1.1. In this example,

a TCP flow transfers bulk data from the FTP application for 5 seconds over a

full-duplex link with a bandwidth of 10Mb/s and a propagation delay of 34ms

using the “drop tail” queuing strategy. A trace is written tothe file “nam.tr”

showing packet events such as enqueueing or dequeing at a router or host or packet

drops.

Listing 1.1: Example ns-2 simulation script

set ns [new Simulator]
$ns trace-all [open "nam.tr" w]
Create topology
set node1 [$ns node]
set node2 [$ns node]
$ns duplex-link $node1 $node2 10Mb 34ms DropTail
Create TCP models
set src [new Agent/TCP/Newreno]
set sink [new Agent/TCPSink/DelAck]
Attach models to the topology
$ns attach-agent $node1 $src
$ns attach-agent $node2 $sink
$ns connect $src $sink
set ftp [new Application/FTP]
$ftp start
$ns at 5.0 "$ftp stop"
$ns run

6

Citations
Simulator Google Scholar Citeseer
ns-2 1045 1275
GloMoSim 1042 97
OPNET 276 331
QualNet 62 25
x-Sim 38 9
ATM-TN 56 23

Table 1.1: Simulator popularity by citations

Listing 1.1 illustrates the level of abstraction provided by the models that are part

of the ns-2 distribution. A researcher can specify the bandwidth and delay of a link

and the queuing mechanism used, but no further detail is simulated: the physical

aspects of the medium used to transmit data is not simulated,nor is the link layer.

This is not a fundamental constraint imposed by ns-2, as several projects have

extended the default models with, for example, models for a wireless radio

channel. ns-2 has detailed models for routing, transport, and applications.

Though hard to quantify, it is probable that ns-2 is the most widely used network

simulator for TCP research, and possibly the most widely used for general network

research. Table 1.1 shows a rough measure of popularity: thenumber of citations

for each network simulator. The two citation databases, Google Scholar [15] and

Citeseer [16] were used to find the number of citations for each network simulator.

The numbers here are only estimates because citations for the simulators are

inconsistent; for example, ns-2 can be cited by its manual, website, or an early

paper that describes it [17]. The citation systems are also incomplete, in some

cases (such as GloMoSim) there is a large disparity between the two numbers.

However, it can be seen that both citation systems report more citations for ns-2

than any other network simulator. Hendersonet. alpresent similar findings, stating

that over 50% of ACM and IEEE network simulation papers from 2000–2004 cite

the use of ns-2 [18].

ns-2 contains a set of TCP models that can be used to simulate avariety of TCP

features. The TCP congestion control algorithms of Tahoe, Reno, New Reno,

Sack [11], and Fack [19] can be used. Each of the TCP models canbe used in a

one-way mode, in which data is transferred in only one direction (and

acknowledgements flow in the opposite direction), or a mode which allows

7

bidirectional communication like real TCP implementations.

The one-way TCP models have been studied in detail to validate them. Fall and

Floyd [20] and Floyd [5] document a series of analysis based on looking at

time-sequence graphs of TCP and checking packet traces manually for expected

behaviour. Floyd [21] discusses how these tests are not comprehensive and that the

validation tests are not necessarily effective for an arbitrary user of ns-2.

The TCP models are not designed to reproduce the behaviour ofa specific TCP

implementation and several aspects of the models do not match the behaviour of

real implementations [5]. The one-way TCP models, which arethe most often used

due to their validation, deal in packets not bytes. The data and acknowledgement

packet sizes can be specified, but as there is no two-way communication there is no

provision for piggybacking of acknowledgements on data packets [5].

1.5 Real world code

In some cases part of the real system being studied can be integrated into

simulation. This is possible if the original system is software and the code can be

directly executedwithin the simulator. This provides for the possibility of very

accurate simulation; the simulated model will respond to input using the same

code as a real system.

There are several projects that use direct execution of realworld code in network

simulators. NsClick [22] allows Click Modular Router [23] routing protocols to

run inside the network simulator ns-2 [13]—the same routingprotocols that will

run inside operating system kernels with Click support. An alternative way to

simulate routing protocols accurately is proposed by Dimitropoulos and Riley [24]

who integrate user-space routing software into the ns-2 simulator to form a feature

full model of the Border Gateway Protocol (BGP). A similar project is

InetQuagga [25], a port of the Quagga routing software to theOMNeT++

simulator.

Directly executing real world protocol implementations asmodels in network

simulators has desirable benefits:

8

• the protocol model is likely to accurately match the real world

implementation;

• the model may be more feature full than simplified simulationmodels; and

• the implementation has already been written and tested, thesame process of

building a simulation model and debugging it is not required.

There are difficulties involved in building simulation models from real

implementations. The environment the code would originally execute in is

changed to a network simulator, there are problems supporting multiple concurrent

instances of the protocol, many protocol implementations are part of an operating

system kernel and need to be removed from the operating system to be part of a

network simulator. These issues are discussed in the following sections.

1.5.1 Multiple instances: the re-entrancy problem

A network simulation will create a number of instances of a model. For example,

with a model of TCP, at least two instances of the model are needed for any sort of

TCP communication—both endpoints of the TCP connection arerequired.

Thousands or more instances of a model may be required in one simulation (see

chapter 2 for a discussion of scale used in network simulation). However, real

protocol implementations are generally not designed to work independently within

a larger system. Network stacks are often only built to be part of the operating

system kernel. In most cases, the code is notre-entrant: the code cannot be safely

interrupted, re-entered to perform another task, and then resumed on its original

task without side effects.

A mechanism is required to allow the code to run concurrentlywith many

instances and no data shared between the instances. This process is sometimes

known as virtualisation. There are a number of ways in which acode-base can be

virtualised. For example, the real world code can be separated into different

processes and inter-process communication used between the simulator and model

instances. This means the operating system provides the virtualisation, each model

instance is an independent operating system process. Another method of

virtualisation is modifying the source code so all accessesto global data refer

9

instead to data specific to the current thread of execution.

1.5.2 Kernel code in user space

Some network protocols are implemented in the operating system kernel. This is

true of TCP: common operating systems such as Microsoft Windows, Linux,

Solaris, FreeBSD and Mac OS X include TCP implementations within the

operating system kernel.

To simulate with one of these protocol implementations the code must either run in

user-space with the simulator or be modified to allow interactions with the

simulator. Kernel code includes functionality that cannotrun in user-space; for

example, kernel memory management. The functions for thesemechanisms need

to be removed, and user-space implementations of these functions need to be

written and used in their place. In some cases this is simple:the kernel memory

management can be replaced with the call to the user-space functionmalloc. In

other cases more detailed implementations are required.

1.6 Problem statement and scope

An examination of the following statement is presented in this dissertation:

The accuracy of simulation of TCP can be improved by using real

world TCP implementations instead of protocol abstractions.

Real world TCP implementations are software generally written in C. The

implementations can be changed to work inside a network simulator instead of the

normal environment, which is generally an operating systemkernel. The

implementations can then be used to produce very accurate results as the exact

same code that runs on a real system runs as a simulation model.

Simulating with more than one real world TCP implementationis important. Each

TCP implementation differs due to a number of reasons: the TCP specifications are

ambiguous in places, there are many options left to implementers on what features

are implemented, not all TCP implementations conform to specification, and the

10

implementation may have bugs. We hypothesise that simulating with multiple

different real world TCP implementations is required to answer the stated question.

This question is addressed by considering the following subcomponents:

Feasibility Using real world TCP implementations in a network simulatoris

theoretically possible, but it needs to be shown that doing so is practical. For

simulation with such models to be useful, it is necessary that the models can

be used to carry out research to the scale used by current TCP researchers

and be run in reasonable time. This is investigated by reviewing current TCP

simulation models and uses of TCP in research in chapter 2, describing an

architecture and implementation that allows real world code to be used for

TCP models in chapter 3, and using this implementation in TCPsimulations.

Chapters 4 and 5 show simulations carried out and an investigation of

performance is shown in chapter 6.

Validity and accuracy For the results of simulation to be useful, they must be

valid and accurate. This is investigated in chapter 4.

Applicability We hypothesise that simulating with multiple different real world

TCP implementations is useful. This hypothesis and the ideathat simulating

with real world TCP implementations provides further knowledge to the

simulation practitioner are analysed in chapter 5.

Performance and scalability The performance and scalability of using real world

code as TCP models is discussed in chapter 6.

TCP research itself is discussed first in chapter 2. This is followed by descriptions

of the simulators and their TCP models which are used to carryout TCP research.

Existing approaches to real world code based simulation of TCP are also covered

in this chapter. Following this chapter, the next chapters discuss and use the

Network Simulation Cradle (NSC), a project created during this PhD. The NSC

itself is described in detail in chapter 3. The accuracy of simulating with real world

TCP implementations is analysed in the following chapter, chapter 4. Further

experimental results are discussed in chapter 5, while performance and scalability

is covered in chapter 6. The conclusions to the thesis are presented in chapter 7.

11

12

Chapter 2

Simulating the Transmission Control

Protocol

This chapter presents a discussion on the types of research that use TCP simulation

and the simulators used, including both simplified TCP models and real world

code based TCP models.

Section 2.1 presents types of research that are carried out that use TCP simulation.

This survey of research highlights the type and scale of problems which are

investigated with network simulation and the network simulators used. This is

followed by section 2.2, which describes the network simulators mentioned in the

previous section in more detail. For each simulator, the TCPmodel is discussed

and the validation performed covered. These two sections show how first the scope

of simulation that a real world code based approach needs to address, and secondly

the limitations of the state of the art in network simulation.

Using real world code for TCP simulation is covered in section 2.3, where

approaches to using real world code are categorised and covered. The three

categories—porting a TCP implementation to a simulator, modifying the host

operating system, and building a supporting framework—arediscussed in detail

based upon the existing projects that use each approach. Thechapter is

summarised in section 2.4.

13

2.1 Research using TCP simulation

Much networking research involves studying TCP, or situations involving TCP,

using network simulation. The following sections give examples of the types of

research that are carried out. Research involving TCP simulation can be broken

into three groups: studies of TCP under various conditions,modifications to the

TCP algorithm, and simulation of TCP for analytical model validation. Each of

these groups is reviewed with examples of research representative of the type of

studies carried out in each area.

2.1.1 TCP under differing conditions

Many of the modifications to TCP are designed to improve performance in

situations where TCP has been shown to be lacking. The initial research will

involve a study of TCP in a specific set of scenarios or over a different network

setup. Many of these studies are conducted partially or fully in simulation. In other

cases the network itself is being studied and a TCP simulation model is used to

generate realistic traffic on the network.

TCP performance over ATM networks is well studied [7,26–28]. TCP can

experience performance problems in ATM networks due to protocol conversion

overheads, size mismatch between TCP segments and ATM cells, transmission

errors and subtle interactions between the two protocols. Astudy of TCP over

ATM on lossy ADSL networks [27] was carried out with the ATM-TN [29]

network simulator. Another study carried out with the same simulator investigated

the basic problems the two protocols have coexisting [26]; Gurski and Williamson

showed how TCP was not able to utilise high bandwidth links effectively in their

simulated network (a dumbbell topology with between 1 and 10TCP flows).

Wireless networks are another common network in which some researchers have

shown TCP to have performance problems. Many studies show how TCP

performance degrades over wireless links and how TCP is unable to fully utilise

the network resource available. One area of wireless network research is satellite

systems; Obata, Ishida, Funasaka and Amano [30] present a performance analysis

14

of TCP under such a system based on ns-2 simulation results. Another area is

wireless protocols used by cellphone and other highly mobile technologies; Baiet.

al [31] analyse TCP performance over CDMA-20001 wireless links using the

OPNET simulator to simulate a single TCP flow between a wireless node and a

base station.

TCP performance over multi-hop wireless networks is analysed by Gerla, Tang

and Bagrodia [8] using results from simulations performed in the GloMoSim

simulator with between 1 and 20 TCP flows over wireless networks ranging from 8

to 100 nodes. Further work on the same subject with GloMoSim is presented

in [32]. An analysis of the TCP performance of a single flow over mobile ad hoc

networks that uses the ns simulator is performed by Holland and Vaidya [33]. TCP

throughput and loss is measured using up to 20 flows over multi-hop wireless

networks in the ns-2 simulator and results are presented in [34]. Kuang and

Williamson [35] develop a multi-channel MAC protocol for multihop ad hoc

wireless networks and present results of simulations in ns-2. Simulations of TCP

fairness using a custom queueing system for ad hoc wireless networks using the

QualNet simulator and up to 6 TCP flows are reported on in [36].

Krishnan and Sterbenz [37] measure TCP throughput over load-reactive links:

network links that have different properties as load increases (such as links

controlled by dynamic quality of service scheduling). Simulations are performed

in ns-2. Analysis of TCP undergoing denial of service attacks is presented in [38].

Simulations use the default TCP models in ns-2 and some measurements of the

denial of service attacks are also performed on the Internet. Neglia and

Falletta [39] mount the argument that packet reordering is not always harmful to

overall TCP network performance based on results from ns-2 simulations and a

theoretical justification.

TCP simulation is often used when investigating queueing mechanisms. Guo and

Matta [40] present simulations in ns-2 of short and long-lived TCP flows through

routers employing RED and ECN. Eddy and Allman [41] compare RED

mechanisms using ns-2 TCP and FTP models using simulations on a dumbbell

1CDMA is Code Division Multiple Access, CDMA-2000 is a set of protocol standards for
CDMA-based mobile communications.

15

network with 5 TCP flows. The adaptive RED algorithm is investigated with the

ns-2 TCP models by Floyd [42] using simulations of up to 100 long lived TCP

flows. ns-2 TCP models are used to test a new active queue management algorithm

with simulations of up to 200 TCP flows in [43].

2.1.2 TCP modifications

Some research that uses TCP in simulation modifies the TCP protocol itself.

Examples of the modifications possible include modifying the congestion control

algorithm [19], changing the startup procedure [44,45] or incremental

improvements to address a problem TCP has in a particular scenario [46].

Packet reordering can be very harmful to the performance of TCP [47] and there

are approaches to alleviate this that require modificationsto TCP implementations.

One approach is an extension to selective acknowledgementscalled DSACK [48],

or duplicate selective acknowledgements. Blanton and Allman [47] modify the

ns-2 TCP models to implement DSACK and study TCP performancewith different

retransmission strategies using simulations with a singleTCP flow over a dumbbell

topology. Another study uses DSACK in the ns-2 simulator andmodifies the

retransmission timer estimator algorithm and fast retransmit algorithm to attempt

to avoid false retransmissions [46] using similar simulation scenarios to Blanton

and Allman.

TCP adapts to network bandwidth by initially increasing thespeed of packet

transmissions exponentially in the slow start phase until packet loss is detected.

The packet loss can be large and the time in slow start long on high

bandwidth-delay paths. Hu and Steenkiste [44] present a method that they called

Paced Start that uses active measurement algorithms to estimate the available

bandwidth for the TCP stream and they modify the TCP algorithm to use this

information. This potentially means a TCP flow transitions into congestion

avoidance phase quickly with less packet loss while still making use of available

network resources. The ns-2 simulator is used to carry out simulations with an

unmodified TCP model and a TCP model modified to include the Paced Start

algorithm. The scale of the simulation varies from a dumbbell network with one

16

measured flow and one background flow, to a dumbbell topology with 102 flows

and another topology they call a “parking lot” which features 11 routers each with

12 connected nodes and the routers connected serially for a total of 66 flows. Some

measurements from real networks are collected from user-space and in-kernel

implementations collected on Emulab2 [49] and on the Internet respectively.

Williamson and Wu [50] study TCP performance with their version of TCP

modified to include information from other network layers (such as web document

size). The scenarios studied are first tested in ns-2 with modified TCP models then

over a wide area network using a modified Linux TCP/IP stack. The simulation

scenario uses 10 servers and 100 clients, with the clients making many short-lived

HTTP requests to the servers during the simulation.

Modifications to the TCP congestion control algorithms are common. The Forward

Acknowledgement algorithm [19] (FACK) modifies the congestion control

algorithm to keep extra state when selective acknowledgements are used. This

extra state allows the FACK algorithm to accurately regulate the amount of

outstanding data in the network which means that in some situations TCP is less

bursty and better able to recover from loss. The research wascarried out with the

ns simulator and modified ns TCP models using a dumbbell topology with one or

two TCP flows.

Another modification to the TCP congestion control algorithm is presented in [51].

TCP is modified based on the idea of predicting traffic—a new TCP called

TCP-TP (TCP with traffic prediction) is created. The new algorithm is tested in

simulation with ns-2 and with a FreeBSD implementation. Thesimulation study

uses up to 300 TCP flows in a topology with multiple bottlenecks.

TCP Westwood [52] is another TCP congestion control algorithm. It uses

bandwidth estimation techniques and is shown to work well over wireless links in

simulations with a custom Westwood simulation model built for the ns-2 simulator.

The simulations use mixed wired and wireless nodes in a simple topology with one

TCP flow. TCP Westwood later changed to Westwood+ [53] that includes a better

bandwidth estimation algorithm, Westwood+ is tested with an updated ns-2

2Emulab is a freely available testbed network with full control over the machines used for testing.

17

simulation model and on the Internet with a Linux kernel implementation. The

simulations vary, using dumbbell topologies with up to 210 flows, multiple

bottleneck topologies with up to 21 flows and satellite scenarios using up to 30

flows.

Many other TCP congestion control algorithms have been proposed, some of

which are initially investigated in simulation. Examples include TCP Vegas [54],

TCP Hybla [55] and TCP Veno [56]. There are also many high-speed TCP variants

such as H-TCP [57], Scalable TCP [58] and FAST TCP [59]. The research into

TCP Vegas, TCP Hybla and H-TCP uses simulations with thex-Sim and ns-2

simulators with between 1 and 16 TCP flows. These are only short lists of the

different TCP congestion control algorithms that have beensuggested, there are

many more suggested to aid TCP in various networking conditions such as high

speed or high bandwidth-delay paths, wireless paths, pathswhich include

reordering or asymmetric paths.

2.1.3 Analytical model validation

Various analytical models of TCP have been built, many of which are compared

against simulations when validating the analytical model [60].

Anjum and Tassiulas [61] build analytical models that suggest that Tahoe TCP

performs better than Newreno TCP on a wireless link with correlated losses while

Sack TCP is better again. Simulations in ns-2 simulating a single TCP flow are

performed to back up their analytical models.

Analytical models of long-lived TCP flows are presented in [62]. The models are

derived directly from the TCP finite state machine. The authors use ns-2

simulation to validate the model results, using simulations of up to 500 flows.

Streaming multimedia over TCP is analysed in [63] where analytical models of

TCP are updated to support video streaming. The models are validated using ns-2

simulations and Internet measurements. Simulations with ns-2 are performed

in [64] to determine information for an analysis of TCP usinggame theory; a

dumbbell topology with 10 flows is used in their simulations.

18

2.1.4 Discussion

The simulation studies covered use up to 500 TCP flows, with most studies using

between 1 and 200 flows. For a TCP model to be useful in these situations, 1000

TCP model instances would need to be supported in a single simulation (one for

each endpoint).

Other types of network simulation can require much larger scales. For example,

simulating the Internet would require a much larger number of nodes. Some

research uses these large scale network simulations, for example routing algorithm

studies generally use very large scale simulations [65]. The scale of these

simulations varies but examples include 20,000 routers [65] and 13,173

routers [66]. TCP can be important in these situations, as the Border Gateway

Protocol (BGP) routing protocol uses TCP to transfer data between Autonomous

Systems (AS).

Three groups of TCP research were covered in the previous sections: simulating

TCP under differing network conditions, simulating with a modified TCP model,

and using TCP simulations for analytical model validation.Real-world code based

TCP models are applicable to all of these areas.

Simulations that modify the TCP algorithms are potentiallymore work for the

person carrying out the simulation with a real-world code based TCP model, as

implementing the modification to TCP is likely to be much easier with a simplified

model. However, such modifications are often tested on real kernel

implementations in addition to simulation. The real-worldcode based TCP model

therefore is useful to allow developing and debugging the modification to the

actual network stack code in simulation. This can then be used in the original

operating system as well.

When TCP is used in a simulation scenario and no modificationsare made to the

original algorithm, using a real-world code based TCP modelis potentially no

more difficult than using a simplified model. In this case greater accuracy can be

gained at low cost. The same applies for situations where TCPmodels are used to

validate analytical models.

19

Six simulators were mentioned in the previous sections: ns-2 (and its predecessor,

ns), ATM-TN, GloMoSim, QualNet, OPNET, andx-Sim. This is not a definitive

list of simulators used in TCP research, as the studies covered are only a sample of

the large amount of research that uses network simulation. ns-2 is the most

common simulator we encountered in the literature which is consistent with the

findings of several others [67–70]. Each of these simulatorshas a different set of

features in its TCP models and has undergone a different amount of validation.

These simulators are covered in the next section, section 2.2.

2.2 Network simulators used in TCP research

The previous section presented a sample of research using TCP simulation. A

number of simulators were used to carry out this research: ns-2 (and its

predecessor, ns), ATM-TN, GloMoSim, QualNet, OPNET, andx-Sim. These

simulators and their TCP models are discussed next. Each simulator is introduced,

followed by a discussion of the features of the TCP model, then information on the

validation that has been performed.

The simulators discussed in the following sections are not an exhaustive list of

network simulators with TCP models. Many simulators have been used to conduct

network research and information on further simulators canbe found in

appendix C. The simulators reviewed in this section show different approaches to

simulating TCP and cover a wide amount of research, as shown in section 2.1.

2.2.1 ns-2

ns [13] is an object oriented discrete event simulator designed for network

research. ns provides support and models for TCP, routing, multicast, wireless and

wired networks. The initial release of Ns version 2 was in 1996 and subsequent

versions of the simulator have come to be known asns-2. ns-2 is the evolution of

the simulator calledtcpsimthat was a version of the REAL simulator [71] based on

the NEST simulation software [72]. ns-2 has been used for a large body of

networking research, much of it related to TCP:

see [30,35,37,39–41,47,50,51,53,63,64,73–76] for a set of examples.

20

ns-2 is built on a C++ simulation kernel heavily integrated with the OTcl [14]

interpreted language. OTcl is an extension to the Tcl [77] language for object

oriented programming. OTcl is used to describe simulation scenarios and

implement parts of some models. C++ objects are created and interacted with in

OTcl simulation scripts to create simulation topologies and scenarios

programmatically.

TCP model

There are two types of TCP model available in ns-2: one-way TCP models, which

allow only unidirectional transfer of data, and two-way TCPmodels which allow

full bidirectional communication. The one-way models are more thoroughly

validated and used most often in published research.

Both sets of models are feature full and allow a range of congestion control

algorithms to be selected. One-way TCP data sources can use Tahoe [78],

Reno [79], Newreno [80], Sack [11], Fack [19], Vegas [54] andother congestion

control algorithms. The one-way TCP sink (endpoint which only sends

acknowledgements) can use delayed acknowledgements, selective

acknowledgements, or acknowledge every packet. Two-way TCP models can use

Tahoe, Reno, Newreno or Sack congestion control algorithms.

Full segmentation is not performed by the one-way TCP models, data packets are

always full sized. No receiver’s advertised window is used;the receiving

application is assumed to consume data as fast as it arrives.Much configuration is

possible: the MSS, window size, TCP/IP header size, timer granularity, minimum

retransmission time, timestamps and other options can all be configured.

Validation

The ns-2 simulator has a large set of validation tests for many protocols including

TCP. The TCP tests run simulations and record statistics such as sequence number

over time. To validate ns-2 each simulation scenario was originally analysed by

hand then subsequent tests are checked against previously saved output. Test

scenarios exist to check a range of features such as slow start, fast retransmit and

congestion avoidance algorithms under differing amounts of packet loss. Other

21

Figure 2.1: ns-2 simulation of TCP Tahoe responding to packet loss [5]

tests examine retransmit timers, delayed acknowledgements, fast recovery and

selective acknowledgements [5]. The different congestioncontrol algorithms are

tested for both one-way and two-way TCP models under different amounts of loss

in a similar fashion [20]. The two-way TCP models only have partial validation

performed [81,82], the suite of tests covering these modelsis not as

comprehensive as the validation tests covering the one-wayTCP models.

An example of an ns-2 validation graph is shown in figure 2.1. The graph is

discussed by Floyd [5] when outlining the validation tests of TCP in ns-2. The

graph “shows the Fast Retransmit, Slow Start, and Congestion Avoidance

algorithms of Tahoe TCP”. The cross on the graph indicates the single packet lost.

The dots on the graph show each packet as it arrives and departs from the gateway.

This graph shows how initially TCP increases quickly until it gets a loss, then

learns from this by adapting the slow start threshold after the loss. By analysing

the graph it is evident that the TCP goes into slow start againafter the loss, but

quickly uses congestion avoidance due to the slow start threshold as the TCP stops

increasing exponentially at approximately time=3.5 seconds. Graphs such as this

one were initially verified by the TCP model author. The validation testsuite is

then updated with the known correct packet trace, and the model is subsequently

tested against this packet trace to ensure it stays correct.

22

2.2.2 ATM-TN

ATM-TN [29] is a network simulator originally designed to simulate ATM. The

simulator is based on SimKit [83], a C++ library for high performance discrete

event simulation.

TCP model

The TCP model used in ATM-TN is based on the Berkeley Unix BSD

implementation known as Net/3 [84] developed by the University of California,

Berkeley and released in April 1994. The TCP implementationis modified heavily

from the original C implementation to port it into the C++ classes used by SimKit.

Gurski and Williamson [26] describe the TCP model in ATM-TN:it includes all

the features of the Net/3 BSD TCP implementation including slow-start, fast

retransmit, fast recovery, high-performance extensions (TCP window scaling and

timestamps [85]) and full-duplex data communication.

Validation

The TCP model is validated by analysing graphs of TCP dynamics by hand and

comparing results of a simulation with previously published research. Both

methods are presented by Gurski and Williamson [26].

A validation experiment conducted by Gurski and Williamsonshowing analysis of

TCP dynamics by hand is as follows. A single TCP source is configured to send

data as fast as it can to a TCP sink. Between the source and sinkan ATM switch is

configured with a mismatch in link speeds between the incoming and outgoing

links. It is expected from this scenario that the TCP source will exhibit cyclic

behaviour: increasing its send window, filling the switch buffer, detecting a

dropped segment, reducing the send window, and retransmitting. The TCP

congestion window is graphed alongside transmitted cells and switch buffer

occupancy. The graph of this experiment is shown in figure 2.2.

The graphs in figure 2.2 are analysed by Gurski and Williamsonas follows. The

TCP delayed acknowledgement option is evident due to acknowledgements being

23

Figure 2.2: TCP dynamics on an ATM network [26]

spaced evenly. Slow-start is indicated by the fast growth ofthe congestion window

initially where each acknowledgement results in one or two back-to-back data

packets being sent. The cell sent at time=3 indicate fast retransmit in action: the

‘×’ symbol on the top graph indicates acknowledgements, this cell is retransmitted

after three duplicate acknowledgements due to the fast retransmit algorithm (the

authors use extra information along with the graphs to checkthat the

acknowledgements were duplicates). The other cells are retransmitted at time=5

due to the TCP retransmission timer expiring. A similar analysis is provided by

Gurski and Williamson [26] for TCP dynamics between two TCP streams.

A further validation experiment was conducted by replicating a simulation

performed by Romanow and Floyd [7]. ATM switch buffer size isvaried and the

effective throughput of 10 TCP flows is measured. The resultsof the simulations

did not agree exactly due to the complexities of reproducingthe same simulation in

a different simulator, though the general trends shown by Gurski and Williamson

agree with those shown by Romanow and Floyd.

24

2.2.3 GloMoSim

GloMoSim [86], or Global Module system Simulator, is a library designed for

parallel simulation of wireless networks. The library is implemented with the

C-based Parsec parallel simulation language [87]. Models are written in this

language, GloMoSim includes many wireless routing and MAC protocols as well

as radio and mobility models. It also includes UDP, TCP and simple application

models such as constant bit rate traffic generators.

GloMoSim has been used for much wireless research [8,32,88–90], some of it

involving TCP [8,32]. GloMoSim is no longer maintained and is succeeded by the

commercial package QualNet [91,92]. There is little information provided on the

TCP simulation model3 used in QualNet, the web-pages describe simple model

features such as Reno and Newreno congestion control but do not mention the

FreeBSD network stack that is used in GloMoSim.

TCP model

The FreeBSD 2.2.2 network stack is used as the TCP model in

GloMoSim [8,86,93]. There is little information on the architecture used to

incorporate the network stack into the simulation library.The TCP Tahoe model

from ns-2 was ported to GloMoSim and is also available.

Validation

Bagrodia and Takai [93] state that the GloMoSim TCP model is validated against

an operational prototype (a computer running FreeBSD 2.2.2) but do not describe

this process in detail.

The TCP model ported from ns-2 was validated by comparing twosimilar

simulation scenarios run in ns-2 with those run in GloMoSim:the results were not

identical but “within appropriate statistical bounds” [93].

Further validation of the simulator and its models is provided by running scenarios

of known results and checking the model output. A detailed event trace of the

3The company website provides some basic information (http://www.
scalable-networks.com/).

25

http://www.scalable-networks.com/
http://www.scalable-networks.com/

model execution is analysed to ensure that it follows the expected path.

2.2.4 OPNET

OPNET Modeler [94] is a commercial object oriented network simulator. It is used

in a large amount of networking research [67,95] including many simulations

involving TCP [31,96–101]. OPNET provides an extensive Graphical User

Interface that is used to build topologies and simulation scenarios, analyse data and

create models.

OPNET Modeler is described as a high performance simulator capable of

sequential, parallel, hybrid and analytical simulation. Many models are provided

of protocols and applications including routing protocols, wired and wireless MAC

protocols, transport protocols and others.

TCP model

The TCP model provided by OPNET Modeler is feature full. All basic

RFC 793 [10] functionality is provided. Fast retransmit andrecovery, selective

acknowledgements, explicit congestion notification, Karn’s algorithm, a receiver’s

advertised window and a persist timer are implemented. Window scaling is

supported and TCP timestamps are used for RTT calculation.

Validation

The company that produces OPNET Modeler, OPNET Technologies Inc., does not

provide validation or testing information on their simulator or models. However,

there have been several independent tests of their simulator, including one

comparing TCP dynamics between OPNET Modeler and ns-2 [67].

Lucio et. al [67] built a test bed network and designed several simulations in

OPNET Modeler and ns-2. The scenarios tested used either constant bit rate traffic

or FTP. Several simulation parameters were tuned for each simulator: the New

Reno option, window scaling or window size, the TCP timestamp option and the

maximum segment size. Each simulator supports a different set of options so these

can not be configured to be identical for each simulator. The options were instead

26

Figure 2.3: TCP throughput during FTP measured from a router[67]

tuned to be as close to the test bed network as the researcherscould make them for

each simulator. The network topology used is a dumbbell topology with two flows.

The bandwidth is measured at several locations in the network and graphed over

time. An example of a graph used for analysis is shown in figure2.3.

The metric of throughput over time is used for all comparisons by Lucioet. al.

Figure 2.3 shows one of the comparisons. The graph shows how the researchers

tried different options for ns-2 (the lines marked as ”ns-2”and ”ns-2-2”) before

they were able to produce results similar to the results fromtheir test bed network.

This result illustrates how the ns-2 TCP models do not necessarily model reality

when used with their default configuration. A similar process was applied for the

OPNET models, though the initial results without tuning show the correct trend,

while the ns-2 results do not. In this case OPNET is a close match to the results

from their test bed network.

Lucio et. alconclude that OPNET and ns-2 provide very close results but that both

simulators did not model FTP well with their default parameters. OPNET

produced results closer to measurements from a test bed network when fine-tuned

to simulate the FTP scenario.

27

2.2.5 x-Sim

Thex-kernel [102] is an operating system kernel designed to facilitate the

implementation of efficient communication protocols. It provides an explicit

structure and support for protocols. Thex-kernel includes a large base ofx-kernel

protocol implementations such as TFTP, DNS, UDP, TCP, Sun RPC, IP, ARP,

ICMP and more. The TCP implementation used in thex-kernel is a direct port of

the 4.3 Berkeley Unix TCP/IP stack.

TCP model

x-Sim [54,103] is a simulator that uses thex-kernel for protocol implementations.

Simulations performed withx-Sim can therefore use the Unix TCP

implementation that is part of thex-kernel.

The TCP stack is hand modified to fit into the new kernel architecture. The custom

simulator is able to run many kernels and route messages between the kernels,

enabling many instances of the TCP stack to be simulated. Anyx-kernel protocol

(everything is a protocol in thex-kernel, even applications) can be run inx-Sim,

meaning real applications and a real network stack can be simulated, although the

applications and network protocols must be ported or implemented for thex-kernel

architecture first.

Validation

Some validation work has been done to make sure the results generated withx-Sim

are consistent with expectations, though no information isgiven on the details of

this, or whether porting the TCP implementation to thex-kernel changed the

behaviour of the implementation at all. The one TCP implementation is available

for simulation and is dated: the version used is from around 1990.

2.2.6 Discussion

Only a subset of network simulators is covered here, but all previous six simulators

have been used for published research about TCP; each was used in research

discussed in section 2.1. While many other network simulators exist, there is a

28

large amount of network research which uses the simulators discussed. Lucioet.

al [67] choose OPNET and ns-2 for their simulations “because oftheir popularity

with academia, commercial and industrial communities”. Breslauet. al [17]

describe ns-2 and OPNET as prominent examples of network simulators.

Of the simulators covered, ns-2 has the most comprehensive validation suite.

While validation studies have been performed with the othersimulators, none was

found to have as many tests or such a large framework in place to ensure the

correctness of their models.

ATM-TN, GloMoSim andx-Sim all use real world TCP code. However, this alone

does not guarantee that the TCP model is accurate. The approach of using real

world code for a TCP model and its limitations are covered in the next section.

2.3 Simulating with real world TCP code

Three of the simulators introduced in section 2.2 use real world TCP code as a

TCP simulation model. Other simulators not covered earlieralso do this:

NCTUns [104], dONE [105], OMNeT++ [106,107] and IRLSim [108] all include,

or have extensions for, real world TCP code.

The properties of such models are different to simplified models built specifically

for simulation. The original TCP implementation will implement applicable RFCs

by necessity: the TCP implementation must be able to communicate with other

TCP implementations. The list of features available in a real TCP implementation

is often quite different to a simulation model of TCP.

A full featured TCP stack is normally available in simulation if a real TCP

implementation is used. However, there are limitations andproblems inherent in

taking this approach.

Hand modifying code To integrate the implementation into the simulation

system, some amount of modification will be required. This can be a lengthy

and difficult process, prone to error.

Keeping up to date TCP implementations that are part of operating systems are

29

updated frequently and have bugs fixed and features added. Once a

implementation has been added to simulation it can be difficult to keep up to

date.

Validation While the original TCP implementation is known to work, it still

needs to be tested that it works correctly in the simulator.

Multiple instances Network stacks are generally designed to be run as a single

instance per computer. Simulation requires many instancesof a model. A

methodology is required to support multiple copies of a TCP implementation

running concurrently and independently.

Multiple implementations Ideally a TCP researcher can choose which TCP

implementation to simulate with, rather than be limited to one single TCP

implementation that may be limited in features or known to include bugs.

Both real world implementations and simplified models should be present as

real world models are not always applicable: Floyd [21] points out that very

detailed models can heavily skew results in some situationswhere only a

coarse grained simulation is required.

