* THE UNIVERSITY OF

\EEJ WAIKATO Research Commons

?}gt’; Te Whare Wananga o Waikato

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act
and the following conditions of use:

e Any use you make of these documents or images must be for research or private
study purposes only, and you may not make them available to any other person.

e Authors control the copyright of their thesis. You will recognise the author’s right to
be identified as the author of the thesis, and due acknowledgement will be made to
the author where appropriate.

e You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

NETWORK SIMULATION
CRADLE

A thesis
submitted in partial fulfilment
of the requirements for the degree
of
Doctor of Philosophy in Computer Science
at the
University of Waikato
by
SAM JANSEN

The University of Waikato
2008

Abstract

This thesis proposes the use of real world network staclksadsof protocol
abstractions in a network simulator, bringing the actudlecosed in computer
systems inside the simulator and allowing for greater satiah accuracy.
Specifically, a framework called thdéetwork Simulation Cradles created that
supports the kernel source code from FreeBSD, OpenBSD anc o make the

network stacks from these systems available to the popatarank simulator ns-2.

Simulating with these real world network stacks revealsagions where the result
differs significantly from ns-2’'s TCP models. The simulatedwork stacks are
able to be directly compared to the same operating systemngiion an actual
machine, making validation simple. When measuring the giait&ces produced
on a test network and in simulation the results are neariytidal, a level of
accuracy previously unavailable using traditional TCPuation models. The
results of simulations run comparing ns-2 TCP models andraarework are
presented in this dissertation along with validation stadif our framework

showing how closely simulation resembles real world corapaut

Using real world stacks to simulate TCP is a complementapyaach to using the
existing TCP models and provides an extra level of validatithis way of
simulating TCP and other protocols provides the networkassher or engineer
new possibilities. One example is using the framework a®#opol development
environment, which allows user-level development of pcote with a standard set
of reproducible tests, the ability to test scenarios whiehcastly or impossible to
build physically, and being able to trace and debug the podtoode without

affecting results.

Acknowledgements

Undoubtedly there is one person without whom this dissertatould never have
come to be: my supervisor, colleague and friend Tony McQrefmank you for
encouraging me, for believing in me, for giving me the chafdeank you for the

ever insightful words over the years.

| was lucky enough to be a part of a great research group danynBhD; it was in
the labs of WAND network research group that the majorityhefitesearch was
done, even though | spent large amounts of time overseask3ta those who
were a part of the sometimes late evenings, the discussi@nsoffee or on the
way to the bakery, and the much needed time away from congputer glad and

proud to be a part of WAND.

A three-month visit to Intel Research Cambridge turned maving to the United
Kingdom for a much longer time. Thanks Andrew, Madeleine Eichael for
making me feel a part of the place. While the research labdudlg slosed its

doors, the memory of my time there will live on.

I'd like to acknowledge all of those in Cambridge who havewed tales of my
writing and encouraged me. It would have been easy to loe gighe final goal
of finishing the dissertation without the constant positeedback | received from
you all. Last but certainly not least: Zoe, for being theoe,dutting up with my
mind wandering off topics at hand to think about my thesissoagain, for

everything.

Vi

Contents

bstrac

cknowledgemen

List of Figure

List of Tables

List of Listingsl

1 Introduction to network simulation

l.]_Rﬂa.sms_tQszmulalilon

1.2 Validity of simulation resuILs

1.3 The Transmission Control Protdcol

1.4 The network simulator n$-2

1.5 Real world code

1.5.1 Multiple instances: the re-entrancy problem

1.5.2 Kernelcodeinuserspace.

1.6 Problem statementandsdope

1.1 TCP under differing conditians

1.2 TCP modifications

1.3 Analvtical model validation

1.4 Discussi

2 Network simulators used in TCP research

21 nsS-P ..

Xiv

XV

XViii

4.1.2 WAND Emulation Network

viii

22 ATM-TN 23
23 GloMoSim 25
24 OPNEIT e 26
25 X-SiM 28
2.6 DISCUSSION i 28
2.3 Simulating with realworld TCPcade 29
ZS_J_EQLL'LLLQ_LhﬂCRLanemﬂmaIIion 31
2.3.2 __Moadifying the operating system 32
3.3 Build a supporting framewark 34
3.4 DISCUSSION e 37
4 SUMMALY . . v v v e e e e e e e e e e e e e e 39
3 The Network Simulation Cradl 41
3.1 Simulatorintegration 44
3.1.1 Sharedlibraries Lo 44
3.1.2 Simulatorageant 45
3.1.3 Interactioms 49
3.2 Globalparser 53
3.2.1 Moadifying C global declaratidns 55
3.2.2 Madifying C globalreferendes 59
3.2.3 Implementation of the globaliser 61
3.3 AddinganewstaCbk 66
3.3.1 Extractingthe TCPcdde 66
3.3.2 _Building a standalone TCP implementdtion 7 6
3.3.3 _Incorporating with the Network Simulation Cradle . . . 69
3_3_4_C_0.n.tigu1ali.o.n_i5&|.Jes 70
3.3.5 __Updating an NSC TCP imolementalion 70
3.3.6 Requirements of the NSC approach 71
3.4 SUMMALY . . .« « v o e e e e e e e e e e e e 72
4 Accuracy of TCP simulation with real codé 75

4.1 Introduction to simulation and test bed comparisons 76

4.1.3 Trafficshaping 78
4.1.4 Traffic generation and measurement 80
4.2 Packettrace comparisbns 80
4JLl..&lunuaﬂkulesnﬂﬂhiudent 82
) o 89
s sy 89
A_S_Simulaledlc.&pﬂtto.tma.ll!ce 92
4JLl__EEﬁEHﬂﬂﬂMXLQMELaJKankﬂLKHMJOgy 92
4.3.2 Uniformrandomloks 94
4.4 SUMMALY . .« v v o v e e e e e e e e e e e e e 98
5 Variation between TCP implementations 99
5.1_O_D_b.en.chma.tklngl(|2P 100
5.2 New simulationscenarlos 101
E.Z.J_EankeLLe.o.Ld.eLiLg 101
b.2.2 Many TCP flows over a dumbbell topology 102
5.3 Reproduced simulations.o 108
5.3.1 TCP fairness on high-speed netwiorks 108
5.3.2 __Congestion control comparisons 112
5.3.3 Requestlatencyfora SIPprbxy 119
D4 SUMMALY . - .« « v o e e e e e e e e e e e e e e e 120
6 With more detail comes greater cost 123
6.1 Performance measurescovered 4.12

126
ﬁjL2__Iune1equuediQjﬂﬁukﬂeingﬂinnnuﬂexsgeAanos .. 132
623 Profile 135
6.2.4 Discussion of CPU performahce 138
6.3 _Memory usa lity 140
6.3.1 Heapusewithmany TCPflaws 141
6.3.2 The effect of increasing the TCP windowkize 421
6.3.3 Totalmemoryuse 144
6.4 The costoftheglobaliser 145

641 CPU (online)cast. 145

6.42 Offlinecost 147
6.5 Discussion of performanceresults 149
7 _Conclusions and future researgh 153
7.1 Accuracy of simulating with real world TCP code 153
Z_'L._’I_Eea.SJ.b.LlLlly 153
712 Malidityandaccuraly 154
7.1.3 Applicability 155
7.1.4 Performance and scalabllity 156
7.1.5 DISCUSSION 157
72 Futurereseanch 157
7.2.1 _Simulating the applicationlayer 815
7.2.2 Protocol development environment 158
LZ.S_N.QMLQLB.La.ck_a.d.diLi.OIns 158
7.2.4 Automated protocoltesting. 159
7.3 Conclusions 160
ppendices 160
Publications authore 161
1 Peerreviewed journalarticles 161
2 _Conference pap@rs 161
A.S_C_omemme_ua.pﬂm_as_ajmnmaluthor 162
B_Network Simulation Cradle manua 163
B.1l Addinganewstack 163
B.1.1 Initialbuildprocess. 163
B.:I_Z_S.tla.Led_le.La.nLc!_ealilon 166
B.2 Testingandvalidation 169
B.2.1 Initialtesting, 170
B2.2 Validatioh. 170
C _Network simulators 171
C.l OMNEeT+HF e e e e e 171

C.2 SSF . .

Referenc

Xi

Xii

List of Figures

1 ns-2 simulation of TCP Tahoe responding to packet Igss [5. . .

Mm%umwrk 26]

2.3 TCP throughput during FTP measured from a router [67]

4 _NCTUns simulation architecture (adapted from [104])..

5 Kernel network stack in user space (adapted from [[113])

6 FreeBSD network stack in the OMNeT++ simulator [106]

il_SiamlaLQLaud_N.emng_SlmulalLQn_CLa.dle_lmetaﬁlions e

3.2 Globaliser's parserflow

' ' ork
4.2 _Example fcptrace time sequencegraph

4.6 Time difference vs. packet number for FreeBSD tlaces

4.7 Simulated vs. measured TCP packet loss response fds e..
%mm Linu. .
4.9 Multi-bottleneck scenario (adapted from [155])

4.10 TCP goodput over a multi-bottleneck topology

4.11 TCP goodputvs. lossmate

5.1 __TCP goodput under packet reordering

|5.2_Simulali.o.nj£.ena.lio

5.4 _Mean goodput difference as flows and bandwith is

91
93

|53 TCP performance comparisons with cumulative ia\lfahs 105

ried. . . . 107
5.5 __Ratio of throughputs of competing TCP flows [175] 109

5.7 _TCP aver 10Mb/s bottleneck with reverse traffic [53]

5.8 TCP over 10Mb/s bottleneck with reverse traffic

oodput vs. number of traversed

5.11 Simulation topology used for SIP_simulations (adajfrieah [180]) .

5.12 Average SIP request latency for increasing losSrates.

6.1 Simulated time vs. real time for a single TCP flow

|ﬁ.2_QP_U_L'Lme_LQ_simula.Le_ma.nv fIQlNS
6.2 Time to simulate and goo

oodput with a varvin TU

6.5 Simulation times for complex scenafios

6.6 Peak heap usage for increasing number offlows
6.7 Peak heap usage for increasing window size

6.8 Measured offline globalisercasts

Xiv

List of Tables

3.2 Number of support functions in the NSC shared libraries 68

3.3 Number of lines of code used in the NSC stack support code. .. 69

4.1 Emulation network RTT measuremeénts 79
4.2 TCP performance during 5% bidirectional loss [162] 96
5.1 Simulation machinesused 103

ns-2 profile usin

6.4 __ns-2 profile using Q[ig'!i)al [CPagents 138

6.5 HeapusageperTCPflow 142
6.6 Heap usage /window size forns-2and NSC 3 14
6.7 Memory footprint forns-2and NSC 144
6.8 Globaliser runtime CPU overhéad 614

6.9 Codebases used for globalisertesting 147

XV

XVi

Listings

1.1 Example ns-2 simulationscript 6
3.1 __ns-2 simulation scriptusinga TCP model A8
3.2 Using NSC TCP models in a ns-2 simulation script 49

3.3 Example cradle code to connect a socket (from Linux 2a8esh

library) e 51
re ... 54
3.5 Modifying a variable intoanargay 55
3.6__globaliser input and output for a single variable 55
3.7 Array initialisation 56
3.8 Corrected array initialisation 56
3.9 Unbounded array initialisatilon al
3.10 Array initialisation solution 57
3.11 Indexing amadifiedargay L 58
3.12 Structure redefinition oo 58
3.13 tvpedef of array elementtype 8 5
3.14 Indexing a variable reference with a fundtion 60
3.15 Self-referential initialisation 60
3.16 Self-referential initialisation erfor 60
3_1J_Lnjjne_cgd.e_blo_ck_tmm_l_'Lmllx 63
3.18 gcc attribute use from FreeBSD 63
3.19 Additionalgcckeywords 64
3.20 gccinlineassembly L 64
3.21 Type name parsing Drobllem 64
3.22 Section attribute object file placement 65
3.23 globaliser sectionsupgort 66
3.24 Compiling a C file with gcc and the globallser 69

XVii

4.1 Linux2.6tcp grow Wi ndowcode 88

5.1 _Weka output for information galn_annibule_ﬂamlator.. - 105

Xvili

Chapter 1

Introduction to network simulation

With the rise of the Internet over the past decades has conme@asing
importance on design and testing of network protocols,dahgliages which allow
computing components to communicate. Before a new prots@acepted as a
standard, sufficient testing must be done such that the gobiobelieved to
behave correctly under the varying conditions found on tierhet. Modifications

to existing protocols also require testing for the samearas

Network protocols are specified in documents often writteplain English. In the
case of the Internet these are released by the Internet &rgig Task Force
(IETF). Even with a controlling body and public feedback @atpcols before they
are finalised, protocol specifications include ambiguiwegch lead to differences
in implementations. Some decisions are left up to the impleer as well,
meaning two implementations that conform to the same spatidn can have

quite different functionality.

An operating system such as a recent version of Linux cositagny network
protocol implementations: IP, UDP, TCP, SCTP, IPX, Apdletand many others.
These protocols are implemented as part of the operatirigrayia standard C
code. Other protocol implementations run as applicatiexamples include BGP,
OSPF and DNS. Other operating systems contain similardfgisotocol

implementations, though the implementations themseliftss.d

There are two complementary avenues to testing networkgots. The network

protocol can be analysed by building models, either mattieatar procedural in

1

nature. These models can be used to simulate the protolosVjrad quick and
reproducible tests. Further testing is provided by tedtiegprotocol on real
networks with real protocol implementations; either onsolated test network or
with limited tests on the Internet. Simulation is often use@ to the difficulty of

running many tests on real hardware.

Simulation requires support software: the simulator itSehe simulator must
have models of the network elements to be simulated. Thigdes, but is not
limited to, models of the physical aspects of the networ§y.(€ables connecting
computers), routing, hosts, applications and protoca&htof these elements is
an abstract model of what happens in the real world—progi@ae ¢such as C++)
or mathematical models designed to mimic the importantasye the behaviour

of the real entity.

The validity of simulation results is dependant on the msdethe simulator used.
Researchers validate simulation models by comparing tbeeed world
measurements and known results. By showing the simulafmerform closely to
real world measurements in various scenarios, it can bduwded that the
simulator has a good chance of simulating further scenagosrately. There is
always the possibility that the models present in a simukat® not correct or are
simplified too much to produce useful results for complexations. The
simulation models often do not capture the implementatitiarénces found as
they are either modelled after a single implementationhemnderstanding of the

authors of the model, which can differ from the specification

The next sections in this chapter introduce the reasonsetovark simulation,
discuss validity of simulation results, describe TCP aredrtetwork simulator ns-2
briefly, introduces using real world code as simulation niedend details the

problem statement and scope of this thesis.

1.1 Reasons for simulation

Network simulation has many benefits over building test oeka. Network
simulation is reproducible, does not require a full protaosgplementation, is able

to scale to large and complex scenarios, is relatively easgttup and simpler to

2

record results from.
Simulation is reproducible

Network simulations are designed specifically to be repecdude. This means that
for a given scenario, the result will be the same from run togiven the same
input. An example implementation feature supporting thighe random number
generator used in a simulator. This will be a determinissieyzlo random number

generator that is seeded to a specific value.

Reproducible tests are important when modifying an exgstirodel or debugging.
They allow a developer to test under exactly the same camdiths a previous test.

This allows bugs to be reproduced and specific interactiobg tested.
Simulation models are quick to build

Useful models of network elements can be built in simulaticthout modelling
every aspect that is required in a real system. Many err@scased to be covered
in a real implementation and compatibility with other indagent
implementations must be kept. Simulation models are iddbedt only to work
within a simulator and many assumptions can be made ovet woela
implementation. This allows a model developer to build veithigher level of

abstraction; the simulation models are therefore quickdreasier to build.

When developing new protocols, this can be important to sihaivthe protocol
interacts correctly in a variety of situations without hayio spend a large amount
of time developing a full implementation. There are feweerteads involved in
testing a modification to a protocol in simulation; there esrequirement to install

a new kernel or program on each network host as is necesstryeai world tests.
Simulation is scalable and adaptable

It is possible to simulate many thousands of entities in ok simulator on a
modern desktop computer. The cost of testing an equivaktatark in the real
world is much higher: the equivalent is building a networklafusands of
computers with many routers and switches, then controdiimdjmeasuring them

all during testing. Simulations of many network element®ining complex

3

interactions can be performed in reasonable time and effort

Simulation is able to cope with network elements that areyabfound in the real
world so is suitable for testing protocols for networks whare not yet physically
possible. An example of this is optical network researchreimew network
architectures are proposed to make use of very high datsath as 100Gb/s [1],

simulation is often used to test the networking ideas.
Scenarios can be developed rapidly

Network simulations have tools to facilitate the creatibarbitrary topologies and
scenarios. Some simulators use special purpose progranmamguages while
others have graphical user interfaces. It is possible f@ataark researcher to
develop a complex scenario in a matter of hours, where aggatich a situation in
the real world would require significant resources or mayheopossible. Once a
scenario is created, many simulations can be run with va@edmeters to view
how different parameters affect the systems being testedpil development and

feedback cycle is possible with simulation.
Simulation has transparent access to data

Measuring performance metrics on real networks is diffieydtotocol
implementations are often in-kernel (making access tassita for user-level
processes hard) or otherwise inaccessible (such as ruaniegternal hardware).
Measuring extra in-kernel statistics requires either @alal software (for
example, Web100 [2]) or custom modifications if there is asde the kernel

source code.

Real networks require that data needs to be recorded frornipheyboints in the
network, which is difficult. Ensuring the data from thesawéats is recorded at
the same time is hard due to clock skew between the netwankesgies the data is
recorded from. It is also possible that recording extrarmiation will change the

results due to the processing overhead incurred.

In simulation, the simulator and all models are user-legéilgare, which makes

recording results easy. Recording and processing thetstatis generally

convenient due to the predefined data collection routinasadle in the simulator
being used. As the network runs on simulated time, recordatg does not affect

the result of the simulation and there are no problems wiahkcsynchronisation.

1.2 Validity of simulation results

Simulation results are only believable if the simulationdals being used are
validated. Heidemann, Mills and Kumar [3] define validatam“the process of
assuring that a model provides meaningful answers to thgtigns being asked.”
Validation provides confidence that the approximationsastractions used by
simulation models do not substantially alter the answetldauestions being
asked. The more accurate (and hence valid) simulation readelat predicting the
systems they are modeled after, the more useful they arentdaion practitioners
(though this must be balanced against performance, mowgaeanodels will

often be slower or have higher resource requirements).

Simulations should be backed up by laboratory and Intexprements where
applicable. Even with thoroughly validated simulation ralsdhere are many
possible artefacts of simulation that can produce resutisrisistent with reality
(for example, phase effegtsan be more common in simulations as shown by
Floyd [5]).

Floyd also points out that even with the validation effort$ ipto the TCP models
of ns-2 [5], the validation is not complete and there is lessidence in the
models being valid for an arbitrary user of the simulatonttiee specific research
carried out by Floyd. The models described are for the Trasson Control
Protocol (TCP) in the network simulator ns-2, both of which mtroduced in

following sections.

1.3 The Transmission Control Protocol

TCP is the most common transport protocol used on the Intdseang used to
transport web pages (with HTTP), email (with SMTP), filesttwkTP) and much

more. Internet measurements show TCP traffic as being pray&ho, Mitsuya

!Periodicity and resonance in network traffic as describeBlbyd and Jacobson [4].

5

and Kato [6] show that greater than 80% of all traffic measwred backbone link

between USA and Japan is TCP.

The importance of TCP is reflected by the wealth of researichiinlt has been
shown to interact poorly in some situations with severamogk types such as
asynchronous transfer mode (ATM) networks [7], wireledsvoeks [8] and fast
long distance networks [9]. Many improvements have beegestgd over the
original specification [10], some of which have become stadsi[11, 12].
Generally, such modifications and extensions to TCP aredastsimulation
before laboratory or Internet tests. A popular network $atar for TCP research

is ns-2 [13].

1.4 The network simulator ns-2

ns-2 is a discrete event network simulator used widely irassh of Internet
protocols and mechanisms such as routing protocols, flotwvaland congestion
control. ns-2 is written in C++ and uses the OTcl [14] languagcontrol
simulations. An example simulation script is shown in hglll]. In this example,
a TCP flow transfers bulk data from the FTP application for&sels over a
full-duplex link with a bandwidth of 10Mb/s and a propagatitelay of 34ms
using the “drop tail” queuing strategy. A trace is writterthe file “nam.tr”
showing packet events such as enqueueing or dequeing atea ooinost or packet

drops.

Listing 1.1: Example ns-2 simulation script

set ns [new Sinul at or]

$ns trace-all [open "namtr" w]

Create topol ogy

set nodel [$ns node]

set node2 [$ns node]

$ns dupl ex-1ink $nodel $node2 10Mdv 34nms DropTai
Create TCP nodel s

set src [new Agent/ TCP/ New eno]

set sink [new Agent/ TCPSi nk/ Del Ack]
Attach nodels to the topol ogy
$ns attach-agent $nodel $src

$ns attach-agent $node2 $si nk

$ns connect $src $sink

set ftp [new Application/FTP]

$ftp start

$ns at 5.0 "$ftp_stop”

$ns run

Citations
Simulator | Google Scholar Citeseer
ns-2 1045 1275
GloMoSim 1042 97
OPNET 276 331
QualNet 62 25
X-Sim 38 9
ATM-TN 56 23

Table 1.1: Simulator popularity by citations

Listing[1.] illustrates the level of abstraction providgdtbe models that are part
of the ns-2 distribution. A researcher can specify the badthwand delay of a link
and the queuing mechanism used, but no further detail islatedi the physical
aspects of the medium used to transmit data is not simulateds the link layer.
This is not a fundamental constraint imposed by ns-2, agalgwjects have
extended the default models with, for example, models foiral@ss radio

channel. ns-2 has detailed models for routing, transpod agplications.

Though hard to quantify, it is probable that ns-2 is the madely used network
simulator for TCP research, and possibly the most widely Gieegeneral network
research. Table.1 shows a rough measure of popularityuimber of citations
for each network simulator. The two citation databases,g&o8cholar [15] and
Citeseer [16] were used to find the number of citations fohestwork simulator.
The numbers here are only estimates because citationsfsirttulators are
inconsistent; for example, ns-2 can be cited by its manuahsite, or an early
paper that describes it [17]. The citation systems are alsamplete, in some
cases (such as GloMoSim) there is a large disparity betweetwio numbers.
However, it can be seen that both citation systems report itations for ns-2
than any other network simulator. Hendergtnal present similar findings, stating
that over 50% of ACM and IEEE network simulation papers frddd@-2004 cite
the use of ns-2 [18].

ns-2 contains a set of TCP models that can be used to simwlateety of TCP
features. The TCP congestion control algorithms of TaheeoRNew Reno,
Sack [11], and Fack [19] can be used. Each of the TCP modelseased in a
one-way mode, in which data is transferred in only one divedand

acknowledgements flow in the opposite direction), or a moliehkvallows

7

bidirectional communication like real TCP implementaton

The one-way TCP models have been studied in detail to veliti@m. Fall and
Floyd [20] and Floyd [5] document a series of analysis baseldoking at
time-sequence graphs of TCP and checking packet tracesathafur expected
behaviour. Floyd [21] discusses how these tests are notiedrapsive and that the

validation tests are not necessarily effective for an eabytuser of ns-2.

The TCP models are not designed to reproduce the behaviausecific TCP
implementation and several aspects of the models do notrttaedoehaviour of
real implementations [5]. The one-way TCP models, whicttla@emost often used
due to their validation, deal in packets not bytes. The datbaaknowledgement
packet sizes can be specified, but as there is no two-way coroation there is no

provision for piggybacking of acknowledgements on dat&kpts[5].

1.5 Real world code

In some cases part of the real system being studied can lggated into
simulation. This is possible if the original system is saftezand the code can be
directly executedvithin the simulator. This provides for the possibility afry
accurate simulation; the simulated model will respond putrusing the same

code as a real system.

There are several projects that use direct execution ofweddél code in network
simulators. NsClick [22] allows Click Modular Router [23juting protocols to
run inside the network simulator ns-2 [13]—the same rougirggocols that will
run inside operating system kernels with Click support. Aeraative way to
simulate routing protocols accurately is proposed by Diopibulos and Riley [24]
who integrate user-space routing software into the ns-2lsitor to form a feature
full model of the Border Gateway Protocol (BGP). A similaojact is
InetQuagga [25], a port of the Quagga routing software taQNNeT++

simulator.

Directly executing real world protocol implementationsasdels in network

simulators has desirable benefits:

¢ the protocol model is likely to accurately match the realldior
implementation;

¢ the model may be more feature full than simplified simulatiwedels; and

¢ the implementation has already been written and testedatime process of

building a simulation model and debugging it is not required

There are difficulties involved in building simulation mdsi&om real
implementations. The environment the code would origynakecute in is
changed to a network simulator, there are problems supigarultiple concurrent
instances of the protocol, many protocol implementatioagpart of an operating
system kernel and need to be removed from the operatingsystbe part of a

network simulator. These issues are discussed in the foitpsections.

1.5.1 Multiple instances: the re-entrancy problem

A network simulation will create a number of instances of aleloFor example,
with a model of TCP, at least two instances of the model ardextéor any sort of
TCP communication—both endpoints of the TCP connectiomexgaired.
Thousands or more instances of a model may be required inioikasion (see
chaptefR for a discussion of scale used in network simulatidowever, real
protocol implementations are generally not designed tkkwuadependently within
a larger system. Network stacks are often only built to bé @fethe operating
system kernel. In most cases, the code isreadntrant the code cannot be safely
interrupted, re-entered to perform another task, and thgmmned on its original

task without side effects.

A mechanism is required to allow the code to run concurremilly many
instances and no data shared between the instances. Toespiie sometimes
known as virtualisation. There are a number of ways in which@e-base can be
virtualised. For example, the real world code can be sepaiato different
processes and inter-process communication used betwesmiblator and model
instances. This means the operating system provides tluaNsation, each model
instance is an independent operating system process. énothod of

virtualisation is modifying the source code so all accessggobal data refer

instead to data specific to the current thread of execution.

1.5.2 Kernel code in user space

Some network protocols are implemented in the operatingsykernel. This is
true of TCP: common operating systems such as Microsoft @isgLinux,
Solaris, FreeBSD and Mac OS X include TCP implementatiotisimthe

operating system kernel.

To simulate with one of these protocol implementations theleanust either run in
user-space with the simulator or be modified to allow inteoas with the
simulator. Kernel code includes functionality that cannwt in user-space; for
example, kernel memory management. The functions for tmestanisms need
to be removed, and user-space implementations of thesednameed to be
written and used in their place. In some cases this is sintipéekernel memory
management can be replaced with the call to the user-spacednnal | oc. In

other cases more detailed implementations are required.

1.6 Problem statement and scope

An examination of the following statement is presented is tlissertation:

The accuracy of simulation of TCP can be improved by usinf rea

world TCP implementations instead of protocol abstraction

Real world TCP implementations are software generallytemitn C. The
implementations can be changed to work inside a networklaborinstead of the
normal environment, which is generally an operating systemel. The
implementations can then be used to produce very accuraitgas the exact

same code that runs on a real system runs as a simulation.model

Simulating with more than one real world TCP implementatsimportant. Each
TCP implementation differs due to a number of reasons: the 3je&cifications are
ambiguous in places, there are many options left to impléension what features

are implemented, not all TCP implementations conform t@iigation, and the

10

implementation may have bugs. We hypothesise that simglatith multiple

different real world TCP implementations is required tovagisthe stated question.

This question is addressed by considering the followingsuoiponents:

Feasibility Using real world TCP implementations in a network simulasor
theoretically possible, but it needs to be shown that doinig practical. For
simulation with such models to be useful, it is necessaryttiteamodels can
be used to carry out research to the scale used by current@eBrchers
and be run in reasonable time. This is investigated by revigeurrent TCP
simulation models and uses of TCP in research in ch@ptersgrideng an
architecture and implementation that allows real worldectmlbe used for
TCP models in chaptél 3, and using this implementation in $i@Rilations.
Chapter§¥ and 5 show simulations carried out and an inettigof
performance is shown in chapfér 6.

Validity and accuracy For the results of simulation to be useful, they must be
valid and accurate. This is investigated in chapler 4.

Applicability We hypothesise that simulating with multiple differentirearld
TCP implementations is useful. This hypothesis and thetid&iasimulating
with real world TCP implementations provides further kneggde to the
simulation practitioner are analysed in chapier 5.

Performance and scalability The performance and scalability of using real world

code as TCP models is discussed in chdgter 6.

TCP research itself is discussed first in chapler 2. Thislievied by descriptions
of the simulators and their TCP models which are used to @cartf CP research.
Existing approaches to real world code based simulatiorG# @re also covered
in this chapter. Following this chapter, the next chapté&suss and use the
Network Simulation Cradle (NSC), a project created durlig PhD. The NSC
itself is described in detail in chap{ér 3. The accuracy witdating with real world
TCP implementations is analysed in the following chapteaptei . Further
experimental results are discussed in chdgter 5, whil@praence and scalability

is covered in chaptéll 6. The conclusions to the thesis asepted in chaptél 7.

11

12

Chapter 2
Simulating the Transmission Control

Protocol

This chapter presents a discussion on the types of resdmtchge TCP simulation
and the simulators used, including both simplified TCP m®dad real world

code based TCP models.

SectioZ1L presents types of research that are carrietiatuige TCP simulation.
This survey of research highlights the type and scale oflprob which are
investigated with network simulation and the network siatoits used. This is
followed by sectiomZ]2, which describes the network sinaukamentioned in the
previous section in more detail. For each simulator, the W@@el is discussed
and the validation performed covered. These two sections slow first the scope
of simulation that a real world code based approach needsdi@ss, and secondly

the limitations of the state of the art in network simulation

Using real world code for TCP simulation is covered in seddd, where
approaches to using real world code are categorised andecbvEhe three
categories—porting a TCP implementation to a simulatodifgong the host
operating system, and building a supporting framework—d&eussed in detail
based upon the existing projects that use each approactthépéer is

summarised in sectidn 2.4.

13

2.1 Research using TCP simulation

Much networking research involves studying TCP, or situagiinvolving TCP,
using network simulation. The following sections give exdas of the types of
research that are carried out. Research involving TCP atmulcan be broken
into three groups: studies of TCP under various conditior@]ifications to the
TCP algorithm, and simulation of TCP for analytical moddidation. Each of
these groups is reviewed with examples of research repegsenof the type of

studies carried out in each area.

2.1.1 TCP under differing conditions

Many of the modifications to TCP are designed to improve perémce in
situations where TCP has been shown to be lacking. Theliregaarch will
involve a study of TCP in a specific set of scenarios or oveffarént network
setup. Many of these studies are conducted partially oy mlsimulation. In other
cases the network itself is being studied and a TCP simulatiodel is used to

generate realistic traffic on the network.

TCP performance over ATM networks is well studied [7, 26-28]P can
experience performance problems in ATM networks due togamatconversion
overheads, size mismatch between TCP segments and ATMtcatismission
errors and subtle interactions between the two protocoktudy of TCP over
ATM on lossy ADSL networks [27] was carried out with the ATMNT29]
network simulator. Another study carried out with the samesuator investigated
the basic problems the two protocols have coexisting [26}s& and Williamson
showed how TCP was not able to utilise high bandwidth linksagively in their

simulated network (a dumbbell topology with between 1 and@ C@ flows).

Wireless networks are another common network in which sa@searchers have
shown TCP to have performance problems. Many studies shemTia¥
performance degrades over wireless links and how TCP islemafully utilise
the network resource available. One area of wireless n&tresearch is satellite

systems; Obata, Ishida, Funasaka and Amano [30] presentoarpance analysis

14

of TCP under such a system based on ns-2 simulation resultgh@r area is
wireless protocols used by cellphone and other highly nedkithnologies; Bagt.
al [31] analyse TCP performance over CDMA-ZH(WireIess links using the
OPNET simulator to simulate a single TCP flow between a weseleode and a

base station.

TCP performance over multi-hop wireless networks is arelysy Gerla, Tang
and Bagrodia [8] using results from simulations perfornrethe GloMoSim
simulator with between 1 and 20 TCP flows over wireless nétsvoanging from 8
to 100 nodes. Further work on the same subject with GloMoSipresented

in [32]. An analysis of the TCP performance of a single flowramebile ad hoc
networks that uses the ns simulator is performed by Hollawa\Maidya [33]. TCP
throughput and loss is measured using up to 20 flows over{nojtiwireless
networks in the ns-2 simulator and results are presentegtlijn Kuang and
Williamson [35] develop a multi-channel MAC protocol for ftibop ad hoc
wireless networks and present results of simulations i.rSimulations of TCP
fairness using a custom queueing system for ad hoc wiretsgorks using the

QualNet simulator and up to 6 TCP flows are reported on in [36].