In some cases using simplified models is preferred; initial development of a TCP

modification is probably faster with a simplified model and when creating results

for an analytical model only a coarse degree of accuracy might be required. In

other cases a coarse-grained model is desired, Floyd [21] discusses how

fine-grained models are not appropriate to all research due to their interactions

possibly skewing results. It is therefore useful for a simulator to allow both

simplified TCP models in addition to real-world code based TCP models.

The existing research into using real world code for a simulated TCP model can be

categorised into three approaches:

• Porting the TCP implementation alone into a new framework. For example,

an early BSD TCP implementation is ported to a C++ simulationlibrary,

SimKit [83], for the ATM-TN [29] simulator. BSD TCP implementations are

ported to the Parsec [87] simulation language for the GloMoSim [86] and

IRLSim [108] simulators.x-Sim [54] is a port of a BSD TCP

implementation to thex-kernel [102], an operating system which can then be

30

simulated.

• The existing operating system can be modified to allow the network stack on

the simulation machine to be used for simulation. This approach is taken in

the NCTUns [104] project.

• A framework can be built around a network stack that featuresas a bridge

between the network stack environment and simulation environment. This

approach is taken with dONE [105] and the FreeBSD extensionsto

OMNeT++ [106]. This approach is also taken by Wei and Cao [109],

although they only include the TCP congestion control algorithms, not a full

network stack.

The three different approaches are discussed next.

2.3.1 Porting the TCP implementation

The TCP implementations in this category have been modified to incorporate them

into the new system. The projects covered in this category (ATM-TN, GloMoSim,

IRLSim4 andx-Sim) can be further arranged into those which incorporate the TCP

implementation directly as a TCP model in a simulator, and those that incorporate

the TCP implementation into a simulated operating system kernel.

ATM-TN, GloMoSim and IRLSim take the first approach: the TCP

implementation is modified to make it compile as part of the simulator. For

ATM-TN, an early BSD TCP implementation is modified from C source code to

implementations of SimKit C++ classes. The basic structureof the TCP processing

code stays the same, but many modifications are required to move functions and

global variables into C++ classes and to modify the C code to compliant C++ code.

IRLSim and GloMoSim use the Parsec simulation language, which is a language

similar to C. Terziset. al [108] state that porting C to Parsec is simple but to fully

port a TCP implementation, many modifications are required:global variables

need to be modified and all interactions with the operating system need to be

modelled with Parsec entities and messages. For example, this can be seen in

version 2.03 of the GloMoSim source code [110] which includes modifications

4IRLSim is described in section C.6 on page 175.

31

throughout the TCP code. Many functions are modified to take an extra parameter

identifying state specific to the particular GloMoSim node being simulated. In

some places where functions were called previously, Parsecmessages are instead

constructed and sent.

The approach taken withx-Sim is somewhat different. The TCP implementation is

ported to thex-kernel, a different operating system. Thex-kernel operating system

is a full operating system kernel like the original BSD kernel the TCP

implementation was copied from. Thex-kernel is able to be simulated and the

simulation framework provides the facility to instantiatemultiple independent

instances of the kernel (and hence TCP implementation).

The code for version 3.3.1 of thex-kernel and associatedx-Sim is available [111]

and it is evident that a similar amount of source code needs tobe changed to port a

BSD TCP implementation to thex-kernel as it does to the other simulators

discussed here.x-kernel specific functions are called when the code would interact

with the operating system and extra code is added for event tracing.

The tight integration between network model and simulator has some benefits.

Event tracing, statistics gathering and configuration are easy to integrate into

software that was not originally designed to be used in a simulated environment.

Gurski and Williamson [26] note this is true of ATM-TN, it allows simple

modification of a range of parameters from all layers of the protocol stack: the

socket, TCP/IP and ATM are all controlled by a set of options and parameters.

Extra tracing function calls are added to the TCP implementations inx-Sim that

provide, for example, in-depth information on the TCP control state during

processing of TCP segments.

2.3.2 Modifying the operating system

It is possible to modify the operating system run on a computer such that a

user-space simulation program can make use of the running kernel. This approach

is used in the NCTUns [104] project.

Tunnel devices are available on most UNIX machines and allowpackets to be

32

Host 1 Host 2

TCP Sender TCP Receiver

(a) Example simulation scenario

Queue

802.3

Phy

ARP

Queue

802.3

Phy

ARP

Simulation server

TCP
Sender

TCP
Receiver

TCP/IP
Stack

Tunnel
Interface

TCP/IP
Stack

Tunnel
Interface

Kernel level

User level

(b) NCTUns architecture used to simulate the scenario

Figure 2.4: NCTUns simulation architecture (adapted from [104])

written to and read from a special device file. NCTUns uses thelocal machine’s

network stack via a tunnel network interface. To the kernel,it appears as though

packets have arrived from the link layer when data is writtento the device file.

This means the packet will go through the normal TCP/IP processing. When a

packet is read from the tunnel device, the first packet in the tunnel interface’s

output queue is copied to the reading application. An example of this architecture

being used for a simple simulation topology is shown in figure2.4.

One of the advantages of this approach is that it allows real-life UNIX application

programs to run on simulated nodes in the network because thesystem default

UNIX POSIX API is available. However, NCTUns has some disadvantages. First,

it needs kernel modifications for all machines it runs on. Thekernel needs to be

patched to support changes to timing, the scheduler, and other facilities. This has

33

three major ramifications: hand changes to the protocol codemeans that results

produced are less convincing, as it is hard to know whether these changes will

affect results. To use NCTUns, the user needs full administrative privileges to

install the new patched kernel, which is not always an option, especially in a

student laboratory setting where access may be restricted.The code also needs to

be maintained for all operating systems it runs on—by NCTUnsversion 3.0

support for FreeBSD was dropped.

A separate computer is needed for every different version ofevery operating

system that is to be simulated and the computer must be installed with that

operating system. This means larger simulations could require many machines; the

resource requirements are higher than a simulation run in network simulator using

simplified models.

2.3.3 Build a supporting framework

Several projects aim to minimise code modifications to the TCP implementation,

thereby reducing the chance of inadvertently changing the behaviour of the

implementation. To integrate the TCP code with the simulator, a framework is

built that bridges between the TCP implementation and the simulator.

The architectures used by the dONE [105] simulator’s TCP model [112] and the

FreeBSD TCP extensions [106] to the OMNeT++5 simulator are based on the

Alpine [113] project. Ely, Savage and Wetherall [113] describe moving a TCP

implementation from kernel-space to user-space with minimal modifications to the

original code. They moved the FreeBSD network stack into user-space to aid

network protocol development and testing. Their architecture is depicted in

figure 2.5.

This architecture shows a framework supporting a network stack that is

unmodified. The framework was used to run the network stack inuser space and to

send packets out to the network in the Alpine project, although the same design

can be used to support a network stack that is to communicate with a network

simulator.

5OMNeT++ is described in section C.1 on page 171

34

Application

Modified

Unmodified

Kernel Space
Operating System

User Space

Socket

TCP

IP

Application
User Space

Socket

TCP

IP

Kernel Space

Faux−Ethernet Driver

System Call S
upport F

unctions

System Call

Ethernet Driver

Figure 2.5: Kernel network stack in user space (adapted from[113])

Wei and Cao [109] take a different approach: only the code which implements the

TCP congestion control algorithm is included in their framework. ns-2 TCP-Linux

is a project where the TCP congestion control algorithms from recent versions of

the Linux kernel are incorporated into the ns-2 TCP models. This approach allows

scalable testing of Linux TCP congestion control algorithms without modifying

the original real world code. The approach is also much more limited as the

normal limitations of simplified models still apply: no extra functionality is added

to the ns-2 TCP models.

dONE and Lunar

The Distributed Open Network Emulator [105], is a distributed hybrid emulation

and simulation framework that includes the Lunar [112] software. Lunar is a

project that ports the Linux 2.4.3 network stack to user space and makes it

available to be linked in to a simulator. Lunar uses the Weaves [114] framework to

support multiple instances.

The Linux 2.4.3 network stack in Lunar is moved to a user-space library by

isolating the network stack from the kernel code, providingstub functions to

implement missing identifiers and providing custom implementations for small

amounts of kernel functionality. The stub functions do nothing, they are included

to satisfy the linker. This is the basic methodology used in other projects such as

Alpine [113].

Multiple instances of the Linux network stack in Lunar are supported by using the

35

Weaves framework. Weaves provides a multi-threaded environment in which many

virtual hosts can run protocol stacks and applications as a single operating system

process. Weaves provides each virtual host with a separate memory and

namespace for its global and static variables by rewriting binaries. Bergstrom,

Varadarajan and Back [105] note that the overhead of using Weaves is small.

Only basic validation testing of dONE and Lunar are described in [105] and [112].

dONE is shown to correctly simulate the trend of TCP goodput with increasing

bandwidth-delay products. Some verification testing has been performed on Lunar.

It has been shown to correctly transfer data by testing different reading and writing

mechanisms of the network stack.

OMNeT++ extensions

The TCP models provided with OMNeT++ have limited features and are not

thoroughly validated, as explained in section C.1 (which describes OMNeT++ in

more detail). Bless and Doll [106] incorporate the FreeBSD network stack into

OMNeT++ to solve this problem. They use a real world TCP/IP stack to avoid

“possible implementation errors and costly validation tests”. Figure 2.6 shows a

view of the architecture used to incorporate the FreeBSD network stack into the

simulator.

The FreeBSD 4.9 network stack is modified by hand to support multiple instances.

The global variables in the source code are changed one-by-one; the authors found

that a simple search and replace was not enough to handle the complexities of

modifying global variables. They implement their own timermechanisms to

improve performance rather than rely on the kernel implementation that is based on

a software interrupt mechanism. The routing table is also managed to allow using

the FreeBSD network stack as a router as well as an end host forTCP connections

(routes calculated in the simulator ar injected into the kernel routing table). They

achieve scalability of around 1000 TCP connections transferring data concurrently.

The TCP code is not modified, apart from the global variable modifications, and

because of this Bless and Doll conclude that they do not need to “test all potential

error cases”. Only minimal validation is performed. While it is true that the TCP

36

Out gate

In gate

FreeBSD TCP/IP Stack

Host

NIC 1 NIC 2

Medium

cAppl
Application

cHost

cMedium

Figure 2.6: FreeBSD network stack in the OMNeT++ simulator [106]

model uses code from a real, well tested, TCP implementation, there is still

possibility of introducing error into the model when modifying it to run in user

space and in simulation.

Another project uses the NetBSD network stack in the OMNeT++simulator [107].

At the time the work was carried out, the TCP models distributed in the

networking framework of OMNeT++ were known to work incorrectly [115]. A

validated TCP model was required to test the Message Queue Telemetry Transport

protocol (MQTT) over lossy links, so Julio [107] used the NetBSD network stack

for the TCP model in OMNeT++. Little information is providedin the process

used to move the stack into simulation; there is no discussion of supporting

multiple instances of the network stack. A small set of validation tests was run,

comparing results on a testbed network to results from simulation.

2.3.4 Discussion

Three approaches to using real world TCP code in a network simulator are

introduced at the start of section 2.3. Porting the TCP implementation to the

simulator, modifying the operating system running on the simulator computer and

37

building a supporting framework around a TCP implementation.

Porting a TCP implementation to a network simulator normally requires large

changes to the TCP implementation. With many changes to the original system, it

is difficult to add new TCP implementations or update the existing one.

Confidence in the simulation model producing correct results is lower than the

other two approaches as the changes to the original system are more substantial.

Making small modifications to the operating system to support simulation of the

TCP stack is the approach taken in the NCTUns [104] project. This makes

supporting different TCP implementations difficult, as a computer is required for

each different version of each TCP implementation. Installing a modified

operating system kernel is also required for each simulation machine.

A supporting framework can be built around a TCP implementation, allowing the

implementation to be run in a new environment—a network simulator rather than

an operating system kernel—with few code modifications. With little or no code

changed and a framework in place, it is conceptually easy to update the TCP

implementation supported and update the framework to add new TCP

implementations. This is not the case in practice for the TCPmodel added to

OMNeT++ by Bless and Doll [106]; to support multiple instances they make many

hand modifications to the original code. dONE [105] uses the approach of binary

rewriting (using the Weaves [114] project) to support multiple instances, but the

approach is not extended to multiple TCP implementations orversions.

Five factors desirable for a real world TCP implementation used as a simulation

model were introduced at the start of section 2.3. No hand modification of code,

ability to keep the model up to date, validation, support formultiple instances and

support for multiple implementations. The method of building a supporting

framework is the closest to being able to satisfy all of the requirements but none of

the projects covered do so. Only one simulator is able to support simplified TCP

models and real world code; OMNeT++ with extensions real world code

extensions by Bless and Doll [106].

38

2.4 Summary

This chapter reviews TCP research that uses network simulation, the network

simulators that are used in this research, and using real world code for TCP

simulation. The TCP research is broken down into three areasin section 2.1:

simulations involving modifying the TCP algorithms, simulations that use TCP in

a specific scenario, and simulations that used to validate analytical models. The

scale of simulations used in this research ranges from simulations using under 100

TCP flows to simulations using 500 TCP flows. Other areas of network research

such as routing research use network simulations of much larger scale.

Network simulators used to simulate TCP in the research covered include ns-2,

ATM-TN, GloMoSim, OPNET andx-Sim. The amount of validation varies a lot

between these simulators. ns-2 has the most comprehensive validation framework

and feature full TCP models. Even ns-2 has some major limitations: for example,

the TCP models generally used in ns-2 do not support bi-directional transfer of

data. ATM-TN, GloMoSim andx-Sim all have TCP models built on real world

code implementations. All are based on old BSD TCP implementations and have

not been updated as the TCP implementations have evolved.

Approaches to using real world code are categorised in section 2.3: a TCP

implementation can be ported into a simulator, the operating system can be

modified to support interacting with a simulator, or a framework can be built that

bridges between a real world TCP implementation and a network simulator. None

of the projects which are covered in this section provide allof: multiple real world

TCP implementations, integration with an existing simulator to allow ease of use

and ability to use existing simplified TCP models, multiple TCP instances without

much hand modification of code and thorough validation.

The next chapter describes the architecture and implementation of the Network

Simulation Cradle (NSC), a project designed to take advantage of real-world code

based TCP models while complementing the existing models ina network

simulator. The NSC provides all of the features listed aboveand is scalable enough

to simulate the research covered in section 2.1.

39

40

Chapter 3

The Network Simulation Cradle

The Network Simulation Cradle (NSC) is software designed torun real world TCP

implementations in a network simulator. The NSC supports multiple versions of

multiple different operating systems simulating many TCP connections

simultaneously. This is achieved by a combination of the type of architecture

presented in section 2.3.3, an approach that uses shared libraries to differentiate

different TCP stacks, and programmatic modification of source code to support

multiple independent instances of the TCP stacks. The world“cradle” is used to

describe how the real world code is supported inside this framework: a cradle is

built about the code that allows it to run in a different environment — a network

simulator instead of an operating system kernel.

The construction of the Network Simulation Cradle shows that it is feasible to

build software that accurately simulates multiple real world TCP implementations.

This chapter presents the design that makes this possible and a discussion of how

the detailed goals below are achieved. Chapters 4, 5 and 6 show results of this

software providing accurate, applicable and scalable simulation of TCP

respectively.

The Network Simulation Cradle is designed to meet goals set out in chapter 1: it

needs to be valid, accurate, scalable, and able to carry out the sort of simulations

TCP researchers perform (as discussed in chapter 2). These goals are discussed in

detail below:

Simulate real world code real world code must be used as the code for TCP

41

simulation models.

Utilise network simulators existing network simulators should be able to be

utilised and support for at least one popular network simulator must be built.

This means that a trusted network simulator can be used and should facilitate

simulating previous simulation scenarios.

Perform and scale well the code must perform adequately to run simulations

similar to existing research in reasonable time. Many instances of TCP

endpoints need to be supported. This is required to simulatescenarios

where, for example, background traffic is simulated with many TCP flows.

Produce accurate resultsthe stacks being simulated must produce results which

are very similar to real computers running the stacks—the NSC needs to be

valid.

Be easy to updateadding new stacks to the system should be possible and

updating existing stacks to new versions should take a minimal amount of

time. New versions of operating systems, and hence real world TCP stacks,

are released over time and the versions that are installed byusers of a

network change to reflect this. Ease of update aids in supporting the versions

of the real world code that are practically used.

Support different methods of statistics gathering different TCP variables

should be able to be accessed and traced to view what TCP is doing

internally. Transparent access to TCP internals is important for simulation

researchers and this feature is available in existing simplified TCP models.

Allow a full range of TCP simulation scenarios the NSC should work in

situations existing TCP models do, allowing a full range of simulations to be

performed.

Complement simplified models the real world TCP stack should work alongside

traditional simplified models in a simulator. This allows easy comparison of

both models, which helps validation testing.

Two components form the basis of the NSC: a simulator model and a TCP

implementation. The simulator model component routes simulation messages to

and from the TCP implementation via a standard interface. The TCP

implementation and supporting code is contained in a sharedlibrary.

42

receive packet

command

send packet

socket send

send packet

socket read

connect

receive packet

modify timer

fire timer

modify timer

timer expire

ns
−

2
si

m
ul

at
or

S
im

ul
at

or
 in

te
rf

ac
e

an
d

su
pp

or
t c

od
e

Shared library

Cradle and TCP implementationSimulator Interface

TCP implementation

Global data

Code

Simulator model

Figure 3.1: Simulator and Network Simulation Cradle interactions

Figure 3.1 outlines the interactions between the simulatormodel and each TCP

implementation. The block on the left shows the network simulator and example

interactions with the simulator model. On the right is the simulation cradle with a

real world TCP implementation. The parts of the diagram coloured grey indicate

areas where new code is written for the Network Simulation Cradle, the areas with

white backgrounds indicate existing software. In between the two components

some interactions are shown. The components communicate with a C++ interface

exported from the shared library.

Only a subset of the actual interactions are shown in this figure for brevity. In this

figure the network simulator ns-2 is used as an example simulator. The design of

NSC allows for other network simulators to be used although this chapter

describes only the integration with ns-2 in detail. The figure shows a standard set

of interactions between the shared library and simulator model, the separation of

code between simulator and library, and how the shared library contains support

code and many copies of the global data. These ideas are discussed further in

section 3.1.

The boxes labelled “global data” on the right of figure 3.1 indicate that there are

multiple copies of the global data used by the network stack.This mechanism is

used to support independent instances of the TCP implementation running within

the same process. The implementation source code is modifiedprogrammatically

43

by a program called theglobaliser. This process is covered in section 3.2

NSC supports TCP implementations extracted from several operating systems

(Linux, FreeBSD, and OpenBSD) along with a TCP implementation designed for

use on embedded devices (lwIP). The process used to make eachnew stack

available to simulation with NSC is described in section 3.3.

3.1 Simulator integration

The discussion of the architecture at the beginning of this chapter introduces the

use of two components: a shared library and a simulator agent. Figure 3.1 shows

the basic relationship between the two. This section discusses each component and

details their interactions. Section 3.1.1 discusses how and why shared libraries are

used in the Network Simulation Cradle. The integration withthe network

simulator is described in section 3.1.2 while the interactions between the simulator

and shared libraries are covered in section 3.1.3. This section discusses in detail an

architecture capable of supporting all the features introduced at the beginning of

this chapter.

3.1.1 Shared libraries

Communication between the simulator and TCP implementation is required for a

variety of interactions such as reading and writing data to sockets, sending and

receiving packets, and configuring TCP endpoints. For the NSC to be efficient this

communication needs to be efficient, as all interactions between simulator and TCP

implementation use this mechanism. Simplified TCP models insimulators such as

ns-2 are linked statically into the simulator executable. Functions calls within this

executable are used for communication, making this approach very efficient. A

real world TCP implementation can also be statically linkedinto the simulator in

this way, examples of this approach can be seen in the addition of FreeBSD to the

OMNeT++ simulator [106] and the early development of the NSC[116].

Statically linking TCP implementation code does not scale to multiple TCP

implementations. For example, the OpenBSD and FreeBSD TCP implementations

cannot be statically linked into one executable as there aremany symbols (such as

44

the functiontcp_input) that clash. This is because all non-static functions and

global variables share the same namespace when statically linking C code into a

single executable. Individual namespaces are required foreach TCP

implementation.

The code needs to be separated in some way: either into different shared libraries

or different processes. Shared libraries can be used if theyare loaded at runtime

with the POSIXdlopen function. Loading libraries in this way results in

symbols that are only available to the executable if explicitly located with the

dlsym function, meaning there are no symbol clashes between the libraries.

An alternative to using shared libraries would be to use a separate process to

contain each network stack. The processes would use a form ofinter-process

communication (IPC) such as sockets to interact with the main simulator process.

The overheads introduced by this approach are greater than if using shared

libraries: IPC mechanisms need to perform extra functionality over function calls

within a process and context switches are required to changefrom executing code

in the simulator to executing code in the TCP implementations. The NSC uses

shared libraries because they offer a scalable and efficientsolution to

communication between TCP implementations and the networksimulator.

Each shared library implements a C++ interface so there is a generic way of

handling each TCP implementation. The simulator agent decides which shared

libraries to load based upon simulator input. The consistent interface allows the

agent to handle each TCP implementation in the same way.

3.1.2 Simulator agent

The simulator agent (shown as in the grey area on the left sideof figure 3.1) is

responsible for routing messages between the simulator andthe shared libraries

containing the network stacks. There is one simulator agentper TCP endpoint.

The simulator agent is integrated into the network simulator ns-2 [13] and forms a

transport model with a user-facing interface compatible with the existing TCP

models in ns-2. The agent is a standard ns-2 model; implemented as one source file

linked into the ns-2 executable. Other ns-2 models interactwith it via the ns-2

45

agent interface (inheritance and virtual functions are used). Configuration is

exposed using standard ns-2 mechanisms to export variablesand functions to

OTCL simulation scripts.

The level of abstraction in the network simulator will be different to the

mechanisms used in the TCP implementation, so the simulatoragent must map

between the two. An example is converting between addressing formats; the

network simulator may abstract away IP addresses, while thereal stacks will use

version 4 or 6 IP addresses. Many network simulators do not use actual data in the

packets, only a length is used instead. This is an example of another difference that

the agent must support.

The NSC simulator agent for ns-2 performs these functions aswell as managing

TCP connections and the interactions between the simulatedapplication and the

socket functionality exposed by the network stack. This is required because ns-2

does not use a standard BSD sockets API for communication between an

application and TCP model. These topics are covered next.

Stack instances

One independent instance of a TCP implementation is used perTCP endpoint (and

therefore per simulator agent) in the NSC. A single network interface is configured

and a default gateway is used to route all traffic through thisinterface. There is no

support for using TCP/IP implementations to route packets with the NSC. This is

not a limitation of the approach; rather the simulator performs the routing in a

router node. The NSC could support multiple interfaces and routing, Bless and

Doll [106] show this can be done by implementing this featurein their FreeBSD

extensions for the OMNeT++ simulator. This is not a goal of the research

presented in this dissertation, as the focus is on simulation of TCP, not IP routing.

An alternative to using a single stack instance per TCP connection endpoint is to

share connections within one instance of a TCP implementation. Real-world TCP

implementations generally support a large number of TCP connections efficiently.

Simulating the connections for different simulation components with a single TCP

implementation instance would mean that global data in the TCP implementation

46

is shared. This will potentially affect results; one example of global data is the

round-trip-time (RTT) cache utilised by some current operating systems. This

cache stores TCP control data and RTTs to IP addresses that have been

communicated to in the past and uses this information to initialise TCP variables to

increase performance when a new connection is made to the IP address. If this data

is shared between simulation nodes, then unrealistic defaults will be used for some

TCP connections as they will be initialised from values thatwere cached from a

connection on a different simulated computer.

TCP connection timers

TCP uses a number of timers, see [84] for a definitive list. These are managed in

network stacks from a “soft” clock running many times a second, usually ranging

from 10 to 1000. This value is often simply calledhz. Once every1/hz seconds, a

timer is fired in the simulator agent that calls a function in the network stack to

notify it of time passing. This allows the stack to manage itsTCP timers.

This method has a performance impact for simulation becausetimers will have to

fire every1/hz seconds whether or not there is any activity on the TCP connection,

or whether a TCP connection is established or not. For a performance analysis of

the NSC, see chapter 6.

Application management

When configured to listen, the simulator agent configures itsone managed socket

to listen on a port, then attempts to accept a connection on the socket whenever a

simulated packet is received. Once this is done, the new connection object is

managed as described below. If configured to connect to another node, the

simulator agent only has to call the connect function on the socket.

In ns-2, the receiving application is assumed to read data asfast as it can. ns-2 does

not implement the receivers advertised window in its TCP models, flow control is

not required when the receiving end consumes data as fast as it becomes available.

In the NSC this functionality is simulated by reading from the socket provided

whenever a packet is read. This means that the underlying real world stack will

47

implement flow control, but this facet of TCP will not be used due to the

application modelling. This is a limit of ns-2’s application design, other network

simulators could make use of TCP flow control.

Sending data in ns-2 uses a simplified interface unlike the BSD sockets interface

used on many real systems. A sending application model in ns-2 has no way of

knowing if its request to send data will be enqueued in TCP buffers or not: there is

no feedback or error response. The TCP agents in ns-2 have an effectively infinite

buffer. When a request to send is made, an integer is increased by the number of

packets to send.

The NSC simulator agent has two modes of operation: an infinite buffer mode,

which works like the ns-2 TCP models do, or a limited buffer mode, where

requests to send are ignored when the TCP buffers in the network stack are full.

The latter is designed to mimic the pattern of writing to sockets that some real

world applications take. This mode is used when performing validation tests which

are covered in chapter 4.

Interchangeable use of TCP models

In ns-2, simulation scenarios are defined by OTcl simulationscripts. The NSC

TCP agents support the interface used by the standard ns-2 TCP models so they

can be used interchangeably in existing and new simulation scripts. Listing 3.1

shows an example of part of a simulation script that interacts with an ns-2 TCP

model. To use the same script with an NSC TCP implementation,the script needs

to be changed to listing 3.2: only the lines creating the TCP models need to

change. The example shows a FreeBSD TCP implementation, which is one of the

default TCP implementations, and an alternate way of loading a TCP

implementation where the shared library is specified explicitly.

Listing 3.1: ns-2 simulation script using a TCP model

Set defaults
Agent/TCP set packetSize_ 1500
Agent/TCP set window_ 40
Create topology
set node1 [$ns node]
set node2 [$ns node]
$ns duplex-link $node1 $node2 10Mb 34ms DropTail
Create TCP models

48

set src [new Agent/TCP/Newreno]
set sink [new Agent/TCPSink/DelAck]
Attach models to the topology
$ns attach-agent $node1 $src
$ns attach-agent $node2 $sink

Listing 3.2: Using NSC TCP models in a ns-2 simulation script

Set defaults
Agent/TCP set packetSize_ 1500
Agent/TCP set window_ 40
Create topology
set node1 [$ns node]
set node2 [$ns node]
$ns duplex-link $node1 $node2 10Mb 34ms DropTail
Create TCP models
set src [new Agent/TCP/NSC/FreeBSD5]
set sink [new Agent/TCP/NSC/Linux26]
Attach models to the topology
$ns attach-agent $node1 $src
$ns attach-agent $node2 $sink

Variables such aspacketSize_ andwindow_ are used by the NSC agent when

initialising the TCP implementation.packetSize_ is used to set the MTU

while window_ is used when setting the TCP buffer sizes. Initialisation is

performed lazily by default. When the first packet arrives ata TCP model, or a

TCP connection is created to send packets, the TCP implementation is initialised.

An interface is added with an IP address based upon the ns-2 node address, which

is automatically assigned by ns-2, and the required TCP socket is created. Further

control is possible by explicitly calling initialisation functions.

3.1.3 Interactions

This section describes the interactions between the simulator agent (section 3.1.2)

and the shared libraries (section 3.1.1): the arrows in the centre of figure 3.1. A

C++ header file is included in the build of each shared libraryand the simulator.

This header describes an interface the shared library must implement. All

interactions between the agent and the network stack use this interface.

Interactions will either be global, per-stack or per-TCP connection. For brevity, the

interfaces shown below do not include debugging and similarfunctions.

As covered in section 2.3, previous approaches to using realworld TCP code in

simulation did not provide a way to support multiple TCP implementations

49

transparently. The interface described in this section is generic and allows for this

transparency of TCP implementation, making it simple for a user of the NSC to

simulate with multiple different TCP implementations, a feature not previously

available to network simulation practitioners.

Global interactions

Only one function is exported from the shared library:nsc_create_stack().

This function is known as a factory function: it creates a newinstance of the stack

contained in the shared library and returns a pointer to an object which manages

this stack. This function is called with parameters that areopaque objects the

shared library can use to call back into the simulator to sendpackets, ask for the

time, or inform the simulator of activity on a socket (for example, there is new data

waiting on that socket).

Per-stack interactions

The stack creation function returns anINetStack struct which has the following

members that can be used to interact with that TCP stack:

• void init()

• void if_receive_packet(int id, void *data, int len)

• void if_send_packet(void *data, int len)

• void if_attach(char *address, char *mask, int mtu)

• void add_default_gateway(char *address)

• int get_hz()

• void timer_interrupt()

• int sysctl(char *name, void *oldval, size_t *oldlen

, void *newval, size_t newlen)

• bool set_var(char *name, char *value)

• struct INetStreamSocket *new_tcp_socket()

After creating the stack withnsc_create_stack(), the NSC simulator agent

calls theinit() function, then uses theget_hz method to calculate how many

times a second it must call thetimer_interrupt routine. It initialises the stack

with an interface withif_attach() and adds a default gateway. A TCP socket

50

is created withnew_tcp_socket(). The TCP socket creation function returns

an interface likensc_create_stack() does. Statistics reporting is supported

with theget_var function, which parses the ”name” parameter and returns the

result as a string. This is used to report global informationthat is not specific to a

TCP connection. System-wide properties are configured by thesysctl function

which works like the function of the same name on many Unix systems.

Per-TCP interactions

Each TCP socket includes the following interface:

• void connect(char *addr, int port)

• void disconnect()

• void listen(int port)

• int accept(INetStreamSocket **socket)

• int send_data(void *data, int len)

• int read_data(void *buf, int *buflen)

• int setsockopt(char *name, void *val, size_t len)

• bool get_var(char *name, char *result, int len)

• bool set_var(char *name, char *val)

The functions map onto the internal stack functions as the equivalent BSD sockets

API functions would, except that thelisten() function also internally calls

bind(). All functions are non-blocking. Error returns must be handled specially

in the cradle code: each operating system may use different error codes. The

simulation cradle code specific to each stack must transformthe error codes into

the accepted standard for this interface.

TCP variables may be accessed via theget_var() function. Results are

returned as strings like with theINetStack functions covered earlier. Variables

that can be queried include but are not limited to the round trip time measurements,

congestion window size (cwnd), window threshold (ssthresh), sequence and

acknowledgement numbers and the current retransmission timer interval.

51

Listing 3.3: Example cradle code to connect a socket (from Linux 2.6 shared li-

brary)

/* Internal connection function */
void nsc_soconnect(void *so, unsigned int dest,

unsigned short port)
{

struct socket *sock = (struct socket *)so;
struct sockaddr_in addr;
int addrlen;

addr.sin_family = AF_INET;
addr.sin_port = port;
addr.sin_addr.s_addr = dest;

addrlen = sizeof(struct sockaddr_in);
sock->ops->connect(sock, (struct sockaddr *)&addr,

addrlen, O_NONBLOCK);
}
/* Interface implementation */
void LinuxStack::TCPSocket::connect(char *addr, int

port)
{

struct in_addr ip_dest;
uint16_t ip_port;

inet_aton(dest, &ip_dest);
ip_port = htons(dest_port);

set_stack_id(parent->stack_id);
nsc_soconnect(so, ip_dest.s_addr, ip_port);
set_stack_id(-1);

}

Each shared library needs code to bridge the general purposeinterface functions to

the internal TCP stack functions. Some extra management must be done in some

cases to convert return values. Most functions have a straight forward mapping

between the interface function and the internal stack function, as listing 3.3 shows.

In this code, a typical example of mapping an interface function to an internal

function is shown. Connecting a socket with Linux 2.6 requires some conversion

of types then a call to the socket’s connection function pointer. In other cases

further management is required; setting the default gateway can be more complex:

with FreeBSD, it requires management of a routing socket, with Linux a call to an

ioctl function on a socket.

52

Table 3.1: Number of declarations and references of global variables
Network stack Global variables Number of references
FreeBSD 5.3 2418 11790
Linux 2.4.28 836 13794
Linux 2.6.14.2 792 10217
OpenBSD 3.5 735 6056

3.2 Global parser

Chapter 1 introduces the need for the network stacks supported to be re-entrant in

section 1.5.1. Two important points are made in that section: multiple instances of

simulation models are required and real code does not, in general, support multiple

instances. The process of making existing code re-entrant is calledvirtualisationin

the following sections.

The shared resources which need to be virtualised are globaland static local

variables (variables which have global linkage but local scope), herein referred to

simply as global variables. These are placed in areas of memory which are not part

of the call stack or heap; they are shared between different function calls in the

source code. Global variables need to be modified such that multiple calls into the

code can be made, each referencing a different set of global variables. Each

reference to such a variable must be mapped to the real data inan

implementation-dependent manner.

Other projects have modified the source by hand to support virtualisation.

ENTRAPID [117] and ALPINE [113] are protocol development environments that

modify the BSD network stack code by hand to virtualise it. Zec [118] modifies

the FreeBSD network stack code by hand so it may be cloned. When integrating

the FreeBSD TCP/IP stack into the OMNeT++ simulator, Bless and Doll [106]

modify the code by hand to virtualise it. Modifying the source code by hand is not

only error prone, but it makes updating the original source code harder.

Many lines of code need to be changed in a large project if all of the global

variables and all references to global variables are modified. Table 3.2 shows the

number of global variables that need to change in the networkstacks that are used

in the NSC and the number of times they are referenced. Ensuring that all the

53

necessary changes are made is difficult: global variables need to be identified and

all references and declarations changed. If some of the global variables that need

to be modified are missed, subtle errors are possible. Any further additions or

modifications to the original code (such as new releases or updates) must have the

same manual process used to modify their code so it can be incorporated. This is

also true of new projects that are to be supported (that is, any new TCP/IP stacks

incorporated into the framework need to have this process applied).

This section introduces the global parser, also known as theglobaliser. The

globaliser created for this project programmatically modifies preprocessed C

source code, changing global variable definitions and references as needed,

making the code re-entrant.

There is a variety of ways the source code can be changed to support virtualisation.

Zec [118] modifies each function to take a pointer to a structure which contains the

previously global variables when making the FreeBSD network stack able to be

cloned. An example of how the source is changed as shown in listing 3.4.

Listing 3.4: Aggregating globals into a structure

int done = 0;

void process() {
done = 1;

}

struct globals {
int done;

};

void init_globals(struct
globals *g) {
g->done = 0;

}

void process(struct
globals *g) {
g->done = 1;

}

On the left is some example input code, on the right is the sortof output that must

be produced. The disadvantages to this approach are that allglobals must be

aggregated into one central structure, the initialisationfor the globals must move

into a separate function, and every function that refers to aglobal variable must be

changed to include an extra parameter. It is difficult to aggregate all global

variables into a central structure in a large base of code. Doing so means that the

declarations of all global variables are moved into a central place, which causes

potential variable and type name clashes.

54

A potentially simpler approach is to modify each global to bean array. An

example follows in listing 3.5.

Listing 3.5: Modifying a variable into an array

int done = 0;

void process() {
done = 1;

}

int nsc_current = 0;

int done[5] = { 0, 0, 0,
0, 0 };

void process() {
done[nsc_current] = 1;

}

In this case the global variable is changed into an array and an array index when

referenced. One extra global variable is created to indicate which set of global

variables is currently being accessed. The disadvantage ofthis approach is that the

maximum number of independent instances supported must be specified in the

array declaration. This means that to increase the number ofinstances supported

the number must be changed and the code recompiled. The globaliser takes an

approach based on this, how it modifies declarations and references to global

variables is covered in the following sections: section 3.2.1 and section 3.2.2

respectively. Throughout these sections the examples shown are from the FreeBSD

5.3 TCP/IP source code unless otherwise mentioned and modified to be shorter in

some cases for brevity. The examples are shown for an examplesituation that

supports 2 network stack instances.

3.2.1 Modifying C global declarations

Variables in C are declared before they are used. They may be declared as an

external symbol, “forward declared”, or declared in full. Once a symbol has been

declared it may be used, or referenced in the source. This section describes how

the globaliser modifies declarations of global variables. An example of a simple

global variable from the FreeBSD source code follows in listing 3.6.

Listing 3.6: globaliser input and output for a single variable

static const int
tcprexmtthresh = 3;

typedef const int
_GLOBAL_307_T; static
_GLOBAL_307_T
global_tcprexmtthresh[
NUM_STACKS] = { 3, 3,
...

55

This example is slightly more complex than the example shownearlier in

section 3.2. The global variable is prefixed withglobal_ for debugging reasons,

and because it then means any reference to the old, non-modified variable, will

produce a compiler error.NUM_STACKS is a macro that is defined by the user that

specifies how many instances are supported. Arrays are particularly problematic

and led to producing code differently when globalising array variables as detailed

next. The reason for an additionaltypedef of _GLOBAL_307_T is described

when structures as part of a type name are introduced.

Arrays

Adding an extra array dimension to the declaration of the global variable does not

work when the variable is already an array. There are two reasons. The first is

array ordering: in C, arrays are stored in row major order, sothe compiler needs to

know ahead of time the length of the rows. Only the number of rows, which

corresponds to the innermost array dimension, may be left unbounded. This is

illustrated by attempting to modify an initialised global array variable. Listing 3.7

is code that would be generated by adding an extra array dimension to the end of a

global variable.

Listing 3.7: Array initialisation

int tcp_backoff[3] = { 1,
2, 4 };

int global_tcp_backoff[3][
NUM_STACKS] = { { 1, 2,
4 }, { 1, 2, 4 } };

Listing 3.8: Corrected array initialisation

int global_tcp_backoff[NUM_STACKS][3] = { { 1, 2, 4 },
{ 1, 2, 4 } };

The code on the right of listing 3.7 is incorrect. This is because of the ordering of

the array dimensions: the variableglobal_tcp_backoff is declared as an

array with three rows of two elements, but is being assigned to an array of two

rows of three elements. If the ordering of the array is reversed in the declaration

the code is correct, as shown in listing 3.8.

Unbounded arrays can not be modified in this way correctly. The above method

fails when an array bound is not specified. Listing 3.9 shows example output

which will not compile once the code is changed due to the modification to the

56

declaration oftcp_backoff. The innermost array bound can be left unspecified

but all other bounds must be specified, only the number of rowswill be deduced by

the compiler.

Listing 3.9: Unbounded array initialisation

int tcp_backoff[] = { 1,
2, 4 };

int global_tcp_backoff[
NUM_STACKS][] = { { 1,
2, 4 }, { 1, 2, 4 } };

The two problems illustrated above show that adding an arraydimension, either

before or after the original array definition, will not work in all cases. Adding an

extra array bound in the correct way is mutually exclusive with supporting

unbounded arrays. One solution involves an extra level of indirection.

The method used by the globaliser is shown in the example globaliser output in

listing 3.10. The globaliser keeps the original declaration of the array variable

intact and clones itNUM_STACKS times. Each time it creates a new unique

variable name. A static array is created that contains pointers to each of the array

variables that were cloned.

The array is static so the symbol is not exported outside the current C file, this

makes sure the new variable does not clash with array variables created by the

globaliser in other files. The symbol must not be global outside of the compilation

unit because the same global variable may be defined in another C file. In C,

variables may be defined multiple times but only initialisedonce. A new initialised

array variable is being introduced at every definition of a global variable and

therefore the array must be static so the same variable is notinitialised in multiple

source files.

The name of the array is created such that it is unique within the current file by

appending a number which increments by one every time a new array is created by

the globaliser. The gcc extension__typeof__ is used for convenience to declare

the new array, if required the parser could be modified to find out this type itself.

The reason fortypedef is explained in the following section.

Listing 3.10: Array initialisation solution
typedef int _GLOBAL_0_T;
_GLOBAL_0_T _GLOBAL_0_tcp_backoff_I[] = { 1, 2, 4 };
_GLOBAL_0_T _GLOBAL_1_tcp_backoff_I[] = { 1, 2, 4 };

57

static __typeof__(_GLOBAL_0_tcp_backoff_I) *
_GLOBAL_array_tcp_backoff_12_A[NUM_STACKS] = {
&_GLOBAL_0_tcp_backoff_I, &_GLOBAL_1_tcp_backoff_I

};

Listing 3.11: Indexing a modified array

(*_GLOBAL_array_tcp_backoff_12_A[stack_index])[0] = 2;

References to the variable must also change into a more complex form as

illustrated in listing 3.11.

Structures and types

The method described to modify arrays by cloning them several times produces

erroneous code when a structure definition is involved in thevariable declaration.

If the type of the array variable being declared includes an entire structure

definition, the structure will be defined many times, creating a namespace

collision. The code in listing 3.12 shows example output in such a case if the

global variable is cloned.

Listing 3.12: Structure redefinition

static struct ipqhead {
struct ipq * tqh_first

;
struct ipq ** tqh_last

;
} ipq[1 << 6];

static struct ipqhead {
struct ipq * tqh_first

;
struct ipq ** tqh_last

;
} _GLOBAL_0_ipq[1 << 6];
static struct ipqhead {

struct ipq * tqh_first
;

struct ipq ** tqh_last
;

} _GLOBAL_1_ipq[1 << 6];

The structureipqhead is defined more than once in listing 3.12 which produces a

compiler error. The original type of the variable is correctly cloned but the

resulting code is erroneous. A solution to this is totypedef the type of the

variable that is being modified and re-use thetypedef in each cloned variable

instance. This method is used by the globaliser and is illustrated in listing 3.13.

Listing 3.13: typedef of array element type

typedef struct ipqhead {
struct ipq * tqh_first;
struct ipq ** tqh_last;

} _GLOBAL_0_T;
static _GLOBAL_0_T _GLOBAL_0_ipq[1 << 6];

58

static _GLOBAL_0_T _GLOBAL_1_ipq[1 << 6];

The globaliser must create a unique type name for eachtypedef in a source file.

The method shown above is to have a counter which increments with each

typedef. _GLOBAL_ is prefixed to this number and_T added appended. This

does not guarantee uniqueness, as the original code could use such names in

typedefs already, but the method has sufficed for hundreds ofthousands of lines of

code tested. While thistypedef is not needed with a simple type like shown in

earlier examples, the globaliser creates atypedef for all global variable

declarations.

Potential limitations

The methods introduced in the previous section and used by the globaliser modify

preprocessed C source code, adding extra code to support multiple copies of global

variables. This increases the size of the code which resultsin slower compilation

time. The extra symbols added by the process of modifying global array variables

affects the performance of linking the compiled object files. Cloning the global

variables also means that the object files and resulting binary are larger in size.

There is a cost at runtime, as each access of a global variableis mapped through an

indirection table. These potential limitations of the globaliser are covered in

chapter 6 in detail.

3.2.2 Modifying C global references

Each reference to a modified global variable must be changed.Section 3.2.1

showed how an instance of a global variable is modified. Whilethis is a simpler

process than modifying the declarations of global variables, there are several cases

that must be handled which are not immediately obvious: these include scoping

and initialisation. Before these are discussed, the way a global variable reference is

indexed is covered.

Indexing

Examples earlier in section 3.2 used a variable to index intoan array of globals.

This can potentially be a function call as well. In the Network Simulation Cradle

59

Report [116] we describe an approach that uses a thread for each stack. To retrieve

the index of the stack for the running thread, a POSIX threadsfunction (see

e.g. [119] for an introduction to pthreads) is called that reads from thread specific

storage for the current thread, allowing multiple threads of execution to be

independently running the same code.

The globaliser outputs code to call the functionget_stack_id() when

indexing into a global variable array as illustrated in the code below. A function

call provides maximum flexibility, as a potential user couldperform actions such as

calling pthreads functions or simply returning the value ofan index variable. In the

NSC TCP implementations, the approach of returning an indexvariable is used.

The code produced by the globaliser to index variables is illustrated in listing 3.14.

Listing 3.14: Indexing a variable reference with a function

mtu = 1500;
tcp_backoff[0] = 2;

global_mtu[get_stack_id()]
= 1500;

(*
_GLOBAL_array_tcp_backoff_12_A
[get_stack_id()])[0] =
2;

Scope

The C language allows local variables to “shadow” global variables. This occurs

when a local variable is declared with the same name as a global variable. Code

within scope of the local variable will use the local variable not the global one. The

globaliser needs to understand scoping so it correctly modified shadowed global

variables and static local variables.

Self-referential initialisation

It is possible in the C language for a variable to reference itself in its own

initialisation. The following source shows an example:

Listing 3.15: Self-referential initialisation

int header_len = sizeof(header_len);

The rules described so far would transform this to:

60

Original source code Compiler (gcc) Preprocessed source code

Modified preprocessed code Compiler (gcc) Object file (compiled code)

AST

Code regeneration

Pre−parser Parser

Globaliser

Lexer

Figure 3.2: Globaliser’s parser flow

Listing 3.16: Self-referential initialisation error

int global_header_len[NUM_STACKS] = { sizeof(
global_header_len[get_stack_id()], sizeof(
global_header_len[get_stack_id()] };

This code will not compile: a function cannot be called when global variables are

initialised; only constant expressions are accepted because the value is calculated

at compile time and put into the data section of the compiled object file. The

globaliser outputs theget_stack_id() function call and therefore must solve

this problem.

When parsing the expression on the right of a global variableassignment, the value

0 is used instead ofget_stack_id(). All elements have the same size and

value when the statement is computed, as the code for the elements is created by

the globaliser.

3.2.3 Implementation of the globaliser

The globaliser’s parser is implemented in C++ and uses the compiler-compiler

tools Flex [120] and Bison [121]. The parsing is separated into two modules: a

simple pre-parser and the Bison-generated parser. The flow of data through the

globaliser is shown in figure 3.2.

Flex is a lexical analyser generator. It generates a lexicalanalyser, otherwise

61

known as a lexer. This lexer is responsible for breaking the stream of characters

read into tokens. For example, it will use regular expressions to recognise an

expression likeint, and then return anINTEGER token to the parser. A Flex

input file is a list of regular expressions and the tokens theymatch.

The lexer returns information about whitespace and comments along with the C

keywords, identifiers and symbols so the globaliser can regenerate the original

code exactly. This allows easy verification withdiff tools that the globaliser only

modifies relevant sections of code.

The pre-parser stores whitespace and comment information in a buffer and passes

other tokens to the Bison-generated parser. The Bison-generated parser reads the

global buffer and copies it into the abstract syntax tree representation of the source.

Bison is a parser generator. It takes a context-free LALR grammar and generates a

C program to parse that grammar. Bison produces quick parsers with one token of

lookahead. The input format of Bison is similar to BNF. The ISO C standard [122]

includes a BNF grammar for C, though none for Bison specifically.

A grammar compatible with Bison and Flex compatible lexer isfreely available for

the 1985 ANSI C standard (see [123]). The grammar used by the globaliser is

based on this and has been updated to handle the features of the C89 and

C99 [122] standards and gcc [124] extensions used by the operating system

network stacks used in the NSC.

The globaliser builds an abstract syntax tree (AST) of the input source. When a

declaration is found, it is processed to check whether it is aglobal. If it is, it is

checked against the table of global variables to be modified.The node of the

declaration in the AST will then be modified if the variable isto be changed. The

node is changed based on the rules introduced earlier. The full AST representation

of the source allows the name, type, and initialisation parts of the declaration to be

extracted and modified with the rules introduced earlier. A similar process takes

place whenever a variable reference is encountered. Once the input file is finished

being read and the AST is fully built, the AST is printed out. This process

reconstructs the source. Any nodes that were modified earlier to change global

62

variable declarations or references are printed in their new, modified form. Other

nodes of the AST that were not modified in the previous processare reconstructed

so they produce the same output as input.

To handle scoping of variables, the globaliser maintains a stack of local variables.

The contents of the stack are updated based upon the local variables encountered in

each block of code found in the input. Whenever a variable is referenced, the stack

is first scanned to see if the variable is a local variable. If not, it is then processed

as a reference to a global variable.

gcc extensions

While the globaliser understands ANSI C, it is often run on source code designed

to be compiled with gcc. In some cases this code uses gcc specific extensions to

the C language which must be parsed correctly. Some examplesfrom the Linux

and FreeBSD kernels that make use of these extensions follow. A full list of gcc

extensions to the C language can be found at [125].

The following example shows an inline code block which allows normal

statements such as declarations.

Listing 3.17: Inline code block from Linux
return ({ int __x = (nbits); int __y = (find_first_bit(

srcp->bits, nbits)); __x < __y ? __x: __y; });

gcc has many attributes which can apply to functions or variables. The example

below shows the attributes associated with thepanic() function in the FreeBSD

5.3 source code. The attributes tell the compiler that the function will not return

and that it takes arguments likeprintf. This allows the compiler to perform

extra analysis in blocks of code that use thepanic function, such as producing

warnings if the arguments passed in the variable argument list do not match up

with theprintf format string.

Listing 3.18: gcc attribute use from FreeBSD
void panic(const char *, ...) __attribute__((

__noreturn__)) __attribute__((__format__ (__printf__
, 1, 2)));

gcc allows the additional keywordstypeof andoffsetof. It also allows using

63

alternate keywords by adding__ to the beginning and ending of a keyword, for

example__asm__ instead ofasm. The effect of this is that the lexer and parser

must be aware of these new keywords.

Listing 3.19: Additional gcc keywords
typeof(int *);
offsetof(struct intf_t, iface);

Inline assembly is possible in gcc and needs to be parsed correctly because it can

contain references to variables. The example in listing 3.20 shows the variables

ptr anddo_softirq within a gcc inline assembly statement. These are

possible global variable references and must be understoodcorrectly by the

globaliser. The rules introduced for handling variable references can be used on

the variables referenced in theasm listing.

Listing 3.20: gcc inline assembly
__asm__ __volatile__ ("cmpl $0, -8(%0);"
"2: pushl %eax; pushl %ecx; pushl %edx;"
"call %c1;"
"popl %%edx; popl %%ecx; popl %%eax;"
: : "r" (ptr), "i" (do_softirq));

The globaliser parses all of the above gcc extensions and modifies references to

variables found in them correctly.

Semantic support

The function of the globaliser is to virtualise C code, it is not required to check for

well formed C code. The globaliser therefore does not need toperform semantic

analysis of its input. It does, however, need some knowledgeof the semantics of C

to parse it correctly: it needs to understand thetypedef keyword which defines a

new type keyword. A set of all identifierstypedef-ed is kept, and whenever an

identifier is found in the source, it is checked against the set of type names to see

whether it is a type keyword or an identifier. This works for most C code, but there

are valid C constructs which break this method.

Listing 3.21: Type name parsing problem
typedef int proc_handler (ctl_table *ctl, int write,

struct file * filp,
void *buffer, size_t *lenp, loff_t *ppos);

proc_handler *proc_handler;

64

The source in listing 3.21 shows where this method fails. It is legal in the C

language to use an identifier which has been previously beentypedef-ed as a

normal identifier in some situations where it is not ambiguous. The globaliser uses

an updated grammar which supports this feature by by handling typedef

keywords differently to other type keywords such asint.

Section handling

One of the gcc attributes which can be set on a global variableis the “section”

attribute. This allows the programmer to instruct the linker to place the variable in

a particular section in the object file. The linker will then make two variables

which point to the beginning and end of the section. This allows a programmer to

place a set of variables in their own section in the object file, then iterate over them

using the start and end pointers provided. The FreeBSD kernel uses this method

for initialisation.

Listing 3.22: Section attribute object file placement

int var1 __attribute__ ((
__section__ ("sysinit")
));

int var2 __attribute__ ((
__section__ ("sysinit")
));

0x0014 __start_sysinit
0x0014 var1
0x0018 var2
0x001c __stop_sysinit

Listing 3.22 shows a basic example of how sections work. On the left two

variables are declared in a section called “sysinit”. On theright example addresses

of the variables in the object file are shown. Two extra variables are created which

have memory addresses that bound the variables in the section.

The rules introduced so far would produce code that would compile but would not

have the same functionality. Given a variable with a sectionattribute, the attribute

would be retained but the variable definition modified, making many instances of

the variable appear in the section. Any code which iterates over the section would

then not work as expected.

To solve this problem the globaliser has support for modifying the section

attribute. The output of the globaliser when using section support on the code in

listing 3.22 is shown in listing 3.23. If configured to, the globaliser will see that

65

var1 is in the section “sysinit” and instead of creating an array within the same

section, will instead declare many instances of var1 in different sections. The

__stop_sysinit declaration is not shown for brevity, it is equivalent to the

method used for the__start_sysinit symbol.

Listing 3.23: globaliser section support

int _GLOBAL_0_var1 __attribute__ ((__section__ "
global_section_0_" "sysinit"));

int _GLOBAL_1_var1 __attribute__ ((__section__ "
global_section_1_" "sysinit"));

extern void * __start_global_section_0_sysinit, *
__start_global_section_1_sysinit;

static void * * __start_sysinit[NUM_STACKS] = { &
__start_global_section_0_sysinit, &
__start_global_section_1_sysinit, };

3.3 Adding a new stack

TCP implementations of interest to researchers come and go.One of the goals of

the NSC is to aid addition of future TCP implementations. Thesteps involved in

adding support for a new TCP implementation are extracting the TCP code from

its normal environment (usually an operating system kernel), compiling and

linking the code into an executable, solving any undefined references,

incorporating with the NSC and the globaliser and testing the new TCP code with

ns-2. A guide through this process for someone wishing to support a new network

stack in the NSC is found in appendix B. This section providesa discussion of the

feasibility of adding new TCP implementations to the NSC.

3.3.1 Extracting the TCP code

The TCP code may need to be extracted from a larger base of code; this is true in

the case of network stacks inside operating systems. Much operating system code

does not make sense to run in user space. For example, the operating system

manages access to the hardware, such functionality is not desired in a simulation

model and the functionality would not work in user space.

The network code needs to be identified within a potentially very large project. In

the operating systems studied this is simple due to a logicallayout of files. In

FreeBSD and OpenBSD, all code specific to Internet protocol implementations is

66

found in the directory/usr/src/sys/netinet, where/usr/src/sys is

the base directory for the kernel source code. The TCP implementation is

contained in the files with the prefixtcp_. Information on where the TCP

implementation is contained in a BSD derived kernel is also discussed by Wright

and Stevens [84] and McKusicket. al [126]. Without books or obvious

documentation this was still evident in Linux: TCP code is infiles under the

net/ipv4/ directory inside the kernel sources that have names beginning with

tcp_. While not part of the NSC, OpenSolaris has been studied as a potential

addition to the NSC. The OpenSolaris TCP code is located in

uts/common/inet/tcp. In all cases a search for files containingtcp in their

name locates the TCP implementation source files.

3.3.2 Building a standalone TCP implementation

The TCP implementation extracted from an operating system needs enough

support functionality to run independent of the original system it was part of.

Compiling and linking the TCP implementation alone will show all undefined

references to the host operating system. The type of supportfunctions encountered

include, but are not limited to, threading/locking primitives (mutexes, condition

variables), time functions (time counters, management of timer callback

functions), memory management, logging, error handling, cryptographic functions

and IP networking. Some of these functions make sense to include in the library

that will be loaded by the NSC while others will not work in user space.

Finding a suitable division

A suitable division is required such that the TCP implementation will operate like

it did in its original environment while running in a simulated environment. Some

of the support functions can be included to solve undefined references and will not

have any further requirements on support from the NSC, cryptographic functions

are often an example of this. No code other than the core TCP implementation

needs to be included but including more code means that the model created is

closer to the original system. Being closer to the original system makes it

potentially easier to reproduce the behaviour of the original system which is the

67

Table 3.2: Number of support functions in the NSC shared libraries
Network stack Stub functions Implemented functions
FreeBSD 5.3 39 93
Linux 2.4.28 54 55
Linux 2.6.14.2 150 60
OpenBSD 3.5 43 24

goal of this process.

The division used in each of the TCP implementations extracted from operating

systems in the NSC is similar. All contain at least TCP, IPv4,IPv6, ICMP, sockets,

cryptographic functions, UDP, routing, packet buffer functions, some timer

support, and global configuration support (i.e.,sysctl). This division reduces

undefined references and provides necessary support for theTCP code.

Building stub functions

Any undefined references that are not solved by introducing additional code into

the build can be solved with stub functions. The term stub function is used here to

mean a function that is created that performs no action otherthan to signal that it is

not implemented. In the NSC these functions are implementedas assertion

failures. If a stub function is called at runtime, the program is aborted with an error

message indicating the function that is not implemented. This means the stub

functions which are used are discovered during testing and must be implemented.

The number of stub functions and implemented functions in the NSC shared

libraries are summarised in table 3.2. The implemented functions refer to the stub

functions that are required to be implemented to allow the TCP code to run (the

numbers reported in the table are independent, the number ofimplemented

functions is not included in the number of stub functions). Each of these functions

needs to be studied in detail to ensure it works in a way consistent with the original

system. Some functions map to simple C library calls (e.g., memory allocation can

usemalloc) while others are not required to perform any action when being run

in a simulated environment (e.g., mutexes, checking for user permissions).

Table 3.3 shows counts of the lines of code included in the NSCsupport code for

each stack. The number of lines attributed to stub functionsis made up mostly of a

68

Table 3.3: Number of lines of code used in the NSC stack support code
Network stack Support lines of code Stub lines of code
FreeBSD 5.3 3550 39
Linux 2.4.28 1603 571
Linux 2.6.14.2 1871 1205
OpenBSD 3.5 1540 311

lot of boiler plate code and could be reduced to only one line for each stub

function. The NSC FreeBSD 5.3 stack has stub functions implemented in this way.

3.3.3 Incorporating with the Network Simulation Cradle

Once a TCP implementation has been built into a shared library it can be

incorporated with the NSC. Doing so requires implementing the interface

introduced in section 3.1.3. New code needs to be written that calls functions in

the TCP implementation to perform actions such as connecting, reading and

writing. Finding the correct functions to call can be achieved by tracing the code

path between a user space application that uses the BSD Sockets API and the

functions called inside the kernel.

The functions called in the TCP implementation need to return control to the

simulator: they cannot block waiting for a resource (such asa packet arrival)

because the simulator has a single thread of execution. Non-blocking versions of

socket operations are used with the NSC implementations. Ifa TCP

implementation did not support non-blocking operations then such functionality

would need to be built. We have shown this to be feasible usingthreads to store

different function call contexts in earlier work [116].

The globaliser needs to be incorporated into the build of theTCP implementation

to support multiple independent TCP instances. It is used aspart of the build tool

chain after source code preprocessing but before compilation. An example of a

build rule using the globaliser during compilation of a source file is shown in

listing 3.24.

Listing 3.24: Compiling a C file with gcc and the globaliser

gcc ${CFLAGS} sample.c -E - |
./globaliser -vv ./globals.txt |
gcc -xc ${CFLAGS} -c - -o sample.o

69

The shared library can be used with ns-2 once the interface isimplemented. The

ns-2 simulator agent for the NSC supports tracing packets inPCAP format so

direct validation against packet traces from a equivalent network implemented with

physical devices is possible once the interface is implemented. Validation of NSC

TCP implementations is covered in detail in chapter 4. Because the NSC interface

for all shared libraries is the same, existing simulation scripts can be used with the

new TCP implementation by only changing the name of the shared library loaded.

3.3.4 Configuration issues

There are many configuration options in real world network stacks and these

should be exposed to the simulation user. The NSC interface supports several types

of configuration: sysctls, socket options, and general string-based commands. The

ns-2 simulator agent integrates this configuration into theOTCL scripting language

so a user may specify sysctls and other configuration in a natural format. Each

stack then implements the interface to set such configuration.

The implementation of the configuration options is often simple: the input data

from the simulation user is transformed into the format usedby the stack, then

kernel configuration functions can be called. This is true for example in the

FreeBSD sysctl configuration, which is implemented in threelines of code (calling

the FreeBSD functionkernel_sysctlbyname). In other cases more support

code needs to be written to support such configuration; in theLinux stack support

code there is code to manually parse the sysctl name passed in.

3.3.5 Updating an NSC TCP implementation

One of the goals stated at the start of this chapter was for real world TCP models to

be easy to update. Updating stacks to new versions should take a minimal amount

of time, as new versions are often released regularly. The NSC makes this possible

in most cases because the stack’s source code used is not modified by hand. The

code for the new version of the TCP implementation needs to beused in the built

system in place of the previous code. The process of buildingand testing for

undefined variables should be followed, like the initial integration of a network

stack discussed in section 3.3.2.

70

A new version of a TCP implementation might add new files and require different

compilation flags. The differences between the two versionsshould be inspected

for additional files so they can be added into the build process. The build system

should be verified against building the new TCP implementation code in its

original environment to ensure the code is still compiled inthe same way.

Once these steps are followed the new code can be tested. The process of updating

is much simpler due to the work done to integrate the earlier version of the stack.

The amount of work required to update to a new version is proportional to the size

of the change in the TCP implementations. When upgrading from Linux 2.4.27 to

Linux 2.4.28, no changes were required in the support code. The code was patched

with the new version of Linux and tested to ensure behaviour consistent with a

computer running Linux 2.4.28. Updating to support Linux 2.6.10 was more

involved, as the 2.6 series kernel is a major update of the Linux kernel over the

previous 2.4 kernels. Around 200 lines of support code changed during testing and

many TCP implementation files were added and removed. The stub functions

needed to be recreated as many internal kernel functions hadchanged or been

added.

3.3.6 Requirements of the NSC approach

The Network Simulation Cradle requires the source code of the network stack to

be simulated. This is available for open source TCP implementations such as those

found in the operating systems of Linux, FreeBSD, OpenBSD, and OpenSolaris.

However, the source code is not generally available for Microsoft Windows, and is

therefore not available in the NSC. The approach used by the NSC applies to any

TCP implementation with source available, so support for Microsoft Windows is

conceptually possible if the source code were available.

The NSC is designed for incorporating code written in the C language (due to all

TCP implementations studied being written in C), but other languages could be

supported using processes similar to those discussed for the C language. A bridge

between the two languages would be required in the support code in the shared

library.

71

3.4 Summary

This chapter shows that it is feasible to use real world network stacks as a TCP

model in a network simulator. That an implementation was created within the

bounds of this project shows that simulating multiple real world TCP

implementations can be achieved with reasonable cost: one researcher over the

course of two years.

At the start of this chapter (page 41), a list of goals was set out for the design of

NSC: it must simulate real world code, utilise existing network simulators,

perform and scale well, produce accurate results, be easy toupdate, support

different methods of statistics gathering, allow a full range of TCP simulation

scenarios, and compliment existing simplified TCP simulation models. This list of

goals is achieved with the implementation of the Network Simulation Cradle as the

follows.

NSC supports simulation of real world code by providing a framework with which

a real TCP implementation is connected to an existing network simulator. A new

agent is built in the network simulator which loads shared libraries that contains

the TCP implementations.

NSC is designed to perform well because of its use of shared libraries and support

code. This allows a minimal overhead when an interaction between the simulator

and network stack occurs. NSC is designed to scale well due tothe globaliser

statically altering code during the build process, allowing many instances to be

created quickly during runtime. Both performance and scalability are analysed in

depth in chapter 6.

Using real world stacks and not modifying code of the TCP implementation means

that NSC can produce accurate results. Validation is supported by being able to

produce packet traces that can be directly compared to real machines. The

accuracy of results produced by NSC is covered in chapter 4.

Stack code within NSC can be updated easily because it does not need to be hand

modified every time (like in other projects discussed in section 2.3). To update an

72

existing stack in NSC, a patch should be created between the old and new versions

of the stack to be updated, then the patch should be applied tothe source code

within NSC. The new version can then be tested and validated.

73

74

Chapter 4

Accuracy of TCP simulation with

real code

For simulation results to be credible the simulation modelsin use must undergo

verification and validation. Balci [127] defines verification as substantiating that a

model is built from a problem formulation accurately, wherevalidation is

substantiating that the model behaves with satisfactory accuracy within its domain.

Carson [128] and Sargent [129] define the two terms to be similar and both note

that sufficient accuracy is achieved when a model can be used instead of a real

system for purposes of experimentation and analysis. In thecontext of simulation

models for TCP, the models should be tested to demonstrate that they conform to

specification (verification of the model) and that the model implementation

produces results consistent with a real system (validationof the model).

The ns-2 simulator has a test suite that tests many facets of the simulator including

the one-way TCP agents [5]. The TCP tests cover a range of situations designed to

provoke certain behaviour for each TCP variant. For example, the fast recovery

mechanism of TCP Reno is tested with differing amounts of packet loss. A similar,

though less thorough, set of tests exists for the bidirectional TCP agents [81]. This

type of testing is a verification that the models produce results consistent with

specifications.

Floyd [5] points out that the TCP models in ns are not designedto model one

specific real world TCP implementation but be a general modelfor experimenting

with the underlying congestion control algorithms. When using real

75

implementation code in a TCP model in simulation, a different sort of validation

can be used. The simulation can bedirectly comparedto a real network: the output

of the simulation model should be very close to that of a real machine, given the

same input. This method of validation is used in this chapterto show the degree of

accuracy attained using the real world TCP implementationsin the Network

Simulation Cradle for simulation of TCP.

The method of direct comparison is used by Bagrodia and Takai[93] where they

raise the question of whether a TCP model is correct with respect to actual TCP

implementations and list two cases where validation was quite successful in their

work with the GloMoSim [86] simulator:

Direct incorporation of the implemented protocol into the model: this allows

the protocol model to be validated against an operational prototype.

Comparison of independently developed models for a given protocol:

compare with models from another simulator or models of the same protocol

built by others.

Both methods are used in this chapter to show the validity andaccuracy of the

Network Simulation Cradle TCP implementations. The methodof direct

comparison is introduced first in section 4.1 and the resultsof these comparisons

are described in section 4.2. Section 4.3 expands on these comparisons to show

how simulating with real world TCP implementations and the abstracted models

present in ns-2 differ.

4.1 Introduction to simulation and test bed compar-

isons

The Network Simulation Cradle can produce packet trace filesin the format used

by tcpdump [130]. Tcpdump captures packets from a network interface and can

save them to file. A simulation can be modelled after a test network setup and

tcpdump traces can be recorded at the same logical points in the two networks. The

network trace from NSC and from a real machine can then be directly compared

using trace analysis tools such as tcptrace [131]. This method of comparison is

76

used in section 4.2. The measurement and test bed setup is covered below.

4.1.1 Emulating with a test bed network

Building computer networks of varying topologies, varyinglink bandwidths and

delays, possible packet loss, controlled router buffer sizes and differing TCP

implementations is expensive and time consuming. This is one of the reasons

simulation is performed; often it is impractical (or even impossible) to build

networks to test a protocol or idea. Simulation of an entire network has many

abstractions and needs to be validated against real systems, so a compromise often

referred to asemulationis used. Network emulation is used here to mean a

physical network which includes a device or set of devices that simulate part of the

network. An example of this is a machine set to route packets between its network

interfaces, delaying packets by 20ms. This machine would besimulating a long

link in the network topology by adding the artificial delay.

4.1.2 WAND Emulation Network

The WAND Network Research Group [132] has a network of 24 machines

available for testing. This network is called the WAND Emulation

Network [133,134]. The machines in the WAND Emulation Network have

multiple network interfaces. One network interface card isconnected to a central

server to form a control network. The other network interface card is connected to

a patch panel which in turn is connected to a switch. Some of the machines have

four Ethernet ports on their second card, allowing them to beused as routers. The

machines are configured with a topology by changing connections on the patch

panel. All machines are also connected to a terminal server to allow administration

without relying on networking.

Facilities for imaging machines with a new operating systemare available, so

changing operating system between tests can be automated. The operating system

images are configured so a simple daemon program listens for connections on the

control network once the system has started. This program accepts a string of text

for a command to run and redirects the output of the command tothe connection in

a similar fashion to ssh or rsh. This allows the machines to becontrolled easily and

77

H2H1

H3 H4

R1 R2

Figure 4.1: Topology used in the WAND Emulation Network

the output of commands to be viewed quickly.

Figure 4.1 shows the topology used for emulation network tests in this chapter.

Routers R1 and R2 have four port network interface cards and run FreeBSD 5.3.

These routers use Dummynet [135] to shape the traffic going through them as is

discussed below. The hosts H1-H4 are imaged with different operating systems

and tests are performed between (H1 and H2) and (H3 and H4).

4.1.3 Traffic shaping

Dummynet [135] is commonly used software for network emulation

(e.g., [56,136–139]). It is distributed with FreeBSD 3.4 and later and integrates

with FreeBSD’s IPFW firewall.

Packets are matched using FreeBSD’s IPFW firewalling rules and sent to a

Dummynet pipe. A pipe is configured with a bandwidth, delay and packet loss

rate. On a tick of the software interrupt clock, Dummynet will check to see if there

are any packets pending to be sent out at the current time and queue them for

sending if so. FreeBSD 5.3 defaults to this clock ticking at100hz, meaning there is

up to 10ms jitter for packet delay (there is potential for a larger jitter as the

software interrupt will not be run in some situations when the machine is heavily

loaded). This rate is determined by an option calledHZ and can be changed by

rebuilding the kernel. Higher values ofHZ can result in instability and inaccuracy,

while lower values result in greater jitter.HZ is set to 1000 in the tests in this

78

Table 4.1: Emulation network RTT measurements
Round trip time (ms)

Packet size Min Median Max Std. Dev. Simulated
84 43.0 43.6 49.9 0.588 43.1
1500 53.3 53.8 61.1 0.653 54.4

chapter as recommended in the documentation [140].

Experimentation has shown the RTT measured on the emulationnetwork is similar

to an equivalent scenario being simulated. Table 4.1 presents the results of running

ping with two different packet sizes over the topology shownin figure 4.1 on the

emulation network. Router R1 is configured to delay packets by 21ms in both

directions and limit bandwidth to 2Mb/s. The ping is betweenhosts H1 and H2.

RTT samples were taken with both packet sizes and with no other traffic running

on the network. 1000 samples were used, enough to produce 95%confidence

intervals with half lengths around 40µs. No ARP look-ups were performed in both

tests as the IP addresses required were already in the ARP cache. Also shown is

the RTT measured when simulating an equivalent network in ns-2. There is no

jitter in simulation because packets are delayed by preciseamounts; simulating an

unloaded network will result in the delay being the same for every ping. The jitter

shown is explained by the timer granularity of Dummynet and the standard

deviation of the jitter and is within the expected range of approximately 1ms. See

Vanhonacker [141] for further performance evaluation of Dummynet including

delay jitter measurements.