Krishnan and Sterbenz [37] measure TCP throughput overreactive links:
network links that have different properties as load insesgsuch as links
controlled by dynamic quality of service scheduling). Slations are performed
in ns-2. Analysis of TCP undergoing denial of service atsaskpresented in [38].
Simulations use the default TCP models in ns-2 and some mezaeuts of the
denial of service attacks are also performed on the InteNejlia and

Falletta [39] mount the argument that packet reorderingtsatways harmful to
overall TCP network performance based on results from nsidlations and a

theoretical justification.

TCP simulation is often used when investigating queueinghaeisms. Guo and
Matta [40] present simulations in ns-2 of short and longdi CP flows through
routers employing RED and ECN. Eddy and Aliman [41] compaE®R

mechanisms using ns-2 TCP and FTP models using simulatroasiambbell

!CDMA is Code Division Multiple Access, CDMA-2000 is a set ofopocol standards for
CDMA-based mobile communications.

15

network with 5 TCP flows. The adaptive RED algorithm is inigasted with the
ns-2 TCP models by Floyd [42] using simulations of up to 10@yléved TCP
flows. ns-2 TCP models are used to test a new active queue graeagalgorithm

with simulations of up to 200 TCP flows in [43].

2.1.2 TCP modifications

Some research that uses TCP in simulation modifies the TGBqguiatself.
Examples of the modifications possible include modifying ¢bngestion control
algorithm [19], changing the startup procedure [44, 45haremental

improvements to address a problem TCP has in a particulaagod46].

Packet reordering can be very harmful to the performanceCét [A7] and there
are approaches to alleviate this that require modificatiofSCP implementations.
One approach is an extension to selective acknowledgeroalies DSACK [48],
or duplicate selective acknowledgements. Blanton and @dlid 7] modify the
ns-2 TCP models to implement DSACK and study TCP performanitedifferent
retransmission strategies using simulations with a sim@e flow over a dumbbell
topology. Another study uses DSACK in the ns-2 simulator ewadlifies the
retransmission timer estimator algorithm and fast retranalgorithm to attempt
to avoid false retransmissions [46] using similar simolascenarios to Blanton

and Allman.

TCP adapts to network bandwidth by initially increasing $peed of packet
transmissions exponentially in the slow start phase uatikpt loss is detected.
The packet loss can be large and the time in slow start longgin h
bandwidth-delay paths. Hu and Steenkiste [44] present hadehat they called
Paced Start that uses active measurement algorithms noeg¢stihe available
bandwidth for the TCP stream and they modify the TCP algorith use this
information. This potentially means a TCP flow transitiom®icongestion
avoidance phase quickly with less packet loss while stikimause of available
network resources. The ns-2 simulator is used to carry auilstions with an
unmodified TCP model and a TCP model modified to include thed&tart

algorithm. The scale of the simulation varies from a dumbieivork with one

16

measured flow and one background flow, to a dumbbell topolatiy102 flows
and another topology they call a “parking lot” which featufel routers each with
12 connected nodes and the routers connected serially dtalaof 66 flows. Some
measurements from real networks are collected from usearesand in-kernel

implementations collected on EmL&KQ] and on the Internet respectively.

Williamson and Wu [50] study TCP performance with their vensof TCP
modified to include information from other network layerads as web document
size). The scenarios studied are first tested in ns-2 withfreddrCP models then
over a wide area network using a modified Linux TCP/IP statie Simulation
scenario uses 10 servers and 100 clients, with the clieritswpanany short-lived

HTTP requests to the servers during the simulation.

Modifications to the TCP congestion control algorithms amamon. The Forward
Acknowledgement algorithm [19] (FACK) modifies the congasicontrol
algorithm to keep extra state when selective acknowledg&ae used. This
extra state allows the FACK algorithm to accurately regutae amount of
outstanding data in the network which means that in somatgits TCP is less
bursty and better able to recover from loss. The researcttaraied out with the
ns simulator and modified ns TCP models using a dumbbell bgyokith one or

two TCP flows.

Another modification to the TCP congestion control alganitis presented in [51].
TCP is modified based on the idea of predicting traffic—a new? talled
TCP-TP (TCP with traffic prediction) is created. The new aildpon is tested in
simulation with ns-2 and with a FreeBSD implementation. Simeulation study

uses up to 300 TCP flows in a topology with multiple bottlerseck

TCP Westwood [52] is another TCP congestion control alporitlt uses
bandwidth estimation techniques and is shown to work wedk evireless links in
simulations with a custom Westwood simulation model buaittthe ns-2 simulator.
The simulations use mixed wired and wireless nodes in a sinoplology with one
TCP flow. TCP Westwood later changed to Westwood+ [53] thatigtes a better

bandwidth estimation algorithm, Westwood+ is tested witlupdated ns-2

2Emulab is a freely available testbed network with full cohtiver the machines used for testing.

17

simulation model and on the Internet with a Linux kernel iempentation. The
simulations vary, using dumbbell topologies with up to 2bW#, multiple
bottleneck topologies with up to 21 flows and satellite scesaising up to 30

flows.

Many other TCP congestion control algorithms have beengseg, some of
which are initially investigated in simulation. Examplesliude TCP Vegas [54],
TCP Hybla [55] and TCP Veno [56]. There are also many highedpeCP variants
such as H-TCP [57], Scalable TCP [58] and FAST TCP [59]. Tlseaech into
TCP Vegas, TCP Hybla and H-TCP uses simulations withet&m and ns-2
simulators with between 1 and 16 TCP flows. These are onlyt 8kt of the
different TCP congestion control algorithms that have meggested, there are
many more suggested to aid TCP in various networking canditsuch as high
speed or high bandwidth-delay paths, wireless paths, pditch include

reordering or asymmetric paths.

2.1.3 Analytical model validation

Various analytical models of TCP have been built, many ofollare compared

against simulations when validating the analytical mo@él

Anjum and Tassiulas [61] build analytical models that sg¢jeat Tahoe TCP
performs better than Newreno TCP on a wireless link withedated losses while
Sack TCP is better again. Simulations in ns-2 simulatingnglsiTCP flow are

performed to back up their analytical models.

Analytical models of long-lived TCP flows are presented iB][6'he models are
derived directly from the TCP finite state machine. The arghise ns-2

simulation to validate the model results, using simulatiohup to 500 flows.

Streaming multimedia over TCP is analysed in [63] wheredital models of
TCP are updated to support video streaming. The models hdatad using ns-2
simulations and Internet measurements. Simulations vgith are performed

in [64] to determine information for an analysis of TCP usgagne theory; a

dumbbell topology with 10 flows is used in their simulations.

18

2.1.4 Discussion

The simulation studies covered use up to 500 TCP flows, witktstodies using
between 1 and 200 flows. For a TCP model to be useful in thasatisihs, 1000
TCP model instances would need to be supported in a singldaiion (one for

each endpoint).

Other types of network simulation can require much largatesc For example,
simulating the Internet would require a much larger numli@oodes. Some
research uses these large scale network simulations,don@e routing algorithm
studies generally use very large scale simulations [65¢ Sdale of these
simulations varies but examples include 20,000 routersd68 13,173

routers [66]. TCP can be important in these situations, aBtrder Gateway
Protocol (BGP) routing protocol uses TCP to transfer datevden Autonomous

Systems (AS).

Three groups of TCP research were covered in the previotissgcsimulating
TCP under differing network conditions, simulating with adified TCP model,
and using TCP simulations for analytical model validatiBeal-world code based

TCP models are applicable to all of these areas.

Simulations that modify the TCP algorithms are potentiadlyre work for the
person carrying out the simulation with a real-world codsdsaTCP model, as
implementing the modification to TCP is likely to be much easiith a simplified
model. However, such modifications are often tested on exaldt
implementations in addition to simulation. The real-wartitle based TCP model
therefore is useful to allow developing and debugging thdifiaation to the
actual network stack code in simulation. This can then bd usthe original

operating system as well.

When TCP is used in a simulation scenario and no modificaaomsnade to the
original algorithm, using a real-world code based TCP mapbtentially no
more difficult than using a simplified model. In this case ¢geaccuracy can be
gained at low cost. The same applies for situations where m@Rels are used to

validate analytical models.

19

Six simulators were mentioned in the previous section2 (ed its predecessor,
ns), ATM-TN, GloMoSim, QualNet, OPNET, andSim. This is not a definitive
list of simulators used in TCP research, as the studies edwae only a sample of
the large amount of research that uses network simulat®£.is the most
common simulator we encountered in the literature whiclorsststent with the
findings of several others [67—70]. Each of these simuldtassa different set of
features in its TCP models and has undergone a different minodwvalidation.

These simulators are covered in the next section, sdciibn 2.

2.2 Network simulators used in TCP research

The previous section presented a sample of research usiRgih@lation. A
number of simulators were used to carry out this researcl: (asd its
predecessor, ns), ATM-TN, GloMoSim, QualNet, OPNET, ar8im. These
simulators and their TCP models are discussed next. Eachiaionis introduced,
followed by a discussion of the features of the TCP modeh thiormation on the

validation that has been performed.

The simulators discussed in the following sections are n&xaustive list of
network simulators with TCP models. Many simulators havenbgsed to conduct
network research and information on further simulatorsheafound in
appendidX’C. The simulators reviewed in this section shoferint approaches to

simulating TCP and cover a wide amount of research, as shosecitiorf Z.11..

2.2.1 ns-2

ns [13] is an object oriented discrete event simulator aesigor network

research. ns provides support and models for TCP, routindicast, wireless and
wired networks. The initial release of Ns version 2 was in@.88d subsequent
versions of the simulator have come to be knowns2 ns-2 is the evolution of

the simulator calledcpsimthat was a version of the REAL simulator [71] based on
the NEST simulation software [72]. ns-2 has been used faige laody of
networking research, much of it related to TCP:

see [30, 35, 37,39-41,47,50,51,53,63, 64, 73—76] for afsetamples.

20

ns-2 is built on a C++ simulation kernel heavily integratathvihe OTcl [14]
interpreted language. OTcl is an extension to the Tcl [7A¢leage for object
oriented programming. OTcl is used to describe simulateamarios and
implement parts of some models. C++ objects are createchémchcted with in
OTcl simulation scripts to create simulation topologied acenarios

programmatically.
TCP model

There are two types of TCP model available in ns-2: one-wak ®dels, which
allow only unidirectional transfer of data, and two-way T@Bdels which allow
full bidirectional communication. The one-way models amrethoroughly

validated and used most often in published research.

Both sets of models are feature full and allow a range of cstige control
algorithms to be selected. One-way TCP data sources carabse T78],

Reno [79], Newreno [80], Sack [11], Fack [19], Vegas [54] atiter congestion
control algorithms. The one-way TCP sink (endpoint whicly@ends
acknowledgements) can use delayed acknowledgementstjsele
acknowledgements, or acknowledge every packet. Two-wdy mGdels can use

Tahoe, Reno, Newreno or Sack congestion control algorithms

Full segmentation is not performed by the one-way TCP modeks packets are
always full sized. No receiver’s advertised window is usbd;receiving
application is assumed to consume data as fast as it arlesh configuration is
possible: the MSS, window size, TCP/IP header size, timamgarity, minimum

retransmission time, timestamps and other options carealbbfigured.
Validation

The ns-2 simulator has a large set of validation tests forynpaotocols including
TCP. The TCP tests run simulations and record statistids asisequence number
over time. To validate ns-2 each simulation scenario wagraily analysed by
hand then subsequent tests are checked against previausty sutput. Test
scenarios exist to check a range of features such as slawfasretransmit and

congestion avoidance algorithms under differing amouhpmoket loss. Other

21

80

60

Packet Number (Mod 90)
40
|]

20
L

Time (seconds)

Figure 2.1: ns-2 simulation of TCP Tahoe responding to paoks [5]

tests examine retransmit timers, delayed acknowledgesyfast recovery and
selective acknowledgements [5]. The different congestantrol algorithms are
tested for both one-way and two-way TCP models under diiteaimounts of loss
in a similar fashion [20]. The two-way TCP models only havetiphvalidation
performed [81, 82], the suite of tests covering these maddelst as

comprehensive as the validation tests covering the onefZd@/models.

An example of an ns-2 validation graph is shown in fiduré 2He graph is
discussed by Floyd [5] when outlining the validation tet$GP in ns-2. The
graph “shows the Fast Retransmit, Slow Start, and CongeAtioidance
algorithms of Tahoe TCP”. The cross on the graph indicatesitigle packet lost.
The dots on the graph show each packet as it arrives and déquart the gateway.

This graph shows how initially TCP increases quickly uritgets a loss, then
learns from this by adapting the slow start threshold afterldss. By analysing
the graph it is evident that the TCP goes into slow start agfér the loss, but
quickly uses congestion avoidance due to the slow starshlotd as the TCP stops
increasing exponentially at approximately time=3.5 sesoisraphs such as this
one were initially verified by the TCP model author. The validn testsuite is
then updated with the known correct packet trace, and theehi®dubsequently

tested against this packet trace to ensure it stays correct.

22

2.2.2 ATM-TN

ATM-TN [29] is a network simulator originally designed tavsillate ATM. The
simulator is based on SimKit [83], a C++ library for high perhance discrete

event simulation.
TCP model

The TCP model used in ATM-TN is based on the Berkeley Unix BSD
implementation known as Net/3 [84] developed by the Uniaed California,
Berkeley and released in April 1994. The TCP implementasonodified heavily

from the original C implementation to port it into the C++ s$&s used by SimKit.

Gurski and Williamson [26] describe the TCP model in ATM-TiNncludes all
the features of the Net/3 BSD TCP implementation includiogysstart, fast
retransmit, fast recovery, high-performance extensid@(window scaling and

timestamps [85]) and full-duplex data communication.
Validation

The TCP model is validated by analysing graphs of TCP dynaiwdand and
comparing results of a simulation with previously publidinesearch. Both

methods are presented by Gurski and Williamson [26].

A validation experiment conducted by Gurski and Williamstowing analysis of
TCP dynamics by hand is as follows. A single TCP source is gardid to send
data as fast as it can to a TCP sink. Between the source andrsifikM switch is
configured with a mismatch in link speeds between the incgraimd outgoing
links. It is expected from this scenario that the TCP souritieewhibit cyclic
behaviour: increasing its send window, filling the switclfféy detecting a
dropped segment, reducing the send window, and retramsgnithe TCP
congestion window is graphed alongside transmitted callissavitch buffer

occupancy. The graph of this experiment is shown in figude 2.2

The graphs in figure2.2 are analysed by Gurski and Willianasofollows. The

TCP delayed acknowledgement option is evident due to ackug&ments being

23

Cells

Transmitted

——
—

R —
—|
—

—
—
—
—
—_—
=
\:I
——
[~—
—
[C—
|
[C—

E i i
.O I]
2 i i
g i
f=
OO 0 1 1 1 1 1 1 1 1 1

0 p > 3 4 5 6 7 8 9 10
g T T T T T T T T T
2 1000 Maximum Occupancy
3 800} i
g
g 600 i
3
8 400 | \
o]
5 200 F
=
a 0 . 1 . 1 A 1 1 1

0 1 2 3 7 8 9 10

1 5 6
Time (seconds)

Figure 2.2: TCP dynamics on an ATM network [26]

spaced evenly. Slow-start is indicated by the fast growtth@fcongestion window
initially where each acknowledgement results in one or tevckito-back data
packets being sent. The cell sent at time=3 indicate fastrremit in action: the
‘%’ symbol on the top graph indicates acknowledgements, gisscretransmitted
after three duplicate acknowledgements due to the fastn®tnit algorithm (the
authors use extra information along with the graphs to chieakthe
acknowledgements were duplicates). The other cells ar@nshitted at time=5
due to the TCP retransmission timer expiring. A similar gsiglis provided by

Gurski and Williamson [26] for TCP dynamics between two T@Rams.

A further validation experiment was conducted by repliogi® simulation
performed by Romanow and Floyd [7]. ATM switch buffer sizevagied and the
effective throughput of 10 TCP flows is measured. The resiltise simulations
did not agree exactly due to the complexities of reprodutiiegsame simulation in
a different simulator, though the general trends shown byskd@and Williamson

agree with those shown by Romanow and Floyd.

24

2.2.3 GloMoSim

GloMoSim [86], or Global Module system Simulator, is a lira@esigned for
parallel simulation of wireless networks. The library isol@mented with the
C-based Parsec parallel simulation language [87]. Modelsvatten in this
language, GloMoSim includes many wireless routing and MAGiqrols as well
as radio and mobility models. It also includes UDP, TCP antpbse application

models such as constant bit rate traffic generators.

GloMoSim has been used for much wireless research [8, 32(88some of it
involving TCP [8, 32]. GloMoSim is no longer maintained asducceeded by the
commercial package QualNet [91,92]. There is little infatimn provided on the
TCP simulation modEIused in QualNet, the web-pages describe simple model
features such as Reno and Newreno congestion control budgtdoention the

FreeBSD network stack that is used in GloMoSim.
TCP model

The FreeBSD 2.2.2 network stack is used as the TCP model in
GloMoSim [8, 86, 93]. There is little information on the aitgftture used to
incorporate the network stack into the simulation librarge TCP Tahoe model

from ns-2 was ported to GloMoSim and is also available.
Validation

Bagrodia and Takai [93] state that the GloMoSim TCP modeblglated against
an operational prototype (a computer running FreeBSD PBi2do not describe

this process in detail.

The TCP model ported from ns-2 was validated by comparingsivwalar
simulation scenarios run in ns-2 with those run in GloMoSiin& results were not

identical but “within appropriate statistical bounds” [93

Further validation of the simulator and its models is preddy running scenarios

of known results and checking the model output. A detaileshetrace of the

3The company website provides some basic informatioft tQ: /7 WWw.
scal abl e- net works. cont)).

25

http://www.scalable-networks.com/
http://www.scalable-networks.com/

model execution is analysed to ensure that it follows thesetqal path.

2.2.4 OPNET

OPNET Modeler [94] is a commercial object oriented netwaonkudator. It is used
in a large amount of networking research [67, 95] includirangnsimulations
involving TCP [31,96-101]. OPNET provides an extensivepghreal User
Interface that is used to build topologies and simulati@nacios, analyse data and

create models.

OPNET Modeler is described as a high performance simulajoalae of
sequential, parallel, hybrid and analytical simulatiorariyf models are provided
of protocols and applications including routing proto¢alged and wireless MAC

protocols, transport protocols and others.
TCP model

The TCP model provided by OPNET Modeler is feature full. Adsix

RFC 793 [10] functionality is provided. Fast retransmit aedovery, selective
acknowledgements, explicit congestion notification, Kaahgorithm, a receiver’s
advertised window and a persist timer are implemented. Winstaling is

supported and TCP timestamps are used for RTT calculation.
Validation

The company that produces OPNET Modeler, OPNET Technddge, does not
provide validation or testing information on their simaabr models. However,
there have been several independent tests of their simulattuding one

comparing TCP dynamics between OPNET Modeler and ns-2 [67].

Lucio et. al[67] built a test bed network and designed several simuiatio
OPNET Modeler and ns-2. The scenarios tested used eithstactibit rate traffic
or FTP. Several simulation parameters were tuned for eachlaior: the New
Reno option, window scaling or window size, the TCP timegtaption and the
maximum segment size. Each simulator supports a diffesgrdfoptions so these

can not be configured to be identical for each simulator. Tgi®ns were instead

26

Banduidth Router Int FTR
i T T T T

Hetwaork t:ES'tbed ——
Opret —— o

Hz-28 —8—
Opret & —%—

ns=g-g —%—

fl8es bitss=sl
on

Time (=)

Figure 2.3: TCP throughput during FTP measured from a r¢6#r

tuned to be as close to the test bed network as the reseacchigdsmake them for
each simulator. The network topology used is a dumbbelllagyowith two flows.
The bandwidth is measured at several locations in the nktart graphed over

time. An example of a graph used for analysis is shown in figuie

The metric of throughput over time is used for all comparssby Lucioet. al
Figure[2.B shows one of the comparisons. The graph showsHermesearchers
tried different options for ns-2 (the lines marked as "nsa@d "ns-2-2") before
they were able to produce results similar to the results fitoar test bed network.
This result illustrates how the ns-2 TCP models do not necigsnodel reality
when used with their default configuration. A similar pracess applied for the
OPNET models, though the initial results without tuningwtbe correct trend,
while the ns-2 results do not. In this case OPNET is a closemtatthe results

from their test bed network.

Lucio et. alconclude that OPNET and ns-2 provide very close resultshaitaoth
simulators did not model FTP well with their default paraerst OPNET
produced results closer to measurements from a test bedmketvinen fine-tuned

to simulate the FTP scenario.

27

2.2.5 Xx-Sim

Thex-kernel [102] is an operating system kernel designed tditaia the
implementation of efficient communication protocols. lbydes an explicit
structure and support for protocols. Théernel includes a large baseokernel
protocol implementations such as TFTP, DNS, UDP, TCP, Su, R ARP,
ICMP and more. The TCP implementation used initHeernel is a direct port of

the 4.3 Berkeley Unix TCP/IP stack.
TCP model

x-Sim [54, 103] is a simulator that uses théernel for protocol implementations.
Simulations performed with-Sim can therefore use the Unix TCP

implementation that is part of thekernel.

The TCP stack is hand modified to fit into the new kernel archite. The custom
simulator is able to run many kernels and route messagebetihe kernels,
enabling many instances of the TCP stack to be simulated.zAwernel protocol
(everything is a protocol in the-kernel, even applications) can be run#gim,
meaning real applications and a real network stack can balaied, although the
applications and network protocols must be ported or impleted for ther-kernel

architecture first.
Validation

Some validation work has been done to make sure the resuksaged withz-Sim
are consistent with expectations, though no informatiagivien on the details of
this, or whether porting the TCP implementation to thkernel changed the

behaviour of the implementation at all. The one TCP impletaigon is available

for simulation and is dated: the version used is from arol 9801

2.2.6 Discussion

Only a subset of network simulators is covered here, butrallipus six simulators
have been used for published research about TCP; each whsussearch

discussed in sectidn 2.1. While many other network simuagaist, there is a

28

large amount of network research which uses the simulatscsissed. Luciet.
al [67] choose OPNET and ns-2 for their simulations “becaudbeif popularity
with academia, commercial and industrial communitiesedbauet. al[17]

describe ns-2 and OPNET as prominent examples of networnkaians.

Of the simulators covered, ns-2 has the most comprehenaiation suite.
While validation studies have been performed with the otireulators, none was
found to have as many tests or such a large framework in pteeedure the

correctness of their models.

ATM-TN, GloMoSim andz-Sim all use real world TCP code. However, this alone
does not guarantee that the TCP model is accurate. The appodasing real

world code for a TCP model and its limitations are coveredhariext section.

2.3 Simulating with real world TCP code

Three of the simulators introduced in sectiod 2.2 use realdMiCP code as a
TCP simulation model. Other simulators not covered eaaligo do this:
NCTUns [104], dONE [105], OMNeT++ [106,107] and IRLSim []G8I include,

or have extensions for, real world TCP code.

The properties of such models are different to simplified el®built specifically
for simulation. The original TCP implementation will imphent applicable RFCs
by necessity: the TCP implementation must be able to comeataivith other
TCP implementations. The list of features available in AT€&P implementation

is often quite different to a simulation model of TCP.

A full featured TCP stack is normally available in simulatiba real TCP
implementation is used. However, there are limitationsaatlems inherent in

taking this approach.

Hand modifying code To integrate the implementation into the simulation
system, some amount of modification will be required. Thisloa a lengthy
and difficult process, prone to error.

Keeping up to date TCP implementations that are part of operating systems are

29

updated frequently and have bugs fixed and features adde. ©n
implementation has been added to simulation it can be diftickkeep up to
date.

Validation While the original TCP implementation is known to work, iillst
needs to be tested that it works correctly in the simulator.

Multiple instances Network stacks are generally designed to be run as a single
instance per computer. Simulation requires many instaoicasnodel. A
methodology is required to support multiple copies of a T@Plementation
running concurrently and independently.

Multiple implementations Ideally a TCP researcher can choose which TCP
implementation to simulate with, rather than be limited b@ @ingle TCP
implementation that may be limited in features or known wude bugs.
Both real world implementations and simplified models stdod present as
real world models are not always applicable: Floyd [21] poout that very
detailed models can heavily skew results in some situatidnese only a

coarse grained simulation is required.

In some cases using simplified models is preferred; inigaktbpment of a TCP
modification is probably faster with a simplified model andanitreating results
for an analytical model only a coarse degree of accuracy highequired. In
other cases a coarse-grained model is desired, Floyd [2dlises how
fine-grained models are not appropriate to all researchaltrestr interactions
possibly skewing results. It is therefore useful for a simor to allow both

simplified TCP models in addition to real-world code basedPT@odels.

The existing research into using real world code for a sitedld CP model can be

categorised into three approaches:

¢ Porting the TCP implementation alone into a new framewodk.dxample,
an early BSD TCP implementation is ported to a C++ simuldilmary,
SimKit [83], for the ATM-TN [29] simulator. BSD TCP impleméations are
ported to the Parsec [87] simulation language for the Gloihd86] and
IRLSim [108] simulatorsz-Sim [54] is a port of a BSD TCP

implementation to the-kernel [102], an operating system which can then be

30

simulated.

e The existing operating system can be modified to allow thevoidt stack on
the simulation machine to be used for simulation. This apginas taken in
the NCTUns [104] project.

e A framework can be built around a network stack that featases bridge
between the network stack environment and simulation enment. This
approach is taken with dONE [105] and the FreeBSD extensmns
OMNeT++ [106]. This approach is also taken by Wei and Cao]109
although they only include the TCP congestion control atgors, not a full

network stack.
The three different approaches are discussed next.

2.3.1 Porting the TCP implementation

The TCP implementations in this category have been modiiéatcbrporate them
into the new system. The projects covered in this categoFMAN, GloMoSim,

IRLSinH andz-Sim) can be further arranged into those which incorpoitzeliCP
implementation directly as a TCP model in a simulator, ams#that incorporate

the TCP implementation into a simulated operating systemeie

ATM-TN, GloMoSim and IRLSim take the first approach: the TCP
implementation is modified to make it compile as part of tmewator. For
ATM-TN, an early BSD TCP implementation is modified from C smricode to
implementations of SimKit C++ classes. The basic struabfitbe TCP processing
code stays the same, but many modifications are requiredye foactions and

global variables into C++ classes and to modify the C codetogiant C++ code.

IRLSim and GloMoSim use the Parsec simulation languagesiwisia language
similar to C. Terziset. al[108] state that porting C to Parsec is simple but to fully
port a TCP implementation, many modifications are requigbabal variables

need to be modified and all interactions with the operatirsesy need to be
modelled with Parsec entities and messages. For examgeaih be seen in

version 2.03 of the GloMoSim source code [110] which inchidedifications

4IRLSim is described in sectidn G.6 on pdgell 75.

31

throughout the TCP code. Many functions are modified to takexséra parameter
identifying state specific to the particular GloMoSim noagng simulated. In
some places where functions were called previously, Pangessages are instead

constructed and sent.

The approach taken withSim is somewhat different. The TCP implementation is
ported to thec-kernel, a different operating system. Thdernel operating system
is a full operating system kernel like the original BSD kdnhe TCP
implementation was copied from. Thekernel is able to be simulated and the
simulation framework provides the facility to instantiateltiple independent

instances of the kernel (and hence TCP implementation).

The code for version 3.3.1 of thekernel and associatedSim is available [111]
and it is evident that a similar amount of source code neells tthanged to port a
BSD TCP implementation to thekernel as it does to the other simulators
discussed herex-kernel specific functions are called when the code wouleraut

with the operating system and extra code is added for evarinty.

The tight integration between network model and simulass $ome benefits.
Event tracing, statistics gathering and configuration asy ¢o integrate into
software that was not originally designed to be used in alsited environment.
Gurski and Williamson [26] note this is true of ATM-TN, it allvs simple
modification of a range of parameters from all layers of tr@qmol stack: the
socket, TCP/IP and ATM are all controlled by a set of optiomd parameters.
Extra tracing function calls are added to the TCP implententa inz-Sim that
provide, for example, in-depth information on the TCP colstate during

processing of TCP segments.

2.3.2 Modifying the operating system

It is possible to modify the operating system run on a compaueh that a
user-space simulation program can make use of the runnimglkd his approach

is used in the NCTUns [104] project.

Tunnel devices are available on most UNIX machines and ghaskets to be

32

TCP Sender TCP Receive

) ()

Host 1 Host 2
(a) Example simulation scenario
Simulation server
ARP ARP
Queue Queue
802.3 802.3
TCP Phy Phy TCP
Sender A A Receiver
1 1 User level
Kernel level
TCPR/IP TCP/IP
Stack Stack
Tunnel Tuhnel
Interface Interface

(b) NCTUns architecture used to simulate the scenario

Figure 2.4: NCTUns simulation architecture (adapted fra64])

written to and read from a special device file. NCTUns usesoited machine’s
network stack via a tunnel network interface. To the kenhalppears as though
packets have arrived from the link layer when data is writtethe device file.
This means the packet will go through the normal TCP/IP msiog. When a
packet is read from the tunnel device, the first packet inuhael interface’s
output queue is copied to the reading application. An exarapthis architecture

being used for a simple simulation topology is shown in figZif

One of the advantages of this approach is that it allowsliealJNIX application
programs to run on simulated nodes in the network becaussystem default
UNIX POSIX API is available. However, NCTUns has some disadages. First,
it needs kernel modifications for all machines it runs on. Kéwmel needs to be

patched to support changes to timing, the scheduler, am fattilities. This has

33

three major ramifications: hand changes to the protocol ouelns that results
produced are less convincing, as it is hard to know whethesetithanges will
affect results. To use NCTUns, the user needs full admatisé privileges to
install the new patched kernel, which is not always an opgspecially in a
student laboratory setting where access may be restriCtezicode also needs to
be maintained for all operating systems it runs on—by NCTuarsion 3.0

support for FreeBSD was dropped.

A separate computer is needed for every different versi@vefy operating
system that is to be simulated and the computer must beledtaith that
operating system. This means larger simulations couldmeguany machines; the
resource requirements are higher than a simulation runtimank simulator using

simplified models.

2.3.3 Build a supporting framework

Several projects aim to minimise code modifications to th® Tr@plementation,
thereby reducing the chance of inadvertently changing émaour of the
implementation. To integrate the TCP code with the simu)adéramework is

built that bridges between the TCP implementation and timeilsitor.

The architectures used by the dONE [105] simulator’'s TCPehdd 2] and the
FreeBSD TCP extensions [106] to the OMNeHJs%mulator are based on the
Alpine [113] project. Ely, Savage and Wetherall [113] désemoving a TCP
implementation from kernel-space to user-space with mahmodifications to the
original code. They moved the FreeBSD network stack into-space to aid
network protocol development and testing. Their architects depicted in
figureZ5.

This architecture shows a framework supporting a netwagksthat is
unmodified. The framework was used to run the network stacis@n space and to
send packets out to the network in the Alpine project, altfioilne same design
can be used to support a network stack that is to communigtieawmetwork

simulator.

SOMNeT++ is described in secti@a¢.1 on pégel171

34

Application ‘ ‘ Application
+ + User Space * *
Kernel Space
System Call System Call »
c
Socket Socket 3 —
=4 Modified
TCP _) TCP o
-'g-' Unmodified
P IP =}
S
Ethernet Driver Faux—Ethernet Driver o
User Space
- Kernel Space
Operating System ‘

Figure 2.5: Kernel network stack in user space (adapted ftdi3])

Wei and Cao [109] take a different approach: only the codewhmplements the
TCP congestion control algorithm is included in their fravoek. ns-2 TCP-Linux
is a project where the TCP congestion control algorithmsfrecent versions of
the Linux kernel are incorporated into the ns-2 TCP modéetsés @pproach allows
scalable testing of Linux TCP congestion control algorishmithout modifying
the original real world code. The approach is also much moriédd as the
normal limitations of simplified models still apply: no eatiunctionality is added

to the ns-2 TCP models.
dONE and Lunar

The Distributed Open Network Emulator [105], is a distréaihybrid emulation
and simulation framework that includes the Lunar [112]wafe. Lunar is a
project that ports the Linux 2.4.3 network stack to user s makes it
available to be linked in to a simulator. Lunar uses the Wefi/#4] framework to

support multiple instances.