Other emulation software is available. NIST net [142] is a Linux-based network

emulation tool. Linux 2.6 contains NetEm [143], another network emulation tool.

The ns simulator also has emulation capabilities [144]. Each has a similar

featureset to Dummynet.

More precise traffic shaping could be provided by a hardware device. Research is

ongoing in the WAND Network Group to produce a switch which can delay

packets, limit bandwidth, introduce loss and organise topologies. At the time the

research was carried out, no hardware was available for moreaccurate network

emulation.

79

4.1.4 Traffic generation and measurement

Traffic is measured with tcpdump [130] on emulation network machines. The jitter

introduced by the emulation network means that measurementdevices with higher

precision timing (such as the Dag [145] card) are not required to attain the

accuracy needed to compare the emulation network and simulation results.

Traffic needs to be generated on the emulation network and in simulation in the

same way. Different strategies used to write data to a TCP socket will result in

slightly different TCP behaviours. For example, the size ofthe first write to a TCP

socket will often determine the size of the first TCP packet carrying data. Another

example is that the design of the application to use blockingor non-blocking

socket IO will affect the resulting TCP stream. An application called

Tcpperf [146] is used for fine grained control over the application behaviour to

produce interactions with a TCP socket in a way consistent tohow ns-2 application

models work. Tcpperf allows specifying the size of each write to the TCP socket

and which of two schemes to employ to write the data. The first scheme uses the

select function call to wait until it is possible to write more data to the socket,

then callssend. The second sets the socket to be non-blocking and callssend

periodically. This method is similar to the way a constant bit rate traffic generator

works in ns-2. Iperf [147–150] is used to generate traffic to be compared to tcpperf

for validation purposes.

4.2 Packet trace comparisons

Packet traces produced in simulation and on the emulation testbed network are

compared directly in this section. A three step process is used to analyse the traces

for equivalence: traces are normalised, visualised and analysed by hand.

The variation in timing on the testbed network shown in table4.1 means that there

will be some small variation in timing between the simulatedtrace and the

measured trace. A direct binary comparison of the traces is therefore not useful.

Instead the traces are visualised with the tcptrace [131] utility and compared by

analysing the textual output of tcpdump.

80

Figure 4.2: Example tcptrace time sequence graph

Tcptrace produces graphs of TCP connections from packet traces. The most useful

graph produced by tcptrace for visualising a TCP connectionis the time sequence

graph. An example annotated time sequence graph is presented in figure 4.2.

The x-axis shows time and the y-axis shows the TCP sequence number. The

bottom line on a tcptrace time sequence graph is the sequencenumber which has

been acknowledged to. The top line is the acknowledgement number plus the

receiver’s advertised window. This shows the window in which the data packets

should be sent. Data packets are indicated by small black double-ended arrows

(also shown enlarged in a circle on the diagram). If the packet is a retransmission,

it will have an “R” next to it. Selective acknowledgement blocks are shown by

lines within the advertised window with an “S” next to them. If a data packet has

the PUSH flag set a diamond will be drawn around the packet.

To compare two of these graphs it helps to normalise the time and sequence

numbers of each packet in the trace. A utility called tcpnorm[151] was created for

this purpose: it normalises a PCAP packet trace by making thePCAP time stamps

and TCP sequence numbers start from 0. It handles the timestamp and selective

acknowledgement TCP options. Tcptrace has an option to normalise when

producing graphs, but this was found to be buggy and to produce inconsistent

graphs.

81

4.2.1 Connection establishment

In figures 4.3, 4.4 and 4.5 time-sequence graphs of TCP duringconnection

establishment are shown. These are produced from data collected with a topology

as presented earlier in figure 4.1. Dummynet router R1 limitsbandwidth to 2Mb/s,

delays packets in both directions by 21ms and has a queue length of 10 packets.

The simulation scenario is configured to be equivalent. For each operating system

(FreeBSD, Linux and OpenBSD) a trace is captured on the testbed and created in

simulation. The traces are normalised with tcpnorm then graphed with tcptrace.

The two graphs for each operating system are shown side by side.

Each of the pairs of graphs in figures 4.3, 4.4 and 4.5 are very close visual matches

for each other. In addition to these graphs, each situation is analysed in detail using

the textual output of tcpdump in the following sections.

FreeBSD

The two traces for FreeBSD are very close. The textual outputof tcpdump shows

that the sequence and content of packets illustrated in figures 4.3(a) and 4.3(b) are

nearly identical except for the TCP timestamp option. The throughput measured

on the emulation network is within 2% of the throughput measured in the ns-2

simulation. The TCP timestamp option differs by one often inthe traces. The

reason for this is that the timestamp counter is based on theticks variable in the

network stack which, in this situation, occurs once every 10ms. This timer starts

counting when the machine boots, so synchronising it between simulation and the

real machine is not practical.

There is a small difference in timing of packets. This is due to the difference in

round trip time and variation in timing found in the emulation network, as

described in section 4.1.3. The per-packet time differenceis plotted in figure 4.6.

This graph shows how, in this case, the time differences accumulates over time

(this is not always the case for other network stacks tested). This eventually leads

to a slightly different ordering of packets.

82

80000

60000

40000

20000

0
01:00:00.4000 01:00:00.3000 01:00:00.2000 01:00:00.1000 01:00:00

sequence number

time

.

SYN

(a) Simulated FreeBSD

80000

60000

40000

20000

0

01:00:00.4000 01:00:00.3000 01:00:00.2000 01:00:00.1000 01:00:00

sequence number

time

.

SYN

(b) Measured FreeBSD

Figure 4.3: Simulated vs. measured connection establishment graphs: FreeBSD

83

80000

60000

40000

20000

0
01:00:00.4000 01:00:00.3000 01:00:00.2000 01:00:00.1000 01:00:00

sequence number

time

R

S
S

3
2
1R

S

3
2
1

R
S

3
2
1

R
S

3
2
1

R
S

3
2
1

R
S

3
2
1

.

R
S

3
2
1

3
.

R
S

2
1S

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

SYN

(a) Simulated Linux

80000

60000

40000

20000

0
01:00:00.4000 01:00:00.3000 01:00:00.2000 01:00:00.1000 01:00:00

sequence number

time

R

S

3
2
1S

3
2
1R

S

3
2
1

R
S

3
2
1

R
S

3
2
1

R
S

3
2
1

R
S

3
2
1

R
S

3
2
1

3R
S

2
1S

.

.

.

.

SYN

(b) Measured Linux

Figure 4.4: Simulated vs. measured connection establishment graphs: Linux

84

80000

60000

40000

20000

0
01:00:00.4000 01:00:00.3000 01:00:00.2000 01:00:00.1000 01:00:00

sequence number

time

SYN

(a) Simulated OpenBSD

80000

60000

40000

20000

0
01:00:00.4000 01:00:00.3000 01:00:00.2000 01:00:00.1000 01:00:00

sequence number

time

.

SYN

(b) Measured OpenBSD

Figure 4.5: Simulated vs. measured connection establishment graphs: OpenBSD

85

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 5 10 15 20 25 30 35 40 45

T
im

e
di

ffe
re

nc
e

(s
)

Packet number

Figure 4.6: Time difference vs. packet number for FreeBSD traces

Linux

The traces for Linux 2.6 look similar in figures 4.4(a) and 4.4(b). The one notable

difference is some of the data packets have diamonds around them meaning they

have the PUSH flag set.

The PUSH flag in TCP was originally specified [10] to mean that when a receiving

TCP sees the flag, it must not wait to receive more data before passing the data to

the receiving process. In practice, data is passed to the application as soon as

possible irrespective of the PUSH flag and it is set by the sending network stack,

rather than the application, in most recent TCP implementations.

The interface between application and network stack is different in simulation with

ns-2 and on a real machine, so the model of the application is not the same

between the two. The captured trace from the emulation network shows how Linux

sets the PUSH flag more aggressively than the other stacks measured, as the PUSH

flag is set on packets after the first data packet with Linux andnot with FreeBSD

or OpenBSD. This functionality, when combined with the different application

behaviour, results in the PUSH flag being set for extra packets in simulation when

using the Linux TCP implementation. The PUSH flag is set basedon when an

application writes to a socket and how large the write is; theapplication model in

ns-2 is not identical to the pattern of writing of the real world test application.

The TCP timestamp option differs between the traces. The counter used for the

timestamp is increased once every millisecond in the version of Linux studied. The

packets are consistently between 0 and 3 milliseconds different in their timings and

the TCP timestamp option reflects this. This difference is due to both the timer

granularity and the limitations of Dummynet introduced earlier in this chapter.

86

The traces are identical until the difference in PUSH flags save for the slight timing

differences described above (approximately the first 20 packets are identical). On

the real machines some data packets are generated later in the trace that are smaller

than the MTU. This is due to application differences, the timing of when data is

written to the TCP socket by the application is different between simulation and

the real machine which results in this behaviour. The Linux traces are very similar

when visualised with tcptrace and the throughput measured on the emulation

network is within 2% of the throughput recorded in simulation.

OpenBSD

The sequence of packets shown in figures 4.5(a) and 4.5(b) arevery close matches.

When the traces are analysed further it is evident some TCP timestamps vary

between the traces by one. This occurs for the same reason it does in the FreeBSD

trace and is described earlier.

There are fewer data packets in the graphs showing OpenBSD (figures 4.5(a)

and 4.5(b)) due to the OpenBSD sender only sending one initial data packet after

the three-way handshake of TCP. The acknowledgement for this packet is not sent

straight away by the other end of the connection due to the delayed

acknowledgement mechanism: either the delayed acknowledgement timer must

fire or two packets must arrive. This is one of the reasons for RFC 3390 [152]

which increases the initial TCP window size. The version of OpenBSD tested does

not implement RFC 3390 while the versions of Linux and FreeBSD studied here

do. Figures 4.5(a) and 4.5(b) show a timer firing with the sameduration in

emulation and simulation: the acknowledgement is receivedwhich results in

further data packets prior to time 01:00:00.3000. The acknowledgement is

received at this time due to the delayed acknowledgement timer being set to

200ms. This verifies that this TCP timer is firing at the correct time.

The timing difference of packets is similar to FreeBSD (see figure 4.6). This

eventually leads to a different sequence of packets, although an overall tcptrace

graph of the connection looks nearly identical and the throughput recorded in

simulation is within 2% of the throughput measured on the emulation network.

87

Linux 2.6 setup

Linux 2.6 (used in the traces analysed here) has dynamic window size

determination. This is supported in the Network SimulationCradle as described

below. Linux 2.6 tunes the windows used in TCP based on the amount of memory

available in the machine. The cradle code uses memory size equivalent to the

machines on the emulation network. The receiver’s advertised window grows

dynamically and is also affected by the size of the packet structure allocated in the

Ethernet driver.

When a packet is received in a network driver, the driver allocates a structure called

anskbuff with enough space to hold the packet. It is up to the driver to select the

space for the packet received, often there is extra slack space that is unused by the

driver (but possibly used later by other sections of the network stack). This packet

is then sent on to the network stack. When calculating the receivers advertised

window, the size of theskbuff is checked as listing 4.1 shows.

Listing 4.1: Linux 2.6tcp_grow_window code

int incr;
/*
* Check #2. Increase window, if skb with such overhead
* will fit to rcvbuf in future.
*/
if (tcp_win_from_space(skb->truesize) <= skb->len)

incr = 2*tp->advmss;
else

incr = __tcp_grow_window(sk, tp, skb);

if (incr) {
tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,

tp->window_clamp);
tp->ack.quick |= 1;

}

In listing 4.1skb->truesize refers to the size of the skbuff allocated in the

driver. To obtain the same traces on real machines and in simulation, the simulation

driver code needs to allocateskbuff sizes in the same manner as the driver used

on the real machine. The simulation driver allocatesskbuffs similar to the

eepro100driver used on the emulation network machines and is able to produce

the same offered window sizes as those measured on the emulation network.

88

4.2.2 Congestion

Figures 4.7 and 4.8 are tcptrace graphs of TCP undergoing loss because it has

overflowed the router queue size. The scenario simulated andmeasured is the same

as presented previously in section 4.2.1; these graphs are produced from later in

the connection.

FreeBSD

FreeBSD responds to the packet loss in the same manner in simulation and on the

testbed network. Figure 4.7(a) and figure 4.7(b) show the same selective

acknowledgement ranges and bursts of data packets due to theloss. The two

graphs differ in the time and sequence numbers shown on the axis. This is due to

loss occurring slightly earlier on the emulation network. This discrepancy is due to

the timing difference noted in the earlier discussion of FreeBSD. FreeBSD’s

response to the different network conditions (due to Dummynet) means that the

timing off the loss is different. The graphs show the algorithmic response of TCP

is the same in simulation as it is on the real machines.

Linux

To make the graphs in figure 4.8 easier to understand and compare, the TCP PUSH

flag has been omitted. Unlike figure 4.7, the two graphs have the same sequence

numbers and time shown. The response to packet loss is identical with a simulated

Linux TCP stack and one running on a real machine.

4.2.3 Summary

Comparing packet traces produced by a controlled real worldnetwork and

equivalent simulation show that the results produced by theNetwork Simulation

Cradle TCP implementations are able to achieve packet-level accuracy. Small

differences in timing, TCP options (the timestamp option),and flags (the PUSH

bit) occur, but otherwise the sequence of packets produced by the simulated

versions of OpenBSD, FreeBSD and Linux are often identical.The exception to

this is in some cases a slightly different sequence of packets is produced due to the

89

500000

450000

400000

350000
01:00:02.5000 01:00:02.4000 01:00:02.3000 01:00:02.2000 01:00:02.1000 01:00:02

sequence number

time

SSSSS
R
S
3

SS
SSSSSSS

RRR
S

3
SSS

SSSSSSSS
RR
S

RRR

S

3

SS

SSSSSSSSS
R
S
3

SS

(a) Simulated FreeBSD

450000

400000

350000

01:00:02.3000 01:00:02.2000 01:00:02.1000 01:00:02 01:00:01.9000

sequence number

time

SSSSS
R
S
3

SS
SSSSSSS

RRR
S

3
SSS

SSSSSSSS
RR
S

RRR

S

3

SS

SSSSSSSSS
R
S
3

SS

(b) Measured FreeBSD

Figure 4.7: Simulated vs. measured TCP packet loss responsefor FreeBSD

90

200000

150000

100000

50000

01:00:00.8000 01:00:00.7000 01:00:00.6000 01:00:00.5000 01:00:00.4000

sequence number

time

SS

32
1R

S

32
1

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
13R

S

21
S

SSSSSSSSSS
3

S
R
SSSS

21
S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

R
S

3
21

S

3
2
1R

S

3
21

S

3
2
1R

S

3
21

S

3
2
1R

S

3
21

S

3
2
1R

S

3
21

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
13RS

21
S

(a) Simulated Linux

200000

150000

100000

50000

01:00:00.8000 01:00:00.7000 01:00:00.6000 01:00:00.5000 01:00:00.4000

sequence number

time

SS

32
1

S

32
1R

S

32
1

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
13R

S

21
S

SSSSSSSSSS
3

S
R
SSSS

21
S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

S

3
21

R
S

3
21

S

32
1R

S

32
1

S

3
21

R
S

3
21

S

3
2
1R

S

3
21

S

3
2
1R

S

3
21

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
1R

S

32
13R

S

21
S

(b) Measured Linux

Figure 4.8: Simulated vs. measured TCP packet loss responsefor Linux

91

difference in timing between the real world network and the simulated one.

4.3 Simulated TCP performance

Section 4.2 showed how a high degree of accuracy is attained when using real

world TCP implementations in simulation by comparing packet traces at a micro

level. This section describes comparisons of the TCP agentsfound in ns-2 with the

NSC TCP implementations at a macro level, reproducing a previously published

simulation scenario in section 4.3.1, and ties simulation back to measured results

in section 4.3.2.

The results shown in this section compare the NSC TCP implementations to

independently developed TCP models (those found in ns-2): amethod of

validation discussed by Bagrodia and Takai [93] and noted inthe introduction of

this chapter (page 75).

4.3.1 Performance over a complex topology

The simple dumbbell topology (also known as abarbell topology) is often used

when conducting simulation based research [153] even though the research is often

an Internet study and it is not clear such topologies represent Internet

dynamics [153,154]. The idea that dumbbell topologies are not sufficient to

analyse Internet dynamics is discussed by Anagnostakiset. al [155] by analysis of

Internet measurements and creation of a multiple-bottleneck simulation topology

that presents results differing largely from a dumbbell topology.

A reproduction of one of the simulation scenarios studied byAnagnostakiset. al is

presented here. The network topology and TCP flows that are discussed in [155]

are shown in figure 4.9. This setup produces a result that is unlike results attained

from using a dumbbell topology: as the number of TCP flows across the central

link increases, the aggregate goodput1 decreases. The reproduction presented here

uses the original TCP models used in the study (the models from ns-2) and extends

the simulation to use NSC TCP implementations as well. This allows direct

comparison between results from simulations performed with the ns-2 TCP models

1Goodput is the rate of data received by the application layerfrom TCP.

92

2

9

8

Router

0

1

3

4

5 11

7

6

10

Multiple congestion−point flows A

Flows X
Flows Y

20Mb/s, 3ms delay
1Gb/s, 5ms delay
20Mb/s, 10ms delay
10Mb/s, 3ms delay

Source

Sink

Figure 4.9: Multi-bottleneck scenario (adapted from [155])

and results from simulations performed with the NSC TCP implementations. This

process provides further validation of the NSC TCP implementations.

The simulation topology used is shown in figure 4.9, which is equivalent to

figure 3 in [155]. As in [155] the number of flows inX andY of figure 4.9 are

fixed at five each. The number of flows inA varies, as does the type of TCP source

and sink used for the flows ofA. The flows inX andY use ns-2’s Newreno TCP

agent with delayed acknowledgements enabled. Simulationslast 300 seconds.

Start times for all TCP streams are randomly distributed in the interval[0, 10.0],

goodput is measured from when all flows have completed connection

establishment and the application has received data.

Each set of simulation parameters is simulated 10 times withthe random seed

varied (the same methodology as Anagnostakiset. al [155]). The simulation

output statistical analysis procedures discussed by Law [156] are used. The mean

(µ) and variance (σ2) are estimated by:

X(n) =

n
∑

i=1

Xi

n

And:

S2(n) =

n
∑

i=1

[Xi − X(n)]2

n − 1

An approximate100(1 − α) percent (0 < α < 1) confidence interval forµ is given

93

by:

X(n) ± tn−1,1−α/2

√

S2(n)/n

Wheretn−1,1−α/2 is the upper1 − α/2 critical point for at distribution withn − 1

degrees of freedom. Using these formulae the confidence interval for the mean is

approximated for each set of simulation parameters. Comparing the half-length of

the confidence interval to the point estimate of the mean gives a measure of the

precision of the confidence intervals.

Figure 4.10 presents the results of reproducing the simulation (figure 3 in [155]).

The point estimate of the mean is plotted with the confidence interval for each

point. The confidence intervals are small enough that they are very hard to see on

the graph: they vary between 0.01% and 2%. The results presented here agree with

the original research in the case of using the original ns-2 TCP models and when

using the NSC TCP implementations: as the number of flows inA increases the

aggregate goodput decreases.

Anagnostakiset. al.[155] provide a thorough analysis of this result with different

queueing mechanisms, queue sizes, TCP models and round triptimes. Both the

reproduced results from the ns-2 TCP models and the NSC TCP implementations

agree with the original research. This result is further evidence that the NSC TCP

implementations are valid.

4.3.2 Uniform random loss

Measurement studies have found the presence of random loss on the

Internet [157,158] and uniform random loss is used as a simple model for loss

encountered on the Internet [159–161] (or other networks, for example, ATM

networks [7]) in many simulation studies. This section presents a study of TCP

performance under uniform random packet loss showing comparisons between

ns-2 TCP models, NSC TCP implementations and measurements from a test

network to validate the NSC TCP implementations.

The performance of TCP during varying uniform random loss rates is presented in

figure 4.11. Simulation results using ns-2 with its standardTCP models and with

94

(a) Original simulation [155]

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140 160

G
oo

dp
ut

 (
M

b/
s)

Number of flows

NSC: FreeBSD
NSC: OpenBSD

NSC: Linux 2.6
ns-2: Sack

(b) Reproduced simulation

Figure 4.10: TCP goodput over a multi-bottleneck topology

95

TCP Implementation Min Mean Max SD
Linux 2.6.10 164.38 213.98 287.67 22.75
Linux 2.4.27 153.82 207.42 248.70 22.86
FreeBSD 5.3 136.77 176.20 225.01 17.11
FreeBSD 5.2.1 128.74 162.81 219.01 19.56
Windows XP SP2 89.90 137.31 191.00 21.67
OpenBSD 3.5 63.84 117.98 166.82 22.11

Table 4.2: TCP performance during 5% bidirectional loss [162]

NSC TCP implementations are shown in figure 4.11(a) and results measured from

the WAND Emulation Network are shown in figure 4.11(b).

The TCP flow goes through a network with a round-trip time of 40ms and a

bandwidth of 2Mb/s. Both graphs show 95% confidence intervals from a number

of repetitions of each combination of packet loss rate and TCP variant used. The

experiments on the emulation network are run 20 times for each point shown on

the graph, while in simulation 50 runs are used to produce tighter confidence

intervals. It is simple to run this extra number of experiments with simulation

(total time to simulate with one computer was under 3 hours) while running as

many tests on the emulation network would have taken many days.

The results in figure 4.11 expand on previous work where we show there is a large

difference in performance between TCP implementations during random

loss [162,163]. Table 4.2 shows the results from measuring aset of TCP

implementations on the WAND Emulation Network with 5% packet loss. The tests

here show how the performance varies as the packet loss rate is increased and give

greater insight into the relative performance of TCP implementations under

random packet loss.

The simulation results for TCP implementations using the Network Simulation

Cradle are consistent with measurements of the same implementations on the

testbed network. All follow the same trend, with FreeBSD attaining the most

goodput when the loss rate is higher (greater than or equal to10%), OpenBSD

consistently recording the least goodput and Linux 2.6 dropping from the most

goodput at low loss rates to between the two BSD variants at higher loss rates. The

ns-2 TCP models have the same general trend as the real TCP implementations

studied and fall in between the measurements for the real implementations.

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.01 0.1

G
oo

dp
ut

 (
M

b/
s)

Packet loss rate

NSC: FreeBSD5
NSC: OpenBSD3

NSC: Linux 2.6
ns-2: Sack

(a) ns simulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.01 0.1

G
oo

dp
ut

 (
M

b/
s)

Packet loss rate

FreeBSD5 Linux 2.6 OpenBSD3

(b) Testbed measurements

Figure 4.11: TCP goodput vs. loss rate

97

4.4 Summary

At the start of this chapter two methods of validation used byBagrodia and

Takie [93] were described: direct comparison of simulationmodel and real system

and comparison with independent models. This chapter used both of these

methods to show that simulating TCP with real world code can produce very

accurate results.

Section 4.2.2 showed how the response of two TCP implementations in the

Network Simulation Cradle directly matched measurements from real machines on

a testbed network. Such direct comparison can not be used formany TCP models,

as the abstracted TCP models are often not designed to model one particular TCP

implementation.

Section 4.3 presented simulations that compared against the existing ns-2 TCP

models which are independently developed and validated [5,21,81]. The trends

shown agree between the ns-2 TCP models and the NSC TCP implementations for

the simple scenarios studied.

Throughout this chapter it is apparent that the different TCP implementations

behave differently, even though they all implement the TCP protocol and can

communicate between each other. Each implements TCP Sack, slow start, fast

recovery and other mechanisms, yet they all differ. This is evident both on testbed

measurements (see also our previous work in [162]) and with the simulated

implementations. In the small set of simulations presentedin section 4.3 the ns-2

TCP models are able to simulate the basic trend of TCP performance in a scenario

but do not give any information on the variability between real TCP

implementations. The NSC’s ability to show the range of outcomes from different

stacks and the value of this information is investigated in chapter 5.

98

Chapter 5

Variation between TCP

implementations

The implementation of real world TCP stacks in a network simulator is described

in chapter 3 and validity tests are presented in chapter 4. The simple set of tests in

section 4.3 shows that the performance varies between TCP implementations and

models. This chapter reports further on this variation by presenting a set of

simulations that show the extent of performance differencebetween TCP

implementations.

Section 5.2 shows simulations that were created to analyse the difference between

TCP implementations and models. These simulations show how, even in very

simple situations, there can be large differences in TCP performance between the

various TCP stacks.

Following this section 5.3 presents simulation scenarios reproduced from

previously published work. This gives further insight intothe variation between

TCP implementations in networking scenarios that are actually studied by

researchers. These simulations, along with those presented in chapter 4, show that

using real world code for TCP simulation models is feasible to carry out practical

research and provides useful results.

99

5.1 On benchmarking TCP

TCP is a complex protocol that has evolved significantly fromits original

specification in 1981 [10]. Since that time it has been further specified to include

many optional performance enhancements [11,80,85,152,164,165]. The research

community has published ideas to increase TCP performance in various scenarios,

some of which are implemented in recent TCP stacks [9,19,46,47] and some of

which are not used [44,45] in recent TCP implementations.

Often simulation models are built to test a single new TCP enhancement while

TCP implementations may include the new idea as an option. The permutations of

options and parameters for options can be enormous. For example, the Linux

TCP/IP stack version 2.6.12 has 45 TCP options that can be modified via the

sysctl program. Some options are boolean (e.g., whether selective

acknowledgements are enabled, whether timestamps are enabled) while others can

be tuned (e.g., the number of connection attempt retries, default window size for

send and receive buffers).

In addition to the many TCP configuration options and algorithms available there

are many types of network to test on and many metrics to test. The Internet

Research Task Force Transport Modeling and Research Group lists 11 metrics for

evaluating congestion control algorithms [166] and 17 tools and characteristics to

test with simulation or test bed studies [167]. The range of possible networks and

scenarios that can be simulated is infinite; attempts at benchmarking TCP do so by

limiting the search space to a set of parameters which are designed to be

representative of today’s Internet [168].

The large parameter space for TCP performance evaluation means that designing

thorough benchmarks of TCP variants is difficult. In this chapter, the simulations

presented are not intended to provide a benchmark for TCP performance. Instead,

they show that using real world code to simulate TCP is valuable because TCP

implementations differ amongst themselves, even in simplescenarios (see

section 5.2) and that using such TCP models in practical research provides

additional insight (see section 5.3).

100

5.2 New simulation scenarios

This section presents simulations created to test the variation in performance

between TCP implementations and models. TCP during severe packet reordering

is studied in section 5.2.1. Linux TCP obtains very different results to the other

TCP implementations and models studied in this scenario. Following this, a large

number of simulation results over a dumbbell topology with different bandwidths,

delays and queue sizes is presented in section 5.2.2.

5.2.1 Packet reordering

The results of a simulation scenario with substantial packet reordering due to

packets being randomly delayed between a TCP source and sinkare shown in

figure 5.1. The TCP stream is limited by a bottleneck link of 4Mb/s and has a

round trip time of 104ms. Data is transferred uni-directionally and packets

travelling in the direction of the data are delayed by an exponential random

variable. The scale factor (µ) of the exponential distribution is shown on the x-axis

of the graph. Atµ = 0 no packet reordering occurs. Each point on the graph was

generated from the mean of 20 simulation runs with differingrandom seeds. The

confidence intervals calculated using the methodology outlined in section 4.3.1 are

plotted on the graph but are too small to see, the half-lengths of the confidence

intervals range from less than 1% to 3.2%: 20 simulation runsis enough to

produce tight confidence intervals.

The ns-2 TCP models of anAgent/TCP/Sack1 source and

Agent/TCPSink/Sack1/DelAck sink have very similar results to the

FreeBSD and OpenBSD network stacks simulated with the Network Simulation

Cradle. There is however a large difference between these and the two versions of

the Linux TCP stack tested.

The Linux TCP/IP stack has several mechanisms implemented to aid TCP

performance during packet reordering [169]. Duplicate selective

acknowledgements [48] (DSACK) [46] help distinguish between packet loss and

packet reordering. The Linux TCP/IP stack uses TCP timestamps to help detect

101

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.01 0.1

G
oo

dp
ut

 (
M

b/
s)

Exponential delay scale

ns-2: Sack1
NSC: Linux26

NSC: Linux24
NSC: FreeBSD5

NSC: OpenBSD3

Figure 5.1: TCP goodput under packet reordering

spurious retransmissions similar to the TCP Eifel [170] algorithm. The forward

acknowledgement algorithm [19] is also implemented and canhelp in this

scenario. This shows how a range of values from real world implementations are

possible in a given scenario; further insights into the situation being simulated are

possible with a range of TCP implementations available for simulation.

5.2.2 Many TCP flows over a dumbbell topology

The simulation scenario presented in this section is an attempt to characterise how

queue size, cross traffic, competing TCP type, bandwidth anddelay affect TCP

goodput in a dumbbell topology. Figure 5.2 shows the simulation scenario. The

flowsF andR have uniformly distributed RTTs in the interval[8, 222]ms. The

number of flows inF is selected from[0, 5, 20, 55, 100] andR is selected from

[0, 5]. The routers on the bottleneck link have queue sizes selected from

[6, 10, 12, 15, 18, 30, 50] packets. The bandwidth of the bottleneck link is selected

from [0.512, 1, 2, 4, 6, 8, 10] Mb/s. Each set of parameters is simulated with 10

random seeds. FlowM is measured and has an RTT of 8ms. The TCP model is

varied and goodput recorded after 200 seconds of simulationtime.

102

F flows

R flows

M flow

Figure 5.2: Simulation scenario

Table 5.1: Simulation machines used
CPU Type Cache size RAM Number
Intel Pentium 4 2.60GHz 512 KB 512 MB 32
Intel Pentium 4 2.80GHz 1 MB 512 MB 47
AMD Athlon XP 2200+ 256 KB 256 MB 19
AMD Opteron 250 1 MB 8 GB 1
Total 99

To simulate this range of parameters 112500 independent simulations were run.

The simulations were spread over a set of 99 computers. The specifications of the

simulation machines are summarised in table 5.1. A total of 4.98 CPU-years were

spent simulating.

Direct TCP model performance comparisons

It is not trivial to compare TCP models from the results of thesimulations due to

the large parameter space and number of results. Due to the number of parameters

being varied, 2 or 3 dimensional graphs do not have enough dimensions to display

the parameter space.

Figure 5.3 shows comparisons of some of the TCP variants by plotting the

difference in measured goodput. Only three sets of graphs are shown for brevity.

Each point on the graphs on the left is the comparison of two simulations run with

identical parameters apart from the TCP model used for the measured flow. A

positive value on one of these graphs means the first TCP modelattained more

goodput than the second TCP model. For example, a point aty = 1 on the left

graph of figure 5.3(a) means the Newreno ns-2 model was measured to have twice

the goodput as the Sack ns-2 model. This data is presented as acumulative

percentage plot in the graphs on the right, where a positive value is counted on the

103

right side of the graph.

Figure 5.3(a) shows the comparison of the ns-2 TCP models forNewreno and

Sack. The comparison shows only a slight bias towards Newreno, both attain more

goodput than the other a small percentage of the time. Greater differences are

shown in figures 5.3(b) and 5.3(c). Linux 2.4 achieves more goodput than

FreeBSD in many cases. This is evident on both graphs in figure5.3(b). The

difference between Linux 2.6 and FreeBSD is larger yet, withLinux 2.6 attaining

more goodput than FreeBSD approximately2/3 of the time, only a very small

percentage of the time is more goodput recorded for FreeBSD than Linux 2.6.

Not shown in figure 5.3 are graphs comparing the ns-2 models with the NSC

models. These also show large differences, comparing ns-2’s Sack with Linux 2.6

produces a graph similar to 5.3(c). These results show that even in a very

simplistic scenario there can be large differences in goodput of the TCP

implementations studied. The next section shows further analysis of the results,

characterising some of the reasons for such differences in performance.

Characterising the differences

The graphs in figure 5.3 show that there is a difference between simulated TCP

models but do not give any insight into which simulation parameters are causing

the difference. The Weka [171] machine learning software was used to help

analyse the large data-set. Weka implements many machine learning algorithms

including classifiers (decision trees, rules, regression and Bayes), clustering

algorithms, association and attribute selection.

Weka’s attribute selection algorithms rank the attributes(parameters) on their

importance in predicting a single parameter: the class value. The class is set to the

goodput in all results presented. Some machine learning algorithms require the

class value to be nominal, where goodput is numeric (continuous). In such cases

the goodput is discretised into 10 bins of equal frequency.

Listing 5.1 shows the output from Weka running attribute selection using the

information gain attribute evaluator. This ranks the attributes in order and assigns

an information gain value to each attribute. The information gain algorithm is a

104

-10

-5

 0

 5

 10

 0 5000 10000 15000 20000 25000 30000

D
iff

er
en

ce

Simulation number

 0

 50

 100

-5 0 5

C
um

ul
at

iv
e

pe
rc

en
ta

ge

Difference

(a) ns-2: Newreno vs. ns-2: Sack

-10

-5

 0

 5

 10

 0 5000 10000 15000 20000 25000 30000

D
iff

er
en

ce

Simulation number

 0

 50

 100

-5 0 5

C
um

ul
at

iv
e

pe
rc

en
ta

ge

Difference

(b) NSC: FreeBSD5 vs. NSC: Linux 2.4

-10

-5

 0

 5

 10

 0 5000 10000 15000 20000 25000 30000

D
iff

er
en

ce

Simulation number

 0

 50

 100

-5 0 5

C
um

ul
at

iv
e

pe
rc

en
ta

ge

Difference

(c) NSC: FreeBSD5 vs. NSC: Linux 2.6

Figure 5.3: TCP performance comparisons with cumulative graphs

Listing 5.1: Weka output for information gain attribute evaluator

Ranked attributes:
0.60195565 Bandwidth
0.60009471 Forward flows
0.04666604 TCP type
0.01071284 Reverse queue
0.01071284 Forward queue
0.00430134 Seed
0.00293595 Reverse flows
0.00000376 Cross TCP type

105

Listing 5.2: Weka output for CFS attribute evaluator

Forward queue
Reverse flows
TCP type
Seed
Bandwidth
Forward flows

Listing 5.3: Information gain attribute evaluator for differences data

Ranked attributes:
0.805076263 Forward flows
0.185627249 Forward queue
0.185627249 Reverse queue
0.082538220 Bandwidth
0.044354906 Reverse flows
0.000000192 Cross TCP type
0 Seed

simple and fast ranking method that uses a measure of the change in entropy

before and after observing an attribute [172]. This algorithm is often used in text

categorisation applications where the dimensionality of the data is high [172].

Bandwidth and the number of flows in the forward direction arethe greatest

predictor of goodput. The size of the data set limits the potential machine learning

algorithms that can be practically applied. Correlation-based Feature

Selection [173] (CFS) is a sophisticated algorithm that is applicable to large data

sets. CFS does not rank the attributes but computes a subset of the attributes that it

considers to be the most important to predicting the class value. The attributes

selected by CFS are shown in listing 5.2. The cross TCP type and reverse queue

are not included in this output. The results from these attribute selection algorithms

are consistent with the expected outcome as when bandwidth is low and there are

many competing flows, the resulting goodput of the measured flow will be low.

Using the differences in goodput between TCP models run withthe same set of

parameters (the same data as presented in figure 5.3) resultsin some similar

findings from attribute selection. The results of processing this data with the

information gain algorithm are shown in listing 5.3. Forward flows is again a good

predictor, though bandwidth much less so at predicting the difference in goodput

between TCP models. CFS includes all attributes shown in listing 5.3 except cross

TCP type and reverse queue.

106

 0
 20

 40
 60

 80
 100

Foward flows 1
 2

 3
 4

 5
 6

 7
 8

Bandwidth (Mb/s)

 1

 10

 100

 1000

Difference

Figure 5.4: Mean goodput difference as flows and bandwith is varied

It is evident from viewing the raw data sorted by the difference in goodput that the

largest differences are due to extreme circumstances: manyflows with small queue

sizes and small bandwidths. The results from Weka presentedearlier support this

conclusion. Often in such cases, no goodput is recorded for the ns-2 TCP models

of Newreno and Sack, as their connection establishment fails, where the real world

implementations are able to connect and send data. Figure 5.4 shows a

visualisation of the mean difference encountered as flows and bandwidth are

varied. This shows how at a low bandwidth and high number of flows the

difference is the greatest and there is a general trend towards higher differences as

the number of flows is increased.

The results of this study show large variations in recorded goodput for various

parameter permutations of a very simple simulation scenario. The study is not

intended to realistically model a particular real world configuration, rather it is

designed to explore how different TCP models and implementations respond to

similar situations. Generating large amounts of performance data from various real

world TCP implementations is something that is difficult andresource intensive

(over 100 computers would be required just to run the scenario presented here and

it would take 280 days to perform with this amount of hardware) without a

framework like the Network Simulation Cradle. The cradle, with its multiple TCP

107

implementations, makes possible–and easy–comparative performance studies of

TCP implementationsover a range of networks and parameters with much less

hardware and time requirements than testing on real networks.

5.3 Reproduced simulations

This section shows the use of the Network Simulation Cradle in reproductions of

simulations and experiments conducted in a range of TCP based research. The

results in this section show again that using real world TCP implementations in

research is feasible for actual research undertaken with TCP simulation and more

so that useful results and insights are possible from using such implementations.

During the course of the research many simulation scenarioswere reproduced.

Shown in the following sections are scenarios of interest toshow the sorts of

differences encountered when simulating with the NSC as well as the ns-2 TCP

models. For some reproduced simulations, the results of using the NSC stacks is

the same as using the ns-2 models, these simulations are not covered here. The

following results do not show that ns-2 simulates TCP incorrectly; rather they

show that in some situations the lack of detail in the ns-2 models is important to

the result.

5.3.1 TCP fairness on high-speed networks

TCP over long distance fast networks is an active research area: TCP increases its

window very slowly and is sensitive to packet loss, resulting in low link utilisation

on many fast long distance networks. This is due to the combination of the round

trip time being large and the congestion window size required to make full use of

the bandwidth being large. It takes many round trip times forTCP to increase its

window to be large enough to fill the network with packets; when packet loss is

encountered this window is halved and the process needs to begin again

Various schemes have been invented to alleviate this problem, while remaining

compatible with TCP. BIC-TCP [9], HSTCP [174], FAST TCP [59], H-TCP [57]

and Scalable TCP [58] are examples. They also often have problems with fairness

(sometimes exacerbating TCPs inherent RTT unfairness). Convergence times for

108

these proposals vary [175].

These TCP modifications have been tested both in simulation and on

testbeds [176]. The simulations in this section reproduce experiments conducted

on testbeds presented by the Hamilton Institute technical report [175]. This report

has been widely cited in research since being published (e.g., [176,177]) and is

noted as a reference for the IETF Transport Modeling Research Group led by Sally

Floyd [178].

Li et. al [175] aim to “compare the performance of competing TCP protocols in a

systematic and repeatable manner.” They define and use a set of benchmark tests to

compare proposals to increase TCP’s performance on high bandwidth-delay

product networks. In this section a reproduction of one of their experiments is

presented.

Figure 5.5 shows the original graphs presented as figure 4 in [175]. The ratio of the

throughput of competing variants of TCP compared to “standard TCP” is shown

for different bottleneck speeds. Figure 5.6 shows results for ns-2 and NSC TCP

stacks in the same environment.

The topology used in the experiments is a dumbbell topology.Path propagation

delay (and hence round trip time) is varied and the fairness between two TCP flows

is measured. The fairness is defined as the ratio of goodput achieved by the two

flows after 60 seconds. The queue size is set to 20% of the bandwidth-delay

product. Flow start time is jittered by up to one RTT and each set of parameters is

simulated with 5 random seeds. The graphs show the mean fairness over the 5

simulations for each data point.

The baseline or “standard TCP” cases shown in figure 5.5 are reproduced and

presented in figure 5.6. The lines on the graphs without points show the results that

are consistent between the original experiments and the reproduced simulations.

The fairness measured is near to 1 for RTTs greater than or equal to 40ms,

meaning the two TCP flows equally (fairly) share the link bandwidth. At low RTTs

on figure 5.6(a) the fairness is less stable. As queue size is based on the

bandwidth-delay product in this experiment, when both the RTT and bandwidth

109

Ratio of throughputs of competing New-TCP and standard TCP flows as path propagation delay
is varied. Results are shown for 10Mbit/sec (left) and 250 Mbit/sec (right) bottleneck bandwidths.
Both flows have the same RTT. Queue size is 20% BDP.

Figure 5.5: Ratio of throughputs of competing TCP flows [175]

110

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100

F
ai

rn
es

s

RTT (ms)

NSC: FreeBSD5 vs. NSC: FreeBSD5
NSC: OpenBSD3 vs. NSC: OpenBSD3

ns-2: Sack vs. ns-2: Sack

NSC: Linux26 vs. NSC: FreeBSD5
NSC: FreeBSD5 vs. NSC: OpenBSD3

NSC: Linux24 vs. NSC: OpenBSD3

(a) 10Mb/s network

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100

F
ai

rn
es

s

RTT (ms)

NSC: FreeBSD5 vs. NSC: FreeBSD5
NSC: Linux26 vs. NSC: Linux26

ns-2: Sack1 vs. ns-2: Sack1

NSC: Linux26 vs. NSC: FreeBSD5
NSC: FreeBSD5 vs. NSC: OpenBSD3

NSC: Linux24 vs. NSC: OpenBSD3

(b) 250Mb/s network

Figure 5.6: Fairness between two TCP flows as path propagation delay is varied

111

are relatively low the queue size on the bottleneck router isalso very low (as low

as 3 packets when RTT is 16ms). Very low queue sizes lead to unfairness as it is

easy for one flow to occupy the entire queue, starving the other flow. With higher

RTTs and/or a higher bandwidth the results are consistent.

These baseline results are extended by comparing differentTCP implementations

against each other with the Network Simulation Cradle. The lines shown on the

graphs in figure 5.6 without points are for when both TCP flows are from the same

implementation. The results on the graphs in figure 5.6 with lines and points show

some of the combinations of standard TCP implementations compared against

each other. In the context of [175] any of these results couldbe the “standard

TCP”. Perhaps none of them should be used as a standard TCP reference point

because no one implementation captures the range of resultsshown here. Instead,

several TCP implementations need to be used to obtain this information.

Li, Leith and Shorten [175] compare new TCP variations such as BIC TCP and

H-TCP against their standard TCP, which is the Linux 2.6.6 TCP implementation.

The results in figure 5.6 show that there are large differences in fairness between

standard TCP implementations, as much as between some of thehigh-speed TCP

variants at 10Mb/s. Extending the scenario investigated toinclude further TCP

implementations shows that the “standard TCP” presented in[175] does not cover

the range of performance results that are encountered with multiple different TCP

implementations. Using real world network stacks in simulation means evaluating

the scenario discussed in [175] is easy and not the prohibitive amount of work it is

without the NSC.

5.3.2 Congestion control comparisons

Grieco and Mascolo [53] compare the Westwood+ [52], New Renoand Vegas TCP

congestion control algorithms using simulations with ns-2and some real world

measurements over the Internet. They analyse a series of scenarios: single and

multiple bottleneck situations with various link capacities, buffer sizes, and traffic

types, wireless links used with Medium Earth Orbit (MEO) andGeosynchronous

Earth Orbit (GEO) satellites, and measurements from FTP transfers on the

112

Internet. Reproduced results from two of the simulation scenarios in [53] are

presented in the following sections.

Single bottleneck scenario

A simulation scenario with a single bottleneck is used by Grieco and Mascolo [53]

to evaluate goodput and fairness in bandwidth allocation between flows of the same

TCP variant but differing RTTs. The topology used is a simplesingle-bottleneck or

dumbbell topology. A varying number of TCP flows, namedM henceforth, send

data in the forward direction, while 10 TCP flows send data in the reverse

direction. All flows inM use the same TCP congestion control mechanism. Round

trip times are uniformly distributed in the interval[20 + 230/M, 250]ms.M ranges

from 10 to 200. Simulations last 2000s of simulated time and the bottleneck link

bandwidth is 10Mb/s. This scenario is reproduced with the TCP implementations

available in the NSC used as the TCP model for the flows inM .

The results presented by Grieco and Mascolo [53] for this experiment are shown in

figure 5.7. The results of the reproduction are shown in figure5.8. Figure 5.8(a)

shows the aggregate goodput for allM flows asM is increased. This result agrees

with the results shown in figure 5.7(a) as onceM = 40 the goodput levels out at

approximately 9Mb/s. TCP Vegas is not included in the reproduced study.

Figure 5.8(b) provides further insight into this result by showing the variation in

fairness between the TCP implementations.

Grieco and Mascolo use the Jain Fairness Index [179] to determine fairness

between the flows inM . This index is defined in the following equation:

JFI =
(ΣM

i=1
bi)

2

MΣM
i=1

b2

i

Wherebi is the goodput of theith connection andM are the connections sharing

the bottleneck. The index belongs in the interval(0, 1] where 1 is the fairest.

The Jain Fairness Index for the TCP models studied in figure 5.8(a) is plotted in

figure 5.8(b). It is evident that while the TCP models achievesimilar goodput, the

fairness varies. The general trend of increasing fairness asM increases agrees with

113

(a) Total goodput overM TCP connections

(b) Jain fairness index

Figure 5.7: TCP over 10Mb/s bottleneck with reverse traffic [53]

114

 0

 2

 4

 6

 8

 10

 20 40 60 80 100 120 140 160 180 200

G
oo

dp
ut

 (
M

b/
s)

Number of flows (M)

NSC: FreeBSD5
NSC: Linux 2.6

NSC: Linux 2.4
NSC: OpenBSD3

ns-2: Sack1

(a) Total goodput overM TCP connections

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 20 40 60 80 100 120 140 160 180 200

Ja
in

 fa
irn

es
s

in
de

x

Number of flows (M)

NSC: FreeBSD5
NSC: Linux 2.6

NSC: Linux 2.4
NSC: OpenBSD3

ns-2: Sack1

(b) Jain fairness index

Figure 5.8: TCP over 10Mb/s bottleneck with reverse traffic

115

the results presented in [53]. This trend occurs because at lower values ofM there

is a greater variation of RTTs which increases TCPs unfairness. This variation in

RTTs is due to the setup of the experiment, where RTTs are uniformly distributed

over an interval depending on the size ofM .

The results in figure 5.8(b) also show the difference betweenTCP

implementations. The ns-2 Sack TCP model creates results which have the same

trend but using ns-2 abstracted models does not give any knowledge on the range

of values the real TCP implementations produce.

Multiple bottleneck scenario

Figure 5.9(a) shows the simulation scenario used by Grieco and Mascolo to

evaluate the effect of multiple congestion points on TCP congestion control. The

figure shows the setup for 2 “hops” as they are described in [53]. Each hop

consists of two routers and two flows transferring data in opposite directions. A

single flow, from sourceC1 to sinkSink 1, traverses all of the hops. The number of

hops is varied and the goodput of the flowC1 is measured. The capacity of the

entry/exit links is 100Mb/s with 20ms propagation delay. The capacity of the links

connecting the routers is 10Mb/s with 10ms propagation delay. Router queue sizes

are set to 125 packets. Simulations last 1000 seconds where the cross traffic is

active all the time. The measured flowC1 begins after 10 seconds of simulated

time. A range of TCP variants are used for this flow. The flows generating cross

traffic (C2 throughC5 in the figure) are controlled by the ns-2 Newreno TCP

model.

Two graphs are presented by Grieco and Mascolo for this simulation scenario.

Copies of the originals are included in figure 5.9. Figure 5.9(b) shows the goodput

of the flowC1 as the number of hops is varied for the TCP congestion control

algorithms New Reno, Vegas and Westwood+. Figure 5.9(c) shows what Grieco

and Mascolo refer to as the “total goodput”, defined as the“goodput of theC1

connection + average of theC2, C4...C2N connection goodputs”[53]. These

scenarios are reproduced with the NSC TCP implementations in place of the TCP

variants used in the original work. Grieco and Mascolo use New Reno TCP as the

baseline TCP to compare Westwood+ to; the results of the reproductions shown in

116

figure 5.10 show the variation between TCP implementations which could

represent this baseline.

The graphs in figure 5.10 show only the FreeBSD 5 and Linux 2.6 NSC TCP

implementations for brevity. Other TCP implementations produced results

between these two implementations. The graphs include confidence intervals

created based on 20 simulations with differing random seedsfor each point on the

graph. The confidence intervals are small enough that they are hard to see with the

naked eye; the half-lengths range between 1% and 5% for figure5.10(a) and 0.1%

and 0.9% for figure 5.10(b). Only the ns-2 TCP Sack model is shown but results

are consistent with those produced with the ns-2 NewReno TCPmodel.

The reproduced results in figure 5.10 should be compared to New Reno in the

original results, as the TCP stacks use the New Reno congestion control algorithm.

The trends shown in the original research are reproduced here with the ns-2 TCP

model. The goodput of theC1 connection starts at around the fair share and drops

linearly to below106 bps. The total goodput drops off quickly as hops increases

then levels out near7.106 bps. These trends are the same in the original research

(figure 5.9) and the reproductions shown here (figure 5.10). The results from the

NSC implementations show how there are a range of goodputs recorded; when the

number of hops equals 10, the Linux 2.6 TCP implementation attains over three

times the amount of goodput for theC1 connection than the FreeBSD TCP

implementation or the ns-2 Sack model. The general trends are the same in the

graphs in figure 5.10 but the gradients are different and there is a wide variation

between the two TCP implementations shown.

5.3.3 Request latency for a SIP proxy

Lulling and Vaughan [180] simulated session initiation protocol (SIP) requests

aggregated through a TCP proxy with different TCP variants.They compare

Tahoe [181], Reno [182] and Sack [11] variants of TCP with thens-2 simulator

and show SIP request latency under unfavourable networkingconditions such as

that found on a best-effort network such as the Internet. Theeffect head of the line

(HOL) blocking has on latency of SIP requests aggregated through one TCP

117

R R R R

1st hop 2nd hop

Sink 1

C2 Sink 2 C4 Sink 4

Sink 3 C3 Sink 5 C5

C1

(a) Scenario

(b) Goodput for theC1 connection

(c) Total goodput

Figure 5.9: TCP goodput vs. number of traversed hops [53]

118

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 6 7 8 9 10

G
oo

dp
ut

 o
f t

he
 C

1
co

nn
ec

tio
n

(b
ps

)

No. of traversed hops

NSC: FreeBSD5 NSC: Linux26 ns-2: Sack

(a) Goodput for theC1 connection

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7 8 9 10

T
ot

al
 G

oo
dp

ut
 (

bp
s)

No. of traversed hops

NSC: FreeBSD5 NSC: Linux26 ns-2: Sack

(b) Total goodput

Figure 5.10: TCP goodput vs. number of traversed hops

119

4

10 2

5

3
2Mb/s

15ms

10Mb/s
15ms

10Mb/s

15ms 15ms

10Mb/s

10Mb/s
15ms

Figure 5.11: Simulation topology used for SIP simulations (adapted from [180])

stream is analysed.

Figure 5.11 shows the simulation topology used in the SIP simulations. Nodes 0

and 3 are the SIP proxies using the TCP variants studied. Traffic is generated using

a stationary Poisson model to generate the arrival times of 512-byte session

establishment requests at node 0. This models a SIP session establishment

“INVITE” request arriving from a user to a SIP proxy. The requests are

immediately forwarded to the proxy at node 3 and the arrival time recorded. SIP

would usually respond with a “100 Trying” response, though this is not modelled

here. The TCP MSS is set so a SIP message occupies one TCP segment. TCP

delayed acknowledgements are disabled.

This simulation setup is used to test SIP request latency under varying loss

conditions. Figure 5.12 shows the average request latency for increasing packet

drop rates. The original results presented by Lulling and Vaughan [180] are shown

in figure 5.12(a), these are from figure 9 of [180]. Figure 5.12(b) shows a

reproduced graph with extra results from using the NSC FreeBSD and OpenBSD

TCP implementations. Linux is not included because delayedacknowledgements

cannot be disabled in the Linux TCP stack1.

Lulling and Vaughan analysed the delays under these loss conditions and check

whether the latency is within a 2 second bound. This bound is due to ISDN

switches used to interconnect within the public switched telephone network

(PSTN) which may abandon a call if a reply from a setup attemptis not received

with 2 seconds [183]. They were able to conclude that TCP Sackis the only TCP

variant that is able to satisfy this bound under all loss rates tested. As figure 5.12(b)

shows, simulating with real world code provides extra insight into this scenario:

1Linux has a socket option calledQUICKACK which disables delayed acks for only a short pe-
riod, not the entire TCP connection duration.

120

(a) Original results [180]

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 r
eq

ue
st

 la
te

nc
y

(s
)

Packet loss rate (%)

NSC: FreeBSD
NSC: OpenBSD

ns-2: Tahoe
ns-2: Reno

ns-2: Sack

(b) Reproduced results

Figure 5.12: Average SIP request latency for increasing loss rates

121

FreeBSD has an average latency of over 4 seconds at a loss rateof 0.5% where

OpenBSD has a very large latency once the loss rate is greaterthan 0.3%.

It is unclear why such a low segment size was chosen for this simulation scenario

as Internet MTUs are generally higher [6,184,185]. It is possible this was an

attempt to reduce delay and jitter. When a higher MTU such as 1500 is used the

request latency is much lower than presented in figure 5.12. Conversely, delayed

acknowledgements are widely used in real TCP implementations [139] and

increase the SIP request latency under random loss.

5.4 Summary

The simulation results shown here show that large differences can be found

between TCP implementations and models in the same scenario. Using real world

TCP code in simulation makes it practical to evaluate of how arange of TCP

implementations react to a scenario, when such testing may have prohibitive cost

without a system like the Network Simulation Cradle. This evaluation provides

additional knowledge about a simulation scenario. It validates existing results

and/or gives greater insight by showing the range of performance values recorded

by real implementations which can be very different to the results from simulated

abstractions.

122

Chapter 6

With more detail comes greater cost

Performance is important for a network simulator and its models: a researcher

needs to be able to run a set of simulations in reasonable timeto obtain results to

analyse. Network simulators are often designed to address the question of

performance. For example, the ns-2 implementation is splitbetween C++ and

OTcl; OTcl is only used for configuration where as time critical parts of the

simulator and models are written in C++ for performance [17].

The Network Simulation Cradle provides TCP models that are intended to increase

accuracy by using real world TCP code. This reduces the levelof abstraction in the

models, something which is generally noted to decrease

performance [17,129,186,187]. There are a variety of factors affecting the

performance of the NSC. The NSC TCP models perform many operations that

TCP models found in a simulator like ns-2 do not perform, suchas:

• checksumming of all packets;

• full packet payload used;

• extra integrity checking;

• receive windows; and

• software interrupt clock handling.

However, there are some mitigating features. The TCP implementations are finely

tuned for performance. The implementations that are part ofthe NSC are in some

cases many years old; they have matured and been optimised over a long period of

time. The same may not be true of a simulation model; in some situations a real

123

implementation may be faster than a simplified model. This means the relative

performance of real world TCP implementations and simplified TCP simulation

models is not clear.

Overall, more work is performed by a real implementation, and because of this, we

expect worse performance. This chapter presents quantitative measures of relative

performance between the NSC TCP implementations and simplified TCP models.

The NSC is compared to ns-2 TCP models. ns-2 is chosen becauseof its

popularity for TCP simulation—it provides models that are scalable and fast

enough for many practitioners of TCP simulation. As the underlying simulator

used to run both the NSC models and the ns-2 models is the same,it is reasonable

to compare the performance results of the models directly.

6.1 Performance measures covered

A basic measure of performance of a simulator is how many seconds of simulated

time can be simulated per second of real time. This depends onthe scenario

simulated and the computer which runs the simulation. Graphing the relationship

between the two measures of time shows whether each TCP modelused has a

linear increase in CPU time required as the simulation time is increased (this is

shown later in figure 6.1). Each scenario we analyse to see if the scaling is linear

for ns-2 and NSC TCP models; if this is so then the gradient of the lines on the

graph provide a measure of relative performance.

The number of TCP flows in a simulation scenario can be varied to test how

performance scales as the number of TCP flows that need to be simulated

increases. Both the time taken and the memory required as thescale of the

simulation increases are important as they will limit the size of simulations that

can practically be run by simulation researchers with the NSC.

Simplified TCP simulation models often do not simulate packet payloads. Only

packet header information is required to simulate TCP dynamics, so packet

payloads are not used: this reduces memory usage and means that the packet

payloads do not need to be copied between the application andTCP models which

reduces the amount of work carried out per packet. The real TCP implementations

124

in the NSC use full packet payloads. The cost of doing so is analysed by measuring

CPU time and memory usage as the amount of data transferred isincreased.

There is potentially a lot of processing per packet in a real world TCP/IP

implementation. The implementation needs to ensure that packets are destined for

the host the implementation is running on, it needs to check each packet for

integrity with checksums and must match each packet to a TCP flow. Stevens [84]

discusses the processing performed when a packet reaches the TCP input

processing function in a BSD TCP implementation and shows that many

operations are performed before the packet is fully processed. A TCP model

designed for a simulator is able to ignore many of the requirements of a real

implementation due to being run in an isolated, controlled environment. This

processing overhead per packet is investigated due to this possible discrepancy in

the amount of work required to process each packet.

A fine-grained analysis of performance is possible by profiling the simulator when

simulating with either the NSC TCP models or the simplified TCP models.

Profiling with tools such as OProfile [188,189] and Valgrind [190] provide

detailed information on where CPU time is spent and memory isused.

A view of performance encountered when running simulation scenarios used in

published research is provided by CPU time measurements of the reproduced

simulations presented in chapters 4 and 5. The time measurements from the

simulation scenarios in previous chapters is reported in this chapter.

The globaliser (discussed in chapter 3, page 53) has a performance impact at

compile time. The time to build the TCP implementations withthe globaliser is

measured to gain a quantitative measure of the time taken. The size of the shared

libraries created during the build are checked, as this affects memory usage at

runtime when the shared libraries are loaded. The output of the globaliser also

impacts runtime performance because it creates indirect references to data. The

cost is measured by comparing simulations run using the NSC TCP models with

the globaliser enabled and disabled—this is possible if only one TCP endpoint per

shared library is required in the simulation.

125

Table 6.1: Performance testing setup
CPU AMD Athlon XP 2100+ (1730MHz)
CPU Cache 256KB
RAM 1.0GB
Simulator version ns 2.29
NSC version 0.2.3
Operating system distributionUbuntu Edgy Eft (6.10) Linux
Operating system kernel Linux 2.6.17-11-386
Compiler gcc 4.1.2

Results from running experiments to analyse these issues are presented in the next

three sections. Section 6.2 shows CPU-time measurements, section 6.3 shows

memory usage measurements and section 6.4 shows results of experiments with

the globaliser. The overall impact on performance is discussed at the end of this

chapter, in section 6.5.

6.2 CPU time

The CPU performance of the Network Simulation Cradle for TCPsimulation

compared to simplified TCP models is presented in this section. Simulations are

run with only the TCP model used changing. Run time is recorded with the Linux

time command which reports real, user and system time spent running the

process. To measure the run time thetime command is configured to report the

total number of CPU-seconds that the process used (wall clock time). The machine

used to record the statistics is set to single user mode, where other user applications

are not running. Results are reported in graphs with confidence intervals from a

minimum of 20 runs. The simulation machine setup is summarised in table 6.1.

A simple dumbbell topology is used in the following experiments to show the basic

performance of the Network Simulation Cradle. The bandwidth of the bottleneck

link is 2Mb/s, the round trip time of all flows is 40ms and the MTU is 1500.

6.2.1 Time to simulate simple scenarios

Four simulation scenarios are covered in the following sections. In each scenario

one simulation parameter is varied. The CPU time to simulatethe scenario with

each value of the varied parameter is plotted. The amount of simulated time,

126

number of TCP flows simulated, packet size and amount of data transferred are the

parameters varied. These scenarios are studied to see whereany differences in

simulation time are most prevalent. This information can then be used to decide on

how to optimise simulation of real world TCP implementations if required.

Checking that the relationship between simulated time and real time is linear

ensures that the simulation does not degrade over time. If itis linear, the gradient

of the relationship provides baseline performance resultsof a simple simulation.

The scaling of TCP models is investigated by increasing the number of TCP flows

simulated. The amount of work done per packet is analysed by varying the

maximum transfer unit. The cost of using full packet payloads is presented by

graphing the amount of data transferred versus the time to simulate for each TCP

model.

Simulation time vs. real time

Figure 6.1 shows the time to simulate when simulating a single TCP flow with a

unidirectional bulk transfer. The length of the simulationis varied and the real

(wall-clock) time to simulate recorded. Figure 6.1(a) shows the relationship

between simulated time and real time for all TCP models studied. This relationship

is linear. Other ns-2 TCP models have very similar results tothose shown in the

figure and are omitted for brevity. The gradient of the lines on the graph are shown

in figure 6.1(b): this shows how many seconds are simulated for every real second.

These results show that ns-2’s simplified TCP models are almost 5 times faster

than NSC with OpenBSD at simulating this scenario and roughly 2.4 times faster

than NSC with FreeBSD.

Increasing TCP flows vs. real time

The time taken to simulate many flows over the topology described earlier is

presented in figure 6.2. With many flows, the difference between simulating with

NSC and ns-2 TCP models is less than with a single flow. With 200flows, the

worst case of NSC using the Linux 2.6 TCP stack takes roughly 2.5 times as long

to simulate than ns-2’s Sack TCP model.

127

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600

R
ea

l t
im

e
(s

)

Simulated time (s)

NSC: FreeBSD
NSC: Linux 2.4

NSC: Linux 2.6
NSC: OpenBSD

ns-2: Sack

(a) Simulation results

S
im

ul
at

io
n

se
co

nd
s

pe
r

re
al

 s
ec

on
d

0
20

40
60

80
10

0

NSC: FreeBSD NSC: Linux 2.4 NSC: Linux 2.6 NSC: OpenBSD ns−2: Sack

(b) Simulation speed

Figure 6.1: Simulated time vs. real time for a single TCP flow

128

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
to

 s
im

ul
at

e
(s

)

Flows

NSC: FreeBSD5
NSC: Linux24

NSC: Linux26
NSC: OpenBSD3

ns-2: Sack

Figure 6.2: CPU time to simulate many flows

There is a smaller number of packets to process per TCP connection in this

situation which is a likely reason for the difference in results compared to

figure 6.1. The bottleneck link is still the same bandwidth, meaning the number of

packets which get through will be similar in both simulations. With 200 flows,

there will be a large amount of congestion, meaning there is possibly more

interaction with retransmission timers, but as there is an overall decrease in the

number of packets which must be processed per TCP stream, there is less work to

do per TCP model.

The relationship between number of flows and time to simulateshown in figure 6.2

is non-linear: the time to simulate as the number of flows varies increases

approximately exponentially for all models including the simplified ns-2 models

and the NSC TCP implementations. The exponent is larger for the NSC TCP

implementations.

Per-packet cost

Real TCP implementations must perform additional processing per packet sent or

received than the simplified TCP models present in ns-2. For example, real TCP

stack implementations must check incoming packets for integrity as, in the general

129

cases, packets may be erroneous. Models built solely for simulation can make

many assumptions about the data received, as the characteristics of the

transmission are controlled entirely by the creator of the simulation scenario.

Comparing the time to process many packets is of interest because the results show

whether the difference in TCP models means that there are performance

differences and how large the differences are.

Varying the maximum transfer unit (MTU) in the same simulation scenario as

shown previously, directly affects the number of packets processed. A single TCP

flow transfers data as fast as possible for 120 seconds of simulated time. The MTU

is varied in the following experiment. The way the time to simulate varies as

packet size is changed is presented in figure 6.3(a).

The trends for NSC’s FreeBSD and OpenBSD implementations and ns-2’s Sack

model are similar. The two Linux TCP implementations differwhen the MTU is

less than or equal to 1000 bytes. The goodput results are shown in figure 6.3(b).

The Linux TCP implementations do not handle small MTUs well and achieve

much less goodput than the other TCP implementations studied. With less

goodput, there are less packet processing events to simulate and therefore the

simulation takes less time.

Simulating large data transfers

ns-2’s TCP models do not include a full packet payloads, instead each simulated

packet has asize field which is used to describe the packet size. There is no

payload that must be copied when the packet enters and leavesa TCP model. The

real world implementations in the NSC copy the packet data when data it sent or

received by the simulated application and when packets are sent or received from

the network stack. To analyse the effect of this difference,a simulation that

increases the bandwidth of the bottleneck link while keeping bandwidth-delay

product and simulation time constant is used.

The bandwidth-delay product (BDP) is fixed at 50kB. The bandwidth of the

bottleneck link ranges from 56kb to 100Mb. The delay is calculated as follows to

ensure the BDP is constant:delay = bdp/(2.0 ∗ bandwidth). The results of this

130

 0

 1

 2

 3

 4

 5

 6

 7

 1000 10000

T
im

e
to

 s
im

ul
at

e
(s

)

Maximum transfer unit (MTU)

NSC: FreeBSD5
NSC: Linux24

NSC: Linux26
NSC: OpenBSD3

ns-2: Sack

(a) Time to simulate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1000 10000

G
oo

dp
ut

 (
M

b/
s)

Maximum transfer unit (MTU)

NSC: FreeBSD5
NSC: Linux24

NSC: Linux26
NSC: OpenBSD3

ns-2: Sack

(b) Goodput

Figure 6.3: Time to simulate and goodput with a varying MTU

131

 0.1

 1

 10

 100

 100000 1e+06 1e+07 1e+08

T
im

e
to

 s
im

ul
at

e
(s

)

Link bandwidth (bps)

NSC: FreeBSD5
NSC: Linux24

NSC: Linux26
NSC: OpenBSD3

ns-2: Sack

Figure 6.4: CPU time to simulate increasing amounts of data

simulation are shown in figure 6.4.

The results show similar linear growth rates of time to simulate versus link

bandwidth for all TCP models measured. At bandwidths of lessthan 1Mb the

gradient is smaller due to the small amount of data transferred: the TCP models are

not able to make full use of the bandwidth available in the simulation time due to

the high latency. ns-2’s TCP model is the fastest but slows down at the same rate

the real TCP implementations do. This means that the performance of the

simulation is not bounded by the extra copying of data due to real packet payloads

in the NSC.

6.2.2 Time required to simulate more complex scenarios

The previous performance results show the time to simulate for constrained

situations. Such simulations do not give a good understanding of this performance

in the type of scenarios carried out by many researchers, as the pattern of usage is

likely to be different. The results in this section are from simulation scenarios used

in published research.

Results from simulations run for research replication studies presented in

chapters 4 and 5 and in [163,191] are presented in figure 6.5. In these studies a

132

ns−2 NSC Hybrid

0
5

10
15

20
25

30
35

S
im

ul
at

io
n

tim
e

(m
in

ut
es

)

(a) A multiple bottleneck topology with up
to 160 flows including cross traffic

ns−2 NSC

0
10

20
30

40
50

60

S
im

ul
at

io
n

tim
e

(m
in

ut
es

)

(b) A dumbbell topology with up to 210
flows including reverse traffic

ns−2 NSC Hybrid

5
10

15
20

S
im

ul
at

io
n

tim
e

(s
)

(c) Two TCP flows on a high bandwidth-
delay product path

ns−2 NSC

0.
5

1.
0

1.
5

2.
0

S
im

ul
at

io
n

tim
e

(s
)

(d) One TCP flow over a network with ran-
dom packet loss

Figure 6.5: Simulation times for complex scenarios

dual AMD Opteron 250 and a dual Dual-Core AMD Opteron 265 are used with the

simulations randomly distributed across them. Some of the simulation scenarios

use either ns-2 simplified TCP models or NSC TCP implementations, while others

use both in a hybrid combination (for example, there is a scenario where 200 flows

of two different TCP types are simulated using an NSC TCP implementation for

100 flows and an ns-2 TCP model for 100 flows).

Figure 6.5(a) shows the time to simulate the scenario described in

section 4.3.1 (see page 92 for a complete description of thisscenario). This

simulation uses a complex topology consisting of multiple bottleneck links and up

to 160 TCP flows. There are two different TCP variants used in this simulation,

one is used to generate background traffic and used for 10 flowswhile the other is

133

used for the rest of the flows in the simulation. Simulations last 300 seconds of

simulated time. 2040 simulations are run in this scenario and the CPU time

measurements of these are used to generate the data in this figure.

The graphs show the minimum, lower quartile, median, upper quartile and

maximum values of time to simulate for each simulation scenario. Each data point

included in the distribution is recorded from a single simulation run. A range of

values is expected due to different sets of simulation parameters requiring a

different amount of time to run. The ranges can be compared between ns-2, NSC

and hybrid situations due to each group running simulationswith the same set of

parameters. These graphs give a simple view of the distribution of results which is

useful: it is apparent that many of the results using NSC TCP implementations has

a very large range but much smaller inter-quartile range, indicating that the

simulations that take extreme lengths of time are exceptions rather than the norm.

The simulation times shown in figure 6.5(b) are recorded fromsimulating up to

210 TCP flows over a dumbbell topology. 10 flows are used to create background

traffic and up to 200 flows are measured over a bottleneck link of 10Mb/s. This

scenario is described in detail in section 5.3.2 (see page 112). CPU time

measurements from 70 simulations are used to generate the data in this graph. The

maximum time to simulate in this situation is almost six times greater when the

NSC TCP implementations are used. However, the median and minimum time to

simulate are very close, within 6% of each other. The upper quartile when using

the NSC is higher than the maximum when using ns-2 TCP models,indicating that

a large percentage of simulations are taking much longer with the NSC.

Figure 6.5(c) shows the time to simulate two TCP flows on a highbandwidth-delay

product network: round trip time varies from 16ms to 162ms and bandwidth is

10Mb/s or 250Mb/s. This simulation scenario is covered in section 5.3.1 (see

page 108). CPU time measurements from 2700 simulations are used to generate

the data in this figure. The time to simulate when using the NSCis approximately

twice the time to simulate with ns-2 TCP models. Of the graphsin figure 6.5, this

is the only one that shows the minimum time to simulate when using the NSC is

much higher than when using ns-2 TCP models. This could be dueto the higher

134

bandwidths used in this simulation; section 6.2.1 showed how there is a large offset

in time to simulate at high bandwidths, though the percentage difference in time to

simulate does not grow. This explains the results shown in figure 6.5(c): the

minimum is higher, but the minimum, maximum and median are all around two to

three times higher when using the NSC.

The results shown in figure 6.5(d) are CPU time measurements from the scenario

presented in section 4.3.2 (see page 94): a single TCP flow undergoing random

packet loss. The results shown are generated from analysingthe runtime of 35000

simulations. There is much greater variability of runtime when using the NSC TCP

implementations. There is approximately a difference of five times between using

the simplified ns-2 TCP models and the NSC TCP implementations.