The Linux 2.4.3 network stack in Lunar is moved to a user-spiacary by
isolating the network stack from the kernel code, providitg functions to
implement missing identifiers and providing custom implatagons for small
amounts of kernel functionality. The stub functions do maghthey are included
to satisfy the linker. This is the basic methodology usedireoprojects such as
Alpine [113].

Multiple instances of the Linux network stack in Lunar argpgorted by using the

35

Weaves framework. Weaves provides a multi-threaded emviemt in which many
virtual hosts can run protocol stacks and applications &sghesoperating system
process. Weaves provides each virtual host with a sepaeteony and
namespace for its global and static variables by rewritingrfes. Bergstrom,

Varadarajan and Back [105] note that the overhead of usirgyéeis small.

Only basic validation testing of dONE and Lunar are descibg105] and [112].
dONE is shown to correctly simulate the trend of TCP goodptlt wmcreasing
bandwidth-delay products. Some verification testing haslperformed on Lunar.
It has been shown to correctly transfer data by testingreiffiereading and writing

mechanisms of the network stack.
OMNeT++ extensions

The TCP models provided with OMNeT++ have limited featuned are not
thoroughly validated, as explained in sectionlC.1 (whicbctibes OMNeT++ in
more detail). Bless and Doll [106] incorporate the FreeB®Bwork stack into
OMNeT++ to solve this problem. They use a real world TCP/HIsto avoid
“possible implementation errors and costly validationged=igure[2.6 shows a
view of the architecture used to incorporate the FreeBSivar&tstack into the

simulator.

The FreeBSD 4.9 network stack is modified by hand to suppoltiptelinstances.
The global variables in the source code are changed onexsytiee authors found
that a simple search and replace was not enough to handlernt@exities of
modifying global variables. They implement their own tinmeechanisms to
improve performance rather than rely on the kernel impleatem that is based on
a software interrupt mechanism. The routing table is alsoaged to allow using
the FreeBSD network stack as a router as well as an end hoBE@irconnections
(routes calculated in the simulator ar injected into thenkerouting table). They

achieve scalability of around 1000 TCP connections trariefipdata concurrently.

The TCP code is not modified, apart from the global variabléifreations, and
because of this Bless and Doll conclude that they do not ree&ddt all potential

error cases”. Only minimal validation is performed. Whilesitrue that the TCP

36

cAppl L
Application

1
[

Lt

cHost Host

FreeBSD TCP/IP Stack

NIC 1 NIC 2

m Out gate
Medium o In gate

cMedium

Figure 2.6: FreeBSD network stack in the OMNeT++ simulal@f]

model uses code from a real, well tested, TCP implementgtiene is still
possibility of introducing error into the model when modiifg it to run in user

space and in simulation.

Another project uses the NetBSD network stack in the OMNeSimulator [107].
At the time the work was carried out, the TCP models distatun the
networking framework of OMNeT++ were known to work incortlgg115]. A
validated TCP model was required to test the Message Quéemdey Transport
protocol (MQTT) over lossy links, so Julio [107] used the BI®D network stack
for the TCP model in OMNeT++. Little information is providéudthe process
used to move the stack into simulation; there is no discassigupporting
multiple instances of the network stack. A small set of \atiioh tests was run,

comparing results on a testbed network to results from sitioud.

2.3.4 Discussion

Three approaches to using real world TCP code in a networllator are
introduced at the start of sectibnP.3. Porting the TCP imgletation to the

simulator, modifying the operating system running on timeusator computer and

37

building a supporting framework around a TCP implementatio

Porting a TCP implementation to a network simulator norynajuires large
changes to the TCP implementation. With many changes toripmal system, it
is difficult to add new TCP implementations or update thetexgsone.
Confidence in the simulation model producing correct ressltower than the

other two approaches as the changes to the original syseemae substantial.

Making small modifications to the operating system to supgionulation of the
TCP stack is the approach taken in the NCTUns [104] projdtis Makes
supporting different TCP implementations difficult, as anpuiter is required for
each different version of each TCP implementation. Insigih modified

operating system kernel is also required for each simulatiachine.

A supporting framework can be built around a TCP impleméonatllowing the
implementation to be run in a new environment—a network &ou rather than
an operating system kernel—with few code modifications hWitle or no code
changed and a framework in place, it is conceptually easptiate the TCP
implementation supported and update the framework to addri@P
implementations. This is not the case in practice for the T@el added to
OMNeT++ by Bless and Doll [106]; to support multiple instas¢hey make many
hand modifications to the original code. dONE [105] uses ppg@ach of binary
rewriting (using the Weaves [114] project) to support nplétiinstances, but the

approach is not extended to multiple TCP implementationgmsions.

Five factors desirable for a real world TCP implementatisadias a simulation
model were introduced at the start of secfiod 2.3. No handfination of code,
ability to keep the model up to date, validation, supportfitiple instances and
support for multiple implementations. The method of bunfgla supporting
framework is the closest to being able to satisfy all of trgureements but none of
the projects covered do so. Only one simulator is able toatigpnplified TCP
models and real world code; OMNeT++ with extensions realdvoode

extensions by Bless and Doll [106].

38

2.4 Summary

This chapter reviews TCP research that uses network siiojahe network
simulators that are used in this research, and using reéd wode for TCP
simulation. The TCP research is broken down into three anesectior 2.11.;
simulations involving modifying the TCP algorithms, siratibns that use TCP in
a specific scenario, and simulations that used to validatly@cal models. The
scale of simulations used in this research ranges from atmuk using under 100
TCP flows to simulations using 500 TCP flows. Other areas afortresearch

such as routing research use network simulations of mugkeracale.

Network simulators used to simulate TCP in the researchredviaclude ns-2,
ATM-TN, GloMoSim, OPNET and:-Sim. The amount of validation varies a lot
between these simulators. ns-2 has the most comprehedigation framework
and feature full TCP models. Even ns-2 has some major limitat for example,
the TCP models generally used in ns-2 do not support biuireal transfer of
data. ATM-TN, GloMoSim and:-Sim all have TCP models built on real world
code implementations. All are based on old BSD TCP impleatants and have

not been updated as the TCP implementations have evolved.

Approaches to using real world code are categorised insd2iB: a TCP
implementation can be ported into a simulator, the opegyaystem can be
modified to support interacting with a simulator, or a framewcan be built that
bridges between a real world TCP implementation and a n&taiorulator. None
of the projects which are covered in this section provideflmultiple real world
TCP implementations, integration with an existing simottdb allow ease of use
and ability to use existing simplified TCP models, multipl@H instances without

much hand modification of code and thorough validation.

The next chapter describes the architecture and impletn@mta the Network
Simulation Cradle (NSC), a project designed to take adganté real-world code
based TCP models while complementing the existing modeisietwork
simulator. The NSC provides all of the features listed alanetis scalable enough

to simulate the research covered in sediioh 2.1.

39

40

Chapter 3

The Network Simulation Cradle

The Network Simulation Cradle (NSC) is software designeditoreal world TCP
implementations in a network simulator. The NSC supportRipie versions of
multiple different operating systems simulating many T@Rrections
simultaneously. This is achieved by a combination of the typarchitecture
presented in sectidn 2.8.3, an approach that uses sharaddgbto differentiate
different TCP stacks, and programmatic modification of sewode to support
multiple independent instances of the TCP stacks. The worstlle” is used to
describe how the real world code is supported inside thiadraork: a cradle is
built about the code that allows it to run in a different eomiment — a network

simulator instead of an operating system kernel.

The construction of the Network Simulation Cradle shows itha feasible to
build software that accurately simulates multiple realla/@iCP implementations.
This chapter presents the design that makes this possithle discussion of how
the detailed goals below are achieved. Chaplidrk 4, §landéreisalts of this
software providing accurate, applicable and scalable Isition of TCP

respectively.

The Network Simulation Cradle is designed to meet goalsisahachapteflL: it
needs to be valid, accurate, scalable, and able to carryewsort of simulations
TCP researchers perform (as discussed in chBpter 2). Thateage discussed in

detail below:

Simulate real world code real world code must be used as the code for TCP

41

simulation models.

Utilise network simulators existing network simulators should be able to be
utilised and support for at least one popular network sitoulaust be built.
This means that a trusted network simulator can be used andicstacilitate
simulating previous simulation scenarios.

Perform and scale well the code must perform adequately to run simulations
similar to existing research in reasonable time. Many msta of TCP
endpoints need to be supported. This is required to simsitaearios
where, for example, background traffic is simulated with ywa@P flows.

Produce accurate resultsthe stacks being simulated must produce results which
are very similar to real computers running the stacks—th€ N&eds to be
valid.

Be easy to updateadding new stacks to the system should be possible and
updating existing stacks to new versions should take a nalnamount of
time. New versions of operating systems, and hence reatl W&P stacks,
are released over time and the versions that are installeddrg of a
network change to reflect this. Ease of update aids in supgdhe versions
of the real world code that are practically used.

Support different methods of statistics gathering different TCP variables
should be able to be accessed and traced to view what TCPnig doi
internally. Transparent access to TCP internals is impofta simulation
researchers and this feature is available in existing silegTCP models.

Allow a full range of TCP simulation scenarios the NSC should work in
situations existing TCP models do, allowing a full rangeiofidations to be
performed.

Complement simplified modelsthe real world TCP stack should work alongside
traditional simplified models in a simulator. This allowsgaomparison of

both models, which helps validation testing.

Two components form the basis of the NSC: a simulator modbahCP
implementation. The simulator model component routes kitimn messages to
and from the TCP implementation via a standard interface. T@P

implementation and supporting code is contained in a sHéredy.

42

Simulator Interface Cradle and TCP implementation

(]
; _|_connect 3
. receive packet 2 € Global data
. [[P —~ . +
‘ ~< | receive packet | ©
S o
e | o
= socket send = T
9 command —=| 5 ‘
SN <7 %
> ~ . .
g >< | socketread o | TCP implementation
@ N | &
o o sendpacket) send packet | %
@ L <
modify timer modify imer | "=
) N = Code
timer expire fire timer =
_____________ g
: 0
Simulator model

Shared library

Figure 3.1: Simulator and Network Simulation Cradle intians

Figure[31 outlines the interactions between the simulatmiel and each TCP
implementation. The block on the left shows the network $ataun and example
interactions with the simulator model. On the right is thawiation cradle with a
real world TCP implementation. The parts of the diagramwad grey indicate
areas where new code is written for the Network Simulaticed(, the areas with
white backgrounds indicate existing software. In betwéentivo components
some interactions are shown. The components communictieawd++ interface

exported from the shared library.

Only a subset of the actual interactions are shown in thisdifar brevity. In this
figure the network simulator ns-2 is used as an example storulehe design of
NSC allows for other network simulators to be used althobghdhapter
describes only the integration with ns-2 in detail. The fegsinows a standard set
of interactions between the shared library and simulatatethahe separation of
code between simulator and library, and how the sharedlilm@ntains support
code and many copies of the global data. These ideas aressietturther in
sectior31L.

The boxes labelled “global data” on the right of figlirel 3. litade that there are
multiple copies of the global data used by the network staibks mechanism is
used to support independent instances of the TCP impletr@mtanning within

the same process. The implementation source code is moprbgdammatically

43

by a program called thglobaliser. This process is covered in sect[on]3.2

NSC supports TCP implementations extracted from seveebbipg systems
(Linux, FreeBSD, and OpenBSD) along with a TCP implemeatatiesigned for
use on embedded devices (IwIP). The process used to makeeadtack

available to simulation with NSC is described in secfion 3.3

3.1 Simulator integration

The discussion of the architecture at the beginning of th@pter introduces the
use of two components: a shared library and a simulator ageqnire[3.1 shows
the basic relationship between the two. This section dsgsisach component and
details their interactions. Sectibn3]1.1 discusses hawary shared libraries are
used in the Network Simulation Cradle. The integration it network

simulator is described in sectibn 311.2 while the inteaibetween the simulator
and shared libraries are covered in secfion B.1.3. Thigosediscusses in detail an
architecture capable of supporting all the features intced at the beginning of

this chapter.

3.1.1 Shared libraries

Communication between the simulator and TCP implememtatioequired for a
variety of interactions such as reading and writing datatkets, sending and
receiving packets, and configuring TCP endpoints. For th€ e efficient this
communication needs to be efficient, as all interactionwé&en simulator and TCP
implementation use this mechanism. Simplified TCP modetsnmulators such as
ns-2 are linked statically into the simulator executablendtions calls within this
executable are used for communication, making this appreexy efficient. A

real world TCP implementation can also be statically linked the simulator in
this way, examples of this approach can be seen in the additireeBSD to the

OMNeT++ simulator [106] and the early development of the NS{B].

Statically linking TCP implementation code does not scaleultiple TCP
implementations. For example, the OpenBSD and FreeBSD impRmentations

cannot be statically linked into one executable as therenargy symbols (such as

44

the functiont cp_i nput) that clash. This is because all non-static functions and
global variables share the same namespace when statioéllyg C code into a
single executable. Individual namespaces are requiregbfcin TCP

implementation.

The code needs to be separated in some way: either intoatiffehared libraries
or different processes. Shared libraries can be used ifateejoaded at runtime
with the POSIXd| open function. Loading libraries in this way results in
symbols that are only available to the executable if exipyibbcated with the

dl symfunction, meaning there are no symbol clashes betweenittaiks.

An alternative to using shared libraries would be to use arsge process to
contain each network stack. The processes would use a foimeofprocess
communication (IPC) such as sockets to interact with thenrsi@nulator process.
The overheads introduced by this approach are greaterfthamg shared
libraries: IPC mechanisms need to perform extra functignaler function calls
within a process and context switches are required to chinogeexecuting code
in the simulator to executing code in the TCP implementatidine NSC uses
shared libraries because they offer a scalable and effisgdation to

communication between TCP implementations and the netsiorldlator.

Each shared library implements a C++ interface so there énaric way of
handling each TCP implementation. The simulator agent@saivhich shared
libraries to load based upon simulator input. The consisteerface allows the

agent to handle each TCP implementation in the same way.

3.1.2 Simulator agent

The simulator agent (shown as in the grey area on the leftodifigure[3.1) is
responsible for routing messages between the simulatath@nshared libraries
containing the network stacks. There is one simulator agenTCP endpoint.

The simulator agent is integrated into the network simulags2 [13] and forms a
transport model with a user-facing interface compatibliahe existing TCP
models in ns-2. The agent is a standard ns-2 model; implesderstone source file

linked into the ns-2 executable. Other ns-2 models intevébtit via the ns-2

45

agent interface (inheritance and virtual functions areluséonfiguration is
exposed using standard ns-2 mechanisms to export variafdiesinctions to

OTCL simulation scripts.

The level of abstraction in the network simulator will befelient to the
mechanisms used in the TCP implementation, so the simwdgtnt must map
between the two. An example is converting between addrg$ésimats; the
network simulator may abstract away IP addresses, whilesthlestacks will use
version 4 or 6 IP addresses. Many network simulators do reoaasial data in the
packets, only a length is used instead. This is an exampleathar difference that

the agent must support.

The NSC simulator agent for ns-2 performs these functiongedisas managing
TCP connections and the interactions between the simudguglication and the
socket functionality exposed by the network stack. Thigcuired because ns-2
does not use a standard BSD sockets API for communicatioveleetan

application and TCP model. These topics are covered next.
Stack instances

One independent instance of a TCP implementation is useti@erendpoint (and
therefore per simulator agent) in the NSC. A single netwnot&rface is configured
and a default gateway is used to route all traffic throughititesface. There is no
support for using TCP/IP implementations to route packetts the NSC. This is
not a limitation of the approach; rather the simulator penf®the routing in a
router node. The NSC could support multiple interfaces antimg, Bless and
Doll [106] show this can be done by implementing this feataréheir FreeBSD
extensions for the OMNeT++ simulator. This is not a goal efsearch

presented in this dissertation, as the focus is on simulatid CP, not IP routing.

An alternative to using a single stack instance per TCP adioreendpoint is to
share connections within one instance of a TCP implememaReal-world TCP
implementations generally support a large number of TCRectmons efficiently.
Simulating the connections for different simulation coments with a single TCP

implementation instance would mean that global data in BB implementation

46

is shared. This will potentially affect results; one exaenpl global data is the
round-trip-time (RTT) cache utilised by some current opegasystems. This
cache stores TCP control data and RTTs to IP addresses tieabéan
communicated to in the past and uses this information talisé TCP variables to
increase performance when a new connection is made to thagliess. If this data
is shared between simulation nodes, then unrealistic Hefaill be used for some
TCP connections as they will be initialised from values thate cached from a

connection on a different simulated computer.
TCP connection timers

TCP uses a number of timers, see [84] for a definitive list.sErere managed in
network stacks from a “soft” clock running many times a sel;arsually ranging
from 10 to 1000. This value is often simply calléd. Once everyl /hz seconds, a
timer is fired in the simulator agent that calls a functionhia hetwork stack to

notify it of time passing. This allows the stack to manag& & timers.

This method has a performance impact for simulation becusss will have to
fire everyl /hz seconds whether or not there is any activity on the TCP cdiumec
or whether a TCP connection is established or not. For a pedoce analysis of

the NSC, see chapter 6.
Application management

When configured to listen, the simulator agent configuresnesmanaged socket
to listen on a port, then attempts to accept a connection@adbket whenever a
simulated packet is received. Once this is done, the newsmtiom object is
managed as described below. If configured to connect to anntde, the

simulator agent only has to call the connect function on tduket.

In ns-2, the receiving application is assumed to read ddtesass it can. ns-2 does
not implement the receivers advertised window in its TCP emmdlow control is

not required when the receiving end consumes data as fadte@somes available.

In the NSC this functionality is simulated by reading frone gocket provided

whenever a packet is read. This means that the underlyihgvosll stack will

a7

implement flow control, but this facet of TCP will not be usagdo the
application modelling. This is a limit of ns-2’s applicatidesign, other network

simulators could make use of TCP flow control.

Sending data in ns-2 uses a simplified interface unlike thie B&kets interface
used on many real systems. A sending application model ixhvess no way of
knowing if its request to send data will be enqueued in TCRepsibr not: there is
no feedback or error response. The TCP agents in ns-2 havteatively infinite
buffer. When a request to send is made, an integer is inatdpsie number of

packets to send.

The NSC simulator agent has two modes of operation: an iefiniffer mode,
which works like the ns-2 TCP models do, or a limited bufferdaowhere
requests to send are ignored when the TCP buffers in the restaxck are full.
The latter is designed to mimic the pattern of writing to ssiekhat some real
world applications take. This mode is used when performadgiation tests which

are covered in chaptEr 4.
Interchangeable use of TCP models

In ns-2, simulation scenarios are defined by OTcl simuladmipts. The NSC
TCP agents support the interface used by the standard n$22niddels so they
can be used interchangeably in existing and new simulatiopts. ListingC3.1
shows an example of part of a simulation script that intsradth an ns-2 TCP
model. To use the same script with an NSC TCP implementatierscript needs
to be changed to listing_3.2: only the lines creating the TGRes need to
change. The example shows a FreeBSD TCP implementationhwhone of the
default TCP implementations, and an alternate way of lgpdimCP

implementation where the shared library is specified ekplic

Listing 3.1: ns-2 simulation script using a TCP model

Set defaults

Agent/ TCP set packetSi ze_ 1500

Agent / TCP set wi ndow_ 40

Create topol ogy

set nodel [$ns node]

set node2 [$ns node]

$ns dupl ex-1ink $nodel $node2 10Mo 34nms DropTail
Create TCP nodel s

48

set src [new Agent/ TCP/ New eno]

set sink [new Agent/ TCPSi nk/ Del Ack]
Attach nodels to the topol ogy
$ns attach-agent $nodel $src

$ns attach-agent $node2 $si nk

Listing 3.2: Using NSC TCP models in a ns-2 simulation script

Set defaults

Agent / TCP set packet Size_ 1500
Agent / TCP set wi ndow_ 40

Create topol ogy

set nodel [$ns node]

set node2 [$ns node]

$ns dupl ex-1ink $nodel $node2 10M> 34ns DropTail
Create TCP nodel s

set src [new Agent/ TCP/ NSC/ Fr eeBSD5]
set sink [new Agent/ TCP/ NSC/ Li hux26]
Attach nodels to the topol ogy

$ns attach-agent $nodel $src

$ns attach-agent $node2 $si nk

Variables such agacket Si ze_ andw ndow_ are used by the NSC agent when
initialising the TCP implementatiomacket Si ze_is used to set the MTU
whilewi ndow_ is used when setting the TCP buffer sizes. Initialisation is
performed lazily by default. When the first packet arrivea &CP model, or a

TCP connection is created to send packets, the TCP implet@mts initialised.

An interface is added with an IP address based upon the ndaddress, which

is automatically assigned by ns-2, and the required TCPetagkreated. Further

control is possible by explicitly calling initialisatiomhctions.

3.1.3 Interactions

This section describes the interactions between the stordgent (section 3.7.2)
and the shared libraries (section31.1): the arrows inémére of figurd 311. A
C++ header file is included in the build of each shared libearg the simulator.
This header describes an interface the shared library mysément. All
interactions between the agent and the network stack usetbiface.
Interactions will either be global, per-stack or per-TCRmection. For brevity, the

interfaces shown below do not include debugging and sirfulactions.

As covered in section 2.3, previous approaches to usinguadd TCP code in

simulation did not provide a way to support multiple TCP ismpkentations

49

transparently. The interface described in this sectiorregc and allows for this
transparency of TCP implementation, making it simple fosarwf the NSC to
simulate with multiple different TCP implementations, ati@e not previously

available to network simulation practitioners.
Global interactions

Only one function is exported from the shared libramgc_cr eat e_st ack() .
This function is known as a factory function: it creates a mestance of the stack
contained in the shared library and returns a pointer to ggcotwvhich manages
this stack. This function is called with parameters thatogr@que objects the
shared library can use to call back into the simulator to geEwikets, ask for the
time, or inform the simulator of activity on a socket (for exale, there is new data

waiting on that socket).
Per-stack interactions

The stack creation function returns bNet St ack struct which has the following

members that can be used to interact with that TCP stack:

evoidinit()

e void if_receive_packet(int id, void data, int |en)

e void if_send_packet(void *data, int |en)

e void if_attach(char *address, char *mask, int ntu)

e voi d add_def aul t _gat eway(char =*address)

e int get _hz()

e void tinmer_interrupt()

e int sysctl(char *name, void *oldval, size_t *oldlen
, void *newal, size_t new en)

e bool set _var(char *nane, char =*val ue)

e struct | Net StreanSocket *new_tcp_socket ()

After creating the stack withsc_cr eat e_st ack(), the NSC simulator agent
calls thei ni t () function, then uses thget _hz method to calculate how many
times a second it must call the ner _i nt er r upt routine. Itinitialises the stack

with an interface with f _at t ach() and adds a default gateway. A TCP socket

50

is created witmew _t cp_socket () . The TCP socket creation function returns
an interface likensc_cr eat e_st ack() does. Statistics reporting is supported
with theget _var function, which parses the "name” parameter and returns the
result as a string. This is used to report global informati@t is not specific to a
TCP connection. System-wide properties are configuredégyisct | function

which works like the function of the same name on many Unixesys.
Per-TCP interactions

Each TCP socket includes the following interface:

e voi d connect(char =*addr, int port)

e voi d di sconnect ()

e void listen(int port)

e int accept (I Net StreanSocket **socket)

e int send data(void rdata, int |en)

e int read data(void +buf, int =buflen)

e i nt setsockopt(char *nane, void *val, size_t |en)
e bool get_var(char *nane, char *result, int |en)

e bool set_var(char *name, char xval)

The functions map onto the internal stack functions as the/atgnt BSD sockets
API functions would, except that the st en() function also internally calls

bi nd() . All functions are non-blocking. Error returns must be Haddspecially
in the cradle code: each operating system may use differemt@des. The
simulation cradle code specific to each stack must transfioenerror codes into

the accepted standard for this interface.

TCP variables may be accessed viagle¢ var () function. Results are
returned as strings like with tHeNet St ack functions covered earlier. Variables
that can be queried include but are not limited to the rouipditne measurements,
congestion window sizec{mnd), window thresholdgst hr esh), sequence and

acknowledgement numbers and the current retransmissien tnterval.

51

Listing 3.3: Example cradle code to connect a socket (fromuki2.6 shared li-

brary)

/* Internal connection function */
voi d nsc_soconnect(void *so, unsigned int dest,
unsi gned short port)

struct socket *sock = (struct socket x)so;
struct sockaddr _in addr;
i nt addrlen;

addr.sin_famly = AF_I NET,;
addr.sin_port = port;
addr . sin_addr.s_addr = dest;

addrl en = sizeof (struct sockaddr _in);
sock- >ops- >connect (sock, (struct sockaddr =) &addr,
addrl en, O _NONBLOCK);

/* Interface inplenentation =/
voi d Li nuxSt ack: : TCPSocket : : connect (char xaddr, int

port)

struct in_addr ip_dest;
uint1l6_t ip_port;

i net _aton(dest, & p_dest);
i p_port = htons(dest_port);

set _stack_id(parent->stack_id);

nsc_soconnect(so, ip_dest.s_addr, ip_port);
set _stack_id(-1);

Each shared library needs code to bridge the general pumestace functions to
the internal TCP stack functions. Some extra managemerttlrewgone in some
cases to convert return values. Most functions have a btriogvard mapping
between the interface function and the internal stack fangas listind 3B shows.
In this code, a typical example of mapping an interface fimncto an internal
function is shown. Connecting a socket with Linux 2.6 regsisome conversion
of types then a call to the socket’'s connection function fawirin other cases
further management is required; setting the default gat@aa be more complex:
with FreeBSD, it requires management of a routing sockeh linux a call to an

i oct| function on a socket.

52

Table 3.1: Number of declarations and references of glodn@hlles

Network stack| Global variables Number of references
FreeBSD 5.3 2418 11790
Linux 2.4.28 836 13794
Linux 2.6.14.2 792 10217
OpenBSD 3.5 735 6056

3.2 Global parser

Chaptefdl introduces the need for the network stacks suggpttbe re-entrant in
sectiorCLLEl1. Two important points are made in that sectioitiple instances of
simulation models are required and real code does not, iargersupport multiple
instances. The process of making existing code re-ensayalliedvirtualisationin

the following sections.

The shared resources which need to be virtualised are ghobladtatic local
variables (variables which have global linkage but local®), herein referred to
simply as global variables. These are placed in areas of myewtach are not part
of the call stack or heap; they are shared between diffeusation calls in the
source code. Global variables need to be modified such thiéipreicalls into the
code can be made, each referencing a different set of glabalbles. Each
reference to such a variable must be mapped to the real data in

implementation-dependent manner.

Other projects have modified the source by hand to suppauaisation.
ENTRAPID [117] and ALPINE [113] are protocol developmenviganments that
modify the BSD network stack code by hand to virtualise itc ZEL8] modifies
the FreeBSD network stack code by hand so it may be clonedn\itegrating
the FreeBSD TCP/IP stack into the OMNeT++ simulator, Bless2oll [106]
modify the code by hand to virtualise it. Modifying the soeiende by hand is not

only error prone, but it makes updating the original souxmgecharder.

Many lines of code need to be changed in a large project iffaheglobal
variables and all references to global variables are maldifiable 3.2 shows the
number of global variables that need to change in the netstaidks that are used

in the NSC and the number of times they are referenced. Ewgtirat all the

53

necessary changes are made is difficult: global variabled teebe identified and
all references and declarations changed. If some of thefl@biables that need
to be modified are missed, subtle errors are possible. Atlyduadditions or
modifications to the original code (such as new releasesdaatep) must have the
same manual process used to modify their code so it can bporeded. This is
also true of new projects that are to be supported (thatysnaw TCP/IP stacks

incorporated into the framework need to have this procegbeal).

This section introduces the global parser, also known aglttaliser The
globaliser created for this project programmatically nfiegdipreprocessed C
source code, changing global variable definitions and eaefass as needed,

making the code re-entrant.

There is a variety of ways the source code can be changed podwyirtualisation.
Zec [118] modifies each function to take a pointer to a stmgctthich contains the
previously global variables when making the FreeBSD netwtack able to be

cloned. An example of how the source is changed as showrtimgiZ.4.

Listing 3.4: Aggregating globals into a structure

int done = O; struct gl obals {
i nt done;
voi d process() { };
done = 1,
} void init_gl obal s(struct
gl obal s *g) {
} g- >done = 0;

voi d process(struct
gl obal s *g) {
g- >done = 1;

}

On the left is some example input code, on the right is thecfartitput that must
be produced. The disadvantages to this approach are tiggoladils must be
aggregated into one central structure, the initialisafiiorthe globals must move
into a separate function, and every function that refersgiolbal variable must be
changed to include an extra parameter. It is difficult to aggte all global
variables into a central structure in a large base of codedxo means that the
declarations of all global variables are moved into a céptexe, which causes

potential variable and type name clashes.

54

A potentially simpler approach is to modify each global tcalpearray. An

example follows in listing315.

Listing 3.5: Modifying a variable into an array

int done = O; int nsc_current = O;
voi d process() { int done[5] ={ 0O, O, O,
| done = 1; 0, 0},

voi d process() {
done[nsc_current] = 1;
}

In this case the global variable is changed into an array aradray index when
referenced. One extra global variable is created to inelidiich set of global
variables is currently being accessed. The disadvantatigsadpproach is that the
maximum number of independent instances supported mugeogisd in the
array declaration. This means that to increase the numbestainces supported
the number must be changed and the code recompiled. Thdigiliakes an
approach based on this, how it modifies declarations anderefes to global
variables is covered in the following sections: seclionTBahd sectioh 3.2.2
respectively. Throughout these sections the examplesrshosvfrom the FreeBSD
5.3 TCP/IP source code unless otherwise mentioned and mwbdifibe shorter in
some cases for brevity. The examples are shown for an exasityéeion that

supports 2 network stack instances.

3.2.1 Modifying C global declarations

Variables in C are declared before they are used. They magdiardd as an
external symbol, “forward declared”, or declared in fullh¢@ a symbol has been
declared it may be used, or referenced in the source. Thi®satescribes how
the globaliser modifies declarations of global variables.ekample of a simple

global variable from the FreeBSD source code follows inrlgB.8.

Listing 3.6: globaliser input and output for a single vateab

static const int t ypedef const int
tcprexntthresh = 3; _GLOBAL_307_T,; static

_GLOBAL_307_T

gl obal _tcprexntthresh|

NUM STACKS] = { 3, 3,

95

This example is slightly more complex than the example shearfier in
sectior3.R. The global variable is prefixed withobal _ for debugging reasons,
and because it then means any reference to the old, non-gtbdériable, will
produce a compiler erroNUM _STACKS is a macro that is defined by the user that
specifies how many instances are supported. Arrays arearty problematic

and led to producing code differently when globalising awariables as detailed
next. The reason for an additiortaypedef of G.OBAL_307_T is described

when structures as part of a type name are introduced.
Arrays

Adding an extra array dimension to the declaration of thégleariable does not
work when the variable is already an array. There are twareasrlhe first is
array ordering: in C, arrays are stored in row major ordetheacompiler needs to
know ahead of time the length of the rows. Only the numberwkravhich
corresponds to the innermost array dimension, may be lébumded. This is
illustrated by attempting to modify an initialised globatay variable. Listing-317
is code that would be generated by adding an extra array gioeto the end of a

global variable.

Listing 3.7: Array initialisation
int tcp_backoff[3] = { 1, i nt global tcp_backoff[3][
2, 4}, NUM STACKS] = { { 1, 2,
41 {1 2 4} };

Listing 3.8: Corrected array initialisation

int global _tcp_backof f[NUM STACKS][3] = { { 1, 2, 4},
{1 2 4} };

The code on the right of listidg-3.7 is incorrect. This is hesmof the ordering of
the array dimensions: the varialgjeobal _t cp_backof f is declared as an
array with three rows of two elements, but is being assigaethtarray of two
rows of three elements. If the ordering of the array is rex@ia the declaration

the code is correct, as shown in listingl3.8.

Unbounded arrays can not be modified in this way correctlg dltove method
fails when an array bound is not specified. Lisfingd 3.9 shavesmple output

which will not compile once the code is changed due to the fraadion to the

56

declaration ot cp_backof f . The innermost array bound can be left unspecified

but all other bounds must be specified, only the number of milv®e deduced by

the compiler.
Listing 3.9: Unbounded array initialisation
int tcp_backoff[] = { 1, int global tcp backoff]
2, 4}, NUM STACKS] [] = { { 1,
2, 4}, {1 2 4} };

The two problems illustrated above show that adding an atimgnsion, either
before or after the original array definition, will not wonk all cases. Adding an
extra array bound in the correct way is mutually exclusiveénsupporting

unbounded arrays. One solution involves an extra leveldiféation.

The method used by the globaliser is shown in the exampleaiigay output in
listing[3.10. The globaliser keeps the original declaratbthe array variable
intact and clones WUM_STACKS times. Each time it creates a new unique
variable name. A static array is created that contains pwsrib each of the array

variables that were cloned.

The array is static so the symbol is not exported outsideuirent C file, this
makes sure the new variable does not clash with array vasaioeated by the
globaliser in other files. The symbol must not be global a&sif the compilation
unit because the same global variable may be defined in arotfile. In C,
variables may be defined multiple times but only initialieede. A new initialised
array variable is being introduced at every definition of@bgl variable and
therefore the array must be static so the same variable igitiatised in multiple

source files.

The name of the array is created such that it is unique witrercturrent file by
appending a number which increments by one every time a nay arcreated by
the globaliser. The gcc extensiont ypeof __ is used for convenience to declare
the new array, if required the parser could be modified to fundhus type itself.

The reason fot ypedef is explained in the following section.

Listing 3.10: Array initialisation solution

typedef int _GLOBAL_O_T;
G.OBAL OO T G.OBAL_O tcp_backof

f_I[] 1, 2,
GLOBAL OO T G.OBAL_1 tcp_backoff I[] 1, 2

Il
A D
i

{
{

57

static __typeof (_GLOBAL_O tcp_backoff) =
_GLOBAL_array_tcp_backoff_12 A NUM STACKS] = {
| & GLOBAL_O _tcp_backoff I, & GLOBAL_1 tcp_backoff |

Listing 3.11: Indexing a modified array
(* _GLOBAL_array_tcp_backoff 12 A stack _index])[0] = 2;

References to the variable must also change into a more earfggin as
illustrated in listind 3.7I1.

Structures and types

The method described to modify arrays by cloning them sévienas produces
erroneous code when a structure definition is involved invreable declaration.
If the type of the array variable being declared includesramestructure
definition, the structure will be defined many times, cregpimamespace
collision. The code in listing-3.12 shows example outputuatsa case if the

global variable is cloned.

Listing 3.12: Structure redefinition

static struct ipghead { static struct ipghead {
struct ipg * tgh_first struct ipg = tgh_first
striuct ipg ** tgh_I| ast striuct i pg ** tgh_I ast

}ipgl 1 << 6]: } GLOBAL 0 ipg[1 << 6]:

static struct ipghead {
struct ipg * tgh_first

striuct i pg ** tgh_I| ast
} GLOBAL 1 ipgl 1 << 6];

The structure pghead is defined more than once in listihg 3112 which produces a
compiler error. The original type of the variable is corhgcloned but the

resulting code is erroneous. A solution to this i$ §gpedef the type of the

variable that is being modified and re-use tlygpedef in each cloned variable

instance. This method is used by the globaliser and is ifitestl in listind"3.13.

Listing 3.13: typedef of array element type

t ypedef struct ipghead {
struct ipqg * tqgh_first;
struct ipqg ** tgh_Il ast;
} _GLOBAL_O_T;
static GLOBAL OO T GOBAL O ipq 1 << 6];

58

static GLOBAL_ O T GOBAL 1 ipq[1 << 6];

The globaliser must create a unique type name for eggedef in a source file.
The method shown above is to have a counter which incremetiteach

t ypedef . GLOBAL_ is prefixed to this number andl added appended. This
does not guarantee uniqueness, as the original code cauklial names in
typedefs already, but the method has sufficed for hundretteatands of lines of
code tested. While thisypedef is not needed with a simple type like shown in
earlier examples, the globaliser createsy@edef for all global variable

declarations.
Potential limitations

The methods introduced in the previous section and usedebgltibaliser modify
preprocessed C source code, adding extra code to suppaiplenabpies of global
variables. This increases the size of the code which resuiewer compilation
time. The extra symbols added by the process of modifyingajlarray variables
affects the performance of linking the compiled object fil€kning the global
variables also means that the object files and resultingyoara larger in size.
There is a cost at runtime, as each access of a global varsailigpped through an
indirection table. These potential limitations of the gdbber are covered in

chaptefb in detail.

3.2.2 Modifying C global references

Each reference to a modified global variable must be charf§geetio{3.2Z11
showed how an instance of a global variable is modified. Whikeis a simpler
process than modifying the declarations of global varsileere are several cases
that must be handled which are not immediately obvious:eiedude scoping

and initialisation. Before these are discussed, the wayplaadjvariable reference is

indexed is covered.
Indexing

Examples earlier in sectign_8.2 used a variable to indexantarray of globals.

This can potentially be a function call as well. In the Netk8rmulation Cradle

59

Report [116] we describe an approach that uses a threaddbrs¢ack. To retrieve
the index of the stack for the running thread, a POSIX thréawlstion (see

e.g. [119] for an introduction to pthreads) is called thaid®from thread specific
storage for the current thread, allowing multiple threaldsxecution to be

independently running the same code.

The globaliser outputs code to call the functget _st ack i d() when

indexing into a global variable array as illustrated in tbee below. A function

call provides maximum flexibility, as a potential user copédform actions such as
calling pthreads functions or simply returning the valu@aofindex variable. In the
NSC TCP implementations, the approach of returning an indeable is used.

The code produced by the globaliser to index variablesustilated in listing-3.14.

Listing 3.14: Indexing a variable reference with a function

nu = 1500; gl obal _ntu[get stack id()]
tcp_backoff[0] = 2; = 1500;

_GLOBAL_array
[get _stack_id

_tcp_backoff 12 A
O[O0

[o] =

Scope

The C language allows local variables to “shadow” globalaldes. This occurs
when a local variable is declared with the same name as alglabable. Code
within scope of the local variable will use the local varebbt the global one. The
globaliser needs to understand scoping so it correctly fieadshadowed global

variables and static local variables.
Self-referential initialisation

It is possible in the C language for a variable to referergafiin its own

initialisation. The following source shows an example:

Listing 3.15: Self-referential initialisation

i nt header | en = sizeof (header_| en);

The rules described so far would transform this to:

60

/ Original source code /H> Compiler (gcc) —= / Preprocessed source code /

Lexer —= Pre—parser - Parser === / AST /
Code regeneration
Globaliser
/Modified preprocessed code /H> Compiler (gcc) —= / Object file (compiled code) /

Figure 3.2: Globaliser’s parser flow

Listing 3.16: Self-referential initialisation error
i nt gl obal _header _| en[NUM STACKS] = { si zeof(

gl obal header | en[get _stack _id()], sizeof(
gl obal header |l en[get _stack id()] };

This code will not compile: a function cannot be called whésbgl variables are
initialised; only constant expressions are accepted lsecthe value is calculated
at compile time and put into the data section of the compilgddai file. The
globaliser outputs thget _st ack_i d() function call and therefore must solve

this problem.

When parsing the expression on the right of a global variabsgnment, the value
0 is used instead gjet _st ack_i d() . All elements have the same size and
value when the statement is computed, as the code for theetsns created by

the globaliser.

3.2.3 Implementation of the globaliser

The globaliser’s parser is implemented in C++ and uses thpider-compiler
tools Flex [120] and Bison [121]. The parsing is separatéatwo modules: a
simple pre-parser and the Bison-generated parser. The fldatathrough the

globaliser is shown in figule_3.2.

Flex is a lexical analyser generator. It generates a legitalyser, otherwise

61

known as a lexer. This lexer is responsible for breaking tteam of characters
read into tokens. For example, it will use regular expressio recognise an
expression like nt , and then return anNTEGER token to the parser. A Flex

input file is a list of regular expressions and the tokens thatch.

The lexer returns information about whitespace and comsredong with the C
keywords, identifiers and symbols so the globaliser canrexgee the original
code exactly. This allows easy verification wathf f tools that the globaliser only

modifies relevant sections of code.

The pre-parser stores whitespace and comment informatiamuffer and passes
other tokens to the Bison-generated parser. The Bisonrgueparser reads the

global buffer and copies it into the abstract syntax treeasgntation of the source.

Bison is a parser generator. It takes a context-free LALRgnar and generates a
C program to parse that grammar. Bison produces quick gangtr one token of
lookahead. The input format of Bison is similar to BNF. Th®IS standard [122]

includes a BNF grammar for C, though none for Bison specifical

A grammar compatible with Bison and Flex compatible lexdragly available for
the 1985 ANSI C standard (see [123]). The grammar used bylthaliser is
based on this and has been updated to handle the features@8%hand

C99 [122] standards and gcc [124] extensions used by thatipgisystem

network stacks used in the NSC.

The globaliser builds an abstract syntax tree (AST) of tipaiirsource. When a
declaration is found, it is processed to check whether igkbal. Ifitis, it is
checked against the table of global variables to be modified.node of the
declaration in the AST will then be modified if the variabléasbe changed. The
node is changed based on the rules introduced earlier. TIH&SU representation
of the source allows the name, type, and initialisationgafthe declaration to be
extracted and modified with the rules introduced earlierimlar process takes
place whenever a variable reference is encountered. Oadepht file is finished
being read and the AST is fully built, the AST is printed ouhigprocess

reconstructs the source. Any nodes that were modified etolehange global

62

variable declarations or references are printed in thei neodified form. Other
nodes of the AST that were not modified in the previous proassseconstructed

so they produce the same output as input.

To handle scoping of variables, the globaliser maintairtaeksof local variables.
The contents of the stack are updated based upon the locabhkes encountered in
each block of code found in the input. Whenever a variableferenced, the stack
is first scanned to see if the variable is a local variableotf it is then processed

as a reference to a global variable.
gcc extensions

While the globaliser understands ANSI C, it is often run oarse code designed
to be compiled with gcc. In some cases this code uses gcdisgadensions to
the C language which must be parsed correctly. Some exarinpteghe Linux
and FreeBSD kernels that make use of these extensions faldw list of gcc

extensions to the C language can be found at [125].

The following example shows an inline code block which akavermal
statements such as declarations.

Listing 3.17: Inline code block from Linux

return ({ int _x = (nbits); int _y = (find_first_bit(
srcp->bits, nbits)); x < _y ? _x: _ vy });

gcc has many attributes which can apply to functions or éega The example
below shows the attributes associated withgh@i c() function in the FreeBSD
5.3 source code. The attributes tell the compiler that thetfan will not return
and that it takes arguments like i nt f . This allows the compiler to perform
extra analysis in blocks of code that use plaani ¢ function, such as producing
warnings if the arguments passed in the variable argunmsrddinot match up

with thepri nt f format string.

Listing 3.18: gcc attribute use from FreeBSD

voi d panic(const char =, ...) __attribute_ ((
__noreturn_)) __attribute ((__format__ (__printf__
. 1,2)));

gcc allows the additional keywordsy peof andof f set of . It also allows using

63

alternate keywords by adding to the beginning and ending of a keyword, for
example__asm __ instead ofasm The effect of this is that the lexer and parser

must be aware of these new keywords.

Listing 3.19: Additional gcc keywords

typeof (int =*);
of fsetof (struct intf_t, iface);

Inline assembly is possible in gcc and needs to be parseeatiyrbecause it can
contain references to variables. The example in ligtin@ 3tbws the variables
pt r anddo_sof ti r g within a gcc inline assembly statement. These are
possible global variable references and must be understwoectly by the
globaliser. The rules introduced for handling variablerehces can be used on

the variables referenced in ths mlisting.

Listing 3.20: gcc inline assembly

_asm__ __volatile__ ("cnpl _$0, -8(%W);"
"2: _pushl %ax; pushl % cx; pushl %edx;"
"call %1;"

"popl Wedx; popl Wecx; popl Reax;"
coo"r" (ptr), "i" (do_softirq));

The globaliser parses all of the above gcc extensions andissreferences to

variables found in them correctly.
Semantic support

The function of the globaliser is to virtualise C code, it @ required to check for
well formed C code. The globaliser therefore does not neg@etimrm semantic
analysis of its input. It does, however, need some knowled¢jee semantics of C
to parse it correctly: it needs to understandttggpedef keyword which defines a
new type keyword. A set of all identifietsypedef -ed is kept, and whenever an
identifier is found in the source, it is checked against th@ft/pe names to see
whether it is a type keyword or an identifier. This works forsh@ code, but there

are valid C constructs which break this method.

Listing 3.21: Type name parsing problem

typedef int proc_handler (ctl_table *ctl, int wite,
struct file = filp,
void xbuffer, size t *lenp, loff _t =*ppos);
proc_handl er *proc_handl er;

64

The source in listing3.21 shows where this method failss légal in the C
language to use an identifier which has been previously bgpedef -ed as a
normal identifier in some situations where it is not ambiggiothe globaliser uses
an updated grammar which supports this feature by by hantinpedef
keywords differently to other type keywords such ax .

Section handling

One of the gcc attributes which can be set on a global varialhe “section”
attribute. This allows the programmer to instruct the lintkeplace the variable in
a particular section in the object file. The linker will themke two variables
which point to the beginning and end of the section. Thisnadla programmer to
place a set of variables in their own section in the objecttiilen iterate over them
using the start and end pointers provided. The FreeBSD kases this method

for initialisation.

Listing 3.22: Section attribute object file placement

int varl __attribute__ ((0x0014 _ start_sysinit
__section__ ("sysinit") |0x0014 wvarl
)); 0x0018 wvar?2

int var2 __attribute__ ((0x001c __stop_sysinit

__section__ ("sysinit")

Listing[3:22 shows a basic example of how sections work. @neft two
variables are declared in a section called “sysinit”. Onriglet example addresses
of the variables in the object file are shown. Two extra vdeslare created which

have memory addresses that bound the variables in thesectio

The rules introduced so far would produce code that wouldpiienbut would not
have the same functionality. Given a variable with a secitribute, the attribute
would be retained but the variable definition modified, mgkimany instances of
the variable appear in the section. Any code which iterages ihe section would

then not work as expected.

To solve this problem the globaliser has support for moddythe section
attribute. The output of the globaliser when using sectigopsrt on the code in

listing[3.22 is shown in listing3.23. If configured to, th@baliser will see that

65

var 1 is in the section “sysinit” and instead of creating an arraiv the same
section, will instead declare many instances of varl iredéffit sections. The
__stop_sysinit declaration is not shown for brevity, it is equivalent to the

method used for the st art _sysi ni t symbol.

Listing 3.23: globaliser section support
int GLOBAL_O varl __attribute_ ((__section__ "

gl obal _section_0_" "sysinit"));
int G.OBAL_1 varl attribute_ _ ((__section__
gl obal _section_1 " "sysinit"));

extern void = __start_gl obal _section_0 _sysinit, =
__start_global _section_1 sysinit;

static void = » _ start_sysinit[NUM STACKS] = { &
__start_gl obal _section_0_sysinit, &
__start_global _section_1 sysinit, };

3.3 Adding a new stack

TCP implementations of interest to researchers come an@ge of the goals of
the NSC is to aid addition of future TCP implementations. $teps involved in
adding support for a new TCP implementation are extractiedliCP code from
its normal environment (usually an operating system kgroempiling and
linking the code into an executable, solving any undefinésleaces,
incorporating with the NSC and the globaliser and testimgiew TCP code with
ns-2. A guide through this process for someone wishing tpsu@ new network
stack in the NSC is found in appendik B. This section provaldgscussion of the

feasibility of adding new TCP implementations to the NSC.

3.3.1 Extracting the TCP code

The TCP code may need to be extracted from a larger base of ttugles true in
the case of network stacks inside operating systems. Muefabtpg system code
does not make sense to run in user space. For example, treingesystem
manages access to the hardware, such functionality is sotden a simulation

model and the functionality would not work in user space.

The network code needs to be identified within a potentiadiy\Varge project. In
the operating systems studied this is simple due to a lofzigalt of files. In

FreeBSD and OpenBSD, all code specific to Internet protaoplementations is

66

found in the directory usr/ src/ sys/ neti net, where/ usr/ src/ sys is
the base directory for the kernel source code. The TCP imgiéation is
contained in the files with the preftixcp_. Information on where the TCP
implementation is contained in a BSD derived kernel is alsoussed by Wright
and Stevens [84] and McKusi&k. al[126]. Without books or obvious
documentation this was still evident in Linux: TCP code ifiles under the

net /i pv4/ directory inside the kernel sources that have names begjmith

t cp_. While not part of the NSC, OpenSolaris has been studied aseafal
addition to the NSC. The OpenSolaris TCP code is located in

ut s/ conmon/ i net/t cp. In all cases a search for files containingp in their

name locates the TCP implementation source files.

3.3.2 Building a standalone TCP implementation

The TCP implementation extracted from an operating systesas enough
support functionality to run independent of the originadteyn it was part of.
Compiling and linking the TCP implementation alone will ghall undefined
references to the host operating system. The type of sufapmtions encountered
include, but are not limited to, threading/locking primés (mutexes, condition
variables), time functions (time counters, managemeritadrtcallback
functions), memory management, logging, error handlingptographic functions
and IP networking. Some of these functions make sense todach the library

that will be loaded by the NSC while others will not work in uspace.
Finding a suitable division

A suitable division is required such that the TCP implemeotewill operate like
it did in its original environment while running in a simutatenvironment. Some
of the support functions can be included to solve undefintterces and will not
have any further requirements on support from the NSC, ographic functions
are often an example of this. No code other than the core T@RmMentation
needs to be included but including more code means that tielopeated is
closer to the original system. Being closer to the origilyatesm makes it

potentially easier to reproduce the behaviour of the oalgsystem which is the

67

Table 3.2: Number of support functions in the NSC sharecatibs

Network stack| Stub functions| Implemented functions
FreeBSD 5.3 39 93
Linux 2.4.28 54 55
Linux 2.6.14.2 150 60
OpenBSD 3.5 43 24

goal of this process.

The division used in each of the TCP implementations ex@échftbm operating
systems in the NSC is similar. All contain at least TCP, IRP46, ICMP, sockets,
cryptographic functions, UDP, routing, packet buffer ftigs, some timer
support, and global configuration support (isysct |). This division reduces

undefined references and provides necessary support foReode.
Building stub functions

Any undefined references that are not solved by introduditiitianal code into
the build can be solved with stub functions. The term stulction is used here to
mean a function that is created that performs no action akiaerto signal that it is
not implemented. In the NSC these functions are implememtexbsertion
failures. If a stub function is called at runtime, the progria aborted with an error
message indicating the function that is not implementeds fiteans the stub

functions which are used are discovered during testing amst bee implemented.

The number of stub functions and implemented functionsé&NBC shared
libraries are summarised in taljle]3.2. The implementedtioms refer to the stub
functions that are required to be implemented to allow th® TGde to run (the
numbers reported in the table are independent, the numb@ptémented
functions is not included in the number of stub functiongclkof these functions
needs to be studied in detail to ensure it works in a way cterdisvith the original
system. Some functions map to simple C library calls (e.emary allocation can
usemnal | oc) while others are not required to perform any action whengpein

in a simulated environment (e.g., mutexes, checking for peemissions).

Table[3B shows counts of the lines of code included in the Big&port code for

each stack. The number of lines attributed to stub functi®nsade up mostly of a

68

Table 3.3: Number of lines of code used in the NSC stack supgpde

Network stack| Support lines of code Stub lines of code
FreeBSD 5.3 3550 39
Linux 2.4.28 1603 571
Linux 2.6.14.2 1871 1205
OpenBSD 3.5 1540 311

lot of boiler plate code and could be reduced to only one laresbich stub

function. The NSC FreeBSD 5.3 stack has stub functions imefeged in this way.

3.3.3 Incorporating with the Network Simulation Cradle

Once a TCP implementation has been built into a shared yiliraan be
incorporated with the NSC. Doing so requires implementirgihterface
introduced in section3.1.3. New code needs to be writteincdis functions in
the TCP implementation to perform actions such as conrgatading and
writing. Finding the correct functions to call can be aclke@by tracing the code
path between a user space application that uses the BSDtS@dkieand the

functions called inside the kernel.

The functions called in the TCP implementation need to retantrol to the
simulator: they cannot block waiting for a resource (such packet arrival)
because the simulator has a single thread of execution.dimking versions of
socket operations are used with the NSC implementatiorsTEP
implementation did not support non-blocking operatiorenthuch functionality
would need to be built. We have shown this to be feasible u$ireads to store

different function call contexts in earlier work [116].

The globaliser needs to be incorporated into the build offtG® implementation
to support multiple independent TCP instances. It is usgrhetsf the build tool
chain after source code preprocessing but before conguilafin example of a
build rule using the globaliser during compilation of a smufile is shown in
listing[3.24.

Listing 3.24: Compiling a C file with gcc and the globaliser

gcc ${CFLAGS} sanple.c -E -
./ globaliser -vv ./globals.txt |
gcc -xc ${CFLAGS} -c - -0 sanple.o

69

The shared library can be used with ns-2 once the interfaogpiemented. The
ns-2 simulator agent for the NSC supports tracing packeg®CiAP format so
direct validation against packet traces from a equivaletwark implemented with
physical devices is possible once the interface is impleeteValidation of NSC
TCP implementations is covered in detail in chapler 4. Beedhe NSC interface
for all shared libraries is the same, existing simulatiampss can be used with the

new TCP implementation by only changing the name of the shiéeary loaded.

3.3.4 Configuration issues

There are many configuration options in real world netwosklss and these
should be exposed to the simulation user. The NSC interigmedsts several types
of configuration: sysctls, socket options, and generaigtbiased commands. The
ns-2 simulator agent integrates this configuration intaQR€EL scripting language
so a user may specify sysctls and other configuration in aaldtarmat. Each

stack then implements the interface to set such configuratio

The implementation of the configuration options is often@enthe input data
from the simulation user is transformed into the format usgthe stack, then
kernel configuration functions can be called. This is truesfample in the
FreeBSD sysctl configuration, which is implemented in thirees of code (calling
the FreeBSD functioker nel _sysct | bynane). In other cases more support
code needs to be written to support such configuration; ithitex stack support

code there is code to manually parse the sysctl name passed in

3.3.5 Updating an NSC TCP implementation

One of the goals stated at the start of this chapter was fowmaéd TCP models to
be easy to update. Updating stacks to new versions showddtaknimal amount
of time, as new versions are often released regularly. The M&kes this possible
in most cases because the stack’s source code used is ndiehdgi hand. The
code for the new version of the TCP implementation needs tesbd in the built
system in place of the previous code. The process of builaimbtesting for
undefined variables should be followed, like the initiakgration of a network

stack discussed in sectibn 313.2.

70

A new version of a TCP implementation might add new files agire different
compilation flags. The differences between the two versstiosild be inspected
for additional files so they can be added into the build prec&ke build system
should be verified against building the new TCP implemeaoitatbde in its

original environment to ensure the code is still compilethim same way.

Once these steps are followed the new code can be testedrddesg of updating
is much simpler due to the work done to integrate the earkesion of the stack.
The amount of work required to update to a new version is ptapwl to the size
of the change in the TCP implementations. When upgrading ftmux 2.4.27 to
Linux 2.4.28, no changes were required in the support code.cbde was patched
with the new version of Linux and tested to ensure behavioosistent with a
computer running Linux 2.4.28. Updating to support Linu&.20 was more
involved, as the 2.6 series kernel is a major update of thexkernel over the
previous 2.4 kernels. Around 200 lines of support code cadmlyring testing and
many TCP implementation files were added and removed. Thetictions
needed to be recreated as many internal kernel functionsteadyed or been
added.

3.3.6 Requirements of the NSC approach

The Network Simulation Cradle requires the source codeehttwork stack to

be simulated. This is available for open source TCP implaat@ms such as those
found in the operating systems of Linux, FreeBSD, OpenBS$id,@penSolaris.
However, the source code is not generally available for d&oft Windows, and is
therefore not available in the NSC. The approach used by 8@ &pplies to any
TCP implementation with source available, so support faerbBoft Windows is

conceptually possible if the source code were available.

The NSC is designed for incorporating code written in ther@lage (due to all
TCP implementations studied being written in C), but othegluages could be
supported using processes similar to those discussede@ tAnguage. A bridge
between the two languages would be required in the suppde icothe shared

library.

71

3.4 Summary

This chapter shows that it is feasible to use real world ngtwtacks as a TCP
model in a network simulator. That an implementation waste@ within the
bounds of this project shows that simulating multiple reatid TCP
implementations can be achieved with reasonable cost:es@archer over the

course of two years.

At the start of this chapter (pa@gel41), a list of goals was setar the design of
NSC: it must simulate real world code, utilise existing netkvsimulators,

perform and scale well, produce accurate results, be eagydate, support
different methods of statistics gathering, allow a fullgarof TCP simulation
scenarios, and compliment existing simplified TCP simatathodels. This list of
goals is achieved with the implementation of the Network8ation Cradle as the

follows.

NSC supports simulation of real world code by providing arfeavork with which
a real TCP implementation is connected to an existing nétwsionulator. A new
agent is built in the network simulator which loads sharbdhliies that contains

the TCP implementations.

NSC is designed to perform well because of its use of shabearies and support
code. This allows a minimal overhead when an interactiowé&en the simulator
and network stack occurs. NSC is designed to scale well diretglobaliser
statically altering code during the build process, allggyuinany instances to be
created quickly during runtime. Both performance and $xbif are analysed in
depth in chaptdr6.

Using real world stacks and not modifying code of the TCP anpntation means
that NSC can produce accurate results. Validation is stpg@dry being able to
produce packet traces that can be directly compared to raetimes. The

accuracy of results produced by NSC is covered in chépter 4.

Stack code within NSC can be updated easily because it doe®ed to be hand

modified every time (like in other projects discussed inisedZ.3). To update an

72

existing stack in NSC, a patch should be created betweerldrend new versions
of the stack to be updated, then the patch should be applibe tource code

within NSC. The new version can then be tested and validated.

73

74

Chapter 4
Accuracy of TCP simulation with

real code

For simulation results to be credible the simulation modelsse must undergo
verification and validationBalci [127] defines verification as substantiating that a
model is built from a problem formulation accurately, wheaéidation is
substantiating that the model behaves with satisfactayracy within its domain.
Carson [128] and Sargent [129] define the two terms to beairaild both note

that sufficient accuracy is achieved when a model can be uséshid of a real
system for purposes of experimentation and analysis. ledhé&ext of simulation
models for TCP, the models should be tested to demonstiatéhiy conform to
specification (verification of the model) and that the modgllementation

produces results consistent with a real system (validatiohe model).

The ns-2 simulator has a test suite that tests many facete simulator including
the one-way TCP agents [5]. The TCP tests cover a range atisiis designed to
provoke certain behaviour for each TCP variant. For exanpéefast recovery
mechanism of TCP Reno is tested with differing amounts okegloss. A similar,
though less thorough, set of tests exists for the bidiraetid CP agents [81]. This
type of testing is a verification that the models produceltesonsistent with

specifications.

Floyd [5] points out that the TCP models in ns are not desigaedodel one
specific real world TCP implementation but be a general mfmatedxperimenting

with the underlying congestion control algorithms. Whemgseal

75

implementation code in a TCP model in simulation, a difféssrt of validation
can be used. The simulation candieectly comparedo a real network: the output
of the simulation model should be very close to that of a remtimme, given the
same input. This method of validation is used in this chajgtehow the degree of
accuracy attained using the real world TCP implementaiiotise Network

Simulation Cradle for simulation of TCP.

The method of direct comparison is used by Bagrodia and TaBhiwhere they
raise the question of whether a TCP model is correct witheetsjp actual TCP
implementations and list two cases where validation wateciccessful in their

work with the GloMoSim [86] simulator:

Direct incorporation of the implemented protocol into the model: this allows
the protocol model to be validated against an operatiorbpype.
Comparison of independently developed models for a given ptocol:
compare with models from another simulator or models of #mesprotocol

built by others.

Both methods are used in this chapter to show the validitysamedracy of the
Network Simulation Cradle TCP implementations. The metbiodirect
comparison is introduced first in sectionl4.1 and the restiltlsese comparisons
are described in sectién 4.2. Section 4.3 expands on thesgarsons to show
how simulating with real world TCP implementations and theteacted models

present in ns-2 differ.

4.1 Introduction to simulation and test bed compar-
isons

The Network Simulation Cradle can produce packet traceifiléise format used
by tcpdump [130]. Tcpdump captures packets from a netwdgiface and can
save them to file. A simulation can be modelled after a testortsetup and
tcpdump traces can be recorded at the same logical poirits b networks. The
network trace from NSC and from a real machine can then bettjireompared

using trace analysis tools such as tcptrace [131]. This odetfhcomparison is

76

used in section4l12. The measurement and test bed setupeieddelow.

4.1.1 Emulating with a test bed network

Building computer networks of varying topologies, varylink bandwidths and
delays, possible packet loss, controlled router bufferssand differing TCP
implementations is expensive and time consuming. Thisésafithe reasons
simulation is performed; often it is impractical (or everpossible) to build
networks to test a protocol or idea. Simulation of an enteé®evork has many
abstractions and needs to be validated against real sysgteracompromise often
referred to agmulationis used. Network emulation is used here to mean a
physical network which includes a device or set of devicas $imulate part of the
network. An example of this is a machine set to route packetisden its network
interfaces, delaying packets by 20ms. This machine wouklrhalating a long

link in the network topology by adding the artificial delay.

4.1.2 WAND Emulation Network

The WAND Network Research Group [132] has a network of 24 rimesh
available for testing. This network is called the WAND Entida

Network [133, 134]. The machines in the WAND Emulation Netkvbave
multiple network interfaces. One network interface cardosnected to a central
server to form a control network. The other network intezfaard is connected to
a patch panel which in turn is connected to a switch. Someeoiftachines have
four Ethernet ports on their second card, allowing them tade=l as routers. The
machines are configured with a topology by changing conoleston the patch
panel. All machines are also connected to a terminal seovaidw administration

without relying on networking.

Facilities for imaging machines with a new operating syséeeavailable, so
changing operating system between tests can be automdteap€rating system
images are configured so a simple daemon program listensiimections on the
control network once the system has started. This prograepés a string of text
for a command to run and redirects the output of the commatitetoonnection in

a similar fashion to ssh or rsh. This allows the machines todogrolled easily and

77

A 4
*P R1 ﬂﬁ R2

Figure 4.1: Topology used in the WAND Emulation Network

the output of commands to be viewed quickly.

Figure[4.1 shows the topology used for emulation networs testhis chapter.

Routers R1 and R2 have four port network interface cards amé&reeBSD 5.3.
These routers use Dummynet [135] to shape the traffic gomogithh them as is
discussed below. The hosts H1-H4 are imaged with differpatating systems

and tests are performed between (H1 and H2) and (H3 and H4).

4.1.3 Traffic shaping

Dummynet [135] is commonly used software for network emaiat
(e.g., [56,136-139]). Itis distributed with FreeBSD 3.4ldater and integrates
with FreeBSD's IPFW firewall.

Packets are matched using FreeBSD’s IPFW firewalling ruidssant to a
Dummynet pipe. A pipe is configured with a bandwidth, delag packet loss
rate. On a tick of the software interrupt clock, Dummynet ahleck to see if there
are any packets pending to be sent out at the current timewstdhem for
sending if so. FreeBSD 5.3 defaults to this clock ticking@®ihz, meaning there is
up to 10ms jitter for packet delay (there is potential forrgéa jitter as the
software interrupt will not be run in some situations whea itilachine is heavily
loaded). This rate is determined by an option caHZdand can be changed by
rebuilding the kernel. Higher values BZ can result in instability and inaccuracy,

while lower values result in greater jittdfiZ is set to 1000 in the tests in this

78

Table 4.1: Emulation network RTT measurements
Round trip time (ms)

Packet sizg Min | Median| Max | Std. Dev.| Simulated
84 43.0 43.6| 49.9 0.588 43.1
1500 53.3 53.8| 61.1 0.653 54.4

chapter as recommended in the documentation [140].

Experimentation has shown the RTT measured on the emulagiovork is similar
to an equivalent scenario being simulated. Tablk 4.1 ptesea results of running
ping with two different packet sizes over the topology shawfigure[4.] on the
emulation network. Router R1 is configured to delay packgt®lms in both
directions and limit bandwidth to 2Mb/s. The ping is betwéests H1 and H2.
RTT samples were taken with both packet sizes and with na @idific running

on the network. 1000 samples were used, enough to produce®fidence
intervals with half lengths around 46. No ARP look-ups were performed in both
tests as the IP addresses required were already in the ARB.calso shown is
the RTT measured when simulating an equivalent network4a. fighere is no
jitter in simulation because packets are delayed by pregisgunts; simulating an
unloaded network will result in the delay being the same ¥@rgping. The jitter
shown is explained by the timer granularity of Dummynet drelstandard
deviation of the jitter and is within the expected range giragimately 1ms. See
Vanhonacker [141] for further performance evaluation ohibaynet including

delay jitter measurements.