The simulation time for the set of four different simulationscenarios in figure 6.5

have some characteristics in common. The maximum time to simulate when using

NSC TCP implementations is higher than the maximum when using ns-2 TCP

models, while the minimum is often similar; the range is greater when simulating

with NSC. Figure 6.5(b) shows a situation where the median time to simulate is

very similar (though the maximum and inter-quartile range is larger). The

difference in time to simulate in these complex scenarios issimilar to the

differences found in the simpler scenarios. The differenceranges from being very

similar to differences of around five times.

6.2.3 Profile

The results shown in sections 6.2.1 and 6.2.2 show the NSC TCPimplementations

to be slower by up to 400% in almost all cases but give little insight into what

causes the performance difference. Profiling the simulatorshows where the most

time was spent in the simulator for a specific simulation scenario. Profiling is used

here to gain quantitative information on the difference in performance for a single

simulation scenario.

The system-wide profiler OProfile [188,189] provides profiling information with a

low overhead by making use of a system’s hardware performance counters.

OProfile uses profiling support in the system’s CPU if possible and falls back to

135

using statistical profiling (where a timer interrupt is created by OProfile to

periodically poll applications and record their state). Inthe results presented the

performance counters present in the AMD Athlon XP CPU are used by OProfile.

The following results are gathered by OProfile when simulating the scenario

described in section 5.3.1 (the performance results for this scenario are shown in

figure 6.5(c)). Two TCP streams compete over a bottleneck link of 250Mb/s with

an RTT of 82ms. The TCP model or implementation is the same foreach TCP

endpoint. This scenario was chosen due to the large difference in performance

between simulations using ns-2 TCP models and simulating using the NSC TCP

implementations.

Results from profiling this scenario are shown in tables 6.2,6.3 and 6.4. The ten

functions that the most amount of CPU time was spent in and themodule they are

located in are shown in each table. OProfile shows a detailed analysis with many

more functions included but only the top ten are shown as the goal of this

experiment is to compare where the majority of CPU time is spent. Results are

shown for the NSC TCP implementations Linux 2.6 (table 6.2) and FreeBSD

(table 6.3) and ns-2’s Newreno TCP model (table 6.4). The results for the Newreno

model are consistent with results measured from other ns-2 TCP models.

TheSamplescolumn in tables 6.2, 6.3 and 6.4 is the number of times a sample

from OProfile found the CPU to be executing the function listed in theSymbol

column inside the module listed in theImagecolumn. ThePercentcolumn refers

to the percentage of the total execution time of the process that was spent inside

the function.

When simulating the Linux 2.6 stack, the most time is spent inthe function

CalendarScheduler::insert. This function is used to add a new

simulation event to the global event list. The NSC agent for Linux 2.6 schedules a

timer event every 1ms, where the other TCP implementations use a timer that fires

every 10ms. Whenever the timer is rescheduled a new simulation event is added to

the global event list. This explains why the insert functionis higher in table 6.2

than in the other tables. Three functions from the Linux 2.6 shared library

(liblinux26.so) also appear on the profile, although none of these functions

136

Table 6.2: ns-2 profile using NSC: Linux 2.6 TCP
Samples Percent Image Symbol
17521 7.7733 ns CalendarScheduler::insert
17339 7.6926 ns Scheduler::dispatch

16214 7.1935 libm-2.3.5.so (no symbols)
12256 5.4375 liblinux26.so sk_stream_wait_memory

10561 4.6855 liblinux26.so get_stack_id

9823 4.3580 ns Scheduler::schedule
9029 4.0058 liblinux26.so tcp_sendmsg

8899 3.9481 kernel (no symbols)
8333 3.6970 ns CBR_Traffic::next_interval

Table 6.3: ns-2 profile using NSC: FreeBSD TCP
Samples Percent Image Symbol
15528 8.2930 libm-2.3.5.so (no symbols)
14006 7.4801 ns Scheduler::schedule
13823 7.3824 ns CalendarScheduler::insert
12744 6.8061 ns Scheduler::dispatch

10933 5.8389 kernel (no symbols)
10137 5.4138 libc-2.3.5.so (no symbols)
9315 4.9748 libfreebsd5.so sosend
7928 4.2341 ns CBR_Traffic::next_interval

6903 3.6867 ns NSCSimpleAgent::sendmsg

6520 3.4821 ns TcpAgent::sendmsg

uses more percentage time than the scheduler insert function. libm-2.3.5.so

is the C mathematics library and is likely used when working with the floating

point numbers used to express time in ns-2.

When the FreeBSD stack is used as the TCP implementation in the simulation

scenario the profile data is similar to the profile for Linux 2.6, as seen in table 6.3.

Inserting and managing the global event list via theScheduler classes is again

near the top of the table. The functionsosend (a generic function used to send

data through a socket) is the only function from the FreeBSD implementation that

appears on the table.

Table 6.4 shows the profile data for the simulation scenario when using the ns-2

Newreno TCP model. Interaction with the scheduler and the mathematics library

are again prevalent.

The results from using other TCP implementations with NSC for the test

introduced at the start of this section (§6.2.3) are similar to those shown. No one

137

Table 6.4: ns-2 profile using original TCP agents
Samples Percent Image Symbol
16119 13.0132 libm-2.3.5.so (no symbols)
15042 12.1437 ns CalendarScheduler::insert
12800 10.3337 ns TcpAgent::sendmsg

9969 8.0481 ns Scheduler::dispatch

9301 7.5089 ns Scheduler::schedule
7434 6.0016 ns CBR_Traffic::next_interval

6320 5.1022 ns RenoTcpAgent::window

5461 4.4088 ns CalendarScheduler::head
5360 4.3272 libc-2.3.5.so (no symbols)
4098 3.3084 ns TrafficGenerator::timeout

operation performed by the real world TCP implementations takes up any greater

percentage of CPU time than existing interactions in the simulator.

Callgrind and KCacheGrind are part of the Valgrind [190] framework that records

detailed performance results. KCachegrind is a visualisation tool for the data

recorded by Callgrind. Profiling with these tools was also used and they show that

the time spent in the mathematics library is due to the use of floating point

functions inCalendarScheduler::insert. This insert function is called

mostly from two timers: one is used to generate application traffic

(TrafficGenerator andCBR_Traffic in the earlier tables) and the other is

used by the NSC ns-2 simulation agent to send timer messages to the cradled TCP

implementation. The time spent inlibc-2.3.5.so is due to calls tomalloc

(memory allocate),bzero (set an area of memory to 0, used when the packet

structure is allocated in ns-2) andfree (free memory).

6.2.4 Discussion of CPU performance

The difference in performance between simulating TCP with asimplified ns-2

TCP model and simulating TCP with a full TCP implementation accessed via the

Network Simulation Cradle varies between simulation scenarios. In almost all

cases studied using a simplified model will take less time to simulate.

Trends

The way CPU time varies against the parameters tested against are similar for the

real world TCP implementations and the simplified models. Figure 6.1, which

138

shows the relationship between simulated time and real timefor a simple scenario,

shows linear scaling for all TCP models studied, with a simplified ns-2 TCP model

being between 2.4 and 5 times faster than the NSC TCP implementations. The

same scaling is also evident for all TCP models in figure 6.4 too, all TCP models

slow down at the same rate as the amount of data to transfer is increased.

The per-packet cost simulations, shown in figure 6.3, show similar trends between

the real world TCP implementations and the simplified TCP model. The trend is

not linear and the ns-2 TCP model is consistently between twoand three times

faster, but the same pattern is followed by all TCP models when the MTU is

greater than or equal to 1500.

Non-linearity is also presented in figure 6.2. This shows thetime required to

simulate as the number of TCP flows increases. The growth rateis roughly

exponential and the rate of change of the gradient shown on the graph appears to

follow the same pattern for all stacks measured.

In summary, the same trends are followed by real world TCP implementations and

simplified TCP models in the tests covered.

Additional cost

It is slower to simulate using the real world TCP implementations in the NSC than

using the ns-2 simplified TCP models in the scenarios studied. The percentage

difference in time to simulate varies; in the reproduced simulations (covered in

section 6.2.2) the difference in median time to simulate varies between 2% and

250%. The distribution of times varies more than this as the graphs in figure 6.5

show: the difference in maximum time to simulate in the graphs varies from

between 170% to 450%.

The difference in time to simulate between real world TCP implementations and

simplified TCP models in the simulations (covered in section6.2.1) are within the

same range. Figure 6.1(b) shows a direct comparison where the simplified ns-2

TCP model is between 205% and 365% percent faster than the TCP

implementations.

139

Profiling data gathered using OProfile [188] shows an increase in the cost of the

simulator scheduling algorithm. Virtual time is implemented in the NSC by calling

the software interrupt function in the network stack. This function would normally

be called from the hardware interrupt clockhz times a second, wherehz varies but

is often 100 or 1000. The NSC simulates this clock by enqueinga timer eventhz

times every virtual second. This happens for each instance of a stack (as their

timers will not normally be synchronised).

The scheduling algorithm used by ns-2 is a Calendar Queue [192] by default. The

Calendar Queue has been shown by several researchers to haveperformance

problems in some situations. Tan and Thng [193] proposed the“SNOOPy

Calendar Queue,” while Ahn and Oh [194] presented the “Dynamic Calendar

Queue.” Yan and Eidenbenz [195] showed another calendar queue, the “Sluggish

Calendar Queue.” Each of these modifications to the originalalgorithm are

designed to increase the chance of partitioning the calendar queue in an optimal

way. Using a more efficient scheduling algorithm could increase the performance

of scheduling with the NSC.

The implications of the impact in CPU performance due to using the NSC TCP

implementations are discussed further at the end of the chapter in section 6.5.

6.3 Memory usage and scalability

The extra memory used by TCP implementations limits scalability. The simplified

TCP models in ns-2 do not send actual data and therefore do notneed to buffer any

data. Each real world TCP connection endpoint has a socket buffer and network

stacks store some amount of global state, all of which is not required for the ns-2

TCP models. Memory use is important because it limits the complexity of a

simulation run on a computer: a simulation that requires toomuch memory cannot

be run if the required memory resources are not available (while a slow simulation

may be left running for a longer time).

Measuring the memory used by an application is not straightforward. Memory is

shared between applications, paged in and out (between harddisk and RAM) and

separated into several sections, making measurements of the amount of memory

140

used by a process difficult. There are several metrics the Linux operating system

can report that provide a measure of the memory used by a process, but none of

them show the amount of stack and heap memory allocated by theprogram. The

total memory an application can address is known as the applications Virtual

Memory (VM) size. The amount of this that is resident in main memory is called

the Resident Set Size (RSS). An executable and its shared libraries are mapped

into the VM of the process. The code of the shared libraries might be shared with

other applications. The code and data of executable and shared libraries are usually

static; they do not grow over the lifetime of an application (except for the loading

of more shared libraries if they are requested). Dynamic memory is allocated in

two ways: the heap and the stack. The stack is fast and often limited to a small

size1 while the heap is used for general memory allocations and grows in size over

the life of an application. The amount of memory allocated onthe heap is a useful

metric to show the amount of memory used by an application during runtime, but

the metrics reported by the operating system do not provide this.

A tool named HeapProf [196] is used to measure heap usage. HeapProf is a shared

library that is used as anLD_PRELOAD—the functions it exports override the

standard C library functions of the same name. The heap allocation and

management functionsmalloc, calloc, realloc andfree are overridden

by HeapProf. HeapProf keeps counters of the memory allocated and calls the

original implementations of the heap functions in the standard C library functions

after updating its statistics. This allows accurate tracking of heap usage over time

with a very small performance overhead. HeapProf is used forcourse-grained heap

usage information, for example the total amount of heap memory allocated at a

point of time.

6.3.1 Heap use with many TCP flows

The results of the simulation study presented in section 6.2.1 show the time to

simulate a simple scenario with a varying number of TCP flows.The peak heap

usage over the execution of the ns-2 process as recorded by HeapProf for this

scenario is shown in figure 6.6. The increase in peak heap usage as the number of

1For example, the maximum stack size defaults to a maximum of 8MB on Ubuntu 5.10 Linux

141

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180 200

P
ea

k
he

ap
 u

sa
ge

 (
M

B
)

Flows

NSC: FreeBSD
NSC: Linux 2.4

NSC: Linux 2.6
NSC: OpenBSD

ns-2: Sack

Figure 6.6: Peak heap usage for increasing number of flows

flows is increased is linear for all TCP models studied. The amount of memory

used per-flow is summarised in table 6.5.

Table 6.5: Heap usage per TCP flow
TCP model Memory used per TCP flow (kB)
NSC: FreeBSD 354
NSC: Linux 2.6 588
NSC: Linux 2.4 561
NSC: OpenBSD 147
ns-2: Sack1 94

Of the real world TCP implementations studied, OpenBSD scales the best with

close to 7 flows supported per MB of RAM used. In comparison ns-2 TCP agents

support close to 11 flows per MB of RAM. The other real world implementations

use more RAM and the pattern shown follows the socket buffer sizes used in each

of the stacks. OpenBSD defaults to very small socket buffer sizes (and therefore

TCP send and receive windows), while versions of Linux have larger maximum

defaults and FreeBSD falls between the two.

6.3.2 The effect of increasing the TCP window size

TCP implementations allocate memory to buffer sent and received data. The

receive buffer size is explicitly advertised in TCP packets(known as the advertised

142

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180 200

P
ea

k
he

ap
 u

sa
ge

 (
M

B
)

TCP window size (kB)

NSC: FreeBSD
NSC: Linux 2.4

NSC: Linux 2.6
NSC: OpenBSD

ns-2: Sack

Figure 6.7: Peak heap usage for increasing window size

Table 6.6: Heap usage / window size for ns-2 and NSC
TCP model Heap usage / window size
NSC: FreeBSD 52.40
NSC: Linux 2.4 37.23
NSC: Linux 2.6 38.15
NSC: OpenBSD 48.38
ns-2: Sack1 24.68

or receiver window) where the send buffer corresponds to thesender window. The

simplified TCP models in ns-2 do not need to allocate these buffers because they

do not use real data, only a size—simulated packets contain afield indicating their

size, rather than a full packet payload.

The following simulation scenario was designed to explore the memory usage of

varying TCP window sizes. The size of the TCP windows used by the TCP

models/implementations is varied. The scenario used has anRTT of 142ms

(corresponding approximately to an RTT from New Zealand to the west coast of

the USA), a bandwidth of 10Mb/s and 10 TCP flows sending data atfull rate in the

same direction for the duration of the experiment. The router queue size on the

dumbbell network is set to 2600 packets. These parameters were chosen because

of the large bandwidth delay product. Figure 6.7 shows the peak heap usage in this

scenario.

143

Table 6.7: Memory footprint for ns-2 and NSC
TCP model Size (MB)

VM RSS Text Data BSS
ns-2: Sack1 8 5
NSC: FreeBSD 144 46 32 19 87
NSC: OpenBSD 87 21 11 6 62
NSC: Linux 2.4 68 47 23 20 16
NSC: Linux 2.6 62 46 22 19 12

Heap usage increases faster with Network Simulation CradleTCP implementations

than with simplified ns-2 TCP models. The real TCP implementations used in

NSC have to allocate socket buffers and use full packet payload. The difference is

between roughly 150% and 215%. Table 6.6 shows the rate of change for the

various TCP models and implementations shown in figure 6.7.

6.3.3 Total memory use

The previous sections discussed peak heap usage. Code and global data also take

up memory. The globaliser clones global variables in sourcecode, which increases

the amount of memory required for the resulting shared libraries. The memory

footprint for ns-2 and NSC built withNUM_STACKS set to 500 is summarised in

table 6.7.

The reported virtual memory size in table 6.7 is the total VM size of an ns-2

process after simulating a single TCP connection and short data transfer with the

indicated TCP model or implementation (the scenario discussed in section 6.3.1

with the number of flows set to one). The maximum Resident Set Size (RSS) is

listed next, this is the amount of virtual memory which resides in main memory.

RSS is only a rough measurement of the memory that is actuallyin use by a

process—the operating system can page out memory for a number of reasons. The

numbers reported in table 6.7 were measured on a machine with2.5GB of main

RAM memory and show no variation across 5 tests. There was no other user

activity on this machine during this time.

The other columns show the different sections of memory inside each shared

library. The text section is where the executable code is stored, this can be shared

144

between processes. The data section contains initialisation data for global

variables. The BSS (Blocks Started by Symbol) section contains initialisation data

for global variables which contain zero bytes initially.

The FreeBSD and OpenBSD shared libraries contain large BSS sections and this is

reflected in their larger virtual memory sizes. This memory is not necessarily used

during simulation. Simulations that do not use the full number of stacks supported

by modifications made by the globaliser will not use all the global variables, hence

not all of the BSS and Data sections will be used. The residentset size is much

smaller than the virtual memory size in all cases.

The size of data and BSS in the shared libraries is dependent on the setting of

NUM_STACKS when using the globaliser at build time. The next section analyses

the affect ofNUM_STACKS on the globaliser, including the resulting shared library

size, as well as the CPU performance overhead of running codemodified by the

globaliser.

The total memory use when using the NSC TCP implementations is much higher

than when using the ns-2 TCP models. The virtual memory size of an ns-2 process

using the NSC TCP implementations is up to 18 times greater. This is largely due

to needing to allocate memory for every TCP stack which is supported, even if that

TCP stack instance is never used.

6.4 The cost of the globaliser

The globaliser (discussed in section 3.2) modifies the source code of the network

stacks used in NSC before they are compiled. Global variables are modified to be

arrays and are accessed with an array reference. This process has performance and

scalability implications at runtime: there is extra CPU cost involved and more

memory is used.

6.4.1 CPU (online) cost

When the globaliser has modified the code there is a performance degradation

introduced when accessing global variables: whenever a global variable is

145

Table 6.8: Globaliser runtime CPU overhead

Scenario Without globaliser With globaliser Difference
µ ± µ ± %

FreeBSD 10.38 0.048 10.79 0.091 03.94
Linux 2.6 10.45 0.048 12.13 0.165 16.07
OpenBSD 16.39 0.057 17.02 0.110 03.84

accessed, a function is called and there is a mapping throughan indirection table

or, in the case of an array, multiple indirection tables. This slows down the access

of a global variable that is modified by the globaliser, but itis not obvious how

significant this effect is on the overall performance of the code.

To test this the NSC can be compiled with and without using theglobaliser during

the build. The shared library produced when not using the globaliser will only

support a single TCP instance. The shared libraries can be compared by simulating

a simple scenario which only requires a single TCP instance and comparing the

time to simulate.

The test setup is one TCP flow with one endpoint an instance of FreeBSD, Linux

2.6, or OpenBSD and the other Linux 2.4. Only one instance of FreeBSD,

OpenBSD, or Linux 2.6 is required. This allows compiling theshared library for

each stack with and without the globaliser. The scenario used is the same as used

earlier in this chapter (section 6.2.1)—a dumbbell topology with a bandwidth of

2Mb/s, a round trip time of 40ms and an MTU of 1500 bytes. A single flow

transfers data as fast as it can for the duration of the simulation which is set to 500

seconds. Each test is run 20 times.

The performance will differ depending on how often global variables are accessed,

so the characteristics will be different for each scenario it is used in. See table 6.8

for the CPU overhead introduced by the globaliser when measured from a simple

TCP simulation. In this table the mean CPU usage (µ on the table) and 95%

confidence interval (± on the table) is shown for each of the TCP implementations

used in this experiment.

The difference in time to simulate using shared libraries built with and without the

globaliser varies between the TCP implementations. This difference is due to the

146

Table 6.9: Codebases used for globaliser testing
Project Files Lines of code Global variables
FreeBSD 175 944621 2290
Linux 2.6 122 2687493 726
Linux 2.4 113 2398834 631
OpenBSD 155 683792 730
lwIP 13 12986 33

access pattern of global variables in each implementation.Table 6.8 shows that the

greatest slowdown observed is when using Linux 2.6, runningthe simulation with

code which has been modified by the globaliser takes a little over 16% longer than

using unmodified code. The difference is below 4% for the FreeBSD and

OpenBSD TCP implementations. This is comparable to other virtualisation

approaches such as Xen [197], in which performance is within10% of an

unvirtualised system in most cases [198].

6.4.2 Offline cost

The globaliser adds extra code, potentially including manyextra variables, to the

project being globalised. This adds extra cost at build time. The extra time to build

the shared libraries in the Network Simulation Cradle due tothe globaliser is of

less consequence than the runtime overhead, as the libraries only need to be built

once and can then be used for all subsequent simulations. However, it is important

to analyse the extra cost to understand any limitations to scalability of the shared

library the globaliser might add, such as producing code that the compiler and/or

linker are not able to consume.

To evaluate the offline cost of the globaliser,NUM_STACKS is increased from 2 to

5000 and three metrics are evaluated: total build time (preprocessing, running the

globaliser, compiling and linking are all included), totalfile size of the source files

output by the globaliser and the size of the shared library produced. Figure 6.8

shows these results for the codebases summarised in table 6.9. The build time was

recorded on a computer with dual AMD Opteron 250 CPUs and 8GB of RAM.

The build time shown in figure 6.8(a) shows that there is significant extra cost to

build a project: the time taken rises from 5 minutes to over 7 hours to build the set

147

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000

B
ui

ld
 ti

m
e

(h
ou

rs
)

NUM_STACKS

(a) Build time

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 1000 2000 3000 4000 5000

S
ha

re
d

lib
ra

ry
 s

iz
e

(M
B

)

NUM_STACKS

FreeBSD
Linux 2.4
Linux 2.6

OpenBSD
lwIP

(b) Library size

S
ha

re
d

lib
ar

y
fil

e
si

ze
 in

cr
ea

se
 p

er
 s

ta
ck

 (
kB

)

0
20

40
60

80
10

0

FreeBSD Linux 2.4 Linux 2.6 OpenBSD lwip

(c) Library size increase per stack instance

Figure 6.8: Measured offline globaliser costs

148

of 5 projects asNUM_STACKS increases from 2 to 5000. This is due to the large

number of extra symbols created by the globaliser. The time to build the shared

libraries increases roughly exponentially asNUM_STACKS increases. This is due

to the increased linking time: the GNU linker exhibits almost exponential increase

in time to link as the number of symbols to link increased. As this process is only

required once to build the shared libraries, which can then be used for all

subsequent simulations, the long build time does not prevent NSC from being

useful for many types of simulation. It does prevent simulations of very large

scales (for example, one million nodes) but does not preventthe simulations

discussed in chapter 2 or reproduced in chapter 5 and chapter4.

The object, library or executable files produced from the code output from the

globaliser will be necessarily larger than code unmodified by the globaliser. If

NUM_STACKS is set to 2, then every global that is modified is cloned once. This

means that twice as much memory is used for these variables than was used

originally. Figures 6.8(b) and 6.8(c) show the increase in shared library size. The

size reported is after the debug information (such as variable names) has been

removed. With higher values ofNUM_STACKS (10000 or more) the build process

fails because it hits a memory limit: the 32-bit linking process attempts to allocate

more than 4GB of memory, which results in a memory allocationfailure. The

reason for the linker requiring more than 4GB of memory is thelarge number of

new symbols that are created for array declarations. It would be possible to design

a new algorithm that does not create so many extra symbols (other strategies for

source modification are discussed in chapter 3), but this wasleft for future work; it

was not needed to run the scenarios described in this thesis.

6.5 Discussion of performance results

The scenarios covered in this chapter show a difference in real world time to

simulate of around 1.8–5.5 times between ns-2 TCP models andNSC TCP

implementations. This range is consistent across simple scenarios and more

complex scenarios reproduced from the descriptions given in research papers.

Importantly, similar trends were apparent for the simplified ns-2 models and the

149

NSC implementations for all of the scenarios. When the time to be simulated is

increased and other simulation parameters remain constant, time to simulate

increases linearly for all TCP models used. The same is true when the bottleneck

bandwidth is increased and other parameters are constant. For these scenarios,

both ns-2 TCP models and NSC TCP implementations areO(n) with the NSC

TCP implementations having higher constants.

Non-linear trends are apparent when the number of TCP flows isincreased: the

time to simulate increases roughly exponentially. This canbe expressed asO(nk)

wherek differs for each model.k is higher for the NSC TCP implementations. In

another scenario, as the packet size increases, the time to simulate decays

exponentially (O(n−k) wherek differs for each model). The non-linear trends are

consistent across all the TCP models used.

The consequence of the difference in time to simulate is thatthe NSC is suitable

for most simulations described in the literature, including those described in

section 6.2.2. The higher CPU cost may make the NSC unsuitable for very large

scale simulations. However, in these cases, the NSC may still have a role to play in

validation: it can be used to simulate a subset of the cases that are to be

investigated and its results compared to those produced by the simplified TCP

models being used.

The difference in memory use between ns-2’s simplified TCP models and the NSC

TCP implementations is similar to that of CPU usage: the difference in heap

memory used varies from 1.5 times difference to 6.3 times difference for the

scenarios studied. The trends areO(n) where the NSC TCP implementations have

higher constants. The total virtual memory (VM) size of the simulator process

image is larger when the NSC shared libraries are loaded: theVM size increases

from 8MB to 144MB in the case of loading the FreeBSD 5 shared library. This is

due to the modifications the globaliser makes to the shared libraries.

The globaliser clones global variables which adds to the size of the shared library

that is produced. As the number of TCP instances supported increases, the shared

library size increases linearly. With 5000 TCP instances supported, the size of the

NSC shared libraries ranges from 100MB to 470MB. This has repercussions other

150

than memory use: the linker is unable to link all shared libraries with 10000 TCP

instances supported, as it requires more memory space than is available for a 32-bit

process. During runtime, the extra indirection added by theglobaliser to references

to global variables means that performance is reduced. Thisvaries for each TCP

implementation; in the scenario studied the slowdown for FreeBSD and OpenBSD

was below 4%, but over 16% for Linux 2.6.

Overall, the NSC is capable of simulating many scenarios butis more limited in

scale than the simplified models present in ns-2. Reproducing TCP research carried

out by others with the NSC shows that the NSC has practical useand that the

limitations to scalability do not inhibit its use by many simulation practitioners.

151

152

Chapter 7

Conclusions and future research

This thesis examines using the code from real world TCP implementations in the

place of simplified models of TCP in a network simulator. The accuracy of

simulating TCP is increased first by using more detailed TCP models and second

by using a range of different TCP implementations. Simulating in this way can

produce results which give a greater insight into the scenario being simulated than

simulating with simplified models would.

7.1 Accuracy of simulating with real world TCP code

In chapter 1 the question “would using real world code to simulate TCP would

increase the accuracy of the simulation” is introduced. To investigate this question,

several sub-questions were identified: is it feasible to usereal world TCP

implementations in simulation, is using real world TCP implementations valid and

accurate, is this approach to simulation applicable, and can the simulation be

carried out with reasonable resource usage.

7.1.1 Feasibility

Previous attempts at producing more accurate TCP simulation results by using real

implementations show that such simulation is possible but they are limited in one

or more of the following ways:

• only a single TCP implementation is available in the simulator and this

version is often not updated;

153

• the simulator itself is not popular or well tested, so previous simulations

cannot easily be run and user experience of well-used simulators is ignored;

• little or no validation studies are undertaken to validate the TCP model;

• the code is modified by hand, increasing the chance of the model not

replicating the original system in all details; and

• there is little or no support for simulating a large number ofindependent

instances of the TCP model.

The creation of the Network Simulation Cradle shows that it is feasible to build

software that addresses these issues. No other simulators or frameworks address all

the issues listed above. The main characteristics of the NSCare:

• multiple TCP implementations (e.g., Linux, FreeBSD, OpenBSD and lwIP);

• multiple versions of a single implementation (Linux 2.4, Linux 2.6.10, Linux

2.6.14.2);

• all supported implementations within one simulator process on a single

machine;

• programmatic support for multiple instances so code does not need to be

modified by hand to allow TCP instances to run independently;

• scalability to thousands of TCP connections of differing implementations

running on a single machine;

• thorough validation studies comparing measurements with simulations;

• support for multiple simulators including a well known simulator (ns-2); and

• support for both simplified TCP models and real world code based TCP

models in the same simulator.

7.1.2 Validity and accuracy

The Network Simulation Cradle produces results very similar to the real systems

studied. In chapter 4 several TCP packet traces recorded on atest network are

compared to packet traces generated from simulations usingthe NSC. These traces

are nearly identical, the same sequence of packets are produced by the NSC and

real systems with only small differences in packet timing.

Further comparisons between results from tests on a controlled network and

154

simulation, such as TCP goodput during random packet loss, show simulations

with the NSC to provide a very high level of accuracy. The graphs on page 97

show this: the same trends are apparent for simulated and measured results and the

absolute values, including confidence intervals, are nearly identical.

When compared to previously published results of a set of very thorough

simulations, the NSC produced consistent results. This is shown from page 92

onwards, where the results of reproducing a simulation scenario shown by

Anagnostakiset. al [155] of the goodput of TCP over a complex topology with

multiple congestion points are discussed. Overall the results presented in chapter 4

show the NSC to be very accurate at both micro and macro levels. No previous

work reviewed has shown such results.

7.1.3 Applicability

Others have noted the usefulness of simulating with real world code. Brakmo and

Peterson [103], when describing perhaps the first work that uses a real BSD

TCP/IP stack for network simulation, state:

“Running the actual TCP code is preferred to running an abstract

specification of the protocol; the latter is mostly useful for rapid

experimentation.”

More recently, Wanget. al [104] commented that they use real world TCP

implementations in the NCTUns simulator to “generate more accurate simulation

results than a traditional TCP/IP network simulator that abstracts a lot away from a

real-life TCP/IP implementation.” Another example of using real world code for

greater accuracy is Julio [107], who used the NetBSD TCP implementation in the

OMNeT++ simulator in place of the existing TCP models due to their incorrect

behaviour [115].

Simulating with multiple different TCP implementations isalso useful. This is due

to TCP implementations differing substantially, implementations can produce very

different results as chapter 5 shows. This is true not only insimple simulations

created to show such differences (such as packet reordering, see section 5.2.1 on

155

page 101), but in scenarios reproduced from published research. In one situation

using multiple simulated TCP implementations varied more than using multiple

simplified models showed, probably enough to change the conclusions made

in [180] (see page 119).

A limitation of the approach used by the NSC and described in chapter 3 requires

the TCP implementation source code. This means that closed source stacks, such

as the Microsoft TCP stack, cannot be used in the NSC without the source code

being released. If the source code were available, conceptually the Microsoft TCP

stack could be incorporated into the NSC.

7.1.4 Performance and scalability

Performance tests covered in chapter 6 show that the NSC usually takes longer to

simulate than ns-2’s simplified TCP models and the difference ranges from less

than a 100% difference in time to greater than 500% difference. When reproducing

simulation scenarios published by others and in other work done with the NSC,

this performance difference did not hinder carrying out thesimulations; the time or

resource costs were increased by manageable amounts.

The NSC implementation places some upper limits on scalability that would

prevent some simulations being carried out that could be carried out with

simplified models. Simulations using the NSC and current compilers and hardware

are unable to scale past a few thousand TCP instances due largely to the

mechanisms used by the globaliser (see page 145 and onwards for a discussion of

this). Future work may increase the number of TCP stack instances possible.

The approach that allows real world TCP implementations to run in simulation

used by the NSC is scalable and performs well enough for many simulations

carried out by network researchers. In chapter 2 the types ofsimulations

performed by users of TCP simulation is reviewed along with the scale of these

simulations. All of the research shown in chapter 2 is of a scale that the NSC can

simulate, although the simulations are likely to take longer.

156

7.1.5 Discussion

The implementation and results of using the NSC shows that simulating TCP with

real world code is feasible and can be valid, accurate, applicable, fast and scalable.

Simulating this way with the NSC provides very accurate results with very small

changes needed to configuration: ns-2 simulation scripts only need to refer to a

different TCP model name to use the NSC TCP implementations.This means

simulating TCP with real world code is accessible and as easyto use as other ns-2

TCP models. The Network Simulation Cradle is freely available for

download [199].

Using a range of TCP implementations gives much greater confidence that results

of simulating with real world code based TCP models are not skewed by bugs or a

single version of a single implementation. Simulating witha range of

implementations is important in understanding the range ofresults possible when

running on the Internet where many different versions of many different

implementations of TCP exist.

7.2 Future research

There are many possible avenues of further research available with NSC. The

comparative studies of TCP presented in this thesis only touch the surface of a

large research area. NSC could be used to gain further knowledge on how TCP

implementations perform and interact; even seemingly similar TCP

implementations (FreeBSD and OpenBSD) were found to act surprisingly

differently in some scenarios.

Reproducing existing simulations and using NSC in the placeof the ns-2 TCP

models shows promise as an interesting venture in validating previous research.

There is a large body of simulation research which could be tested in this way, only

a small set of these were reproduced and shown in this thesis.At the same time,

the NSC is of use to current users of TCP simulation; it can be used as a primary

set of models or to validate simplified models.

There are many areas of future research that the NSC could be further developed to

157

support. A list of some of the possibilities follow in the next sections.

7.2.1 Simulating the application layer

If real applications were simulated as well as the real network stack, realistic

application level protocols could be simulated. An examplewould be running the

Quagga [200] routing software to realistically simulate BGP and other routing

protocols. Simulating real world applications as well as the TCP stack would be a

valuable extension to the NSC to capture application behaviour. x-Sim [103]

shows one approach of doing so and Elyet. al.[113] discuss many of the issues of

integrating a user-level network stack with an applicationin their project, Alpine.

Integration with the NSC would expand on previous work likex-Sim by allowing

applications to be simulated using all of the stacks in the NSC.

7.2.2 Protocol development environment

The NSC provides a powerful protocol development environment. Protocol code

that is typically time consuming to install and test can be tested quickly and

reproducibly in a simulator. The NSC can be recompiled and a simulation run

rather than building and installing a new kernel or kernel module. The testing is

then run in a simulator, which means that the tests will be reproducible. It is

possible to debug code that is simulating one machine without fear of affecting

results on another simulated machine with simulated time. This is of great benefit

to debugging distributed systems code, as problems which can be hard to

reproduce (such as race conditions) can be debugged easily in the simulator. It is

also possible to test a much wider range of scenarios with theNSC, and also to

automate the testing.

Some protocol development has been performed with the NSC toshow that this is

viable; an early DCCP implementation was tested [201]. The features described

above are not common features of existing protocol development environment

research [113,202].

158

7.2.3 Network stack additions

There are other network stacks which would be interesting tosimulate with the

NSC:

• Recent versions of the Solaris operating system have been released as open

source software in the form of OpenSolaris. This provides another network

stack which could be supported in NSC. This is of potential interest because

the network stack was independently architectured, not based on the BSD or

Linux TCP stack.

• The Microsoft Windows network stack could also be able to be supported if

the source code is available.

• Mac OS X uses an open source kernel called Darwin which is based on

FreeBSD. Supporting this network stack should be straight forward given

the existing support for FreeBSD in NSC.

• There are also non-TCP protocol stacks which are of potential interest. The

Space Control Protocol Suite [203] is one, the reference

implementation [204] of this could be ported to NSC. Many others are

possible, for example the NSC could be extended to support the full set of

protocols in the current network stacks such as UDP.

Having further TCP implementations would allow a greater range of comparative

studies to be performed with NSC. It would also allow simulations which utilise a

broader range of TCP implementations for background traffic. This is desirable, as

measurement studies of the Internet show a wide range of TCP implementations in

use [185].