Other emulation software is available. NIST net [142] is aux-based network
emulation tool. Linux 2.6 contains NetEm [143], anothemak emulation tool.
The ns simulator also has emulation capabilities [144] hHes a similar

featureset to Dummynet.

More precise traffic shaping could be provided by a hardwaxecd. Research is
ongoing in the WAND Network Group to produce a switch which dalay
packets, limit bandwidth, introduce loss and organise ltmgies. At the time the
research was carried out, no hardware was available for aumgrate network

emulation.

79

4.1.4 Traffic generation and measurement

Traffic is measured with tcpdump [130] on emulation netwodcinnes. The jitter
introduced by the emulation network means that measuredesites with higher
precision timing (such as the Dag [145] card) are not requineattain the

accuracy needed to compare the emulation network and diontasults.

Traffic needs to be generated on the emulation network andhimation in the
same way. Different strategies used to write data to a TCkesodll result in
slightly different TCP behaviours. For example, the sizéheffirst write to a TCP
socket will often determine the size of the first TCP packetywiag data. Another
example is that the design of the application to use bloc&mgpn-blocking
socket IO will affect the resulting TCP stream. An applioatcalled

Tcpperf [146] is used for fine grained control over the agilan behaviour to
produce interactions with a TCP socket in a way consistehbtons-2 application
models work. Tcpperf allows specifying the size of eachewdtthe TCP socket
and which of two schemes to employ to write the data. The fals¢se uses the
sel ect function call to wait until it is possible to write more datathe socket,
then callssend. The second sets the socket to be non-blocking and catisl
periodically. This method is similar to the way a constantie traffic generator
works in ns-2. Iperf [147-150] is used to generate traffica@bmpared to tcpperf

for validation purposes.

4.2 Packet trace comparisons

Packet traces produced in simulation and on the emulatstbed network are
compared directly in this section. A three step processasd trs analyse the traces

for equivalence: traces are normalised, visualised anlysedby hand.

The variation in timing on the testbed network shown in t&hlkmeans that there
will be some small variation in timing between the simulatede and the
measured trace. A direct binary comparison of the tracdseirefore not useful.
Instead the traces are visualised with the tcptrace [13litfjuind compared by

analysing the textual output of tcpdump.

80

sequence number
80000

ack number
data packets
offered window
40000 kﬁ

SYN
S

time

Figure 4.2: Example tcptrace time sequence graph

Tcptrace produces graphs of TCP connections from paclagdrd he most useful
graph produced by tcptrace for visualising a TCP connedsidime time sequence

graph. An example annotated time sequence graph is presarfigure[4.2.

The x-axis shows time and the y-axis shows the TCP sequemsberuThe
bottom line on a tcptrace time sequence graph is the sequemnaeer which has
been acknowledged to. The top line is the acknowledgemenbeuplus the
receiver’s advertised window. This shows the window in vattite data packets
should be sent. Data packets are indicated by small bladidleleanded arrows
(also shown enlarged in a circle on the diagram). If the piaiska retransmission,
it will have an “R” next to it. Selective acknowledgementdits are shown by
lines within the advertised window with an “S” next to therhaldata packet has

the PUSH flag set a diamond will be drawn around the packet.

To compare two of these graphs it helps to normalise the timdesaquence
numbers of each packet in the trace. A utility called tcpnftfi] was created for
this purpose: it normalises a PCAP packet trace by makin§@wP time stamps
and TCP sequence numbers start from 0. It handles the timpstad selective
acknowledgement TCP options. Tcptrace has an option toal@ewhen
producing graphs, but this was found to be buggy and to pethaonsistent
graphs.

81

4.2.1 Connection establishment

In figured4.B[414 anld 4.5 time-sequence graphs of TCP daodngection
establishment are shown. These are produced from datateall®ith a topology
as presented earlier in figure¥.1. Dummynet router R1 libarsdwidth to 2Mb/s,
delays packets in both directions by 21ms and has a queuthlehtjO packets.
The simulation scenario is configured to be equivalent. Boh@perating system
(FreeBSD, Linux and OpenBSD) a trace is captured on thegdsthd created in
simulation. The traces are normalised with tcpnorm theplged with tcptrace.

The two graphs for each operating system are shown side by sid

Each of the pairs of graphs in figulesl4.3] 4.4 4.5 are Jesg wisual matches
for each other. In addition to these graphs, each situatianalysed in detail using

the textual output of tcpdump in the following sections.
FreeBSD

The two traces for FreeBSD are very close. The textual outpicppdump shows

that the sequence and content of packets illustrated inef8jdu3(d) and 4.3(b) are

nearly identical except for the TCP timestamp option. Thieughput measured
on the emulation network is within 2% of the throughput meadun the ns-2
simulation. The TCP timestamp option differs by one oftethimtraces. The
reason for this is that the timestamp counter is based onith&s variable in the
network stack which, in this situation, occurs once evenn40OThis timer starts
counting when the machine boots, so synchronising it betwerulation and the

real machine is not practical.

There is a small difference in timing of packets. This is duthe difference in
round trip time and variation in timing found in the emulatioetwork, as
described in sectidn4.1.3. The per-packet time differempotted in figurd-416.
This graph shows how, in this case, the time differencesmatates over time
(this is not always the case for other network stacks tesfidd$ eventually leads

to a slightly different ordering of packets.

82

sequenceruunber

80000

60000

40000

20000

SYN
0{¢

01:00:00 01:00:00.1000 01:00:00.2000 01:00:00.3000 01:00:00.4000
time

(a) Simulated FreeBSD

sequencerunnber

80000

60000

40000

20000

SYN
01 ¢

01:00:00 01:00:00.1000 01:00:00.2000 01:00:00.3000 01:00:00.4000
time
(b) Measured FreeBSD

Figure 4.3: Simulated vs. measured connection establishgnaphs: FreeBSD

83

sequencerunnber

80000

60000

40000

20000

SYN
0 {¢
01:00:00 01:00:00.1000 01:00:00.2000 01:00:00.3000 01:00:00.4000
time

(a) Simulated Linux
sequence number

80000

60000

40000

20000

SYN
o 2
01:00:00 01:00:00.1000 01:00:00.2000 01:00:00.3000 01:00:00.4000
time

(b) Measured Linux

Figure 4.4: Simulated vs. measured connection establishgnaphs: Linux

84

sequence number

80000
60000
40000
20000 FAAAAAAAhAAAAAArJ
L
SYN
0{_ ¢ % —
01:00:00 01:00:00.1000 01:00:00.2000 01:00:00.3000 01:00:00.4000
time
(a) Simulated OpenBSD
sequence number
80000
60000
40000
20000 :F
f
SYN S
0 & @ —
01:00:00 01:00:00.1000 01:00:00.2000 01:00:00.3000 01:00:00.4000
time

(b) Measured OpenBSD

Figure 4.5: Simulated vs. measured connection establishgnaphs: OpenBSD

85

0.006 T T T T T T T T+ +

0.005 -
0.004 - -
0.003
0.002
0001 | ,++ T+ b

T

+
+
4
+
+
1

Time difference (s)
T
+
4
4
n
i
1

0 5 10 15 20 25 30 35 40 45
Packet number

Figure 4.6: Time difference vs. packet number for FreeBSDds

Linux

The traces for Linux 2.6 look similar in figures 4.4(a) and(@}4 The one notable

difference is some of the data packets have diamonds arbentdrneaning they
have the PUSH flag set.

The PUSH flag in TCP was originally specified [10] to mean thiaéwa receiving
TCP sees the flag, it must not wait to receive more data befssipg the data to
the receiving process. In practice, data is passed to tHeafppn as soon as
possible irrespective of the PUSH flag and it is set by theisgnmktwork stack,

rather than the application, in most recent TCP implemantst

The interface between application and network stack igifit in simulation with
ns-2 and on a real machine, so the model of the applicatiootithe same
between the two. The captured trace from the emulation r&tslwows how Linux
sets the PUSH flag more aggressively than the other stacksuneeika as the PUSH
flag is set on packets after the first data packet with Linuxrastdvith FreeBSD

or OpenBSD. This functionality, when combined with the eliéint application
behaviour, results in the PUSH flag being set for extra padketimulation when
using the Linux TCP implementation. The PUSH flag is set basedhen an
application writes to a socket and how large the write is@aylication model in

ns-2 is not identical to the pattern of writing of the real ldaest application.

The TCP timestamp option differs between the traces. Thateoused for the
timestamp is increased once every millisecond in the versid.inux studied. The
packets are consistently between 0 and 3 millisecondgeliften their timings and
the TCP timestamp option reflects this. This difference i wuboth the timer

granularity and the limitations of Dummynet introducedieatn this chapter.

86

The traces are identical until the difference in PUSH flage $ar the slight timing
differences described above (approximately the first 2B@gtac@re identical). On
the real machines some data packets are generated latertra¢k that are smaller
than the MTU. This is due to application differences, thangof when data is
written to the TCP socket by the application is differentiesgn simulation and
the real machine which results in this behaviour. The Limagés are very similar
when visualised with tcptrace and the throughput measurédeoemulation

network is within 2% of the throughput recorded in simulatio

OpenBSD

The sequence of packets shown in figlires 4.5(aj and i.5(bkarelose matches.

When the traces are analysed further it is evident some Tra&stamps vary
between the traces by one. This occurs for the same reasoedtinlthe FreeBSD

trace and is described earlier.

There are fewer data packets in the graphs showing OpenB@Dd§ 4.5(3)
and[4.5(1)) due to the OpenBSD sender only sending onelidéta packet after
the three-way handshake of TCP. The acknowledgement ®p#uket is not sent
straight away by the other end of the connection due to theeydd|
acknowledgement mechanism: either the delayed acknoemedqt timer must
fire or two packets must arrive. This is one of the reasons K R390 [152]
which increases the initial TCP window size. The version pE@BSD tested does
not implement RFC 3390 while the versions of Linux and FreeB8idied here
do. Figure$ 4.5(a) arfd 4.5]b) show a timer firing with the sdmation in
emulation and simulation: the acknowledgement is recan@dh results in

further data packets prior to time 01:00:00.3000. The askedgement is

received at this time due to the delayed acknowledgemest timing set to

200ms. This verifies that this TCP timer is firing at the cartaue.

The timing difference of packets is similar to FreeBSD (sger&[4.6). This
eventually leads to a different sequence of packets, ajfman overall tcptrace
graph of the connection looks nearly identical and the thhgut recorded in

simulation is within 2% of the throughput measured on thelatian network.

87

Linux 2.6 setup

Linux 2.6 (used in the traces analysed here) has dynamicomirsize
determination. This is supported in the Network Simulat@yadle as described
below. Linux 2.6 tunes the windows used in TCP based on thaiatrad memory
available in the machine. The cradle code uses memory sideadent to the
machines on the emulation network. The receiver’s adwsttigindow grows
dynamically and is also affected by the size of the packatsire allocated in the

Ethernet driver.

When a packet is received in a network driver, the drivercalles a structure called
anskbuf f with enough space to hold the packet. Itis up to the driveetect the
space for the packet received, often there is extra slacgegpat is unused by the
driver (but possibly used later by other sections of the petwtack). This packet
Is then sent on to the network stack. When calculating theivers advertised

window, the size of thekbuf f is checked as listing 4.1 shows.

Listing 4.1: Linux 2.6t cp_gr ow_w ndowcode

int incr;
| *

* Check #2. Increase window, if skb with such over head

* will fit to rcvbuf in future.

* [

if (tcp_w n_fromspace(skb->truesize) <= skb->l en)

i ncr = 2+tp->advnss;

el se
incr = __tcp_grow w ndow sk, tp, skb);
if (incr) {
tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
t p- >Wi ndow_cl anp) ;
| t p->ack. quick | = 1;

In listing[ddskb- >t r uesi ze refers to the size of the skbuff allocated in the
driver. To obtain the same traces on real machines and inaiio, the simulation
driver code needs to allocas&buf f sizes in the same manner as the driver used
on the real machine. The simulation driver allocatkduf f s similar to the
eeprol0@river used on the emulation network machines and is ableoiduze

the same offered window sizes as those measured on the emulatwork.

88

4.2.2 Congestion

Figured4.l7 anf418 are tcptrace graphs of TCP undergoisdksause it has
overflowed the router queue size. The scenario simulated@agured is the same
as presented previously in sectfon 412.1; these graphsedeqed from later in

the connection.
FreeBSD

FreeBSD responds to the packet loss in the same manner itatiomiand on the
testbed network. Figufe 4.7[a) and fighre 4]7(b) show theessetective
acknowledgement ranges and bursts of data packets dueltsgh& he two
graphs differ in the time and sequence numbers shown on theTdxs is due to
loss occurring slightly earlier on the emulation networkisldiscrepancy is due to
the timing difference noted in the earlier discussion oEB8D. FreeBSD’s
response to the different network conditions (due to Dumahymeans that the
timing off the loss is different. The graphs show the aldoriic response of TCP

is the same in simulation as it is on the real machines.
Linux

To make the graphs in figufe4.8 easier to understand and centpa TCP PUSH
flag has been omitted. Unlike figure 1.7, the two graphs havedame sequence
numbers and time shown. The response to packet loss isadewith a simulated

Linux TCP stack and one running on a real machine.

4.2.3 Summary

Comparing packet traces produced by a controlled real watdiork and
equivalent simulation show that the results produced byggvork Simulation
Cradle TCP implementations are able to achieve packel-deeeiracy. Small
differences in timing, TCP options (the timestamp opti@myl flags (the PUSH
bit) occur, but otherwise the sequence of packets produgéaesimulated
versions of OpenBSD, FreeBSD and Linux are often identitlaé exception to

this is in some cases a slightly different sequence of packgiroduced due to the

89

sequencerunnber

500000

450000

400000

350000
01:00:02 01:00:02.1000 01:00:02.2000 01:00:02.3000 01:00:02.4000 01:00:02.5000
time

(a) Simulated FreeBSD
sequence number

450000

400000

350000

01:00:01.9000 01:00:02 01:00:02.1000 01:00:02.2000 01:00:02.3000
time
(b) Measured FreeBSD

Figure 4.7: Simulated vs. measured TCP packet loss respansseeBSD

90

sequencerunnber

200000

150000

100000

50000
L

01:00:00.4000 01:00:00.5000 01:00:00.6000 01:00:00.7000 01:00:00.8000
time
(a) Simulated Linux
sequence number

200000

150000

100000

50000
L/

01:00:00.4000 01:00:00.5000 01:00:00.6000 01:00:00.7000 01:00:00.8000
time
(b) Measured Linux

Figure 4.8: Simulated vs. measured TCP packet loss resjpamisgux

91

difference in timing between the real world network and tinedated one.

4.3 Simulated TCP performance

Sectio4.P showed how a high degree of accuracy is attaihed wsing real
world TCP implementations in simulation by comparing padkaces at a micro
level. This section describes comparisons of the TCP adeumtsl in ns-2 with the
NSC TCP implementations at a macro level, reproducing aiqusly published
simulation scenario in sectign 4.B.1, and ties simulatiackito measured results
in sectioTZ4.3P.

The results shown in this section compare the NSC TCP impiéatiens to
independently developed TCP models (those found in ns42)ethod of

validation discussed by Bagrodia and Takai [93] and noteberintroduction of
this chapter (pade¥5).

4.3.1 Performance over a complex topology

The simple dumbbell topology (also known ababelltopology) is often used
when conducting simulation based research [153] even ththeresearch is often
an Internet study and it is not clear such topologies reptdagernet

dynamics [153, 154]. The idea that dumbbell topologies atesafficient to
analyse Internet dynamics is discussed by Anagnosgdked [155] by analysis of
Internet measurements and creation of a multiple-bottlesenulation topology

that presents results differing largely from a dumbbelbiogy.

A reproduction of one of the simulation scenarios studiedbggnostaki®t. alis
presented here. The network topology and TCP flows that aceissed in [155]

are shown in figurE-419. This setup produces a result thatiiseuesults attained
from using a dumbbell topology: as the number of TCP flowssthe central

link increases, the aggregate goodpigcreases. The reproduction presented here
uses the original TCP models used in the study (the modeis m®2) and extends
the simulation to use NSC TCP implementations as well. Tltasva direct

comparison between results from simulations performed thieé ns-2 TCP models

1Goodput is the rate of data received by the application Ifrgen TCP.

92

Q Source
10Mb/s, 3ms delay

”””” 20Mb/s, 10ms delay
B |Gb/s, 5ms delay A Sink D Router
20Mb/s, 3ms delay

Figure 4.9: Multi-bottleneck scenario (adapted from [)55]

and results from simulations performed with the NSC TCP enntations. This
process provides further validation of the NSC TCP impleiaigons.

The simulation topology used is shown in figlirel 4.9, whichggiealent to

figure 3 in [155]. As in [155] the number of flows i andY” of figure[4.9 are

fixed at five each. The number of flows ihvaries, as does the type of TCP source
and sink used for the flows of. The flows inX andY use ns-2’'s Newreno TCP
agent with delayed acknowledgements enabled. Simulatsh800 seconds.

Start times for all TCP streams are randomly distributedéinterval[0, 10.0],
goodput is measured from when all flows have completed caiomec

establishment and the application has received data.

Each set of simulation parameters is simulated 10 timestw&hlandom seed
varied (the same methodology as Anagnostekisl[155]). The simulation
output statistical analysis procedures discussed by La®][dre used. The mean

(1) and varianced?) are estimated by:

X(n) ==
And: .
> X=X ()
S%(n) = = —

An approximate 00(1 — «) percent() < o < 1) confidence interval for is given

93

by:

X(n) + tn_Ll_a/Q Sz(n)/n

Wheret,,_11_./- is the uppet — a/2 critical point for at distribution withn — 1
degrees of freedom. Using these formulae the confidenceattfer the mean is
approximated for each set of simulation parameters. Cangpélre half-length of
the confidence interval to the point estimate of the mearnsgau@easure of the

precision of the confidence intervals.

Figure[4.1D presents the results of reproducing the simuléfigure 3 in [155]).
The point estimate of the mean is plotted with the confident=val for each
point. The confidence intervals are small enough that theyeay hard to see on
the graph: they vary between 0.01% and 2%. The results gexbbare agree with
the original research in the case of using the original n&P models and when
using the NSC TCP implementations: as the number of flowsimcreases the

aggregate goodput decreases.

Anagnostaki®t. al.[155] provide a thorough analysis of this result with diéfiet
gueueing mechanisms, queue sizes, TCP models and rouidniefa Both the
reproduced results from the ns-2 TCP models and the NSC T@Rmentations
agree with the original research. This result is furthederce that the NSC TCP

implementations are valid.

4.3.2 Uniform random loss

Measurement studies have found the presence of randomndks o

Internet [157, 158] and uniform random loss is used as a sirmaldel for loss
encountered on the Internet [159-161] (or other netwoksgtample, ATM
networks [7]) in many simulation studies. This section pres a study of TCP
performance under uniform random packet loss showing casgres between
ns-2 TCP models, NSC TCP implementations and measurementsaftest

network to validate the NSC TCP implementations.

The performance of TCP during varying uniform random lo$ss#s presented in

figure[4.T1. Simulation results using ns-2 with its standa@& models and with

94

goodput (Kbit/s)

20000

1

1

Goodput (Mb/s)

) TCP Algorithm '
Reno ——
\5«\ H
5000
0000
5000 | | A— | e
O 1
0 20 40 60 80 100 120 140
number of A flows
(a) Original simulation [155]
20 T T T T T T T
9 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160
Number of flows
NSC: FreeBSD ——+— NSC: Linux 2.6 :--3---
NSC: OpenBSD +--x--- ns-2: Sack &

(b) Reproduced simulation

Figure 4.10: TCP goodput over a multi-bottleneck topology

95

TCP Implementation Min | Mean| Max SD
Linux 2.6.10 164.38| 213.98| 287.67| 22.75
Linux 2.4.27 153.82| 207.42| 248.70| 22.86
FreeBSD 5.3 136.77| 176.20| 225.01| 17.11
FreeBSD 5.2.1 128.74| 162.81| 219.01| 19.56
Windows XP SP2 89.90| 137.31| 191.00| 21.67
OpenBSD 3.5 63.84| 117.98| 166.82| 22.11

Table 4.2: TCP performance during 5% bidirectional los2]16

NSC TCP implementations are shown in figire 4.71(a) andtseswdasured from
the WAND Emulation Network are shown in figyre 4.11(b).

The TCP flow goes through a network with a round-trip time ahd@nd a
bandwidth of 2Mb/s. Both graphs show 95% confidence interiram a number
of repetitions of each combination of packet loss rate an® V&iant used. The
experiments on the emulation network are run 20 times fan paint shown on
the graph, while in simulation 50 runs are used to produdgdigconfidence
intervals. It is simple to run this extra number of experitsesith simulation
(total time to simulate with one computer was under 3 houts)enrunning as

many tests on the emulation network would have taken many.day

The results in figurE4.11 expand on previous work where wevshere is a large
difference in performance between TCP implementationsiguandom

loss [162, 163]. Table4.2 shows the results from measurseg af TCP
implementations on the WAND Emulation Network with 5% padkss. The tests
here show how the performance varies as the packet lossratreased and give
greater insight into the relative performance of TCP immatations under

random packet loss.

The simulation results for TCP implementations using theadek Simulation
Cradle are consistent with measurements of the same imptatiens on the
testbed network. All follow the same trend, with FreeBSiaihg the most
goodput when the loss rate is higher (greater than or equ#&%®, OpenBSD
consistently recording the least goodput and Linux 2.6 plirogpfrom the most
goodput at low loss rates to between the two BSD variantgyehiloss rates. The
ns-2 TCP models have the same general trend as the real T@#memdations

studied and fall in between the measurements for the redémmgntations.

96

Goodput (Mb/s)

Goodput (Mb/s)

18

@
TRy B %
0 A T
0.01 01
Packet loss rate
NSC: FreeBSD5 +——+— NSC: Linux 2.6 :--%---:
NSC: OpenBSD3 +--x--- ns-2: Sack &
(a) ns simulation
18 T

Packet loss rate

FreeBSD5 ——+— Linux 2.6 :--x--- OpenBSD3 -

(b) Testbed measurements

Figure 4.11: TCP goodput vs. loss rate

97

4.4 Summary

At the start of this chapter two methods of validation used@bgrodia and

Takie [93] were described: direct comparison of simulatiwdel and real system
and comparison with independent models. This chapter usidab these
methods to show that simulating TCP with real world code caxlpce very

accurate results.

Sectiof4.ZP showed how the response of two TCP implemensan the
Network Simulation Cradle directly matched measuremeants feal machines on
a testbed network. Such direct comparison can not be usedaioy TCP models,
as the abstracted TCP models are often not designed to moelgloticular TCP

implementation.

Sectior 4B presented simulations that compared agamsixibting ns-2 TCP
models which are independently developed and validatetll[81]. The trends
shown agree between the ns-2 TCP models and the NSC TCP iemii&tions for

the simple scenarios studied.

Throughout this chapter it is apparent that the differenPT@plementations
behave differently, even though they all implement the T@Rqzol and can
communicate between each other. Each implements TCP Saekstart, fast
recovery and other mechanisms, yet they all differ. Thizident both on testbed
measurements (see also our previous work in [162]) and Wwélsimulated
implementations. In the small set of simulations presemeectior 4B the ns-2
TCP models are able to simulate the basic trend of TCP pedfiocsin a scenario
but do not give any information on the variability betweeal rECP
implementations. The NSC’s ability to show the range of omtes from different

stacks and the value of this information is investigatechiapte’b.

98

Chapter 5
Variation between TCP

Implementations

The implementation of real world TCP stacks in a network $atas is described
in chaptefB and validity tests are presented in chapter d sirhple set of tests in
sectior4.B shows that the performance varies between T@Rmentations and
models. This chapter reports further on this variation l®spnting a set of
simulations that show the extent of performance differdreteveen TCP

implementations.

Sectiorf 5.R shows simulations that were created to anaigsdifference between
TCP implementations and models. These simulations showédwam in very
simple situations, there can be large differences in TCRpaance between the

various TCP stacks.

Following this sectiol 513 presents simulation scenagpsaduced from
previously published work. This gives further insight itib@ variation between
TCP implementations in networking scenarios that are Hgtstudied by
researchers. These simulations, along with those prasanthaptef¥, show that
using real world code for TCP simulation models is feasiblearry out practical

research and provides useful results.

99

5.1 On benchmarking TCP

TCP is a complex protocol that has evolved significantly fitsoriginal
specification in 1981 [10]. Since that time it has been furipecified to include
many optional performance enhancements [11, 80, 85, 182166]. The research
community has published ideas to increase TCP performanggrious scenarios,
some of which are implemented in recent TCP stacks [9, 19,4&nd some of

which are not used [44,45] in recent TCP implementations.

Often simulation models are built to test a single new TCRaanament while
TCP implementations may include the new idea as an optioa p&nmutations of
options and parameters for options can be enormous. Formeathe Linux
TCP/IP stack version 2.6.12 has 45 TCP options that can bé&ietbdia the
sysct| program. Some options are boolean (e.g., whether selective
acknowledgements are enabled, whether timestamps arkedjalhile others can
be tuned (e.g., the number of connection attempt retridauttevindow size for

send and receive buffers).

In addition to the many TCP configuration options and aliong available there
are many types of network to test on and many metrics to té&.Iiternet
Research Task Force Transport Modeling and Research Getsii1 metrics for
evaluating congestion control algorithms [166] and 17s@id characteristics to
test with simulation or test bed studies [167]. The rangeoskible networks and
scenarios that can be simulated is infinite; attempts athireacking TCP do so by
limiting the search space to a set of parameters which argroesto be

representative of today’s Internet [168].

The large parameter space for TCP performance evaluatiansribat designing
thorough benchmarks of TCP variants is difficult. In thisplea, the simulations
presented are not intended to provide a benchmark for TABrpeance. Instead,
they show that using real world code to simulate TCP is vdéubbcause TCP
implementations differ amongst themselves, even in simpdmarios (see
sectior 5.R) and that using such TCP models in practicaarebgrovides
additional insight (see secti@n®b.3).

100

5.2 New simulation scenarios

This section presents simulations created to test thetiarien performance
between TCP implementations and models. TCP during seaeiepreordering
is studied in section’5.2.1. Linux TCP obtains very diffénasults to the other
TCP implementations and models studied in this scenaribowing this, a large
number of simulation results over a dumbbell topology wiffedent bandwidths,

delays and queue sizes is presented in seCfiod 5.2.2.

5.2.1 Packetreordering

The results of a simulation scenario with substantial paa@dering due to
packets being randomly delayed between a TCP source andr&skiown in
figure[R]. The TCP stream is limited by a bottleneck link oftIdMand has a

round trip time of 104ms. Data is transferred uni-direcilbnand packets
travelling in the direction of the data are delayed by an egmbial random

variable. The scale factop) of the exponential distribution is shown on the x-axis
of the graph. Afu = 0 no packet reordering occurs. Each point on the graph was
generated from the mean of 20 simulation runs with differeagdom seeds. The
confidence intervals calculated using the methodologyrmdlin sectiol4.3]11 are
plotted on the graph but are too small to see, the half-lengtithe confidence
intervals range from less than 1% to 3.2%: 20 simulation rsiesough to

produce tight confidence intervals.

The ns-2 TCP models of adgent / TCP/ Sack1 source and

Agent / TCPSi nk/ Sack1/ Del Ack sink have very similar results to the
FreeBSD and OpenBSD network stacks simulated with the Né&t@mnulation
Cradle. There is however a large difference between theséartwo versions of

the Linux TCP stack tested.

The Linux TCP/IP stack has several mechanisms implemeataid {TCP
performance during packet reordering [169]. Duplicatecgle
acknowledgements [48] (DSACK) [46] help distinguish betweacket loss and
packet reordering. The Linux TCP/IP stack uses TCP timgstamhelp detect

101

1.6 T T

1.4 —\\ i

12 - T 7]
7 If \ L iy
] *,
s \ ",

*
5 08 e s i
1 ™. *x
8 \‘\Q *3‘(
© o6} S8
=B
"""*E\B ;
0.4 - 3 0Bay,
' L BBB
"K‘H\k lll'l““”
0.2
0 1
0.01
Exponential delay scale
ns-2: Sackl ——+— NSC: Linux24 :-----: NSC: OpenBSD3
NSC: Linux26 NSC: FreeBSD5 &

Figure 5.1: TCP goodput under packet reordering

spurious retransmissions similar to the TCP Eifel [170balypm. The forward
acknowledgement algorithm [19] is also implemented andhedp in this
scenario. This shows how a range of values from real worldempntations are
possible in a given scenario; further insights into theatitan being simulated are

possible with a range of TCP implementations available ifougation.

5.2.2 Many TCP flows over a dumbbell topology

The simulation scenario presented in this section is amatté characterise how
queue size, cross traffic, competing TCP type, bandwidtidated; affect TCP
goodput in a dumbbell topology. Figureb.2 shows the sinracenario. The
flows F' and R have uniformly distributed RTTs in the intenal 222]ms. The
number of flows inf" is selected fronj0, 5, 20, 55, 100] and R is selected from

[0, 5]. The routers on the bottleneck link have queue sizes seléttm

[6,10,12,15, 18, 30, 50] packets. The bandwidth of the bottleneck link is selected
from [0.512,1,2,4, 6,8, 10] Mb/s. Each set of parameters is simulated with 10
random seeds. Flow/ is measured and has an RTT of 8ms. The TCP model is

varied and goodput recorded after 200 seconds of simulatren

102

! R flows

1 F flows

Figure 5.2: Simulation scenario

Table 5.1: Simulation machines used

CPU Type Cache size RAM | Number
Intel Pentium 4 2.60GHz 512 KB | 512 MB 32
Intel Pentium 4 2.80GHz 1MB | 512 MB 47
AMD Athlon XP 2200+ 256 KB | 256 MB 19
AMD Opteron 250 1 MB 8 GB 1
Total 99

To simulate this range of parameters 112500 independentaiions were run.
The simulations were spread over a set of 99 computers. Tduifigations of the
simulation machines are summarised in téblé 5.1. A total@8 £PU-years were

spent simulating.
Direct TCP model performance comparisons

It is not trivial to compare TCP models from the results of siraulations due to
the large parameter space and number of results. Due to thieerof parameters
being varied, 2 or 3 dimensional graphs do not have enougbardimans to display

the parameter space.

Figure[5.8 shows comparisons of some of the TCP variantsditing the
difference in measured goodput. Only three sets of grapghstawn for brevity.
Each point on the graphs on the left is the comparison of twakitions run with
identical parameters apart from the TCP model used for tresared flow. A
positive value on one of these graphs means the first TCP rattideled more
goodput than the second TCP model. For example, a pointat on the left
graph of figurg¢ 5.3(f) means the Newreno ns-2 model was nezhsuhave twice
the goodput as the Sack ns-2 model. This data is presentecLasudative

percentage plot in the graphs on the right, where a positilugevs counted on the

103

right side of the graph.

Figure[5.3(8) shows the comparison of the ns-2 TCP modelNdareno and
Sack. The comparison shows only a slight bias towards Newissth attain more
goodput than the other a small percentage of the time. Gredfierences are
shown in figure§ 5.3(b) arjd 5.3|(c). Linux 2.4 achieves moxgat than
FreeBSD in many cases. This is evident on both graphs in flg3@). The

difference between Linux 2.6 and FreeBSD is larger yet, Witlux 2.6 attaining
more goodput than FreeBSD approximately of the time, only a very small

percentage of the time is more goodput recorded for FreeB8DItinux 2.6.

Not shown in figuré 513 are graphs comparing the ns-2 modétstive NSC
models. These also show large differences, comparingmS&tk with Linux 2.6
produces a graph similar fo 5.3(c). These results show tesitia a very
simplistic scenario there can be large differences in gabdpthe TCP
implementations studied. The next section shows furthalyars of the results,

characterising some of the reasons for such differencesrionmance.
Characterising the differences

The graphs in figure 5.3 show that there is a difference betwieulated TCP
models but do not give any insight into which simulation paesers are causing
the difference. The Weka [171] machine learning softwars used to help
analyse the large data-set. Weka implements many maclamerg algorithms
including classifiers (decision trees, rules, regressimhBayes), clustering

algorithms, association and attribute selection.

Weka'’s attribute selection algorithms rank the attribjpesameters) on their
importance in predicting a single parameter: the classevaltie class is set to the
goodput in all results presented. Some machine learniragitigns require the
class value to be nominal, where goodput is numeric (coatisy In such cases

the goodput is discretised into 10 bins of equal frequency.