7.2.4 Automated protocol testing

The NSC would fit in to an automated testing framework. No human interaction is

required to run a test with NSC and produce a set of metrics. Anautomated test

suite could report performance metrics for benchmarking orrun compliance tests

whenever the source code of a TCP implementation changes. This could provide

knowledge on how changes to the source code practically affects the TCP

implementation. Another possible route would be to run manyprevious versions of

159

a TCP stack with NSC to view how TCP performance has changed over time. This

would require further work, possibly not all of it automated, to support each

version of the TCP implementation in NSC.

7.3 Conclusions

Simulating TCP with the code that is used in real TCP implementations increases

simulation accuracy. This thesis has explored simulating TCP in this way. The

software developed during this thesis, the Network Simulation Cradle, shows that

simulating real world code is feasible. Simulating with this software shows a high

level of accuracy. Reproducing TCP simulations from past research shows that the

approach is of use and insights into TCP and the differences between

implementations can be found. A wide range of future research is possible based

on the software and ideas presented in this thesis.

With simple access to simulating with many different implementations and low

enough resource costs for the simulations that use real world TCP implementations

to be practical, there is little reason not to use such simulation techniques.

Simulating with multiple TCP implementations with the NSC is as easy as using

traditional simplified models in many scenarios. We believethat simulation

practitionersshoulduse real world code based TCP models and that simulation

practitionersshoulduse multiple TCP implementations to see the range of results

possible. This is a new approach to TCP simulation and one which brings the

benefit of more accurate and valid simulation results.

160

Appendix A

Publications authored

A.1 Peer reviewed journal articles

Sam Jansen and Anthony McGregor. Static virtualization of Csource code.

Software: Practice and Experience, 38(4):397–416, April 2008.

A.2 Conference papers

Sam Jansen and Anthony McGregor. Validation of simulated real world network

stacks. InProceedings of the Winter Simulation Conference, pages 2177–2186,

Washington D.C., USA, December 2007. IEEE Press.

Sam Jansen and Anthony McGregor. Performance, validation and testing with the

network simulation cradle. InMASCOTS ’06: Proceedings of the 14th IEEE

International Symposium on Modeling, Analysis, and Simulation, pages 355–362,

Monterey, California, USA, 2006. IEEE Computer Society.

Sam Jansen and Anthony McGregor. Simulation with real worldnetwork stacks.

In WSC ’05: Proceedings of the 37th Winter Simulation Conference, pages

2454–2463, Orlando, Florida, USA, December 2005. Society for Computer

Simulation International.

Sam Jansen and Anthony Mcgregor. Measured comparative performance of TCP

stacks. InPassive and Active Measurement Workshop, volume 3431, pages

329–332, Boston, MA, USA, March 2005.

161

A.3 Conference papers as a secondary author

Adam Biltcliffe, Michael Dales, Sam Jansen, Thomas Ridge, and Peter Sewell.

Rigorous protocol design in practice: An optical packet-switch MAC in HOL. In

14th IEEE International Conference on Network Protocols (ICNP), pages

117–126, Santa Barbara, CA, USA, November 2006. IEEE Computer Society.

Mark Apperley, Sam Jansen, Amos Jeffries, Masood Masoodian, Laurie McLeod,

Lance Paine, Bill Rogers, Kirsten Thomson, and Tony Voyle. Lecture capture

using large interactive display systems. InICCE ’02: Proceedings of the

International Conference on Computers in Education, page 143, Auckland, New

Zealand, 2002. IEEE Computer Society.

162

Appendix B

Network Simulation Cradle manual

This appendix covers a step-by-step process for including anew TCP

implementation in the Network Simulation Cradle. The first section covers the

process of adding the new implementation, while section B.2discusses the process

of testing and validation.

B.1 Adding a new stack

Adding a new network stack to the Network Simulation Cradle involves building a

new library with the network stack code in it. This library must implement the

interface described in section 3.1.3. The process of building this library for a new

network stack is covered in the following sections, presented in chronological

order.

B.1.1 Initial build process

The initial build process refers to obtaining the code for the network stack to be

simulated and building it into an executable. When a networkstack is removed

from an operating system, there are many references to operating system functions

and variable which will be undefined if the new code is built alone. This section

describes how the code is extracted and built, solving the problem of the undefined

references.

163

Extract source code

If the network stack is part of a larger code base that cannot practically be

simulated with reasonable resources in good time, such as anoperating system,

then the important source code needs to be extracted from thesystem.

Listing B.1: FreeBSD kernel source directory

ls /usr/src/sys
Makefile gdb netatm opencrypto
alpha geom netgraph pc98
amd64 gnu netinet pccard
boot i386 netinet6 pci
cam i4b netipsec posix4
coda ia64 netipx rpc
compat isa netkey security
conf isofs netnatm sparc64
contrib kern netncp sys
crypto libkern netsmb tools
ddb modules nfs ufs
dev net nfs4client vm
doc net80211 nfsclient
fs netatalk nfsserver

Each of the entries in listing B.1 is a directory of source code in the FreeBSD

kernel source directory, save theMakefile. When creating a TCP/IP simulation

model, there are sections of the source code that obviously do not require to be part

of the simulation model: device drivers (dev), the boot loader (boot), the

Network File System (nfs, nfs4client, nfsclient, nfsserver) and

some filesystem code (geom, ufs, isofs).

The important code is located innetinet: this contains the TCP and IPv4

protocol implementations. An in depth knowledge of the kernel source layout is

not necessary for the user in this step, though it would help.Finding the TCP

protocol implementation in a code base has not been a problemin any system

studied.

The source code must be copied to a new directory where the project will later be

built. A user might copy the entire set of source code, then narrow down which is

used at a later date, or start by only copying the code they know to be important

(such as thenetinet directory in the example above). Using only a small

amount of code initially is the route usually taken with NSC stacks.

164

Create build environment

The normal build environment of the system the network stackis extracted from

needs to be recorded. In practice, this might mean building the original system

with make and recording the output withscript on a UNIX system. This allows

the user to view the build flags and compiler invocation used to build the system.

The same environment should be reproduced for the extractedcode.

Once this new build system is created, replicating the original compiler flags, the

system needs to be configured to produce an executable. That is, each source file

should be compiled, then all source files should be linked together into an

executable.

This may work on the original system the code is from, but not on other systems

(for example, the FreeBSD kernel will compile on a FreeBSD system easily, but

not on Linux at this stage). This is due to system header files.To isolate the build

environment completely from the host system, the compiler is configured to not

search standard include paths. All include files that are needed - including those

from system include paths (such as/usr/include/) - are copied to the new

build environment.

Link

Linking the code into an executable will provide a list of undefined references. If

the original system is self-contained, such as lwIP [208] is, this list may be short or

empty. If the networking code is extracted from a large monolithic kernel, such as

the FreeBSD networking code is, the list will be longer.

The linker will output a verbose list of undefined referenceswith many duplicates.

The output will need to be processed into a readable form. It is possible to sort the

undefined references by their frequency of occurrence, thereby understanding

which are critical to the system.

165

Solve undefined references

If there are many undefined references that are referred to often, it is likely a good

idea to include more code from the original system. The new executable should

then be compiled and linked again, producing a new list of undefined references.

This process can be repeated until the list of undefined references is of a small

enough length to satisfy the user.

The rest of the undefined references must be implemented as stub functions and

variable declarations. The stub functions should raise an error if called as shown in

listing B.2. This means that when the model is being tested ata later date, the

functions which are not implemented but need to be will fail,allowing the user to

implement these functions.

Listing B.2: Stub function from the FreeBSD support code

int seltrue(dev, events, td)
dev_t dev;
int events;
struct thread *td;

{
assert(0 && "This function is intentionally

unimplemented.");
return 0;

}

There may be many functions which will not be called during the execution of the

model that are suitable to have stub functions of the sort in listing B.2. If they are

required, the user will need to either implement the function, or copy the original

implementation, whichever is more appropriate to the function in question.

Undefined variable symbols are global variable declarations and should be copied

exactly as they appear in the original code to preserve theirdefault values. Once

the undefined references have been solved, the build system can be configured to

output a shared library. The creation of this shared libraryand cradling code

follows.

B.1.2 Shared library creation

The shared library contains up to three parts: the untouchedsource code to be

simulated that is extracted from the original system, possibly any stub functions

166

created, and the cradle code that is described next.

Build cradle

The cradle code within a shared library implements the interface described in

section 3.1.3. To implement this interface it needs to provide code to bridge

between the network stack code and the simulation interface.

The amount of cradling code will vary depending on the interface the network

stack provides. The FreeBSD code in the Network Simulation Cradle does not

have the usual BSD sockets API available, only the lower level kernel primitive

functions. To implement functionality such as creating a TCP socket, connecting a

TCP socket, sending data over a socket and similar, the original syscall

implementations were viewed and copied as much as possible.Other functionality

will be even more complex, the method used to set the default gateway varies a lot

between operating systems and is generally undocumented: FreeBSD uses a

routing socket while Linux uses anioctl() call or a Netlink socket.

Initialisation is important and often the most complex partof this process.

FreeBSD uses “linker sets” to store initialisation information, the data is stored in

different sections of the library or executable and the linker creates special symbols

to signify the start and end of these sections. The code whichnormally sorts the

section and executes the initialisation code is part of the kernelmain() routine,

which is not directly usable in simulation. This code, and other initialisation code,

needs to be ported to user space. Detail of how the globalisersupports linker sets

can be found in section 3.2.3.

Support non-blocking calls

Part of building the cradle will be to interface with functionality in the network

stack which may take time to process. The function call may have the option of

blocking: not returning until some external event has takenplace.

When sending data over a socket using the popular BSD socketsAPI [209], the

send() function has the option to block: until there is space in the TCP buffer to

enqueue the data, for example. Some systems such as Linux allow the programmer

167

to specify aMSG_DONTWAIT flag to prevent the call from blocking, else in many

cases the file descriptor can be configured to be non-blockingvia the use of an

fcntl() function call.

When an application is blocked, the operating system pausesthe application and

resumes it when the event it is waiting for happens. When the application is

blocked the operating system continues on and is able to awaken the application at

a later time. In simulation with ns-2 there is only one threadof execution. If the

application is blocked waiting for an event, the entire program is blocked and will

not continue.

The cradle code must use non-blocking calls like those mentioned above for the

BSD sockets API. Though it is possible a protocol is implemented to be only

blocking, this is not the case for the systems studied and it is unlikely any major

network stacks are implemented this way. The Network Simulation Cradle

requires non-blocking protocol implementations, though atrial implementation

that supports blocking protocols using threads1 is introduced in earlier work [116]

— non-blocking code is not a fundamental requirement of thisapproach.

Integrate with the simulator

Once the interface is implemented in the shared library, thestack can be used in the

ns-2 network simulator. It can then be used in a large range ofTCP simulations,

though at this stage only a single instance of the stack will be supported.

With other network stacks a part of NSC, the new stack can be tested against one

of these. Connecting a socket, sending data, listening, accepting and reading from

a socket must all be tested. This process will show any mistakes in the stub

functions used (see section B.1.1)—there will be assertionfailures whenever a stub

function is reached. Whenever this happens, the user must investigate the function

and make a decision on how to implement the function. This process continues

until a range of simulations can be performed without the program aborting due to

an assertion failure.

1Another approach would be to use coroutines [210], for whichseveral libraries exist for C/C++.

168

Add support for multiple instances

The globaliser must be added to the build process to allow support for multiple

instances. There are three steps to integrating the globaliser into a build system.

Adding the globaliser into the build process, setting it up to output any globals

encountered, then building a list of global variables to be modified.

The globaliser described in section 3.2 takes preprocessedC source code as input

onstdin and outputs modified C onstdout. When using the gcc compiler, the

command to compile a C file calledsample.c would be similar to listing B.3.

The filesample.c is preprocessed. The preprocesed source is then passed

through a UNIX pipe to the globaliser, which reads a list of global variables to

modify from a file calledglobals.txt. The output of the globaliser is then

passed through a UNIX pipe again to gcc, which compiles the file and saves the

results insample.o.

Listing B.3: Compiling a C file with gcc and the globaliser

gcc ${CFLAGS} sample.c -E - |
./globaliser -vv ./globals.txt |
gcc -xc ${CFLAGS} -c - -o sample.o

The globaliser must read a list of globals to modify from a text file. This stops it

from modifying variables the user does not want or need modified, for example,

the variable used to denote which stack is currently running. The globaliser has a

verbose option,-v, which makes it output any globals it encounters which it is not

already modifying to standard error. This list of variablescan be recorded and

collated, and any variables that the user does not want modified can be removed.

The remaining list can then be saved in the global list file andused in later builds.

B.2 Testing and validation

Once a shared library has been built and supports multiple instances it should be

tested and validated. Initial testing was with a single instance to made sure the new

stack would perform some basic operations in simulation. This testing neither

looked at multiple instances of the stack, nor whether the results produced by the

stack were accurate.

169

B.2.1 Initial testing

The first phase of testing should include the tests run earlier, to check for any

regressions running the globaliser on the source. Then the simple tests should be

expanded into tests of multiple instances communicating.

Specific features should be tested, such as timers working correctly, the correct

amount of data being sent and received and whether the maximum transfer unit is

correct. Writing tests is simple because the network simulator is already designed

to be quick and easy to produce new simulation scenarios.

This further testing phase ensures that the earlier processof extracting code and

then later using the globaliser has produced a simulation model that runs in a

variety of scenarios and produces reasonable, if not yet validated, results. More

stub functions may be encountered that need to be implemented, or the user may

find that timers are not working as expected because of a user error earlier in the

process. Once these issues are fixed the simulated network stack can undergo

thorough validation.

B.2.2 Validation

The simulator agent of NSC has an option to turn libpcap [130]packet tracing on.

The data from the packets created in the real stack code is saved to disk in tcpdump

format. This can then be analysed later in the tcpdump program [130],

tcptrace [131], Ethereal [211] and others. ns-2 trace format is also supported,

allowing visualisation in Nam [212] and use of traditional ns-2 trace analysis.

An advantage of producing libpcap packet traces is that the packet traces can be

directly compared to packet traces measured from real machines. A simulation can

be modelled after a physical setup, perhaps in a laboratory test network, and packet

traces can be measured on the real machines and in simulation. The packet traces

can be directly compared on a packet-by-packet basis to see the differences

between the two setups. This sort of validation using the Network Simulation

Cradle is presented in [163] and in chapter 4.

170

Appendix C

Network simulators

This appendix covers prominent packet based network simulators encountered

during research for this thesis. Only simulators not covered in chapter 2 are

introduced here.

C.1 OMNeT++

The OMNeT++ [213,214] framework is a discrete event simulation environment

primarily used for simulating communication networks. It provides an

object-oriented component architecture where componentsare written in C++ and

assembled into larger models with a domain specific languagecalled NED [215].

OMNeT++ is a popular simulator used in education [216], for wireless network

research [217–221], optical network research [222] and TCP/IP

research [107,221,223–225].

The simulator

The OMNeT++ simulation kernel supports sequential and parallel

simulation [226]. Models are creating by deriving amoduleclass which handles

messagessent to it. Models create new messages and send them viagatesor

directly to other models. Gates are used to connect modules together, a application

module might have anout gateconnected to a TCP model used to send data. The

simulation kernel provides utility functions to enable building models from these

building blocks, for example, scheduling a message to arrive at a model after a

171

specified amount of time (a timer).

Simple modules are combined intocompound modulesby grouping them in NED

files, allowing unlimited compound module hierarchy levels. NED files also list

module parameters and gates.

OMNeT++ includes a Graphical User Interface (GUI) that shows a graphical

depiction of the simulation scenario and the events being generated. The

simulation components and messages can be examined in detail and the speed of

the simulation is directly controlled by the user. Simulations can also be run

outside of the GUI. Several tools are included to aid visualisation and analysis of

simulation results.

TCP model

OMNeT++ includes a basic TCP model in its INET framework which is

documented [227] to support RFC 793 [10], RFC 1122 [228] and RFC 2001 [164].

The following mechanisms are listed as implemented: connection setup and tear

down, segmentation, receive buffering for out of order data, delayed

acknowledgements, Nagle’s algorithm, Jacobson’s and Karn’s algorithms. TCP

Tahoe and TCP Reno are both available.

The model does not include any more recent TCP advances that are used widely on

the Internet today such as selective acknowledgements and TCP timestamps.

Timers are not based on “fast” and “slow” timers as BSD implementations are,

meaning timer granularity can be different to real implementations.

The TCP model has a basic testing suite. A series of test scenarios is run and traces

from the simulations is checked to see whether it matches known good output. The

tests check whether functionality such as Nagle’s algorithm, delayed ACKs,

retransmission and connection establishment work.

Due to the limited TCP model there are several attempts at providing TCP models

based on real world protocol code [106,107]. These are described in section 2.3.

172

C.2 SSF

SSF provides a single interface for discrete-event simulation known as the SSF

API [229]. It is designed to support high-performance simulation by making it

possible to build models that are efficient, scale well and utilise parallel processor

resources. The API specifies the use of either Java or C++.

The SSF API is based around five base classes:Entities, which contain state,

Processes that operate on that state,inChannels andoutChannels that

define the endpoints of communication channels.Events are objects that are

passed between entities to communicate. On top of the basic simulation core

classes domain specific component layers are built such as anIP networking layer.

Models are composed and configured via a hierarchical attribute tree language

known as Domain Modeling Language (DML).

There are several implementations including commercial and reference

implementations. Two major implementations that are used in research are

Dartmouth SSF [230] and SSFNet [231].

SSFNet

SSFNet [231] is a set of open source Java models of communication elements

(such as TCP, UDP, BGP, routers and LANs) for SSF. Research using SSFNet

includes large scale Internet simulations such as BGP simulations [232,233],

studies of TCP dynamics [234] and worm traffic [235].

The TCP model used in SSFNet implements basic RFC 793 [10] and

RFC 2581 [182] congestion control including fast retransmit, fast recovery,

duplicate acknowledgements and slow start. Segments are always the maximum

size and data is immediately consumed by the receiver.

TCP model validation is based on the ns-2 validation tests. Traces produced by

ns-2 and SSFNet are graphed and compared by hand. 14 tests arecompared

against ns version 2.1b4. ns-2 has changed in further versions, including bug fixes

to TCP that changes the behaviour validated against. The comparison of traces is

thorough but the results of the validation only show that theSSFNet TCP models

173

are consistent with a specific version of another simulator,not real TCP

implementations.

DaSSF

Dartmouth SSF, otherwise known as DaSSF, is implemented in C++ and has been

used for simulations intended to model the global Internet [236,237] and large

scale sensor networks [238]. Dartmouth SSF is also known as iSSF in recent

work [239]. There are several TCP/IP models for DaSSF: DaSSFNet, a port of the

Java-based SSFNet, a custom TCP/IP model for DaSSF [240] andfluid models for

TCP [241,242].

The TCP model described in [240] implements basic TCP functionality

(RFC 793 [10]) apart from buffering out of order packets thatare within the

receivers advertised window. The Nagle algorithm and the Silly Window

Syndrome (SWS) fix are not implemented. Basic validation is performed by

analysing time-sequence graphs in scenarios that test the features of TCP

implemented in the simulation model.

Another approach to TCP simulation with DaSSF is using fluid models. Fluid

modelling of TCP produces very fast and scalable simulations at the cost of

accuracy. The model described by Nicol [241] combines discrete event and fluid

modelling to simulate slow start, congestion avoidance, time-outs, lost data and

fast retransmits. There is potential for very large speed-ups with such a model

though there are still performance problems in some situations [242]. The

accuracy of such modelling has been shown to be adequate in many scenarios TCP

operates in [243], but there is question over the accuracy ingeneral, further

verification and validation work is required [241,242].

C.3 GTNeTS

The Georgia Tech Network Simulator [244] (GTNeTS) is written in C++ and

designed and used for large scale network simulation [245,246] such as Internet

worms [247]. GTNeTS includes TCP models for Reno, Newreno, Tahoe and Sack.

There is no information on validation performed on these TCPmodels.

174

C.4 J-Sim

J-Sim [248,249], formerly known as JavaSim, is a component-based simulator

written in Java with an emphasis on network simulation. It ismostly used for

wireless sensor network research [248,250] but includes TCP models for the Reno,

Tahoe and Vegas congestion control algorithms, which support delayed

acknowledgements and understand ECN. No information is provided on

verification and validation of the simulation models.

C.5 JiST

The JiST [251] simulator utilises the Java virtual machine to perform fast, scalable

simulations. The SWANS framework uses this simulator to simulate wireless

networks [252]. This framework includes a TCP model [253]. This model

implements basic TCP functionality described in RFC 793 [10] and

RFC 2581 [182].

C.6 IRLSim

IRLSim [108] is a general purpose packet level network simulator. It was

originally designed to simulate the Resource Reservation Protocol (RSVP) [254]

but expanded over time to be general purpose and include TCP/IP models. IRLSim

is based on the Parsec [87] simulation language which allowssequential and

parallel simulation. Parsec code is similar to C and portingcode between the two

languages is easy [108].

The TCP model used in IRLSim is a port of the BSD 4.4-Lite [126]TCP

implementation. No validation information about the simulator or its models is

provided. IRLSim is used in some RSVP [255] and routing [256]research.

175

176

References

[1] Michael Dales and Madeleine Glick. SWIFT: A high capacity
wavelength-striped optically switched network with electronic control. In
INFOCOM Poster Session, Miami, FL, USA, March 2005.

[2] Matt Mathis, John Heffner, and Raghu Reddy. Web100: extended TCP
instrumentation for research, education and diagnosis.SIGCOMM Comput.
Commun. Rev., 33(3):69–79, July 2003.

[3] John Heidemann, Kevin Mills, and Sri Kumar. Expanding confidence in
network simulation.IEEE Network Magazine, 15(5):58–63, Sept./Oct.
2001.

[4] Sally Floyd and Van Jacobson. Traffic phase effects in packet-switched
gateways.Journal of Internetworking:Practice and Experience,
3(3):115–156, September 1992.

[5] Sally Floyd. Simulator tests. Technical report, Lawrence Berkeley
Laboratory, May 1997.

[6] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repository at
the WIDE project. InUSENIX, FREENIX Track, pages 263–270, San
Diego, CA, June 2000.

[7] A. Romanow and S. Floyd. The dynamics of TCP traffic over ATM
networks.IEEE Journal on Selected Areas In Communications, May 1995.

[8] Mario Gerla, Ken Tang, and Rajive Bagrodia. TCP performance in wireless
multi-hop networks. InWMCSA ’99: Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and Applications, Washington, DC,
USA, 1999. IEEE Computer Society.

[9] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion
control (BIC) for fast long-distance networks. InIEEE Infocom. IEEE,
2004.

[10] J. Postel. Transmission Control Protocol. RFC0793, September 1981.

[11] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective
Acknowledgement Options. RFC2018, October 1996.

[12] R. Ludwig and A. Gurtov. The Eifel Response Algorithm for TCP.
RFC4015, February 2005.

177

[13] The network simulator - ns-2.http://www.isi.edu/nsnam/ns/,
Accessed 2008.

[14] David Wetherall. Otcl: MIT Object Tcl.http://otcl-tclcl.
sourceforge.net/otcl/, Accessed 2006.

[15] Google scholar.http://scholar.google.com, Accessed 2006.

[16] Citeseer scientific literature digital library.http://citeseer.ist.
psu.edu/, Accessed 2006.

[17] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,
Ahmed Helmy, Polly Huang, Steven Mccanne, Kannan Varadhan,Ya Xu,
and Haobo Yu. Advances in network simulation.IEEE Computer,
33(5):59–67, 2000.

[18] Tom Henderson, Sumit Roy, Sally Floyd, and George Riley. ns-3 project
plan.http://www.icir.org/floyd/talks/ns3-Jun06.pdf,
June 2006.

[19] Matthew Mathis and Jamshid Mahdavi. Forward acknowledgement:
refining TCP congestion control. InSIGCOMM ’96: Conference
proceedings on Applications, technologies, architectures, and protocols for
computer communications, volume 26, pages 281–291, New York, NY,
USA, October 1996. ACM Press.

[20] Kevin Fall and Sally Floyd. Simulation-based comparisons of Tahoe, Reno
and SACK TCP.SIGCOMM Comput. Commun. Rev., 26(3):5–21, July
1996.

[21] Sally Floyd. Validation experiences with the ns simulator. Technical report,
ACIRI, April 1999.

[22] Michael Neufeld, Ashish Jain, and Dirk Grunwald. Nsclick: bridging
network simulation and deployment. InMSWiM ’02: Proceedings of the 5th
ACM international workshop on Modeling analysis and simulation of
wireless and mobile systems, pages 74–81, New York, NY, USA, 2002.
ACM Press.

[23] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and Frans M.
Kaashoek. The click modular router.ACM Trans. Comput. Syst.,
18(3):263–297, August 2000.

[24] X. A. Dimitropoulos and G. F. Riley. Creating realisticBGP models. In
Modeling, Analysis and Simulation of Computer Telecommunications
Systems, 2003. MASCOTS 2003. 11th IEEE/ACM International Symposium
on, pages 64–70, 2003.

[25] Inetquagga.http://www.omnetpp.org/pmwiki/index.php?
n=Main.INETQuagga, Accessed 2008.

[26] R. J. Gurski and C. L. Williamson. TCP over ATM: simulation model and
performance results. InComputers and Communications, 1996., Conference
Proceedings of the 1996 IEEE Fifteenth Annual International Phoenix
Conference on, pages 328–335, 1996.

178

http://www.isi.edu/nsnam/ns/
http://otcl-tclcl.sourceforge.net/otcl/
http://otcl-tclcl.sourceforge.net/otcl/
http://scholar.google.com
http://citeseer.ist.psu.edu/
http://citeseer.ist.psu.edu/
http://www.icir.org/floyd/talks/ns3-Jun06.pdf
http://www.omnetpp.org/pmwiki/index.php?n=Main.INETQuagga
http://www.omnetpp.org/pmwiki/index.php?n=Main.INETQuagga

[27] Guang Lu, R. Simmonds, Xiao Zhonge, B. Unger, and C. Williamson. The
performance of TCP over ATM on lossy ADSL networks. InLocal
Computer Networks, 2000. LCN 2000. Proceedings. 25th Annual IEEE
Conference on, pages 418–427, 2000.

[28] D. Comer and J. Lin. TCP buffering and performance over an ATM
network, March 1995.

[29] Brian W. Unger, Fabian Gomes, Xiao Zhonge, Pawel Gburzynski, Theodore
Ono-Tesfaye, Srinivasan Ramaswamy, Carey Williamson, andAlan
Covington. A high fidelity ATM traffic and network simulator.In WSC ’95:
Proceedings of the 27th conference on Winter simulation, pages 996–1003,
New York, NY, USA, 1995. ACM Press.

[30] H. Obata, K. Ishida, J. Funasaka, and K. Amano. TCP performance analysis
on asymmetric networks composed of satellite and terrestrial links. In ICNP
’00: Proceedings of the 2000 International Conference on Network
Protocols, Washington, DC, USA, 2000. IEEE Computer Society.

[31] Yong Bai, Pengfei Zhu, A. Rudrapatna, and A. T. Ogielski. Performance of
TCP/IP over IS-2000 based CDMA radio links. InIEEE Vehicular
Technology Conference, 2000, volume 3, pages 1036–1040, 2000.

[32] M. Gerla, R. Bagrodia, L. Zhang, K. Tang, and L. Wang. TCPover wireless
multihop protocols: Simulation and experiments. InIEEE International
Conference on Communications (ICC), June 1999.

[33] Gavin Holland and Nitin H. Vaidya. Analysis of tcp performance over
mobile ad hoc networks. InProceedings of IEEE/ACM MOBICOM ’99,
pages 219–230, August 1999.

[34] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. Theimpact of
multihop wireless channel on TCP throughput and loss. InINFOCOM,
April 2003.

[35] Tianbo Kuang and Carey Williamson. A bidirectional multi-channel MAC
protocol for improving TCP performance on multihop wireless ad hoc
networks. InMSWiM ’04: Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wirelessand mobile
systems, pages 301–310, New York, NY, USA, 2004. ACM Press.

[36] Kaixin Xu, Mario Gerla, Lantao Qi, and Yantai Shu. Enhancing TCP
fairness in ad hoc wireless networks using neighborhood RED. In MobiCom
’03: Proceedings of the 9th annual international conference on Mobile
computing and networking, pages 16–28, New York, NY, USA, 2003. ACM
Press.

[37] Rajesh Krishnan and James P. Sterbenz. TCP over load-reactive links. In
International Conference on Networking Protocols, Washington, DC, USA,
2001. IEEE Computer Society.

179

[38] Aleksandar Kuzmanovic and Edward W. Knightly. Low-rate TCP-targeted
denial of service attacks: the shrew vs. the mice and elephants. In
SIGCOMM ’03: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 75–86, New York, NY, USA, 2003. ACM Press.

[39] G. Neglia and V. Falletta. Is TCP packet reordering always harmful? In
Modeling, Analysis, and Simulation of Computer and Telecommunications
Systems, 2004. (MASCOTS 2004). Proceedings. The IEEE Computer
Society’s 12th Annual International Symposium on, pages 87–94, 2004.

[40] Liang Guo and Ibrahim Matta. The war between mice and elephants. In
International Conference on Network Protocols, July 2001.

[41] Wesley M. Eddy and Mark Allman. A comparison of RED’s byte and
packet modes.Comput. Networks, 42(2):261–280, June 2003.

[42] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker. Adaptive RED: An
algorithm for increasing the robustness of RED’s active queue management.
Available http://www.icir.org/floyd/papers/adaptiveRed.pdf, August 2001.

[43] Zhang Heying, Liu Baohong, and Dou Wenhua. Design of a robust active
queue management algorithm based on feedback compensation. In
SIGCOMM ’03: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 277–285, New York, NY, USA, 2003. ACM Press.

[44] Ningning Hu and Peter Steenkiste. Improving TCP startup performance
using active measurements: Algorithm and evaluation. InICNP ’03:
Proceedings of the 11th IEEE International Conference on Network
Protocols, Washington, DC, USA, 2003. IEEE Computer Society.

[45] H. Wang and C. Williamson. A new scheme for TCP congestion control:
Smooth-start and dynamic recovery. InMASCOTS ’98: Proceedings of the
6th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, Washington, DC, USA, 1998.
IEEE Computer Society.

[46] Ming Zhang, Brad Karp, Sally Floyd, and Larry Peterson.RR-TCP: A
reordering-robust TCP with DSACK. InICNP ’03: Proceedings of the 11th
IEEE International Conference on Network Protocols, Washington, DC,
USA, 2003. IEEE Computer Society.

[47] Ethan Blanton and Mark Allman. On making TCP more robustto packet
reordering.SIGCOMM Comput. Commun. Rev., 32(1):20–30, January
2002.

[48] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the
Selective Acknowledgement (SACK) Option for TCP. RFC2883,July
2000.

[49] Emulab.http://www.emulab.net/, Accessed 2006.

180

http://www.emulab.net/

[50] Carey Williamson and Qian Wu. A case for context-aware TCP/IP.
SIGMETRICS Perform. Eval. Rev., 29(4):11–23, March 2002.

[51] Guanghui He, Yuan Gao, Jennifer C. Hou, and Kihong Park.A case for
exploiting self-similarity of network traffic in tcp congestion control.
Comput. Networks, 45(6):743–766, August 2004.

[52] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren
Wang. TCP westwood: Bandwidth estimation for enhanced transport over
wireless links. InMobiCom ’01: Proceedings of the 7th annual
international conference on Mobile computing and networking, pages
287–297, New York, NY, USA, 2001. ACM Press.

[53] Luigi A. Grieco and Saverio Mascolo. Performance evaluation and
comparison of Westwood+, New Reno, and Vegas TCP congestioncontrol.
SIGCOMM Comput. Commun. Rev., 34(2):25–38, April 2004.

[54] L. S. Brakmo and L. L. Peterson. TCP vegas: end to end congestion
avoidance on a global internet.IEEE Journal on Selected Areas in
Communications, 13(8):1465–1480, 1995.

[55] Carlo Caini and Rosario Firrincieli. TCP Hybla: a TCP enhancement for
heterogeneous networks.International Journal of Satellite Communications
and Networking, 22(5):547–566, August 2004.

[56] Cheng P. Fu and Soung C. Liew. TCP Veno: TCP enhancement for
transmission over wireless access networks.IEEE Journal on Selected
Areas in Communications, 21(2):216–228, February 2003.

[57] D. Leith and R. Shorten. H-TCP: TCP for high-speed and long-distance
networks. InProceedings of the 2nd Workshop on Protocols for Fast Long
Distance Networks, Argonne, Canada, 2004.

[58] Tom Kelly. Scalable TCP: improving performance in highspeed wide area
networks.SIGCOMM Comput. Commun. Rev., 33(2):83–91, April 2003.

[59] C. Jin, D. Wei, and S. Low. FAST TCP: Motivation, architecture,
algorithms, performance. InINFOCOM, 2004.

[60] I. Khalifa and L. Trajkovic. An overview and comparisonof analytical TCP
models. InProceedings of the 2004 International Symposium on Circuits
and Systems, volume 5, pages V–469–V–472 Vol.5, 2004.

[61] Farooq Anjum and Leandros Tassiulas. Comparative study of various TCP
versions over a wireless link with correlated losses.IEEE/ACM Trans.
Netw., 11(3):370–383, June 2003.

[62] Michele Garetto, Renato Lo Cigno, Michela Meo, and Marco A. Marsan.
Closed queueing network models of interacting long-lived tcp flows.
IEEE/ACM Trans. Netw., 12(2):300–311, April 2004.

[63] Bing Wang, Jim Kurose, Prashant Shenoy, and Don Towsley. Multimedia
streaming via TCP: an analytic performance study.SIGMETRICS Perform.
Eval. Rev., 32(1):406–407, June 2004.

181

[64] Aditya Akella, Srinivasan Seshan, Richard Karp, ScottShenker, and
Christos Papadimitriou. Selfish behavior and stability of the internet: a
game-theoretic analysis of TCP.SIGCOMM Comput. Commun. Rev.,
32(4):117–130, October 2002.

[65] Xin Liu and Andrew A. Chien. Realistic large-scale online network
simulation. InSC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, Washington, DC, USA, 2004. IEEE Computer Society.

[66] Garrett R. Yaun, David Bauer, Harshad L. Bhutada, Christopher D.
Carothers, Murat Yuksel, and Shivkumar Kalyanaraman. Large-scale
network simulation techniques: examples of TCP and OSPF models.
SIGCOMM Comput. Commun. Rev., 33(3):27–41, July 2003.

[67] G. F. Lucio, M. Paredes-Farrera, E; F. Jammeh, and M. J. Reed. OPNET
modeler and ns-2 - comparing the accuracy of network simulators for
packet-level analysis using a network testbed.WSEAS Transactions on
Computers, 2(3):700–707, July 2003.

[68] Johan Garcia, Stefan Alfredsson, and Anna Brunstrom. The impact of loss
generation on emulation-based protocol evaluation. InPDCN’06:
Proceedings of the 24th IASTED international conference onParallel and
distributed computing and networks, pages 231–237, Anaheim, CA, USA,
2006. ACTA Press.

[69] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and
D. Chalmers. The state of peer-to-peer simulators and simulations.
SIGCOMM Comput. Commun. Rev., 37(2):95–98, April 2007.

[70] Roberto Canonico, Donato Emma, and Giorgio Ventre. Extended Nam: An
ns2-compatible network topology editor for simulation of web caching
systems on large network topologies, October 2003.

[71] Srinivasan Keshav. REAL: A network simulator. Technical report,
University of California at Berkeley, Berkeley, CA, USA, 1988.