Listing[5.3 shows the output from Weka running attributeesgbn using the
information gain attribute evaluator. This ranks the htttes in order and assigns

an information gain value to each attribute. The informagiain algorithm is a

104

10 T T T L— T T 100
[
[=2]
©
<
g g
] 3 5
£ ; S g
a R b k]
- =
I R E
- + + 3
.10 1 1 1 . 1 L 0 /_J
0 5000 10000 15000 20000 25000 30000 -5 0
Simulation number Difference
(a) ns-2: Newreno vs. ns-2: Sack
10 T T T T T 100
<
g g
g 3 5
£ 2
fat 8
p=}
1S
3
(@]
+ + + +
-10 1 1 1 1 1 0
0 5000 10000 15000 20000 25000 30000 -5 0
Simulation number Difference
(b) NSC: FreeBSD5 vs. NSC: Linux 2.4
10 T T T T T 100
=4
] 2 g
£ 2
a 8
3
S
3
O
0
0 5000 10000 15000 20000 25000 30000 -5 0
Simulation number Difference

(c) NSC: FreeBSD5 vs. NSC: Linux 2.6

Figure 5.3: TCP performance comparisons with cumulatia@lys

Listing 5.1: Weka output for information gain attribute &ator

Ranked attri butes:

. 60195565 Bandw dt h
60009471 Forward fl ows
04666604 TCP type
01071284 Rever se queue
01071284 Forward queue
00430134 Seed

00293595 Reverse fl ows
00000376 Cross TCP type

00000000

105

Listing 5.2: Weka output for CFS attribute evaluator

Forward queue
Reverse fl ows
TCP type

Seed

Bandwi dt h
Forward fl ows

Listing 5.3: Information gain attribute evaluator for @&ifeEnces data

Ranked attri butes:

. 805076263 Forward fl ows
. 185627249 Forward queue
. 185627249 Rever se queue
. 082538220 Bandwi dt h
. 044354906 Reverse fl ows
. 000000192 gr oas TCP type

ee

elejolejolele)

simple and fast ranking method that uses a measure of thgehaentropy
before and after observing an attribute [172]. This al¢poniis often used in text

categorisation applications where the dimensionalithefdata is high [172].

Bandwidth and the number of flows in the forward directiontheegreatest
predictor of goodput. The size of the data set limits the pidémachine learning
algorithms that can be practically applied. Correlatiasdd Feature

Selection [173] (CFS) is a sophisticated algorithm thapisli@able to large data
sets. CFS does not rank the attributes but computes a suliketaitributes that it
considers to be the most important to predicting the claksevd he attributes
selected by CFS are shown in listingl5.2. The cross TCP tygeeugrse queue
are not included in this output. The results from theselatte selection algorithms
are consistent with the expected outcome as when bandwittitviand there are

many competing flows, the resulting goodput of the measuogdlill be low.

Using the differences in goodput between TCP models runtivélsame set of
parameters (the same data as presented in figure 5.3) ressdizie similar
findings from attribute selection. The results of proceg¢ims data with the
information gain algorithm are shown in listihgb.3. Fordidlows is again a good
predictor, though bandwidth much less so at predicting tfierdnce in goodput
between TCP models. CFS includes all attributes showntingi&.3 except cross

TCP type and reverse queue.

106

Difference

1000

100

10

Figure 5.4: Mean goodput difference as flows and bandwithied

It is evident from viewing the raw data sorted by the differem goodput that the
largest differences are due to extreme circumstances: ftany with small queue
sizes and small bandwidths. The results from Weka presewaidieér support this
conclusion. Often in such cases, no goodput is recordedhéons-2 TCP models
of Newreno and Sack, as their connection establishmest fafiere the real world
implementations are able to connect and send data. Higlishbws a
visualisation of the mean difference encountered as flowandwidth are
varied. This shows how at a low bandwidth and high number ofdlthe
difference is the greatest and there is a general trend tswagher differences as

the number of flows is increased.

The results of this study show large variations in recordsatigut for various
parameter permutations of a very simple simulation scendhe study is not
intended to realistically model a particular real world figaration, rather it is
designed to explore how different TCP models and implentiemsrespond to
similar situations. Generating large amounts of perforceatata from various real
world TCP implementations is something that is difficult aegource intensive
(over 100 computers would be required just to run the scemaesented here and
it would take 280 days to perform with this amount of hardwarighout a

framework like the Network Simulation Cradle. The cradl@hvits multiple TCP

107

implementations, makes possible—and easy—comparatif@mpance studies of
TCPimplementationsver a range of networks and parameters with much less

hardware and time requirements than testing on real neswvork

5.3 Reproduced simulations

This section shows the use of the Network Simulation Cradleproductions of
simulations and experiments conducted in a range of TCRlvasearch. The
results in this section show again that using real world Ti@plémentations in
research is feasible for actual research undertaken with Si@ulation and more

so that useful results and insights are possible from usioly Bnplementations.

During the course of the research many simulation scenaseos reproduced.
Shown in the following sections are scenarios of intereshitmw the sorts of
differences encountered when simulating with the NSC abagdhe ns-2 TCP
models. For some reproduced simulations, the results nuke NSC stacks is
the same as using the ns-2 models, these simulations arevesed here. The
following results do not show that ns-2 simulates TCP inectty; rather they
show that in some situations the lack of detail in the ns-2 et important to

the result.

5.3.1 TCP fairness on high-speed networks

TCP over long distance fast networks is an active reseaszh 3iICP increases its
window very slowly and is sensitive to packet loss, resgltmlow link utilisation
on many fast long distance networks. This is due to the coation of the round
trip time being large and the congestion window size regluioemake full use of
the bandwidth being large. It takes many round trip timeslOP to increase its
window to be large enough to fill the network with packets; wpacket loss is

encountered this window is halved and the process needgiio &gain

Various schemes have been invented to alleviate this proldile remaining
compatible with TCP. BIC-TCP [9], HSTCP [174], FAST TCP [5B}FTCP [57]
and Scalable TCP [58] are examples. They also often havégongtwith fairness

(sometimes exacerbating TCPs inherent RTT unfairnessjvéZgence times for

108

these proposals vary [175].

These TCP modifications have been tested both in simulatidroa

testbeds [176]. The simulations in this section reprodupeements conducted
on testbeds presented by the Hamilton Institute technegadnt [175]. This report
has been widely cited in research since being published (246, 177]) and is
noted as a reference for the IETF Transport Modeling Rekdaroup led by Sally
Floyd [178].

Li et. al[175] aim to “compare the performance of competing TCP mol®in a
systematic and repeatable manner.” They define and use Blstahmark tests to
compare proposals to increase TCP’s performance on higiwbdth-delay
product networks. In this section a reproduction of one eirtexperiments is

presented.

Figurel®.b shows the original graphs presented as figure /1| The ratio of the
throughput of competing variants of TCP compared to “steshd&P” is shown
for different bottleneck speeds. Figlrel5.6 shows resattas-2 and NSC TCP

stacks in the same environment.

The topology used in the experiments is a dumbbell topolBgyh propagation
delay (and hence round trip time) is varied and the fairnesséden two TCP flows
is measured. The fairness is defined as the ratio of goodpiewvad by the two
flows after 60 seconds. The queue size is set to 20% of the bhdiiddelay
product. Flow start time is jittered by up to one RTT and eatlo§parameters is
simulated with 5 random seeds. The graphs show the meaegaiover the 5

simulations for each data point.

The baseline or “standard TCP” cases shown in figurde 5.5 predaced and
presented in figure3.6. The lines on the graphs without paimbw the results that
are consistent between the original experiments and tlhedeped simulations.
The fairness measured is near to 1 for RTTs greater than at egdOms,

meaning the two TCP flows equally (fairly) share the link baiutth. At low RTTs
on figurg5.6(8) the fairness is less stable. As queue sizsidoon the
bandwidth-delay product in this experiment, when both thé& Bnd bandwidth

109

Fairness Ratio

oo ——CtandardTCP

06 4
—8— HSTCP
OS5 feeenee “eeeoo —M— HICP 1
i —%— BieTCP
as i
1 2
10 10
RTT {msec)
Fairness with 10 Mbitisec Bottleneck
! —————
08 :
08
;1 SR 15 S
a 06+
b
&
% 05H
£
£ 04t
03
02 : :
: == StandardTCP
01F Fene s —8—BoalableTCP]
: —— FasT
o
1 2
10 10

RTT {msec)

Ratio of throughputs of competing New-TCP and standard T@Wsflas path propagation delay
is varied. Results are shown for 10Mbit/sec (left) and 250tidbc (right) bottleneck bandwidths.

Fairness Ratio

Fairness with 250 Miitisec Bottleneck

0

0S5}

,,,,,,, .”w.i_",“.;“.“

b GtandardTC P
—&— HsTCP

—— BieTCP

as
10

2
10
RTT (msec)

Fairness with 250 Mbit/sec Bottleneck

Fairness Fatio

[+ —8—ScalbleTER - -

== StandardTCP :

—#— FasT

2
10
RTT {msec)

Both flows have the same RTT. Queue size is 20% BDP.

Figure 5.5: Ratio of throughputs of competing TCP flows [175]

110

0.8

0.6

Fairness

0.4

0.2

0.8

0.6

Fairness

0.4

0.2

Figure 5.6: Fairness between two TCP flows as path propagagiay is varied

T
* E * *
+
"
,*/
£
XVV 1
10 100
RTT (ms)
NSC: FreeBSD5 vs. NSC: FreeBSD5 ——— NSC: Linux26 vs. NSC: FreeBSD5 +
NSC: OpenBSD3 vs. NSC: OpenBSD3 NSC: FreeBSD5 vs. NSC: OpenBSD3
ns-2: Sack vs. ns-2: Sack -------- NSC: Linux24 vs. NSC: OpenBSD3 -- - --
(a) 10Mb/s network
T
- + -
N +
1
10 100
RTT (ms)
NSC: FreeBSD5 vs. NSC: FreeBSD5 ——— NSC: Linux26 vs. NSC: FreeBSD5 -+
NSC: Linux26 vs. NSC: Linux26 NSC: FreeBSD5 vs. NSC: OpenBSD3
ns-2: Sackl vs. ns-2: Sackl -------- NSC: Linux24 vs. NSC: OpenBSD3 ---3---

(b) 250Mb/s network

111

are relatively low the queue size on the bottleneck routalsis very low (as low
as 3 packets when RTT is 16ms). Very low queue sizes lead troeés as it is
easy for one flow to occupy the entire queue, starving ther dithe. With higher

RTTs and/or a higher bandwidth the results are consistent.

These baseline results are extended by comparing diffé@Rtimplementations
against each other with the Network Simulation Cradle. Tineslshown on the
graphs in figur€hl6 without points are for when both TCP flomesfeom the same
implementation. The results on the graphs in figuré 5.6 virikbsl and points show
some of the combinations of standard TCP implementationgpeoed against
each other. In the context of [175] any of these results cbalthe “standard
TCP”. Perhaps none of them should be used as a standard T&2enef point
because no one implementation captures the range of rebolis here. Instead,

several TCP implementations need to be used to obtain tloistiation.

Li, Leith and Shorten [175] compare new TCP variations sicBl& TCP and
H-TCP against their standard TCP, which is the Linux 2.6.®@Ti@plementation.
The results in figurE5l6 show that there are large differeitéirness between
standard TCP implementations, as much as between someluftihepeed TCP
variants at 10Mb/s. Extending the scenario investigateadade further TCP
implementations shows that the “standard TCP” presentfld/i] does not cover
the range of performance results that are encountered wiltiphe different TCP
implementations. Using real world network stacks in sirtialameans evaluating
the scenario discussed in [175] is easy and not the prorelatnount of work it is

without the NSC.

5.3.2 Congestion control comparisons

Grieco and Mascolo [53] compare the Westwood+ [52], New RembVegas TCP
congestion control algorithms using simulations with re# some real world
measurements over the Internet. They analyse a seriesra#rsze single and
multiple bottleneck situations with various link capaesj buffer sizes, and traffic
types, wireless links used with Medium Earth Orbit (MEO) &wbsynchronous

Earth Orbit (GEO) satellites, and measurements from FTisteas on the

112

Internet. Reproduced results from two of the simulatiomaces in [53] are

presented in the following sections.
Single bottleneck scenario

A simulation scenario with a single bottleneck is used byeGriand Mascolo [53]

to evaluate goodput and fairness in bandwidth allocatiawéen flows of the same
TCP variant but differing RTTs. The topology used is a singahgle-bottleneck or
dumbbell topology. A varying number of TCP flows, namédhenceforth, send

data in the forward direction, while 10 TCP flows send dathereverse

direction. All flows in M use the same TCP congestion control mechanism. Round
trip times are uniformly distributed in the interviab + 230/M, 250)ms. M ranges
from 10 to 200. Simulations last 2000s of simulated time &eddottleneck link
bandwidth is 10Mb/s. This scenario is reproduced with th® Ti@plementations
available in the NSC used as the TCP model for the flow®in

The results presented by Grieco and Mascolo [53] for thigerpent are shown in
figure[5.Y. The results of the reproduction are shown in fififle Figurd 5.8(d)
shows the aggregate goodput for &lflows asM is increased. This result agrees
with the results shown in figufe 5.7(a) as oride= 40 the goodput levels out at
approximately 9Mb/s. TCP Vegas is not included in the repced study.
Figure[5.8(H) provides further insight into this result bypwing the variation in

fairness between the TCP implementations.

Grieco and Mascolo use the Jain Fairness Index [179] toméaterfairness

between the flows id/. This index is defined in the following equation:

J (Ei\ilbl)z
FI = ZT <M 10
MY, b?

Whereb; is the goodput of thé connection and/ are the connections sharing
the bottleneck. The index belongs in the interiall] where 1 is the fairest.

The Jain Fairness Index for the TCP models studied in fig@i@pis plotted in
figure[5.8(0). Itis evident that while the TCP models achigweailar goodput, the

fairness varies. The general trend of increasing fairnedg ancreases agrees with

113

1.0E+07 ~
9.0E+06
8.0E+06
7.0E+06 -
6.0E+06 -
5.0E+06 -+
4.0E+06 -

3.0E+06 - —-New Reno

2.0E+06 A & Vegas

1.0E+06 -4~ Westwood+

OOE+OO T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200

M=No. of TCP connections

Total Goodput (bps)

(a) Total goodput oveld TCP connections

1.00 +
0.98 -
0.96 -
0.94
0.92
0.90
0.88 ~
0.86 -

Faimmess Index

-~ New Reno

0.84 & Vegas

0.82 1 -+ Westwood+

0.80 \ : i ‘ . . i . . |
0 20 40 60 80 100 120 140 160 180 200

M

(b) Jain fairness index

Figure 5.7: TCP over 10Mb/s bottleneck with reverse trabig] [

114

Goodput (Mb/s)

Jain fairness index

10

20

40 60 80 100 120 140 160 180 200
Number of flows (M)
NSC: FreeBSD5 —— NSC: Linux 2.4 -------- ns-2: Sackl
NSC: Linux 2.6 NSC: OpenBSD3
(a) Total goodput oved/ TCP connections
T T T T T T T T
L // i
/
L/ |
// ,,,,,,,
/
/.
1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
Number of flows (M)
NSC: FreeBSD5 ——— NSC: Linux 2.4 -------- ns-2: Sackl

NSC: Linux 2.6 NSC: OpenBSD3

(b) Jain fairness index

Figure 5.8: TCP over 10Mb/s bottleneck with reverse traffic

115

the results presented in [53]. This trend occurs becaussvar ivalues of\/ there
is a greater variation of RTTs which increases TCPs unfagn€his variation in
RTTs is due to the setup of the experiment, where RTTs areumiy distributed

over an interval depending on the sizeldt

The results in figurg 5.8(p) also show the difference betvieeh
implementations. The ns-2 Sack TCP model creates resuithwhve the same
trend but using ns-2 abstracted models does not give anyl&dge on the range

of values the real TCP implementations produce.
Multiple bottleneck scenario

Figure[5.9(g) shows the simulation scenario used by Griaddvascolo to
evaluate the effect of multiple congestion points on TCRyestion control. The
figure shows the setup for 2 “hops” as they are described i E8ch hop
consists of two routers and two flows transferring data inogip directions. A
single flow, from sourc€’1 to sinkSink 1 traverses all of the hops. The number of
hops is varied and the goodput of the fl6i¥ is measured. The capacity of the
entry/exit links is 100Mb/s with 20ms propagation delaye™apacity of the links
connecting the routers is 10Mb/s with 10ms propagationyd®auter queue sizes
are set to 125 packets. Simulations last 1000 seconds wieredss traffic is
active all the time. The measured flawil begins after 10 seconds of simulated
time. A range of TCP variants are used for this flow. The flowsegating cross
traffic (C2 throughC'5 in the figure) are controlled by the ns-2 Newreno TCP

model.

Two graphs are presented by Grieco and Mascolo for this sithoul scenario.
Copies of the originals are included in figlirel5.9. Fidurdfy8hows the goodput
of the flow(C'1 as the number of hops is varied for the TCP congestion control
algorithms New Reno, Vegas and Westwood+. Figure §.9(ayshehat Grieco
and Mascolo refer to as the “total goodput”, defined as'go@dput of theC
connection + average of the,, Cy...C5 connection goodputs[53]. These
scenarios are reproduced with the NSC TCP implementatiopksice of the TCP
variants used in the original work. Grieco and Mascolo use Reno TCP as the

baseline TCP to compare Westwood+ to; the results of th@degtions shown in

116

figure[5. 10D show the variation between TCP implementatidmscould

represent this baseline.

The graphs in figure’5.10 show only the FreeBSD 5 and Linux Z6& NCP
implementations for brevity. Other TCP implementationsduced results
between these two implementations. The graphs includedsnde intervals
created based on 20 simulations with differing random sésd=ach point on the
graph. The confidence intervals are small enough that theelgand to see with the
naked eye; the half-lengths range between 1% and 5% for and 0.1%
and 0.9% for figur€ 5.10(p). Only the ns-2 TCP Sack model isvarHmut results

are consistent with those produced with the ns-2 NewRenomGdrl.

The reproduced results in figure 5.10 should be comparedwoRémo in the
original results, as the TCP stacks use the New Reno congesintrol algorithm.
The trends shown in the original research are reproducexivtién the ns-2 TCP
model. The goodput of th€'1 connection starts at around the fair share and drops
linearly to below10° bps. The total goodput drops off quickly as hops increases
then levels out near.10° bps. These trends are the same in the original research
(figure[2.®) and the reproductions shown here (figurel 5. 188. résults from the
NSC implementations show how there are a range of goodpeasded; when the
number of hops equals 10, the Linux 2.6 TCP implementatitairest over three
times the amount of goodput for tldi&l connection than the FreeBSD TCP
implementation or the ns-2 Sack model. The general treredtharsame in the
graphs in figur€5.10 but the gradients are different andetiseat wide variation

between the two TCP implementations shown.

5.3.3 Request latency for a SIP proxy

Lulling and Vaughan [180] simulated session initiationtpoml (SIP) requests
aggregated through a TCP proxy with different TCP variahktey compare
Tahoe [181], Reno [182] and Sack [11] variants of TCP withrtke? simulator
and show SIP request latency under unfavourable netwodknditions such as
that found on a best-effort network such as the Internet.efteet head of the line

(HOL) blocking has on latency of SIP requests aggregateditiirone TCP

117

Sink 3 Sink 5 C5

Sink 1

c2 Sink 2 C4 Sink 4

vv

1st hop 2nd hop

(a) Scenario

1.0E+07
1.0E+06

1.0E+05 +

——New Reno
1.0E+04 | —=— Vegas

Goodput of the C1 connection (bps)

—— Westwood+
----Fair share
10E+D3 T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10
No. of traversed hops
(b) Goodput for the”'1 connection
1.0E+07
9.0E+06
‘2. 8.0E+06
=
2 70E+06 -
g
S 6.0E+06 -
=
C 5.0E+06 A
&= -e-New Reno

4. 0E+06 - & Vegas
-+ Westwood+
30E+O6 T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10
No. of traversed hops

(c) Total goodput

Figure 5.9: TCP goodput vs. number of traversed hops [53]

118

Goodput of the C1 connection (bps)

Total Goodput (bps)

le+07 T T T T T T T T

1le+06

100000 5
10000 5
1000 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
No. of traversed hops
NSC: FreeBSD5 ——+— NSC: Linux26 ---x--- ns-2: Sack :--%---
(a) Goodput for th&€'1 connection

le+07 T T T T T T T T
9e+06
8e+06
7e+06
6e+06 E
5e+06 E
4e+06 E
3e+06 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

No. of traversed hops

NSC: FreeBSD5 +——+— NSC: Linux26 +--x--- ns-2: Sack :-----

(b) Total goodput

Figure 5.10: TCP goodput vs. number of traversed hops

119

10Mb/s
15ms

10Mb/s 2Mb/s 10Mb/s

15ms \1/ 15ms \2/ 15ms

Figure 5.11: Simulation topology used for SIP simulaticaapted from [180])

stream is analysed.

Figure[5. 11l shows the simulation topology used in the SIRikitions. Nodes 0
and 3 are the SIP proxies using the TCP variants studiedfidimfjenerated using
a stationary Poisson model to generate the arrival timed »fidyte session
establishment requests at node 0. This models a SIP sessaiighment
“INVITE” request arriving from a user to a SIP proxy. The regts are
immediately forwarded to the proxy at node 3 and the arrivaétrecorded. SIP
would usually respond with a “100 Trying” response, thoughk ts not modelled
here. The TCP MSS is set so a SIP message occupies one TChsegGRe

delayed acknowledgements are disabled.

This simulation setup is used to test SIP request latencgruradying loss
conditions. Figur&€5.12 shows the average request latemégdreasing packet
drop rates. The original results presented by Lulling anagVan [180] are shown
in figure[5.12(3), these are from figure 9 of [180]. Figure th}2hows a
reproduced graph with extra results from using the NSC Fs&eBnd OpenBSD
TCP implementations. Linux is not included because delapgdowledgements

cannot be disabled in the Linux TCP stack

Lulling and Vaughan analysed the delays under these loghtamms and check
whether the latency is within a 2 second bound. This boundéstd ISDN
switches used to interconnect within the public switchéelieone network
(PSTN) which may abandon a call if a reply from a setup attampot received
with 2 seconds [183]. They were able to conclude that TCP &aitie only TCP
variant that is able to satisfy this bound under all losssr#gsted. As figurg 5.12(b)

shows, simulating with real world code provides extra ihsigto this scenario:

Linux has a socket option calle@Ul CKACK which disables delayed acks for only a short pe-
riod, not the entire TCP connection duration.

120

12

10k Random Packet Loss

w
£ 9
o ‘TahoeMeanDelays' ——
z 'RenoMeanDelays' -+
5, 'SACKMeanDelays' -
= BF
©
©
(i}
4|
21
L
0 1
0 0.5
Packet Loss Level (%)
(a) Original results [180]
12 T T ;
10
=~ 8 i
o / !
c i J
2 / ;
< /
=] 6 / N
o i i
o /
() /'
[=2) n /
] ! /
g 4 ;
< / :
2
A
ob— S——u ' = !
0.1 0.2 0.3 0.4 0.5 0.6
Packet loss rate (%)
ns-2: Tahoe ---%--- ns-2: Sack --m-
g

NSC: FreeBSD —+—
NSC: OpenBSD ---x---

ns-2: Reno

(b) Reproduced results

Figure 5.12: Average SIP request latency for increasing lates

121

FreeBSD has an average latency of over 4 seconds at a loss €a%6 where

OpenBSD has a very large latency once the loss rate is gtbatef.3%.

It is unclear why such a low segment size was chosen for tmslation scenario
as Internet MTUs are generally higher [6, 184, 185]. It isqtlole this was an
attempt to reduce delay and jitter. When a higher MTU suctb@$ 1s used the
request latency is much lower than presented in figurd 5.@28v&sely, delayed
acknowledgements are widely used in real TCP implemems{it39] and

increase the SIP request latency under random loss.

5.4 Summary

The simulation results shown here show that large diffexemman be found
between TCP implementations and models in the same scehlsiitg real world
TCP code in simulation makes it practical to evaluate of hoarge of TCP
implementations react to a scenario, when such testing anag/ prohibitive cost
without a system like the Network Simulation Cradle. Thialeation provides
additional knowledge about a simulation scenario. It \&kd existing results
and/or gives greater insight by showing the range of perémiee values recorded
by real implementations which can be very different to theuhs from simulated

abstractions.

122

Chapter 6

With more detail comes greater cost

Performance is important for a network simulator and its etsida researcher
needs to be able to run a set of simulations in reasonabledimigtain results to
analyse. Network simulators are often designed to addnesguestion of
performance. For example, the ns-2 implementation is sptiveen C++ and
OTcl; OTcl is only used for configuration where as time catiparts of the

simulator and models are written in C++ for performance [17]

The Network Simulation Cradle provides TCP models that@ienided to increase
accuracy by using real world TCP code. This reduces the @hadbstraction in the
models, something which is generally noted to decrease

performance [17,129, 186, 187]. There are a variety of faaéfecting the
performance of the NSC. The NSC TCP models perform many tipesahat

TCP models found in a simulator like ns-2 do not perform, sagh

checksumming of all packets;

full packet payload used;

extra integrity checking;

receive windows; and

software interrupt clock handling.

However, there are some mitigating features. The TCP img@htations are finely
tuned for performance. The implementations that are pahleNSC are in some
cases many years old; they have matured and been optimised éong period of

time. The same may not be true of a simulation model; in somatsns a real

123

implementation may be faster than a simplified model. Thiamsehe relative
performance of real world TCP implementations and simplili€P simulation

models is not clear.

Overall, more work is performed by a real implementatior bacause of this, we
expect worse performance. This chapter presents quargitatasures of relative
performance between the NSC TCP implementations and gietpliCP models.
The NSC is compared to ns-2 TCP models. ns-2 is chosen bectiise
popularity for TCP simulation—it provides models that acalable and fast
enough for many practitioners of TCP simulation. As the ulyileg simulator
used to run both the NSC models and the ns-2 models is the gaswasonable

to compare the performance results of the models directly.

6.1 Performance measures covered

A basic measure of performance of a simulator is how manyrskcof simulated
time can be simulated per second of real time. This depentiseoscenario
simulated and the computer which runs the simulation. Grapthe relationship
between the two measures of time shows whether each TCP nsetbhas a
linear increase in CPU time required as the simulation tenedreased (this is
shown later in figur€®l1). Each scenario we analyse to ske g¢aling is linear
for ns-2 and NSC TCP models; if this is so then the gradieni®fihes on the

graph provide a measure of relative performance.

The number of TCP flows in a simulation scenario can be vaa¢edt how
performance scales as the number of TCP flows that need tonodased
increases. Both the time taken and the memory required ax#be of the
simulation increases are important as they will limit treesof simulations that

can practically be run by simulation researchers with th€NS

Simplified TCP simulation models often do not simulate papkgloads. Only
packet header information is required to simulate TCP dyosyso packet
payloads are not used: this reduces memory usage and meatisetipacket
payloads do not need to be copied between the applicatiofi@Rdnodels which

reduces the amount of work carried out per packet. The reBliimplementations

124

in the NSC use full packet payloads. The cost of doing so ik/aed by measuring

CPU time and memory usage as the amount of data transferireztéssed.

There is potentially a lot of processing per packet in a realdvT CP/IP
implementation. The implementation needs to ensure tlekepsare destined for
the host the implementation is running on, it needs to chack packet for
integrity with checksums and must match each packet to a TP 8tevens [84]
discusses the processing performed when a packet reaeh€SEhinput
processing function in a BSD TCP implementation and shoafsrttany
operations are performed before the packet is fully pramks& TCP model
designed for a simulator is able to ignore many of the requéras of a real
implementation due to being run in an isolated, controll®drenment. This
processing overhead per packet is investigated due todkslige discrepancy in

the amount of work required to process each packet.

A fine-grained analysis of performance is possible by prajithe simulator when
simulating with either the NSC TCP models or the simplifiedPTi@odels.
Profiling with tools such as OProfile [188, 189] and Valgrid@(] provide

detailed information on where CPU time is spent and memougésl.

A view of performance encountered when running simulateenarios used in
published research is provided by CPU time measurementeaéproduced
simulations presented in chaptEls 4 Bhd 5. The time measatstitom the

simulation scenarios in previous chapters is reportedigctiiapter.

The globaliser (discussed in chagdier 3, pade 53) has a paafare impact at
compile time. The time to build the TCP implementations wiité globaliser is
measured to gain a quantitative measure of the time takensikzk of the shared
libraries created during the build are checked, as thisefimemory usage at
runtime when the shared libraries are loaded. The outpiteoflobaliser also
impacts runtime performance because it creates indirearereces to data. The
cost is measured by comparing simulations run using the NSE models with
the globaliser enabled and disabled—this is possible if onk TCP endpoint per

shared library is required in the simulation.

125

Table 6.1: Performance testing setup

CPU AMD Athlon XP 2100+ (1730MHz)
CPU Cache 256KB

RAM 1.0GB

Simulator version ns 2.29

NSC version 0.2.3

Operating system distributionUbuntu Edgy Eft (6.10) Linux
Operating system kernel Linux 2.6.17-11-386
Compiler gcc4.1.2

Results from running experiments to analyse these isseqwasented in the next
three sections. Sectign 6.2 shows CPU-time measurement®rs.B shows
memory usage measurements and se€fidn 6.4 shows resut{seoineents with
the globaliser. The overall impact on performance is disedsit the end of this

chapter, in section @.5.

6.2 CPUtime

The CPU performance of the Network Simulation Cradle for B@Rulation
compared to simplified TCP models is presented in this secBomulations are
run with only the TCP model used changing. Run time is reabudiéh the Linux

t i me command which reports real, user and system time spentrrginé
process. To measure the run time there command is configured to report the
total number of CPU-seconds that the process used (wak tloe). The machine
used to record the statistics is set to single user mode endtber user applications
are not running. Results are reported in graphs with condel@rtervals from a

minimum of 20 runs. The simulation machine setup is sumradriis tabld 6.11.

A simple dumbbell topology is used in the following experintgeto show the basic
performance of the Network Simulation Cradle. The bandwadtthe bottleneck

link is 2Mb/s, the round trip time of all flows is 40ms and the M5 1500.

6.2.1 Time to simulate simple scenarios

Four simulation scenarios are covered in the followingieast In each scenario
one simulation parameter is varied. The CPU time to simukeescenario with

each value of the varied parameter is plotted. The amountafiated time,

126

number of TCP flows simulated, packet size and amount of dataferred are the
parameters varied. These scenarios are studied to see artyeddferences in
simulation time are most prevalent. This information caemtbe used to decide on

how to optimise simulation of real world TCP implementatoivequired.

Checking that the relationship between simulated time aatitime is linear
ensures that the simulation does not degrade over timeislfitear, the gradient

of the relationship provides baseline performance resdiléssimple simulation.

The scaling of TCP models is investigated by increasing timelver of TCP flows
simulated. The amount of work done per packet is analysediyng the
maximum transfer unit. The cost of using full packet paykasdpresented by
graphing the amount of data transferred versus the timertolate for each TCP

model.
Simulation time vs. real time

Figure[6.1 shows the time to simulate when simulating a sifi@P flow with a
unidirectional bulk transfer. The length of the simulatisivaried and the real
(wall-clock) time to simulate recorded. Figure 6.1(a) shdke relationship
between simulated time and real time for all TCP models stlidl'his relationship
is linear. Other ns-2 TCP models have very similar resultedgse shown in the
figure and are omitted for brevity. The gradient of the lineslee graph are shown

in figure[6.1{D): this shows how many seconds are simulateeMery real second.

These results show that ns-2’s simplified TCP models arestlBibmes faster
than NSC with OpenBSD at simulating this scenario and rougHl times faster
than NSC with FreeBSD.

Increasing TCP flows vs. real time

The time taken to simulate many flows over the topology dbsedrearlier is
presented in figureg.2. With many flows, the difference betw&mulating with
NSC and ns-2 TCP models is less than with a single flow. Withf@@s, the
worst case of NSC using the Linux 2.6 TCP stack takes rougblyies as long

to simulate than ns-2's Sack TCP model.

127

Real time (s)

Simulation seconds per real second

25 T T T T T
20 - .

15 F 4

0 100 200 300 400 500 600
Simulated time (s)
NSC: FreeBSD ——+— NSC: Linux 2.6 :--%---! ns-2: Sack --m-—
NSC: Linux 2.4 ---x--- NSC: OpenBSD 8-

(a) Simulation results

100
|

80
|

60
|

20
|

NSC: FreeBSD NSC: Linux 2.4 NSC: Linux 2.6 NSC: OpenBSD ns-2: Sack

(b) Simulation speed

Figure 6.1: Simulated time vs. real time for a single TCP flow

128

3500 T T T T T T T T T

3000 | g
2500 | £
2000 | i

1500

Time to simulate (s)

1000

500 | O
e
0 It |
0 20 40 60 80 100 120 140 160 180 200
Flows
NSC: FreeBSD5 +——+—1 NSC: Linux26 :-----! ns-2: Sack ~-m--
NSC: Linux24 ---x--- NSC: OpenBSD3 &

Figure 6.2: CPU time to simulate many flows

There is a smaller number of packets to process per TCP coomé&tthis
situation which is a likely reason for the difference in désaompared to
figure[&1. The bottleneck link is still the same bandwidtleaming the number of
packets which get through will be similar in both simulagokVith 200 flows,
there will be a large amount of congestion, meaning theressiply more
interaction with retransmission timers, but as there is\arall decrease in the
number of packets which must be processed per TCP streara,isHess work to
do per TCP model.

The relationship between number of flows and time to simdhtevn in figuré 812
is non-linear: the time to simulate as the number of flowsegaincreases
approximately exponentially for all models including theaplified ns-2 models
and the NSC TCP implementations. The exponent is largeh®oNSC TCP

implementations.
Per-packet cost

Real TCP implementations must perform additional proogsger packet sent or
received than the simplified TCP models present in ns-2. ¥amele, real TCP

stack implementations must check incoming packets fogitieas, in the general

129

cases, packets may be erroneous. Models built solely farlatron can make
many assumptions about the data received, as the chaséicteof the
transmission are controlled entirely by the creator of theugation scenario.
Comparing the time to process many packets is of interestusecthe results show
whether the difference in TCP models means that there aferpence

differences and how large the differences are.

Varying the maximum transfer unit (MTU) in the same simwatscenario as
shown previously, directly affects the number of packetepssed. A single TCP
flow transfers data as fast as possible for 120 seconds ofagmatime. The MTU
is varied in the following experiment. The way the time to glate varies as

packet size is changed is presented in fiflure §.3(a).

The trends for NSC's FreeBSD and OpenBSD implementatiodsafR’s Sack
model are similar. The two Linux TCP implementations diiigren the MTU is
less than or equal to 1000 bytes. The goodput results arersindigure[6.3(1).
The Linux TCP implementations do not handle small MTUs wel achieve
much less goodput than the other TCP implementations studéh less
goodput, there are less packet processing events to serandttherefore the

simulation takes less time.
Simulating large data transfers

ns-2’s TCP models do not include a full packet payloadseadtach simulated
packet has ai ze field which is used to describe the packet size. There is no
payload that must be copied when the packet enters and laaueB model. The
real world implementations in the NSC copy the packet datenndata it sent or
received by the simulated application and when packetsesteos received from
the network stack. To analyse the effect of this differemcgimulation that
increases the bandwidth of the bottleneck link while kegfandwidth-delay

product and simulation time constant is used.

The bandwidth-delay product (BDP) is fixed at 50kB. The badtiwof the
bottleneck link ranges from 56kb to 100Mb. The delay is dalimd as follows to
ensure the BDP is constantlay = bdp/(2.0 x bandwidth). The results of this

130

Time to simulate (s)

Goodput (Mb/s)

18

1.6

1.4

1.2

0.8

0.6

0.4

0.2

1000

NSC: FreeBSD5 +——+—
NSC: Linux24 +--x--+

Maximum transfer unit (MTU)

NSC: Linux26 :--x--- ns-2: Sack ~-m--
NSC: OpenBSD3 g~

(a) Time to simulate

NSC: Linux24 +--x--+

,*’//
L - /;{ i

' //
V.

P P |

1000 10000

Maximum transfer unit (MTU)

NSC: FreeBSD5 +——+—1 NSC: Linux26 :-----: ns-2: Sack ~-m-

NSC: OpenBSD3 &
(b) Goodput

Figure 6.3: Time to simulate and goodput with a varying MTU

131

A

10

Time to simulate (s)

0.1 N . N . N | .
100000 1e+06 le+07 1le+08

Link bandwidth (bps)
NSC: FreeBSD5 +——+—1 NSC: Linux26 :-----: ns-2: Sack ~-m-
NSC: Linux24 ---x--- NSC: OpenBSD3 &

Figure 6.4: CPU time to simulate increasing amounts of data

simulation are shown in figufe6.4.

The results show similar linear growth rates of time to sambelversus link
bandwidth for all TCP models measured. At bandwidths ofteas 1Mb the
gradient is smaller due to the small amount of data traresfethe TCP models are
not able to make full use of the bandwidth available in theusation time due to
the high latency. ns-2's TCP model is the fastest but slowgdat the same rate
the real TCP implementations do. This means that the pediocaof the
simulation is not bounded by the extra copying of data dueabpacket payloads
in the NSC.

6.2.2 Time required to simulate more complex scenarios

The previous performance results show the time to simutatednstrained
situations. Such simulations do not give a good understgnafi this performance
in the type of scenarios carried out by many researcherbggsattern of usage is
likely to be different. The results in this section are froimuslation scenarios used

in published research.

Results from simulations run for research replication igsigresented in

chapter§ ¥4 and 5 and in [163, 191] are presented in flgureGtheke studies a

132

50

15 20 25 30 35
40

30

10
|
20

Simulation time (minutes)
Simulation time (minutes)

|
L — -

g — —_

5
|

10

0
|

0
|

T T 1 T 1
ns—2 NSC Hybrid ns—2 NSC

(a) A multiple bottleneck topology with ufb) A dumbbell topology with up to 210
to 160 flows including cross traffic flows including reverse traffic

15

15
|

1.0

Simulation time (s)
Simulation time (s)

10
|

T

'
E E—
0w - J——

T T T T T
ns—2 NSC Hybrid ns—2 NSC

(c) Two TCP flows on a high bandwidtd) One TCP flow over a network with ran-
delay product path dom packet loss

Figure 6.5: Simulation times for complex scenarios

dual AMD Opteron 250 and a dual Dual-Core AMD Opteron 265 aeduwith the
simulations randomly distributed across them. Some ofithalation scenarios
use either ns-2 simplified TCP models or NSC TCP implementatiwhile others
use both in a hybrid combination (for example, there is aa@geenvhere 200 flows
of two different TCP types are simulated using an NSC TCP éemgntation for
100 flows and an ns-2 TCP model for 100 flows).

Figure[6.5(d) shows the time to simulate the scenario destin

sectio4.311 (see pafel92 for a complete description oft@sario). This
simulation uses a complex topology consisting of multipéleneck links and up
to 160 TCP flows. There are two different TCP variants usedisigimulation,

one is used to generate background traffic and used for 10 Wdwis the other is

133

used for the rest of the flows in the simulation. Simulatiast BOO seconds of
simulated time. 2040 simulations are run in this scenarébtha CPU time

measurements of these are used to generate the data intinés fig

The graphs show the minimum, lower quartile, median, uppartge and
maximum values of time to simulate for each simulation sdgen&ach data point
included in the distribution is recorded from a single siatiagn run. A range of
values is expected due to different sets of simulation patara requiring a
different amount of time to run. The ranges can be compartddan ns-2, NSC
and hybrid situations due to each group running simulatwatisthe same set of
parameters. These graphs give a simple view of the disioibof results which is
useful: it is apparent that many of the results using NSC T@flementations has
a very large range but much smaller inter-quartile rangdicating that the

simulations that take extreme lengths of time are excegptiatner than the norm.

The simulation times shown in figure 6.5(b) are recorded fsamulating up to
210 TCP flows over a dumbbell topology. 10 flows are used taeteackground
traffic and up to 200 flows are measured over a bottleneck idlobib/s. This
scenario is described in detail in section 3.3.2 (see page CPU time
measurements from 70 simulations are used to generatetdnandhis graph. The
maximum time to simulate in this situation is almost six teggeater when the
NSC TCP implementations are used. However, the median amidhonn time to
simulate are very close, within 6% of each other. The uppartde when using
the NSC is higher than the maximum when using ns-2 TCP modelisating that

a large percentage of simulations are taking much longértivé NSC.

Figure[6.5(d) shows the time to simulate two TCP flows on a badwidth-delay
product network: round trip time varies from 16ms to 162mg bandwidth is
10Mb/s or 250Mb/s. This simulation scenario is covered otiea[5.3.1 (see
pagd10B). CPU time measurements from 2700 simulationssakto generate
the data in this figure. The time to simulate when using the MS{pproximately
twice the time to simulate with ns-2 TCP models. Of the grapHgurel&5, this
is the only one that shows the minimum time to simulate whémguthe NSC is

much higher than when using ns-2 TCP models. This could beddie higher

134

bandwidths used in this simulation; section 8.2.1 showedthere is a large offset
in time to simulate at high bandwidths, though the percentifference in time to
simulate does not grow. This explains the results shown urd[§.5(d): the
minimum is higher, but the minimum, maximum and median draraund two to

three times higher when using the NSC.

The results shown in figufe 6.5[d) are CPU time measurementsthe scenario
presented in sectidn 4.8.2 (see pagde 94): a single TCP floargoithg random
packet loss. The results shown are generated from analgrsmyntime of 35000
simulations. There is much greater variability of runtimieen using the NSC TCP
implementations. There is approximately a difference @& fimes between using

the simplified ns-2 TCP models and the NSC TCP implementsition

The simulation time for the set of four different simulatiecenarios in figure 8.5
have some characteristics in common. The maximum time talatewhen using
NSC TCP implementations is higher than the maximum whergussa2 TCP
models, while the minimum is often similar; the range is ¢geavhen simulating
with NSC. Figurg 6.5(lh) shows a situation where the mediae to simulate is
very similar (though the maximum and inter-quartile rargjlarger). The
difference in time to simulate in these complex scenariggmslar to the
differences found in the simpler scenarios. The differeacges from being very

similar to differences of around five times.

6.2.3 Profile

The results shown in sections 6]2.1 &nd 6.2.2 show the NSCim@lementations
to be slower by up to 400% in almost all cases but give littkéght into what

causes the performance difference. Profiling the simutktows where the most
time was spent in the simulator for a specific simulation aden Profiling is used
here to gain quantitative information on the differenceenfprmance for a single

simulation scenario.

The system-wide profiler OProfile [188, 189] provides proflinformation with a
low overhead by making use of a system’s hardware perforsmeognters.

OProfile uses profiling support in the system’s CPU if possé#id falls back to

135

using statistical profiling (where a timer interrupt is deshby OProfile to
periodically poll applications and record their state)tHa results presented the

performance counters present in the AMD Athlon XP CPU arel bgeOProfile.

The following results are gathered by OProfile when simntathe scenario
described in sectidn’5.3.1 (the performance results fersténario are shown in
figure[6.5(d)). Two TCP streams compete over a bottlene&kolir250Mb/s with
an RTT of 82ms. The TCP model or implementation is the samedoh TCP
endpoint. This scenario was chosen due to the large differenperformance
between simulations using ns-2 TCP models and simulatimgulse NSC TCP

implementations.

Results from profiling this scenario are shown in tables®@.2and 6.l. The ten
functions that the most amount of CPU time was spent in anchibdule they are
located in are shown in each table. OProfile shows a detailalysis with many
more functions included but only the top ten are shown as dla¢@f this
experiment is to compare where the majority of CPU time isispResults are
shown for the NSC TCP implementations Linux 2.6 (tdblé 6r2) ereeBSD
(table[6.B) and ns-2’s Newreno TCP model (tdblé 6.4). Thaltefor the Newreno

model are consistent with results measured from other nSR2 models.

TheSamplesolumn in tabled"6]1Z, 6.3 afd 6.4 is the number of times a @ampl
from OProfile found the CPU to be executing the function dstetheSymbol
column inside the module listed in th@agecolumn. ThePercentcolumn refers
to the percentage of the total execution time of the prodesstas spent inside

the function.

When simulating the Linux 2.6 stack, the most time is spetii@function

Cal endar Schedul er: :i nsert. This function is used to add a new
simulation event to the global event list. The NSC agent fouk 2.6 schedules a
timer event every 1ms, where the other TCP implementatiesasuimer that fires
every 10ms. Whenever the timer is rescheduled a new sironlatient is added to
the global event list. This explains why the insert functimhigher in tabl€ 612
than in the other tables. Three functions from the Linux h#&red library

(I'i bl i nux26. so) also appear on the profile, although none of these functions

136

Table 6.2: ns-2 profile using NSC: Linux 2.6 TCP

Samples Percent| Image Symbol
17521 7.7733| ns Cal endar Schedul er: : i nsert
17339 7.6926| ns Schedul er: : di spatch

16214 7.1935| libm-2.3.5.s0| (no symbols)
12256 | 5.4375| liblinux26.so | Sk_stream wai t _menory
10561 | 4.6855| liblinux26.s0| get _stack_id

9823 4.3580| ns Schedul er: : schedul e

9029 4.0058| liblinux26.so| t cp_sendmsg

8899 3.9481| kernel (no symbols)

8333 3.6970| ns CBR Traffic::next _interval

Table 6.3: ns-2 profile using NSC: FreeBSD TCP

Samples Percent| Image Symbol

15528 8.2930| libm-2.3.5.s0 | (no symbols)

14006 7.4801| ns Schedul er: : schedul e

13823 7.3824| ns Cal endar Schedul er: :i nsert
12744 6.8061| ns Schedul er: : di spatch

10933 5.8389| kernel (no symbols)

10137 5.4138| libc-2.3.5.s0 | (no symbols)
9315 4.9748| libfreebsd5.sq sosend

7928 4.2341| ns CBR Traffic::next _interval
6903 3.6867| ns NSCSi npl eAgent : : sendnsg
6520 3.4821| ns TcpAgent : : sendnsg

uses more percentage time than the scheduler insert fantiidm 2. 3. 5. so
is the C mathematics library and is likely used when workintpwhe floating

point numbers used to express time in ns-2.

When the FreeBSD stack is used as the TCP implementatioe sirttulation
scenario the profile data is similar to the profile for Linug,2as seen in tab[e8.3.
Inserting and managing the global event list via8ededul er classes is again
near the top of the table. The functisosend (a generic function used to send
data through a socket) is the only function from the FreeB@plémentation that

appears on the table.

Table[6.4 shows the profile data for the simulation scenahenusing the ns-2
Newreno TCP model. Interaction with the scheduler and thiaemaatics library

are again prevalent.

The results from using other TCP implementations with NSGHe test

introduced at the start of this sectidj&(Z.3) are similar to those shown. No one

137

Table 6.4: ns-2 profile using original TCP agents

Samples Percent| Image Symbol

16119 | 13.0132| libm-2.3.5.s0| (no symbols)

15042 | 12.1437| ns Cal endar Schedul er: :i nsert
12800 | 10.3337| ns TcpAgent: : sendnsg

9969 8.0481| ns Schedul er: : di spatch

9301 7.5089| ns Schedul er: : schedul e

7434 6.0016| ns CBR Traffic::next _interval
6320 5.1022| ns RenoTcpAgent: : wi ndow
5461 4.4088| ns Cal endar Schedul er: : head
5360 4.3272| libc-2.3.5.s0 | (no symbols)

4098 3.3084| ns TrafficGenerator::tineout

operation performed by the real world TCP implementatiakes$ up any greater

percentage of CPU time than existing interactions in thaukitor.

Callgrind and KCacheGrind are part of the Valgrind [190hfiework that records
detailed performance results. KCachegrind is a visuabisaool for the data
recorded by Callgrind. Profiling with these tools was alseduand they show that
the time spent in the mathematics library is due to the us®afifig point

functions inCal endar Schedul er: : i nsert. This insert function is called
mostly from two timers: one is used to generate applicatiaffi¢

(Traf fi cGenerat or andCBR_Tr af fi c in the earlier tables) and the other is
used by the NSC ns-2 simulation agent to send timer messagfes ¢radled TCP
implementation. The time spentlin bc- 2. 3. 5. so is due to calls toral | oc
(memory allocate)hzer o (set an area of memory to 0, used when the packet

structure is allocated in ns-2) anhd ee (free memory).

6.2.4 Discussion of CPU performance

The difference in performance between simulating TCP wiimgplified ns-2
TCP model and simulating TCP with a full TCP implementationessed via the
Network Simulation Cradle varies between simulation sgesaln almost all

cases studied using a simplified model will take less timenmkate.
Trends

The way CPU time varies against the parameters tested agagnsimilar for the

real world TCP implementations and the simplified modelgufe{6.1, which

138

shows the relationship between simulated time and realfima simple scenario,
shows linear scaling for all TCP models studied, with a sifigal ns-2 TCP model
being between 2.4 and 5 times faster than the NSC TCP implatnams. The
same scaling is also evident for all TCP models in figuré o4&t TCP models

slow down at the same rate as the amount of data to transfesrisaised.

The per-packet cost simulations, shown in figure 6.3, shovilai trends between
the real world TCP implementations and the simplified TCP ehothe trend is
not linear and the ns-2 TCP model is consistently betweeratvabthree times
faster, but the same pattern is followed by all TCP modelswhe MTU is

greater than or equal to 1500.

Non-linearity is also presented in figurel6.2. This showstithe required to
simulate as the number of TCP flows increases. The growthsabeighly
exponential and the rate of change of the gradient showneogrtph appears to

follow the same pattern for all stacks measured.

In summary, the same trends are followed by real world TCRampntations and

simplified TCP models in the tests covered.
Additional cost

It is slower to simulate using the real world TCP implementa in the NSC than
using the ns-2 simplified TCP models in the scenarios studied percentage
difference in time to simulate varies; in the reproducedusations (covered in
sectior6.2R) the difference in median time to simulatéeganetween 2% and
250%. The distribution of times varies more than this as thelgs in figurégl5
show: the difference in maximum time to simulate in the gsaypdries from

between 170% to 450%.

The difference in time to simulate between real world TCPlengentations and
simplified TCP models in the simulations (covered in seddhl) are within the
same range. Figufe 6.1[b) shows a direct comparison whegrtiplified ns-2
TCP model is between 205% and 365% percent faster than the TCP

implementations.

139

Profiling data gathered using OProfile [188] shows an iner@aghe cost of the
simulator scheduling algorithm. Virtual time is implemedin the NSC by calling
the software interrupt function in the network stack. Thisdtion would normally
be called from the hardware interrupt clotk times a second, where: varies but
is often 100 or 1000. The NSC simulates this clock by enquaitigner event.z
times every virtual second. This happens for each instahastack (as their

timers will not normally be synchronised).

The scheduling algorithm used by ns-2 is a Calendar Quel} [default. The
Calendar Queue has been shown by several researchers toanBenance
problems in some situations. Tan and Thng [193] proposetSNOOPy
Calendar Queue,” while Ahn and Oh [194] presented the “Dyin&alendar
Queue.” Yan and Eidenbenz [195] showed another calendaegtige “Sluggish
Calendar Queue.” Each of these modifications to the origilgadrithm are
designed to increase the chance of partitioning the catendaue in an optimal
way. Using a more efficient scheduling algorithm could iasethe performance

of scheduling with the NSC.

The implications of the impact in CPU performance due togiie NSC TCP

implementations are discussed further at the end of thetehipsectio 615.

6.3 Memory usage and scalability

The extra memory used by TCP implementations limits schtiabl he simplified
TCP models in ns-2 do not send actual data and therefore deerdtto buffer any
data. Each real world TCP connection endpoint has a socKet laund network
stacks store some amount of global state, all of which isempired for the ns-2
TCP models. Memory use is important because it limits theptexity of a
simulation run on a computer: a simulation that requirestoeh memory cannot
be run if the required memory resources are not availabldéwatslow simulation

may be left running for a longer time).

Measuring the memory used by an application is not straoghdird. Memory is
shared between applications, paged in and out (betweerdiskrdnd RAM) and

separated into several sections, making measurements afrtbunt of memory

140

used by a process difficult. There are several metrics thexd.aperating system
can report that provide a measure of the memory used by agsduoat none of
them show the amount of stack and heap memory allocated lprolgeam. The
total memory an application can address is known as thecgtiplns Virtual
Memory (VM) size. The amount of this that is resident in maiemory is called
the Resident Set Size (RSS). An executable and its sharedi¢éib are mapped
into the VM of the process. The code of the shared librarigghirbe shared with
other applications. The code and data of executable anddhhbraries are usually
static; they do not grow over the lifetime of an applicatierdept for the loading
of more shared libraries if they are requested). Dynamic argns allocated in
two ways: the heap and the stack. The stack is fast and ofteted to a small
sizQ while the heap is used for general memory allocations andgno size over
the life of an application. The amount of memory allocatedrenheap is a useful
metric to show the amount of memory used by an applicatiomduuntime, but

the metrics reported by the operating system do not provwide t

A tool named HeapProf [196] is used to measure heap usagePH#ds a shared
library that is used as dnD_PREL OAD—the functions it exports override the
standard C library functions of the same name. The heapagitocand
management functiorrsal | oc, cal | oc, r eal | oc andf r ee are overridden

by HeapProf. HeapProf keeps counters of the memory alldeatd calls the
original implementations of the heap functions in the stéaddC library functions
after updating its statistics. This allows accurate traglof heap usage over time
with a very small performance overhead. HeapProf is useddorse-grained heap
usage information, for example the total amount of heap nmgitocated at a

point of time.

6.3.1 Heap use with many TCP flows

The results of the simulation study presented in se€fiodl&Row the time to
simulate a simple scenario with a varying number of TCP floltee peak heap
usage over the execution of the ns-2 process as recordedappirte for this

scenario is shown in figute.6. The increase in peak heaguwsathe number of

1For example, the maximum stack size defaults to a maximuniid 8n Ubuntu 5.10 Linux

141

120 T T T T T T

80

60

Peak heap usage (MB)

40

20

" R fmmT
),ﬂ(";; . B ‘<¥;>’4<¥,,/~l‘/~’/—/
0 i*7$;>74w|4>7[4 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Flows

NSC: Linux 2.6 ---*---
NSC: OpenBSD &

NSC: FreeBSD —+—
NSC: Linux 2.4 ---x---

ns-2: Sack —-&—

Figure 6.6: Peak heap usage for increasing number of flows

flows is increased is linear for all TCP models studied. Thewmof memory

used per-flow is summarised in tablel6.5.

Table 6.5: Heap usage per TCP flow

TCP model Memory used per TCP flow (kB
NSC: FreeBSD 354
NSC: Linux 2.6 588
NSC: Linux 2.4 561
NSC: OpenBSD 147
ns-2: Sackl 94

Of the real world TCP implementations studied, OpenBSDesctile best with
close to 7 flows supported per MB of RAM used. In compariso Ai$SP agents
support close to 11 flows per MB of RAM. The other real world lerpentations
use more RAM and the pattern shown follows the socket buitessuised in each
of the stacks. OpenBSD defaults to very small socket buitersgand therefore
TCP send and receive windows), while versions of Linux hawgdr maximum

defaults and FreeBSD falls between the two.

6.3.2 The effect of increasing the TCP window size

TCP implementations allocate memory to buffer sent andvedalata. The

receive buffer size is explicitly advertised in TCP pacK&tsown as the advertised

142

14

12

10

Peak heap usage (MB)

0 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200
TCP window size (kB)
NSC: FreeBSD —+— NSC: Linux 2.6 --->--- ns-2: Sack —-m-—
NSC: Linux 2.4 ---x-—- NSC: OpenBSD &

Figure 6.7: Peak heap usage for increasing window size

Table 6.6: Heap usage / window size for ns-2 and NSC

TCP model Heap usage / window size
NSC: FreeBSD 52.40
NSC: Linux 2.4 37.23
NSC: Linux 2.6 38.15
NSC: OpenBSD 48.38
ns-2: Sackl 24.68

or receiver window) where the send buffer corresponds teémneler window. The
simplified TCP models in ns-2 do not need to allocate thesetaibecause they
do not use real data, only a size—simulated packets confaidandicating their

size, rather than a full packet payload.

The following simulation scenario was designed to explbeerhemory usage of
varying TCP window sizes. The size of the TCP windows usedbyliCP
models/implementations is varied. The scenario used h&F &rof 142ms
(corresponding approximately to an RTT from New Zealandhé&west coast of
the USA), a bandwidth of 10Mb/s and 10 TCP flows sending dafadlatate in the
same direction for the duration of the experiment. The nogibeue size on the
dumbbell network is set to 2600 packets. These parameteescliesen because
of the large bandwidth delay product. Figlirel 6.7 shows tla peap usage in this

scenario.

143

Table 6.7: Memory footprint for ns-2 and NSC

TCP model Size (MB)
VM | RSS| Text | Data| BSS
ns-2: Sackl 8 5

NSC: FreeBSD | 144 | 46| 32 19| 87
NSC: OpenBSOD 87| 21| 11 6| 62
NSC: Linux2.4| 68| 47| 23 20| 16
NSC: Linux2.6 | 62| 46| 22 19| 12

Heap usage increases faster with Network Simulation CrE@dR implementations
than with simplified ns-2 TCP models. The real TCP implemsma used in

NSC have to allocate socket buffers and use full packet payldhe difference is
between roughly 150% and 215%. Talbld 6.6 shows the rate afjehar the

various TCP models and implementations shown in figure 6.7.

6.3.3 Total memory use

The previous sections discussed peak heap usage. Codechatiddta also take
up memory. The globaliser clones global variables in soootke, which increases
the amount of memory required for the resulting sharediibsa The memory
footprint for ns-2 and NSC built withlUM_STACKS set to 500 is summarised in
table[6.7.

The reported virtual memory size in tablel6.7 is the total iké©f an ns-2
process after simulating a single TCP connection and skatattdansfer with the
indicated TCP model or implementation (the scenario dsedisn sectiof 6.3 1
with the number of flows set to one). The maximum Resident &et@@&SS) is

listed next, this is the amount of virtual memory which resiégh main memory.

RSS is only a rough measurement of the memory that is actualige by a
process—the operating system can page out memory for a mwhiEasons. The
numbers reported in takle 6.7 were measured on a machin@\6iBB of main
RAM memory and show no variation across 5 tests. There wash®v aser

activity on this machine during this time.

The other columns show the different sections of memorgmeach shared

library. The text section is where the executable code r®didhis can be shared

144

between processes. The data section contains initi@rsdéta for global
variables. The BSS (Blocks Started by Symbol) section ¢osiaitialisation data

for global variables which contain zero bytes initially.

The FreeBSD and OpenBSD shared libraries contain large B&®ss and this is
reflected in their larger virtual memory sizes. This memargaot necessarily used
during simulation. Simulations that do not use the full nembf stacks supported
by modifications made by the globaliser will not use all thebgll variables, hence
not all of the BSS and Data sections will be used. The ressidize is much

smaller than the virtual memory size in all cases.

The size of data and BSS in the shared libraries is dependeheasetting of
NUM_STACKS when using the globaliser at build time. The next sectionyses

the affect ofNUM_STACKS on the globaliser, including the resulting shared library
size, as well as the CPU performance overhead of running madiied by the

globaliser.

The total memory use when using the NSC TCP implementatsomaich higher
than when using the ns-2 TCP models. The virtual memory diae as-2 process
using the NSC TCP implementations is up to 18 times greates i¥ largely due
to needing to allocate memory for every TCP stack which igpsted, even if that

TCP stack instance is never used.

6.4 The cost of the globaliser

The globaliser (discussed in sectlonl 3.2) modifies the gocwde of the network
stacks used in NSC before they are compiled. Global vasaie modified to be
arrays and are accessed with an array reference. This proasperformance and
scalability implications at runtime: there is extra CPUtdogolved and more

memory is used.

6.4.1 CPU (online) cost

When the globaliser has modified the code there is a perfaendegradation

introduced when accessing global variables: whenevert@agi@riable is

145

Table 6.8: Globaliser runtime CPU overhead

Scenario | Without globaliser| With globaliser| Difference

I + " + %
FreeBSD | 10.38 0.048| 10.79| 0.091 03.94
Linux 2.6 | 10.45 0.048| 12.13| 0.165 16.07
OpenBSD| 16.39 0.057| 17.02| 0.110 03.84

accessed, a function is called and there is a mapping thraughdirection table
or, in the case of an array, multiple indirection tables.sT$lows down the access
of a global variable that is modified by the globaliser, big mot obvious how

significant this effect is on the overall performance of tbde

To test this the NSC can be compiled with and without usinggtbbaliser during
the build. The shared library produced when not using thbajiser will only
support a single TCP instance. The shared libraries canrbpa®d by simulating
a simple scenario which only requires a single TCP instandecamparing the

time to simulate.

The test setup is one TCP flow with one endpoint an instances&BSD, Linux
2.6, or OpenBSD and the other Linux 2.4. Only one instancee¢BSD,
OpenBSD, or Linux 2.6 is required. This allows compiling #eared library for
each stack with and without the globaliser. The scenarid issthe same as used
earlier in this chapter (sectién 6.2.1)—a dumbbell topplaith a bandwidth of
2Mb/s, a round trip time of 40ms and an MTU of 1500 bytes. A &rilpw
transfers data as fast as it can for the duration of the simulahich is set to 500

seconds. Each test is run 20 times.

The performance will differ depending on how often globaiables are accessed,
so the characteristics will be different for each scendri®used in. See table 6.8
for the CPU overhead introduced by the globaliser when nredstom a simple
TCP simulation. In this table the mean CPU usager the table) and 95%
confidence intervakf on the table) is shown for each of the TCP implementations

used in this experiment.

The difference in time to simulate using shared librarigf lth and without the

globaliser varies between the TCP implementations. THiierdnce is due to the

146

Table 6.9: Codebases used for globaliser testing

Project Files | Lines of code| Global variables
FreeBSD | 175 944621 2290
Linux2.6 | 122 2687493 726
Linux2.4 | 113 2398834 631
OpenBSD| 155 683792 730
IwliP 13 12986 33

access pattern of global variables in each implementafialle[6.8 shows that the
greatest slowdown observed is when using Linux 2.6, runtiisgimulation with
code which has been modified by the globaliser takes a Inge 6% longer than
using unmodified code. The difference is below 4% for the B&# and
OpenBSD TCP implementations. This is comparable to othraralisation
approaches such as Xen [197], in which performance is witB¥ of an

unvirtualised system in most cases [198].

6.4.2 Offline cost

The globaliser adds extra code, potentially including mextya variables, to the
project being globalised. This adds extra cost at build tifriee extra time to build
the shared libraries in the Network Simulation Cradle duiaéoglobaliser is of
less consequence than the runtime overhead, as the lbamigneed to be built
once and can then be used for all subsequent simulationseWwowt is important
to analyse the extra cost to understand any limitationsdtabdity of the shared
library the globaliser might add, such as producing codettiteacompiler and/or

linker are not able to consume.

To evaluate the offline cost of the globalisstyM _STACKS is increased from 2 to
5000 and three metrics are evaluated: total build time ¢pegssing, running the
globaliser, compiling and linking are all included), tofiée size of the source files
output by the globaliser and the size of the shared librangdpeced. Figure6l8
shows these results for the codebases summarised il f8blEHe build time was

recorded on a computer with dual AMD Opteron 250 CPUs and 3f38BAd.

The build time shown in figurg 6.8{a) shows that there is $igamt extra cost to

build a project: the time taken rises from 5 minutes to oveourh to build the set

147

Build time (hours)

Shared library size (MB)

Shared libary file size increase per stack (kB)

O FRr N W A U O N ©
i T

500

450 -
400 -

350

300

250
200
150
100

50

100
|

80
|

60
|

40

20
|

1000 2000 3000 4000 5000
NUM_STACKS
(a) Build time
T T T T
FreeBSD —+—
Linux 2.4 ---%---
Linux 2.6 ----- %
OpenBSD & e N
WP~ S ’ |
A
1000 2000 3000 4000 5000
NUM_STACKS
(b) Library size
FreeBSD Linux 2.4 Linux 2.6 OpenBSD Iwip

(c) Library size increase per stack instance

Figure 6.8: Measured offline globaliser costs

148

of 5 projects allUM_STACKS increases from 2 to 5000. This is due to the large
number of extra symbols created by the globaliser. The tonmiiid the shared
libraries increases roughly exponentiallydidM STACKS increases. This is due
to the increased linking time: the GNU linker exhibits almesponential increase
in time to link as the number of symbols to link increased. s process is only
required once to build the shared libraries, which can theended for all
subsequent simulations, the long build time does not pteN&E from being
useful for many types of simulation. It does prevent simatat of very large
scales (for example, one million nodes) but does not preersimulations

discussed in chaptEl 2 or reproduced in chdgter 5 and chid@pter

The object, library or executable files produced from thesocogtput from the
globaliser will be necessarily larger than code unmodifigthie globaliser. If
NUM _STACKS s set to 2, then every global that is modified is cloned ontes T
means that twice as much memory is used for these varialdasths used

originally. Figures 6.8(lh) and 6.8[c) show the increaséharsd library size. The

size reported is after the debug information (such as vigriadimes) has been
removed. With higher values UM _STACKS (10000 or more) the build process
fails because it hits a memory limit: the 32-bit linking pess attempts to allocate
more than 4GB of memory, which results in a memory allocaf@lnre. The
reason for the linker requiring more than 4GB of memory islénge number of
new symbols that are created for array declarations. It &vbalpossible to design
a new algorithm that does not create so many extra symbdaisr(strategies for
source modification are discussed in chapler 3), but thidefafr future work; it

was not needed to run the scenarios described in this thesis.