[72] Alexander Dupuy, Jed Schwartz, Yechiam Yemini, and David Bacon.
NEST: a network simulation and prototyping testbed.Commun. ACM,
33(10):63–74, October 1990.

[73] M. Handley, J. Padhye, and S. Floyd. TCP congestion window validation.
Technical report, University of Massachusetts, Amherst, MA, USA, 1999.

[74] G. Hasegawa, K. Kurata, and M. Murata. Analysis and improvement of
fairness between TCP Reno and Vegas for deployment of TCP Vegas to the
internet. InICNP ’00: Proceedings of the 2000 International Conferenceon
Network Protocols, Washington, DC, USA, 2000. IEEE Computer Society.

[75] M. C. Weigle, K. Jeffay, and F. D. Smith. Quantifying theeffects of recent
protocol improvements to standards-track TCP. In11th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems, pages 226–229, 2003.

182

[76] Qian Wu and Carey Williamson. Improving ensemble-TCP performance on
asymmetric networks. InProceedings of the Ninth International Symposium
in Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, Washington, DC, USA, 2001. IEEE Computer Society.

[77] John K. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley Professional,
March 1994.

[78] V. Jacobson. Congestion avoidance and control.SIGCOMM Comput.
Commun. Rev., 18(4):314–329, August 1988.

[79] V. Jacobson. Modified TCP congestion control and avoidance algorithms.
end2end-interest mailing list, April 1990.

[80] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast
Recovery Algorithm. RFC2582, April 1999.

[81] K. Fall, S. Floyd, and T. Henderson. Ns simulator tests for Reno FullTcp,
1997.

[82] ns-2 validation tests.http://www.isi.edu/nsnam/ns/
ns-tests.html, Accessed 2006.

[83] Fabian Gomes, John Cleary, Alan Covington, Steve Franks, Brian Unger,
and Zhong-E Ziao. SimKit: a high performance logical process simulation
class library in c++. InWSC ’95: Proceedings of the 27th conference on
Winter simulation, pages 706–713, New York, NY, USA, 1995. ACM Press.

[84] Gary R. Wright and Richard W. Stevens.The Implementation (TCP/IP
Illustrated, Volume 2). Addison-Wesley Professional, January 1995.

[85] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High
Performance. RFC1323, May 1992.

[86] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: A library for
parallel simulation of large-scale wireless networks. InWorkshop on
Parallel and Distributed Simulation, pages 154–161, 1998.

[87] R. Bagrodia, R. Meyer, M. Takai, Yu-An Chen, Xiang Zeng,J. Martin, and
Ha Y. Song. Parsec: a parallel simulation environment for complex systems.
IEEE Computer, 31(10):77–85, 1998.

[88] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A. Stankovic. Impact
of radio irregularity on wireless sensor networks. InMobiSys ’04:
Proceedings of the 2nd international conference on Mobile systems,
applications, and services, pages 125–138, New York, NY, USA, 2004.
ACM Press.

[89] K. Tang and M. Gerla. MAC reliable broadcast in ad hoc networks. In
Communications for Network-Centric Operations: Creatingthe Information
Force. IEEE Military Communications Conference, volume 2, pages
1008–1013 vol.2, 2001.

183

http://www.isi.edu/nsnam/ns/ns-tests.html
http://www.isi.edu/nsnam/ns/ns-tests.html

[90] Sonja Buchegger and Jean-Yves Le Boudec. Performance analysis of the
CONFIDANT protocol. InMobiHoc ’02: Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking & computing, pages
226–236, New York, NY, USA, 2002. ACM Press.

[91] Scalable Network Technologies. Qualnet network simulator.http://
www.scalable-networks.com/, Accessed 2006.

[92] Haejung Lim, Kaixin Xu, and M. Gerla. TCP performance over multipath
routing in mobile ad hoc networks. InCommunications, 2003. ICC ’03.
IEEE International Conference on, volume 2, pages 1064–1068 vol.2, 2003.

[93] Rajive Bagrodia and Mineo Takai. Position paper on validation of network
simulation models. InDARPA/NIST Network Simulation Validation
Workshop, May 1999.

[94] Inc. OPNET Technologies. Opnet modeler.ttp://www.opnet.com/
products/modeler/, Accessed 2006.

[95] Xinjie Chang. Network simulations with opnet. InWSC ’99: Proceedings
of the 31st conference on Winter simulation, pages 307–314, New York, NY,
USA, 1999. ACM Press.

[96] Chengyu Zhu, O. W. W. Yang, J. Aweya, M. Ouellette, and D.Y. Montuno.
A comparison of active queue management algorithms using the OPNET
Modeler. IEEE Communications Magazine, 40(6):158–167, 2002.

[97] J. W. K. Wong and V. C. M. Leung. Improving end-to-end performance of
TCP using link-layer retransmissions over mobile internetworks. InIEEE
International Conference on Communications, volume 1, pages 324–328,
1999.

[98] Jing Wu, Peng Zhang, Tao Du, Jian Ma, and Shiduan Cheng. Improving
TCP performance in ATM network by the fast TCP flow control. In
International Conference on Communication Technology, volume vol.2,
pages 5 pp. vol.2+, 1998.

[99] J. B. Pippas and I. S. Venieris. A RED variation for delaycontrol. InIEEE
International Conference on Communications, volume 1, pages 475–479,
2000.

[100] Wan G. Zeng, Meihua Zhan, Zhiwen Lin, and Ljiljana Trajkovic. Improving
TCP performance with periodic disconnections over wireless links. In
OPNETWORK, Washington D.C., August 2003.

[101] F. Baccelli, D. R. Mcdonald, and J. Reynier. A mean-field model for
multiple TCP connections through a buffer implementing RED. Perform.
Eval., 49(1-4):77–97, 2002.

[102] Norman C. Hutchinson and Larry L. Peterson. The X-Kernel: An
architecture for implementing network protocols.IEEE Trans. Softw. Eng.,
17(1):64–76, January 1991.

184

http://www.scalable-networks.com/
http://www.scalable-networks.com/
ttp://www.opnet.com/products/modeler/
ttp://www.opnet.com/products/modeler/

[103] Lawrence S. Brakmo and Larry L. Peterson. Experienceswith network
simulation. InSIGMETRICS ’96: Proceedings of the 1996 ACM
SIGMETRICS international conference on Measurement and modeling of
computer systems, volume 24, pages 80–90, New York, NY, USA, May
1996. ACM Press.

[104] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M. Yang, C. C.
Chiou, and C. C. Lin. The design and implementation of the NCTUns 1.0
network simulator.Computer Networks: The International Journal of
Computer and Telecommunications Networking, 42(2):175–197, 2003.

[105] Craig Bergstrom, Srinidhi Varadarajan, and Godmar Back. The distributed
open network emulator: Using relativistic time for distributed scalable
simulation. In20th Workshop on Principles of Advanced and Distributed
Simulation, pages 19–28, 2006.

[106] Roland Bless and Mark Doll. Integration of the FreeBSDTCP/IP-stack into
the discrete event simulator OMNeT++. InWinter Simulation Conference,
pages 1556–1561, December 2004.

[107] Perez Julio. MQTT performance analysis with OMNeT++.Master’s thesis,
Networking Insitut Eurecom, September 2005.

[108] A. Terzis, K. Nikoloudakis, Lan Wang, and Lixia Zhang.IRLSim: a general
purpose packet level network simulator. In33rd Annual Simulation
Symposium, pages 109–120, 2000.

[109] David X. Wei and Pei Cao. Ns-2 TCP-Linux: an ns-2 TCP implementation
with congestion control algorithms from Linux. InWNS2 ’06: Proceeding
from the 2006 workshop on ns-2: the IP network simulator, New York, NY,
USA, 2006. ACM Press.

[110] Scalable Network Technologies. GloMoSim and parsec source code
distribution.http://pcl.cs.ucla.edu/projects/glomosim/
obtaining glomosim.html, Accessed 2007.

[111] University of Arizona.x-kernel andx-sim source code distribution.
http://www.cs.arizona.edu/projects/xkernel/
software.html, Accessed 2007.

[112] Christopher C. Knestrick. Lunar: A user-level stack library for network
emulation. Master’s thesis, Virginia Tech, February 2004.

[113] David Ely, Stefan Savage, and David Wetherall. Alpine: A user-level
infrastructure for network protocol development. In3rd USENIX
Symposium on Internet Technologies and Systems, pages 171–184, 2001.

[114] Srinidhi Varadarajan. The Weaves runtime framework.In Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th International,
pages 197+, 2004.

[115] Jeroen Idserda. TCP/IP modeling in OMNeT++. B-Assignment, July 2004.

185

http://pcl.cs.ucla.edu/projects/glomosim/obtaining_glomosim.html
http://pcl.cs.ucla.edu/projects/glomosim/obtaining_glomosim.html
http://www.cs.arizona.edu/projects/xkernel/software.html
http://www.cs.arizona.edu/projects/xkernel/software.html

[116] Sam Jansen. Network simulation cradle report. Technical report,
Department of Computer Science, The University of Waikato,2003.

[117] X. W. Huang, R. Sharma, and Srinivasan Keshav. The ENTRAPID protocol
development environment. InINFOCOM (3), pages 1107–1115, 1999.

[118] Marko Zec. Implementing a clonable network stack in the freebsd kernel. In
USENIX Annual Technical Conference, pages 137–150, 2003.

[119] Bradford Nichols, Dick Buttlar, and Jacqueline P. Farrell. Pthreads
Programming. O’Reilly, 101 Morris Street, Sebastopol, CA 95472, 1998.

[120] GNU Project - Free Software Foundation (FSF). Flex.http://www.
gnu.org/software/flex/, Accessed 2006.

[121] GNU Project - Free Software Foundation (FSF). Bison.http://www.
gnu.org/software/bison/, Accessed 2006.

[122] International Organization for Standardization.ISO/IEC 9899:1999:
Programming Languages — C. International Organization for
Standardization, Geneva, Switzerland, December 1999.

[123] Jeff Lee. ANSI C grammar.ftp://ftp.uu.net/usenet/net.
sources/ansi.c.grammar.Z, Accessed 2006.

[124] GNU Project - Free Software Foundation (FSF). GNU compiler collection:
C compiler.http://www.gnu.org/software/gcc/, Accessed
2005.

[125] GNU Project - Free Software Foundation (FSF). Using the GNU compiler
collection: C extensions.http://gcc.gnu.org/onlinedocs/
gcc-4.0.2/gcc/index.html#toc C-Extensions, Accessed
2005.

[126] Marshall K. Mckusick, Keith Bostic, Michael J. Karels, and Josn S.
Quarterman.The Design and Implementation of the 4.4BSD Operating
System. Addison-Wesley, 1996.

[127] Osman Balci. Verification, validation and accreditation of simulation
models. InProceedings of the Winter Simulation Conference, 1997.

[128] John S. Carson. Verification validation: model verification and validation.
In WSC ’02: Proceedings of the 34th conference on Winter simulation,
pages 52–58. Winter Simulation Conference, 2002.

[129] Robert G. Sargent. Verification and validation of simulation models. In
WSC ’03: Proceedings of the 35th conference on Winter simulation, pages
37–48. Winter Simulation Conference, 2003.

[130] Van Jacobson, Craig Leres, and Steven Mccanne. tcpdump. http://
www.tcpdump.org, Accessed 2005.

[131] Shaun Ostermann. tcptrace.http://www.tcptrace.org, Accessed
2006.

186

http://www.gnu.org/software/flex/
http://www.gnu.org/software/flex/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
ftp://ftp.uu.net/usenet/net.sources/ansi.c.grammar.Z
ftp://ftp.uu.net/usenet/net.sources/ansi.c.grammar.Z
http://www.gnu.org/software/gcc/
http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/index.html#toc_C-Extensions
http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/index.html#toc_C-Extensions
http://www.tcpdump.org
http://www.tcpdump.org
http://www.tcptrace.org

[132] WAND network research group.http://www.wand.net.nz/,
Accessed 2008.

[133] Brendon Jones. WAND emulation network.http://www.wand.net.
nz/∼bcj3/emulation/, Accessed 2006.

[134] Brendon Jones. Architecture and trial implementation of a performance
testing framework. Technical report, Waikato University,2004.

[135] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network
protocols.ACM Computer Communication Review, 27(1):31–41, 1997.

[136] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik
Mahalingam. Taming aggressive replication in the pangaea wide-area file
system.SIGOPS Oper. Syst. Rev., 36(SI):15–30, 2002.

[137] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the
characteristics and origins of internet flow rates. InSIGCOMM ’02:
Proceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications, volume 32,
pages 309–322, New York, NY, USA, October 2002. ACM Press.

[138] Luigi Rizzo. pgmcc: a TCP-friendly single-rate multicast congestion control
scheme. InSIGCOMM ’00: Proceedings of the conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication,
volume 30, pages 17–28, New York, NY, USA, October 2000. ACM Press.

[139] Mark Allman and Aaron Falk. On the effective evaluation of TCP.
SIGCOMM Comput. Commun. Rev., 29(5):59–70, October 1999.

[140] Luigi Rizzo. IPDUMMYNET documentation.http://info.iet.
unipi.it/∼luigi/ip dummynet/, Accessed 2006.

[141] W. A. Vanhonacker. Evaluation of the FreeBSD dummynetnetwork
performance simulation tool on a pentium-4 based ethernet bridge.
Technical report, Center for Advanced Internet Architectures, Swinburne
University of Technology, Melbourne, Australia, December2003.

[142] Mark Carson and Darrin Santay. NIST net: a linux-basednetwork
emulation tool.SIGCOMM Computer Communications Revue,
33(3):111–126, July 2003.

[143] S. Hemminger. Network emulation with netem. InLinux Conf Au, April
2005.

[144] K. Fall. Network emulation in the VINT/NS simulator. In Proceedings of
the fourth IEEE Symposium on Computers and Communications, 1999.

[145] J. Cleary, S. Donnelly, I. Graham, A. Mcgregor, and M. Pearson. Design
principles for accurate passive measurement. InThe First Passive and Active
Measurement Workshop, pages 1–7, Hamilton, New Zealand, April 2000.

[146] Sam Jansen. tcpperf - tcp performance tool.http://www.wand.net.
nz/∼stj2/nsc/software.html, Accessed 2006.

187

http://www.wand.net.nz/
http://www.wand.net.nz/~bcj3/emulation/
http://www.wand.net.nz/~bcj3/emulation/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://www.wand.net.nz/~stj2/nsc/software.html
http://www.wand.net.nz/~stj2/nsc/software.html

[147] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs.
Iperf version 1.7.0.http://dast.nlanr.net/Projects/Iperf/,
Accessed 2006.

[148] Ajay Tirumala, Les Cottrell, and Tom Dunigan. Measuring end-to-end
bandwidth with iperf using web100. InPassive and Active Monitoring
Workshop, San Diego, CA, USA, April 2003.

[149] S. Tao, L. K. Jacob, and A. Ananda. A TCP socket buffer auto-tuning
daemon. InProceedings of the 12th International Conference on Computer
Communications and Networks, pages 299–304, 2003.

[150] Ross Mcillroy. Network router resource virtualisation. Master’s thesis,
University of Glasgow, 2005.

[151] Sam Jansen. tcpnorm.http://www.wand.net.nz/∼stj2/nsc/
software.html, Accessed 2006.

[152] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Window.
RFC3390, October 2002.

[153] Sally Floyd and Eddie Kohler. Internet research needsbetter models.
SIGCOMM Comput. Commun. Rev., 33(1):29–34, January 2003.

[154] Vern Paxson and Sally Floyd. Why we don’t know how to simulate the
internet. InWSC ’97: Proceedings of the 29th conference on Winter
simulation, pages 1037–1044, New York, NY, USA, 1997. ACM Press.

[155] K. G. Anagnostakis, M. B. Greenwald, and R. S. Ryger. Onthe sensitivity
of network simulation to topology. InMASCOTS ’02: Proceedings of the
10th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems (MASCOTS’02),
Washington, DC, USA, 2002. IEEE Computer Society.

[156] Averill M. Law. Practical statistical analysis of simulation output data: the
state of the art. In R. G. Ingalls, M. D. Rossetti, J. S. Smith,and B. A.
Peters, editors,Winter Simulation Conference, pages 67–72. Winter
Simulation Conference, December 2004.

[157] J. Bolot. Characterizing end-to-end packet delay andloss in the internet.
Journal of High-Speed Networks, 2, 1993.

[158] Y. Zhang, V. Paxson, and S. Shenker. The stationarity of internet path
properties: Routing, loss, and throughput. Technical report, ACIRI, 2000.

[159] T. V. Lakshman and Upamanyu Madhow. The performance ofTCP/IP for
networks with high bandwidth-delay products and random loss. IEEE/ACM
Trans. Netw., 5(3):336–350, June 1997.

[160] T. V. Lakshman, Upamanyu Madhow, and Bernhard Suter. TCP/IP
performance with random loss and bidirectional congestion. IEEE/ACM
Trans. Netw., 8(5):541–555, October 2000.

188

http://dast.nlanr.net/Projects/Iperf/
http://www.wand.net.nz/~stj2/nsc/software.html
http://www.wand.net.nz/~stj2/nsc/software.html

[161] Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and James F. Kurose.
Modeling TCP Reno performance: a simple model and its empirical
validation. IEEE/ACM Trans. Netw., 8(2):133–145, April 2000.

[162] Sam Jansen and Anthony Mcgregor. Measured comparative performance of
TCP stacks. InPassive and Active Measurement Workshop, volume 3431,
pages 329–332, Boston, MA, USA, March 2005.

[163] Sam Jansen and Anthony McGregor. Simulation with realworld network
stacks. InWSC ’05: Proceedings of the 37th Winter Simulation Conference,
pages 2454–2463, Orlando, Florida, USA, December 2005. Society for
Computer Simulation International.

[164] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms. RFC2001, January 1997.

[165] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Window.
RFC2414, September 1998.

[166] Sally Floyd. Metrics for the evaluation of congestioncontrol mechanisms.
Internet Draft, October 2005.

[167] Sally Floyd. Tools for the evaluation of simulation and testbed scenarios.
Internet Draft, October 2005.

[168] David X. Wei, Pei Cao, and Steven H. Low. Time for a TCP benchmark
suite? Technical report, Caltech, 2005.

[169] Pasi Sarolahti and Alexey Kuznetsov. Congestion control in linux TCP. In
Proceedings of the FREENIX Track: 2002 USENIX Annual Technical
Conference, pages 49–62, Berkeley, CA, USA, 2002. USENIX Association.

[170] A. Gurtov and R. Ludwig. Responding to spurious timeouts in TCP. In
INFOCOM 2003. Twenty-Second Annual Joint Conference of theIEEE
Computer and Communications Societies. IEEE, volume 3, pages
2312–2322, 2003.

[171] Ian H. Witten and Eibe Frank.Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition. Morgan Kaufmann, June 2005.

[172] Mark A. Hall and Geoffrey Holmes. Benchmarking attribute selection
techniques for discrete class data mining.IEEE Transactions on Knowledge
and Data Engineering, 15(6):1437–1447, November 2003.

[173] Mark A. Hall. Correlation-based feature selection for discrete and numeric
class machine learning. InICML ’00: Proceedings of the Seventeenth
International Conference on Machine Learning, pages 359–366, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[174] S. Floyd. HighSpeed TCP for Large Congestion Windows.RFC3649,
December 2003.

[175] Yee-Ting Li, Douglas Leith, and Robert N. Shorten. Experimental
evaluation of TCP protocols for high-speed networks. Technical report,
Hamilton Institute, NUI Maynooth, 2005.

189

[176] Sangtae Ha, Yusung Kim, Long Le, Injong Rhee, and Lisong Xu. A step
toward realistic performance evaluation of high-speed TCPvariants. In
Fourth International Workshop on Protocols for Fast Long-Distance
Networks, 2006.

[177] Kazumi Kumazoe, Katsushi Kouyama, Yoshiaki Hori, Masato Tsuru, and
Yuji Oie. Can high-speed transport protocols be deployed onthe internet? :
Evaluation through experiments on jgnii. InFourth International Workshop
on Protocols for Fast Long-Distance Networks, 2006.

[178] Sally Floyd. The transport modeling research group (tmrg). http://
www.icir.org/tmrg/, Accessed 2006.

[179] Raj Jain.The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling. John
Wiley and Sons, 1991.

[180] M. Lulling and J. Vaughan. A simulation-based performance evaluation of
Tahoe, Reno and Sack TCP as appropriate transport protocolsfor SIP.
Computer Communications, 27(16):1585–1593, October 2004.

[181] V. Jacobson. Congestion avoidance and control. InSIGCOMM ’88:
Symposium proceedings on Communications architectures and protocols,
volume 18, pages 314–329, New York, NY, USA, August 1988. ACMPress.

[182] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control .
RFC2581, April 1999.

[183] Bellcore. LSGRR: Switching system generic requirements for call control
using the integrated services digital network user part (isdnup). Technical
report, GR-317-CORE, Bellcore, Morristown, New Jersey, December 1997.

[184] Rishi Sinha, Christos Papadopoulos, and John Heidemann. Internet packet
size distributions: Some observations.http://netweb.usc.edu/
∼rsinha/pkt-sizes/, October 2005, Accessed 2006.

[185] Alberto Medina, Mark Allman, and Sally Floyd. Measuring the evolution of
transport protocols in the internet.SIGCOMM Comput. Commun. Rev.,
35(2):37–52, April 2005.

[186] Doug Burger and David A. Wood. Accuracy vs. performance in parallel
simulation of interconnection networks. InIPPS ’95: Proceedings of the 9th
International Symposium on Parallel Processing, pages 22–31, Washington,
DC, USA, 1995. IEEE Computer Society.

[187] Susan J. Eggers. Simplicity versus accuracy in a modelof cache coherency
overhead.IEEE Trans. Comput., 40(8):893–906, August 1991.

[188] John Levon. OProfile - a system profiler for Linux.http://oprofile.
sourceforge.net/, Accessed 2006.

[189] Will Cohen. Multiple architecture characterizationof the build process with
oprofile. Submitted to Workshop on Workload Characterization 2003, 2003.

190

http://www.icir.org/tmrg/
http://www.icir.org/tmrg/
http://netweb.usc.edu/~rsinha/pkt-sizes/
http://netweb.usc.edu/~rsinha/pkt-sizes/
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/

[190] Julien Seward, Nicholas Nethercote, Cerion Armour-Brown, Jeremy
Fitzhardinge, Tom Hughes, Paul Mackerras, Dirk Mueller, and Robert
Walsh. Valgrind.http://valgrind.org, Accessed 2006.

[191] Sam Jansen and Anthony McGregor. Performance, validation and testing
with the network simulation cradle. InMASCOTS ’06: Proceedings of the
14th IEEE International Symposium on Modeling, Analysis, and Simulation,
pages 355–362, Monterey, California, USA, 2006. IEEE Computer Society.

[192] R. Brown. Calendar queues: a fast 0(1) priority queue implementation for
the simulation event set problem.Commun. ACM, 31(10):1220–1227,
October 1988.

[193] Kah L. Tan and Li-Jin Thng. Snoopy calendar queue. InProceedings of the
32nd conference on Winter simulation, pages 487–495, San Diego, CA,
USA, 2000. Society for Computer Simulation International.

[194] Jongsuk Ahn and Seunghyun Oh. Dynamic calendar queue.In Proceedings
of the Thirty-Second Annual Simulation Symposium, Washington, DC, USA,
1999. IEEE Computer Society.

[195] Guanhua Yan and Stephan Eidenbenz. Sluggish calendarqueues for
network simulation. InModeling and Simulation of Computer and
Telecommunication Systems, pages 127–136, Monterey, CA, 2006. IEEE
Computer Society.

[196] Sam Jansen. Heapprof heap profiling tool.http://www.wand.net.
nz/∼stj2/nsc/software.html, Accessed 2006.

[197] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. InSOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 164–177, New York, NY, USA,
2003. ACM Press.

[198] Sam Jansen and Anthony McGregor. Static virtualization of C source code.
Software: Practice and Experience, 38(4):397–416, April 2008.

[199] Sam Jansen. Network simulation cradle software.http://research.
wand.net.nz/software/nsc.php, Accessed 2008.

[200] Quagga routing suite.http://www.quagga.net/, Accessed 2006.

[201] Bjrn Hggqvist. High quality video conferencing. Master’s thesis, Lulea
Technical University, 2005.

[202] J. Dike. A user-mode port of the linux kernel. InProceedings of the 4th
Annual Linux Showcase and Conference. USENIX, October 2000.

[203] R. Durst, G. Miller, and E. Travis. TCP extensions for space
communications. InProceedings of the second annual international
conference on Mobile computing and networking, White Plains, NY USA,
1996.

191

http://valgrind.org
http://www.wand.net.nz/~stj2/nsc/software.html
http://www.wand.net.nz/~stj2/nsc/software.html
http://research.wand.net.nz/software/nsc.php
http://research.wand.net.nz/software/nsc.php
http://www.quagga.net/

[204] Scps reference software.http://www.openchannelsoftware.
com/projects/SCPS, Accessed 2006.

[205] Sam Jansen and Anthony McGregor. Validation of simulated real world
network stacks. InProceedings of the Winter Simulation Conference, pages
2177–2186, Washington D.C., USA, December 2007. IEEE Press.

[206] Adam Biltcliffe, Michael Dales, Sam Jansen, Thomas Ridge, and Peter
Sewell. Rigorous protocol design in practice: An optical packet-switch
MAC in HOL. In 14th IEEE International Conference on Network
Protocols (ICNP), pages 117–126, Santa Barbara, CA, USA, November
2006. IEEE Computer Society.

[207] Mark Apperley, Sam Jansen, Amos Jeffries, Masood Masoodian, Laurie
McLeod, Lance Paine, Bill Rogers, Kirsten Thomson, and TonyVoyle.
Lecture capture using large interactive display systems. In ICCE ’02:
Proceedings of the International Conference on Computers in Education,
page 143, Auckland, New Zealand, 2002. IEEE Computer Society.

[208] Adam Dunkels, Leon Woestenberg, Kieran Mansley, and Jani Monoses.
lwIP embedded TCP/IP stack.http://savannah.nongnu.org/
projects/lwip/, Accessed 2006.

[209] Richard W. Stevens.Unix Network Programming. Prentice Hall PTR,
January 1990.

[210] Chris D. Marlin.Coroutines: A Programming Methodology, a Language
Design and an Implementation, volume 95 ofLecture Notes in Computer
Science. Springer, 1980.

[211] Angela D. Orebaugh and Gilbert and Ramirez.Ethereal Packet Sniffing.
Syngress, February 2004.

[212] Deborah Estrin, Mark Handley, John Heidemann, StevenMccanne, Ya Xu,
and Haobo Yu. Network visualization with the VINT network animator
nam. Technical Report 99-703b, University of Southern California, 1999.

[213] Omnet++ community site.http://www.omnetpp.org/, Accessed
2006.

[214] Andras Varga. The OMNET++ discrete event simulation system. In
Proceedings of the European Simulation Multiconference, pages 319–324,
Prague, Czech Republic, June 2001. SCS – European Publishing House.

[215] A. Varga and G. Pongor. Flexible topology descriptionlanguage for
simulation programs. InProceedings of the 9th European Simulation
Symposium, Passau, Germany, October 1997.

[216] Andras Varga. Using the OMNeT++ discrete event simulation system in
education.IEEE Transactions on Education, 42(4), 1999.

[217] Chris Savarese, Jan M. Rabaey, and Koen Langendoen. Robust positioning
algorithms for distributed ad-hoc wireless sensor networks. InProceedings
of the General Track: 2002 USENIX Annual Technical Conference, pages
317–327, Berkeley, CA, USA, 2002. USENIX Association.

192

http://www.openchannelsoftware.com/projects/SCPS
http://www.openchannelsoftware.com/projects/SCPS
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
http://www.omnetpp.org/

[218] Tijs van Dam and Koen Langendoen. An adaptive energy-efficient MAC
protocol for wireless sensor networks. InSenSys ’03: Proceedings of the 1st
international conference on Embedded networked sensor systems, pages
171–180, New York, NY, USA, 2003. ACM Press.

[219] Koen Langendoen and Niels Reijers. Distributed localization in wireless
sensor networks: a quantitative comparison.Comput. Networks,
43(4):499–518, November 2003.

[220] Mirco Musolesi, Stephen Hailes, and Cecilia Mascolo.Adaptive routing for
intermittently connected mobile ad hoc networks. InWOWMOM ’05:
Proceedings of the Sixth IEEE International Symposium on a World of
Wireless Mobile and Multimedia Networks (WoWMoM’05), pages 183–189,
Washington, DC, USA, 2005. IEEE Computer Society.

[221] Adam Dunkels, Thiemo Voigt, Juan Alonso, and Hartmut Ritter. Distributed
TCP caching for wireless sensor networks. InProceedings of the Third
Annual Mediterranean Ad Hoc Networking Workshop (MedHocNet 2004),
June 2004.

[222] Fu-Tai An, Kyeong S. Kim, D. Gutierrez, S. Yam, E. Hu, K.Shrikhande,
and L. G. Kazovsky. SUCCESS: a next-generation hybrid WDM/TDM
optical access network architecture.Lightwave Technology, Journal of,
22(11):2557–2569, 2004.

[223] K. Wehrle, J. Reber, and V. Kahmann. A simulation suitefor internet nodes
with the ability to integrate arbitrary quality of service behavior, 2001.

[224] Ulrich Kaage, Verena Kahmann, and Friedrich Jondral.An OMNET++
TCP model. InProceedings of the European Simulation Multiconference,
June 2001.

[225] Johnny Lai, Eric Wu, Andras Varga, Ahmet Y. Sekercioglu, and Gregory K.
Egan. A simulation suite for accurate modeling of ipv6 protocols. In
Proceedings of the 2nd International OMNeT++ Workshop, Berlin,
Germany, January 2002.

[226] Ahmet Y. Sekercioglu, Andras Varga, and Gregory K. Egan. Parallel
simulation made easy with OMNeT++. InProceedings of the European
Simulation Symposium, Delft, The Netherlands, October 2003.

[227] Omnet++ model documentation.http://www.omnetpp.org/doc/
INET/neddoc/index.html, Accessed 2006.

[228] R. Braden. Requirements for Internet Hosts - Communication Layers.
RFC1122, October 1989.

[229] Scalable Simulation Framework API Reference Manual, March 1999.

[230] Dartmouth ssf implementation.http://www.crhc.uiuc.edu/
∼jasonliu/projects/ssf/intro.html, Accessed 2006.

[231] Scalable simulation framework.http://www.ssfnet.org/, Accessed
2006.

193

http://www.omnetpp.org/doc/INET/neddoc/index.html
http://www.omnetpp.org/doc/INET/neddoc/index.html
http://www.crhc.uiuc.edu/~jasonliu/projects/ssf/intro.html
http://www.crhc.uiuc.edu/~jasonliu/projects/ssf/intro.html
http://www.ssfnet.org/

[232] T. G. Griffin and B. J. Premore. An experimental analysis of BGP
convergence time. InNinth International Conference on Network Protocols,
pages 53–61, 2001.

[233] David M. Nicol, Brian Premore, and Andy Ogielski. Using simulation to
understand dynamic connectivity at the core of the internet. In Proceedings
of UKSim, Cambridge University, England, April 2003.

[234] Michael Liljenstam and Andy T. Ogielski. Crossover scaling effects in
aggregated TCP traffic with congestion losses.SIGCOMM Comput.
Commun. Rev., 32(5):89–100, November 2002.

[235] Michael Liljenstam, David M. Nicol, Vincent H. Berk, and Robert S. Gray.
Simulating realistic network worm traffic for worm warning system design
and testing. InWORM ’03: Proceedings of the 2003 ACM workshop on
Rapid malcode, pages 24–33, New York, NY, USA, 2003. ACM Press.

[236] James H. Cowie, David M. Nicol, and Andy T. Ogielski. Modeling the
global internet.Computing in Science and Engg., 1(1):42–50, January 1999.

[237] J. Cowie and H. Liu. Towards realistic million-node internet simulations. In
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, 1999.

[238] Jason Liu, Felipe L. Perrone, David M. Nicol, Michael Liljenstam, Chip
Elliott, and David Pearson. Simulation modeling of large-scale ad-hoc
sensor networks. InEuropean Simulation Interoperability Workshop, 2001.

[239] David M. Nicol, Jason Liu, Michael Liljenstam, and Guanhua Yan.
Simulation of large-scale networks using ssf. InProceedings of the 35th
Winter Simulation Conference, pages 650–657. Winter Simulation
Conference, 2003.

[240] Michael G. Khankin. TCP/IP implementation within thedartmouth scalable
simulation framework. Technical report, Dartmouth College, June 2001.

[241] D. M. Nicol. Discrete event fluid modeling of TCP. InSimulation
Conference, 2001. Proceedings of the Winter, volume 2, pages 1291–1299
vol.2, 2001.

[242] David Nicol, Michael Goldsby, and Michael Johnson. Fluid-based
simulation of communication networks using ssf. InProceedings of the
European Simulation Symposium, Erlangen-Nuremberg, Germany, October
1999.

[243] David M. Nicol and Guanhua Yan. Discrete event fluid modeling of
background TCP traffic.ACM Trans. Model. Comput. Simul.,
14(3):211–250, July 2004.

[244] George F. Riley. The Georgia Tech network simulator. In MoMeTools ’03:
Proceedings of the ACM SIGCOMM workshop on Models, methods and
tools for reproducible network research, pages 5–12, New York, NY, USA,
2003. ACM Press.

194

[245] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, and G. F.
Riley. Large-scale network simulation: how big? how fast? In 11th
IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems, pages 116–123, 2003.

[246] G. F. Riley. Large-scale network simulations with gtnets. InProceedings of
the 2003 Winter Simulation Conference, volume 1, pages 676–684 Vol.1,
2003.

[247] G. E. Riley, M. L. Sharif, and Wenke Lee. Simulating internet worms. In
The IEEE Computer Society’s 12th Annual International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunications
Systems, pages 268–274, 2004.

[248] Hung-Ying Tyan, A. Sobeih, and J. C. Hou. Towards composable and
extensible network simulation. In19th IEEE International Parallel and
Distributed Processing Symposium, pages 225a–225a, 2005.

[249] Hung-Ying Tyan.Design, Realization and Evaluation of a
Component-Based Compositional Software Architecture forNetwork
Simulation. PhD thesis, The Ohio State University, 2002.

[250] Ahmed Sobeih, Wei P. Chen, Jennifer C. Hou, Lu C. Kung, Ning Li, Hyuk
Lim, Hung Y. Tyan, and Honghai Zhang. J-Sim: A simulation environment
for wireless sensor networks. InAnnual Simulation Symposium, pages
175–187, 2005.

[251] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. Jist: an efficient
approach to simulation using virtual machines: Research articles. Softw.
Pract. Exper., 35(6):539–576, May 2005.

[252] Zygmunt J. Haas and Rimon Barr. Density-independent,scalable search in
ad hoc networks. InProceedings of IEEE International Symposium on
Personal Indoor and Mobile Radio Communications, September 2005.

[253] Kelwin Tamtoro. TCP implementation for SWANS. Technical report,
Cornell University, January 2004.

[254] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification.
RFC2205, September 1997.

[255] A. Terzis, L. Wang, J. Ogawa, and L. Zhang. A two-tier resource
management model for the internet. InGlobal Telecommunications
Conference, volume 3, pages 1779–1791 vol.3, 1999.

[256] D. Pei, L. Wang, D. Massey, S. F. Wu, and L. Zhang. A studyof packet
delivery performance during routing convergence. InInternational
Conference on Dependable Systems and Networks, pages 183–192, 2003.

195