6.5 Discussion of performance results

The scenarios covered in this chapter show a differenceainverld time to
simulate of around 1.8-5.5 times between ns-2 TCP model8i&@ITCP
implementations. This range is consistent across simplessos and more

complex scenarios reproduced from the descriptions giveedearch papers.

Importantly, similar trends were apparent for the simptifiis-2 models and the

149

NSC implementations for all of the scenarios. When the tioneet simulated is
increased and other simulation parameters remain constaetto simulate
increases linearly for all TCP models used. The same is thenwhe bottleneck
bandwidth is increased and other parameters are constarthdse scenarios,
both ns-2 TCP models and NSC TCP implementationg#Hre) with the NSC

TCP implementations having higher constants.

Non-linear trends are apparent when the number of TCP flomsisased: the
time to simulate increases roughly exponentially. Thisloaexpressed a8(n*)
wherek differs for each modelk is higher for the NSC TCP implementations. In
another scenario, as the packet size increases, the tinmutate decays
exponentially O(n~*) wherek differs for each model). The non-linear trends are

consistent across all the TCP models used.

The consequence of the difference in time to simulate istheaNSC is suitable
for most simulations described in the literature, inclgdinose described in
sectior6.2R. The higher CPU cost may make the NSC unseifabVery large
scale simulations. However, in these cases, the NSC malai# a role to play in
validation: it can be used to simulate a subset of the cas¢sté to be
investigated and its results compared to those producelebsimplified TCP

models being used.

The difference in memory use between ns-2’s simplified TCHEeatsand the NSC
TCP implementations is similar to that of CPU usage: theediffice in heap
memory used varies from 1.5 times difference to 6.3 timdsmihce for the
scenarios studied. The trends &én) where the NSC TCP implementations have
higher constants. The total virtual memory (VM) size of timadator process
image is larger when the NSC shared libraries are loaded/hsize increases
from 8MB to 144MB in the case of loading the FreeBSD 5 sharegty. This is

due to the modifications the globaliser makes to the shabeaties.

The globaliser clones global variables which adds to the sizhe shared library

that is produced. As the number of TCP instances supportedadses, the shared
library size increases linearly. With 5000 TCP instancexpsuted, the size of the
NSC shared libraries ranges from 100MB to 470MB. This hasn@fssions other

150

than memory use: the linker is unable to link all shared hiesawith 10000 TCP
instances supported, as it requires more memory spacesiaaailable for a 32-bit
process. During runtime, the extra indirection added bygtbbaliser to references
to global variables means that performance is reduced.Vvahiss for each TCP
implementation; in the scenario studied the slowdown feeBSD and OpenBSD

was below 4%, but over 16% for Linux 2.6.

Overall, the NSC is capable of simulating many scenariosshuore limited in
scale than the simplified models present in ns-2. Reproduld@P research carried
out by others with the NSC shows that the NSC has practicahndehat the

limitations to scalability do not inhibit its use by many sikation practitioners.

151

152

Chapter 7

Conclusions and future research

This thesis examines using the code from real world TCP implgations in the
place of simplified models of TCP in a network simulator. Theuaacy of
simulating TCP is increased first by using more detailed T@dets and second
by using a range of different TCP implementations. Simogatn this way can
produce results which give a greater insight into the s¢efaing simulated than

simulating with simplified models would.

7.1 Accuracy of simulating with real world TCP code

In chaptefdl the question “would using real world code to $ateuTCP would
increase the accuracy of the simulation” is introduced.nViestigate this question,
several sub-questions were identified: is it feasible toreakworld TCP
implementations in simulation, is using real world TCP iempkntations valid and
accurate, is this approach to simulation applicable, andloasimulation be

carried out with reasonable resource usage.

7.1.1 Feasibility

Previous attempts at producing more accurate TCP simaoleggults by using real
implementations show that such simulation is possibletmey are limited in one

or more of the following ways:

e only a single TCP implementation is available in the simudaind this

version is often not updated;

153

¢ the simulator itself is not popular or well tested, so pregisimulations
cannot easily be run and user experience of well-used siorsls ignored;

e little or no validation studies are undertaken to validaeeTCP model;

¢ the code is modified by hand, increasing the chance of the imotie
replicating the original system in all details; and

e there is little or no support for simulating a large numbemnolependent

instances of the TCP model.

The creation of the Network Simulation Cradle shows that feasible to build
software that addresses these issues. No other simulatoasr@®works address all

the issues listed above. The main characteristics of the NEC

e multiple TCP implementations (e.g., Linux, FreeBSD, Op8bBand IwlIP);

e multiple versions of a single implementation (Linux 2.4nux 2.6.10, Linux
2.6.14.2);

¢ all supported implementations within one simulator prea@s a single
machine;

e programmatic support for multiple instances so code doesewd to be
modified by hand to allow TCP instances to run independently;

e scalability to thousands of TCP connections of differingpiementations
running on a single machine;

¢ thorough validation studies comparing measurements withlations;

e support for multiple simulators including a well known silator (ns-2); and

e support for both simplified TCP models and real world codeedasCP

models in the same simulator.

7.1.2 Validity and accuracy

The Network Simulation Cradle produces results very simddhe real systems
studied. In chaptdi 4 several TCP packet traces recordedest metwork are
compared to packet traces generated from simulations tsnySC. These traces
are nearly identical, the same sequence of packets areqaodhy the NSC and

real systems with only small differences in packet timing.

Further comparisons between results from tests on a ctadnoétwork and

154

simulation, such as TCP goodput during random packet lbssy simulations
with the NSC to provide a very high level of accuracy. The gsapn pagé 97
show this: the same trends are apparent for simulated ansumeshresults and the

absolute values, including confidence intervals, are npéadehtical.

When compared to previously published results of a set of tr@rough
simulations, the NSC produced consistent results. Thisas/a from pag€92
onwards, where the results of reproducing a simulationat@shown by
Anagnostaki®t. al[155] of the goodput of TCP over a complex topology with
multiple congestion points are discussed. Overall thelteptesented in chapter 4
show the NSC to be very accurate at both micro and macro leNMelprevious

work reviewed has shown such results.

7.1.3 Applicability

Others have noted the usefulness of simulating with realdvmde. Brakmo and
Peterson [103], when describing perhaps the first work thes a real BSD

TCP/IP stack for network simulation, state:

“Running the actual TCP code is preferred to running an abstr
specification of the protocol; the latter is mostly usefuldapid

experimentation.”

More recently, Wangt. al[104] commented that they use real world TCP
implementations in the NCTUns simulator to “generate meieate simulation
results than a traditional TCP/IP network simulator thatedrts a lot away from a
real-life TCP/IP implementation.” Another example of ugieal world code for
greater accuracy is Julio [107], who used the NetBSD TCPemphtation in the
OMNeT++ simulator in place of the existing TCP models duénhgirtincorrect

behaviour [115].

Simulating with multiple different TCP implementationsailso useful. This is due
to TCP implementations differing substantially, implertsions can produce very
different results as chaptér 5 shows. This is true not ongimple simulations

created to show such differences (such as packet reorgdesagection’5.2.1 on

155

pagd10ll), but in scenarios reproduced from published refselm one situation
using multiple simulated TCP implementations varied mbesntusing multiple
simplified models showed, probably enough to change thelesinas made

in [180] (see page_119).

A limitation of the approach used by the NSC and describethapteB requires
the TCP implementation source code. This means that clasedesstacks, such
as the Microsoft TCP stack, cannot be used in the NSC wittheusource code

being released. If the source code were available, conaiypthe Microsoft TCP

stack could be incorporated into the NSC.

7.1.4 Performance and scalability

Performance tests covered in chapler 6 show that the NS@ytalaes longer to
simulate than ns-2's simplified TCP models and the diffeeaianges from less
than a 100% difference in time to greater than 500% diffezeii¢hen reproducing
simulation scenarios published by others and in other worledvith the NSC,
this performance difference did not hinder carrying outdimeulations; the time or

resource costs were increased by manageable amounts.

The NSC implementation places some upper limits on scéhathiat would
prevent some simulations being carried out that could b@echout with

simplified models. Simulations using the NSC and currentptars and hardware
are unable to scale past a few thousand TCP instances dedylayghe
mechanisms used by the globaliser (see pagk 145 and onwaaldiscussion of

this). Future work may increase the number of TCP stackmespossible.

The approach that allows real world TCP implementationsitoim simulation
used by the NSC is scalable and performs well enough for mamylations
carried out by network researchers. In chapter 2 the typssraflations
performed by users of TCP simulation is reviewed along withdcale of these
simulations. All of the research shown in chajbfler 2 is of desttaat the NSC can

simulate, although the simulations are likely to take lange

156

7.1.5 Discussion

The implementation and results of using the NSC shows thailating TCP with
real world code is feasible and can be valid, accurate, eqipk, fast and scalable.
Simulating this way with the NSC provides very accurate ltesuith very small
changes needed to configuration: ns-2 simulation scrigysraed to refer to a
different TCP model name to use the NSC TCP implementatibims. means
simulating TCP with real world code is accessible and as &agge as other ns-2
TCP models. The Network Simulation Cradle is freely avdddbr

download [199].

Using a range of TCP implementations gives much greaterdemde that results
of simulating with real world code based TCP models are netskl by bugs or a
single version of a single implementation. Simulating véatrange of
implementations is important in understanding the rangesilts possible when
running on the Internet where many different versions of yrdifferent

implementations of TCP exist.

7.2 Future research

There are many possible avenues of further research aleaiéih NSC. The
comparative studies of TCP presented in this thesis onlghttle surface of a
large research area. NSC could be used to gain further kdgerlen how TCP
implementations perform and interact; even seeminglylamiCP
implementations (FreeBSD and OpenBSD) were found to aprisumgly

differently in some scenarios.

Reproducing existing simulations and using NSC in the ptd¢be ns-2 TCP
models shows promise as an interesting venture in valigi@tievious research.
There is a large body of simulation research which could setein this way, only
a small set of these were reproduced and shown in this th&sise same time,
the NSC is of use to current users of TCP simulation; it candsel @s a primary

set of models or to validate simplified models.
There are many areas of future research that the NSC coulidtherf developed to

157

support. A list of some of the possibilities follow in the neections.

7.2.1 Simulating the application layer

If real applications were simulated as well as the real nekwtack, realistic
application level protocols could be simulated. An exanwdeld be running the
Quagga [200] routing software to realistically simulate@énd other routing
protocols. Simulating real world applications as well asTICP stack would be a
valuable extension to the NSC to capture application behavi-Sim [103]

shows one approach of doing so and Ely al.[113] discuss many of the issues of
integrating a user-level network stack with an applicatiotheir project, Alpine.
Integration with the NSC would expand on previous work lik&im by allowing

applications to be simulated using all of the stacks in th€NS

7.2.2 Protocol development environment

The NSC provides a powerful protocol development envirammrotocol code
that is typically time consuming to install and test can lstaé quickly and
reproducibly in a simulator. The NSC can be recompiled andhalation run
rather than building and installing a new kernel or kernetime. The testing is
then run in a simulator, which means that the tests will bea@ycible. It is
possible to debug code that is simulating one machine witteau of affecting
results on another simulated machine with simulated tiniés B of great benefit
to debugging distributed systems code, as problems whithedard to
reproduce (such as race conditions) can be debugged easily simulator. It is
also possible to test a much wider range of scenarios withN8@€, and also to

automate the testing.

Some protocol development has been performed with the NSGaw that this is
viable; an early DCCP implementation was tested [201]. Ba¢ures described
above are not common features of existing protocol devetop@nvironment
research [113,202].

158

7.2.3 Network stack additions

There are other network stacks which would be interestirgynmlate with the
NSC:

e Recent versions of the Solaris operating system have bésasesl as open
source software in the form of OpenSolaris. This provideslzer network
stack which could be supported in NSC. This is of potentitdriest because
the network stack was independently architectured, nadas the BSD or
Linux TCP stack.

e The Microsoft Windows network stack could also be able toupgpsrted if
the source code is available.

e Mac OS X uses an open source kernel called Darwin which istdbaise
FreeBSD. Supporting this network stack should be stragfdrd given
the existing support for FreeBSD in NSC.

e There are also non-TCP protocol stacks which are of potentexest. The
Space Control Protocol Suite [203] is one, the reference
implementation [204] of this could be ported to NSC. Manyeothare
possible, for example the NSC could be extended to suppeftuthset of

protocols in the current network stacks such as UDP.

Having further TCP implementations would allow a greateigeof comparative
studies to be performed with NSC. It would also allow simiolag which utilise a
broader range of TCP implementations for background trafinds is desirable, as
measurement studies of the Internet show a wide range of MpRmMentations in
use [185].

7.2.4 Automated protocol testing

The NSC would fit in to an automated testing framework. No humegeraction is
required to run a test with NSC and produce a set of metricaavhiomated test
suite could report performance metrics for benchmarkingiorcompliance tests
whenever the source code of a TCP implementation changescadiid provide
knowledge on how changes to the source code practicallgtaffee TCP

implementation. Another possible route would be to run mameyious versions of

159

a TCP stack with NSC to view how TCP performance has changedtiowe. This
would require further work, possibly not all of it automatéalsupport each

version of the TCP implementation in NSC.

7.3 Conclusions

Simulating TCP with the code that is used in real TCP impldit@ms increases
simulation accuracy. This thesis has explored simulati@@ Tn this way. The
software developed during this thesis, the Network Sinma€radle, shows that
simulating real world code is feasible. Simulating withstBbdftware shows a high
level of accuracy. Reproducing TCP simulations from pastaech shows that the
approach is of use and insights into TCP and the differenetgden
implementations can be found. A wide range of future resemrpossible based

on the software and ideas presented in this thesis.

With simple access to simulating with many different impéstations and low
enough resource costs for the simulations that use reattW&@P implementations
to be practical, there is little reason not to use such sitlmnaechniques.
Simulating with multiple TCP implementations with the NSCas easy as using
traditional simplified models in many scenarios. We beligaag simulation
practitionersshoulduse real world code based TCP models and that simulation
practitionersshoulduse multiple TCP implementations to see the range of results
possible. This is a new approach to TCP simulation and onehwitings the

benefit of more accurate and valid simulation results.

160

Appendix A

Publications authored

A.1 Peerreviewed journal articles

Sam Jansen and Anthony McGregor. Static virtualization eb@rce code.

Software: Practice and Experiencg8(4):397-416, April 2008.

A.2 Conference papers

Sam Jansen and Anthony McGregor. Validation of simulatatiwerld network
stacks. InProceedings of the Winter Simulation Conferenuages 2177—-2186,
Washington D.C., USA, December 2007. IEEE Press.

Sam Jansen and Anthony McGregor. Performance, validatidriessting with the
network simulation cradle. IMASCOTS '06: Proceedings of the 14th IEEE
International Symposium on Modeling, Analysis, and Sitmapages 355—-362,
Monterey, California, USA, 2006. IEEE Computer Society.

Sam Jansen and Anthony McGregor. Simulation with real woeltivork stacks.
In WSC '05: Proceedings of the 37th Winter Simulation Confezgmages
2454-2463, Orlando, Florida, USA, December 2005. Socmtbmputer

Simulation International.

Sam Jansen and Anthony Mcgregor. Measured comparativerpenice of TCP
stacks. InPassive and Active Measurement Workshaume 3431, pages
329-332, Boston, MA, USA, March 2005.

161

A.3 Conference papers as a secondary author

Adam Biltcliffe, Michael Dales, Sam Jansen, Thomas Ridgd,Reter Sewell.
Rigorous protocol design in practice: An optical packettsivMAC in HOL. In
14th IEEE International Conference on Network ProtocoBNP) pages
117-126, Santa Barbara, CA, USA, November 2006. IEEE Coen@dciety.

Mark Apperley, Sam Jansen, Amos Jeffries, Masood MasopH&urie McLeod,
Lance Paine, Bill Rogers, Kirsten Thomson, and Tony Voylecture capture
using large interactive display systems.IGCE '02: Proceedings of the
International Conference on Computers in Educatipage 143, Auckland, New

Zealand, 2002. IEEE Computer Society.

162

Appendix B

Network Simulation Cradle manual

This appendix covers a step-by-step process for includmgaTCP
implementation in the Network Simulation Cradle. The fiestteon covers the
process of adding the new implementation, while se¢fiohdB2usses the process

of testing and validation.

B.1 Adding a new stack

Adding a new network stack to the Network Simulation Cradislves building a
new library with the network stack code in it. This library stimplement the
interface described in sectibn 311.3. The process of mglthis library for a new
network stack is covered in the following sections, preséim chronological

order.

B.1.1 Initial build process

The initial build process refers to obtaining the code fer tletwork stack to be
simulated and building it into an executable. When a netwstaikk is removed
from an operating system, there are many references totopesystem functions
and variable which will be undefined if the new code is buittred. This section
describes how the code is extracted and built, solving tbhblpm of the undefined

references.

163

Extract source code

If the network stack is part of a larger code base that canaatipally be
simulated with reasonable resources in good time, such eapemating system,

then the important source code needs to be extracted frosystem.

Listing B.1: FreeBSD kernel source directory

|s [usr/src/sys

Makefil e gdb netat m opencrypto
al pha geom net gr aph pc98
and64 gnu neti net pccard
boot i 386 netinet6 pc

cam i 4b neti psec posi x4
coda i ab4 neti px rpc
conpat i sa net key security
conf i sofs net nat m spar c64
contrib kern net ncp Sys
crypto i bkern net snb tool s
ddb nodul es nfs ufs

dev net nfs4client vm

doc net 80211 nfsclient

fs net at al k nf sserver

Each of the entries in listifg B.1 is a directory of sourceecotthe FreeBSD
kernel source directory, save thakef i | e. When creating a TCP/IP simulation
model, there are sections of the source code that obvioostptrequire to be part
of the simulation model: device driverddv), the boot loaderlfoot), the
Network File Systemn(f s, nf s4cl i ent,nfscli ent,nfsserver)and

some filesystem codgéom uf s, i sof s).

The important code is located iret i net : this contains the TCP and IPv4
protocol implementations. An in depth knowledge of the késource layout is
not necessary for the user in this step, though it would Hélpding the TCP
protocol implementation in a code base has not been a prahlany system

studied.

The source code must be copied to a new directory where thecpraill later be
built. A user might copy the entire set of source code, theromadown which is
used at a later date, or start by only copying the code thewkade important
(such as tha@et i net directory in the example above). Using only a small

amount of code initially is the route usually taken with NS@&c&s.

164

Create build environment

The normal build environment of the system the network staieitracted from
needs to be recorded. In practice, this might mean buildiagtiginal system
with make and recording the output withcr i pt on a UNIX system. This allows
the user to view the build flags and compiler invocation usdalild the system.

The same environment should be reproduced for the extraothel

Once this new build system is created, replicating the oailgtcompiler flags, the
system needs to be configured to produce an executable.sTleaich source file
should be compiled, then all source files should be linkedttogy into an

executable.

This may work on the original system the code is from, but moother systems
(for example, the FreeBSD kernel will compile on a FreeBSBtay easily, but
not on Linux at this stage). This is due to system header filessolate the build
environment completely from the host system, the compsleonfigured to not
search standard include paths. All include files that are@ge including those
from system include paths (such/assr /i ncl ude/) - are copied to the new

build environment.
Link

Linking the code into an executable will provide a list of efided references. If
the original system is self-contained, such as IwIP [208his list may be short or
empty. If the networking code is extracted from a large mihialkernel, such as

the FreeBSD networking code is, the list will be longer.

The linker will output a verbose list of undefined referenags many duplicates.
The output will need to be processed into a readable forms.dossible to sort the
undefined references by their frequency of occurrencegltlyannderstanding

which are critical to the system.

165

Solve undefined references

If there are many undefined references that are referreddn,of is likely a good
idea to include more code from the original system. The nescetable should
then be compiled and linked again, producing a new list oefinéd references.
This process can be repeated until the list of undefinedawées is of a small

enough length to satisfy the user.

The rest of the undefined references must be implementedlafusictions and
variable declarations. The stub functions should raiseriam & called as shown in
listing[B.2. This means that when the model is being testedater date, the
functions which are not implemented but need to be will f&ilpwing the user to

implement these functions.

Listing B.2: Stub function from the FreeBSD support code
int seltrue(dev, events, td)

dev_t dev;
i nt events;
{ struct thread *td,
assert (0 && "This_function_is_jintentionally_
uni npl enented. ") ;
} return O,

There may be many functions which will not be called during éxecution of the
model that are suitable to have stub functions of the soisimy[B.2. If they are
required, the user will need to either implement the fungtar copy the original

implementation, whichever is more appropriate to the fiamain question.

Undefined variable symbols are global variable declarataond should be copied
exactly as they appear in the original code to preserve tleéault values. Once
the undefined references have been solved, the build systeimecconfigured to
output a shared library. The creation of this shared libeemy cradling code

follows.

B.1.2 Shared library creation

The shared library contains up to three parts: the untousberte code to be

simulated that is extracted from the original system, gagsiny stub functions

166

created, and the cradle code that is described next.
Build cradle

The cradle code within a shared library implements the fiaterdescribed in
sectior 3. 113. To implement this interface it needs to mteode to bridge

between the network stack code and the simulation interface

The amount of cradling code will vary depending on the irteefthe network
stack provides. The FreeBSD code in the Network Simulatiadl@ does not
have the usual BSD sockets API available, only the lower lesnel primitive
functions. To implement functionality such as creating &T8ocket, connecting a
TCP socket, sending data over a socket and similar, thenatigyscall
implementations were viewed and copied as much as pos€ither functionality
will be even more complex, the method used to set the defatgingny varies a lot
between operating systems and is generally undocumenteeBED uses a

routing socket while Linux uses aroct | () call or a Netlink socket.

Initialisation is important and often the most complex prthis process.

FreeBSD uses “linker sets” to store initialisation infotioa, the data is stored in
different sections of the library or executable and thedimdreates special symbols
to signify the start and end of these sections. The code wioamally sorts the
section and executes the initialisation code is part of #raddmai n() routine,
which is not directly usable in simulation. This code, andentinitialisation code,
needs to be ported to user space. Detail of how the globaliggyorts linker sets
can be found in sectidn'3.2.3.

Support non-blocking calls

Part of building the cradle will be to interface with funatality in the network
stack which may take time to process. The function call mase ke option of

blocking: not returning until some external event has tgiece.

When sending data over a socket using the popular BSD so&ke{R09], the
send() function has the option to block: until there is space in tidTouffer to

enqueue the data, for example. Some systems such as Liouxth# programmer

167

to specify av5G_DONTWAI T flag to prevent the call from blocking, else in many
cases the file descriptor can be configured to be non-blockinthe use of an

fcntl () function call.

When an application is blocked, the operating system patsespplication and
resumes it when the event it is waiting for happens. When ppécation is
blocked the operating system continues on and is able toeawthle application at
a later time. In simulation with ns-2 there is only one thre&dxecution. If the
application is blocked waiting for an event, the entire pamg is blocked and will

not continue.

The cradle code must use non-blocking calls like those raeetl above for the
BSD sockets API. Though it is possible a protocol is impletediio be only
blocking, this is not the case for the systems studied arsduibiikely any major
network stacks are implemented this way. The Network SitrariaCradle
requires non-blocking protocol implementations, thougtieh implementation
that supports blocking protocols using thrgaids'ntroduced in earlier work [116]

— non-blocking code is not a fundamental requirement ofdpjsroach.
Integrate with the simulator

Once the interface is implemented in the shared librarysthek can be used in the
ns-2 network simulator. It can then be used in a large rangé&sf simulations,

though at this stage only a single instance of the stack wiiuppported.

With other network stacks a part of NSC, the new stack candiedeagainst one
of these. Connecting a socket, sending data, listeningpéiog and reading from
a socket must all be tested. This process will show any mastakthe stub
functions used (see sectibn Bll1.1)—there will be asseféitures whenever a stub
function is reached. Whenever this happens, the user nuesttigate the function
and make a decision on how to implement the function. Thisgss continues
until a range of simulations can be performed without theypam aborting due to

an assertion failure.

!Another approach would be to use coroutines [210], for witeral libraries exist for C/C++.

168

Add support for multiple instances

The globaliser must be added to the build process to allowa@tifior multiple
instances. There are three steps to integrating the géabatito a build system.
Adding the globaliser into the build process, setting itopttput any globals

encountered, then building a list of global variables to lwelifed.

The globaliser described in sectionl3.2 takes preprocéssedirce code as input
onst di n and outputs modified C ost dout . When using the gcc compiler, the
command to compile a C file callechnpl e. ¢ would be similar to listing B13.
The filesanpl e. c is preprocessed. The preprocesed source is then passed
through a UNIX pipe to the globaliser, which reads a list aftigll variables to
modify from a file calledyl obal s. t xt . The output of the globaliser is then
passed through a UNIX pipe again to gcc, which compiles teeaafid saves the

results insanpl e. o.

Listing B.3: Compiling a C file with gcc and the globaliser

gcc ${CFLAGS} sanple.c -E -
./ globaliser -vv ./globals.txt |
gcc -xc ${CFLAGS} -c - -0 sanple.o

The globaliser must read a list of globals to modify from & fé&. This stops it
from modifying variables the user does not want or need nextlifor example,
the variable used to denote which stack is currently runnfing globaliser has a
verbose optior, v, which makes it output any globals it encounters which itas n
already modifying to standard error. This list of variabtes be recorded and
collated, and any variables that the user does not want raddiéin be removed.

The remaining list can then be saved in the global list file @se&d in later builds.

B.2 Testing and validation

Once a shared library has been built and supports multiptamees it should be
tested and validated. Initial testing was with a singleanse to made sure the new
stack would perform some basic operations in simulatioms Tsting neither
looked at multiple instances of the stack, nor whether thelte produced by the

stack were accurate.

169

B.2.1 Initial testing

The first phase of testing should include the tests run eaidi€heck for any
regressions running the globaliser on the source. Thennt@estests should be

expanded into tests of multiple instances communicating.

Specific features should be tested, such as timers workimgatty, the correct
amount of data being sent and received and whether the maxtnamsfer unit is
correct. Writing tests is simple because the network sitouia already designed

to be quick and easy to produce new simulation scenarios.

This further testing phase ensures that the earlier prafesdracting code and
then later using the globaliser has produced a simulaticthettbat runs in a
variety of scenarios and produces reasonable, if not yetated, results. More
stub functions may be encountered that need to be implechemtéhe user may
find that timers are not working as expected because of a userearlier in the
process. Once these issues are fixed the simulated netvaokkcztn undergo

thorough validation.

B.2.2 Validation

The simulator agent of NSC has an option to turn libpcap [J3@ket tracing on.
The data from the packets created in the real stack codeasl savisk in tcpdump
format. This can then be analysed later in the tcpdump prodt&0],

tcptrace [131], Ethereal [211] and others. ns-2 trace foisnaso supported,

allowing visualisation in Nam [212] and use of traditionala trace analysis.

An advantage of producing libpcap packet traces is that slck&qi traces can be
directly compared to packet traces measured from real mashA simulation can
be modelled after a physical setup, perhaps in a laboratstynetwork, and packet
traces can be measured on the real machines and in simul@hierpacket traces
can be directly compared on a packet-by-packet basis tdsadifferences
between the two setups. This sort of validation using thevidet Simulation

Cradle is presented in [163] and in chajifer 4.

170

Appendix C

Network simulators

This appendix covers prominent packet based network storslancountered
during research for this thesis. Only simulators not covémechaptefR are

introduced here.

C.1 OMNeT++

The OMNeT++ [213,214] framework is a discrete event simaiaenvironment
primarily used for simulating communication networks. Hbyides an
object-oriented component architecture where comporagataritten in C++ and

assembled into larger models with a domain specific langoalied NED [215].

OMNeT++ is a popular simulator used in education [216], fneless network
research [217-221], optical network research [222] and/TRCP
research [107,221,223-225].

The simulator

The OMNeT++ simulation kernel supports sequential andlighra

simulation [226]. Models are creating by deriving@duleclass which handles
messagesent to it. Models create new messages and send thegataaor

directly to other models. Gates are used to connect modugester, a application
module might have aaut gateconnected to a TCP model used to send data. The
simulation kernel provides utility functions to enableldiig models from these

building blocks, for example, scheduling a message to@at\a model after a

171

specified amount of time (a timer).

Simple modules are combined itompound moduldsy grouping them in NED
files, allowing unlimited compound module hierarchy lev®N&D files also list

module parameters and gates.

OMNeT++ includes a Graphical User Interface (GUI) that skavgraphical
depiction of the simulation scenario and the events beingigéed. The
simulation components and messages can be examined ihadetdhe speed of
the simulation is directly controlled by the user. Simwas can also be run
outside of the GUI. Several tools are included to aid visadion and analysis of

simulation results.
TCP model

OMNeT++ includes a basic TCP model in its INET framework whis
documented [227] to support RFC 793 [10], RFC 1122 [228] aRG@ R001 [164].
The following mechanisms are listed as implemented: camoresetup and tear
down, segmentation, receive buffering for out of order ga¢dayed
acknowledgements, Nagle’s algorithm, Jacobson’s and’'&algorithms. TCP

Tahoe and TCP Reno are both available.

The model does not include any more recent TCP advanceséhased widely on
the Internet today such as selective acknowledgements @Rdimestamps.
Timers are not based on “fast” and “slow” timers as BSD immatations are,

meaning timer granularity can be different to real impletagons.

The TCP model has a basic testing suite. A series of test sSosmsrun and traces
from the simulations is checked to see whether it matchewkmgmod output. The
tests check whether functionality such as Nagle’s algorjttielayed ACKs,

retransmission and connection establishment work.

Due to the limited TCP model there are several attempts &iging TCP models
based on real world protocol code [106,107]. These are itbestin sectiof Z]13.

172

C.2 SSF

SSF provides a single interface for discrete-event sinaul&nown as the SSF
API [229]. It is designed to support high-performance siatioh by making it
possible to build models that are efficient, scale well afgsatparallel processor

resources. The API specifies the use of either Java or C++.

The SSF APl is based around five base cladseti t i es, which contain state,
Pr ocesses that operate on that staienChannel s andout Channel s that
define the endpoints of communication channEisent s are objects that are
passed between entities to communicate. On top of the basitagion core
classes domain specific component layers are built such &sratworking layer.
Models are composed and configured via a hierarchical até&riloee language

known as Domain Modeling Language (DML).

There are several implementations including commercidlraference
implementations. Two major implementations that are usedsearch are

Dartmouth SSF [230] and SSFNet [231].
SSFNet

SSFNet [231] is a set of open source Java models of commionadements
(such as TCP, UDP, BGP, routers and LANS) for SSF. Reseaicf 8SFNet
includes large scale Internet simulations such as BGP aiiouk [232, 233],

studies of TCP dynamics [234] and worm traffic [235].

The TCP model used in SSFNet implements basic RFC 793 [10] and
RFC 2581 [182] congestion control including fast retrarisfast recovery,
duplicate acknowledgements and slow start. Segmentswaagsathe maximum

size and data is immediately consumed by the receiver.

TCP model validation is based on the ns-2 validation testscels produced by
ns-2 and SSFNet are graphed and compared by hand. 14 testsvgrared
against ns version 2.1b4. ns-2 has changed in further vex;siecluding bug fixes
to TCP that changes the behaviour validated against. Theaason of traces is

thorough but the results of the validation only show that3&&Net TCP models

173

are consistent with a specific version of another simulatatryeal TCP

implementations.
DaSSF

Dartmouth SSF, otherwise known as DaSSF, is implemented+nadd has been
used for simulations intended to model the global Interd86[237] and large
scale sensor networks [238]. Dartmouth SSF is also know8%5 in recent
work [239]. There are several TCP/IP models for DaSSF: D&&$SFa port of the
Java-based SSFNet, a custom TCP/IP model for DaSSF [240|uechadnodels for
TCP [241,242).

The TCP model described in [240] implements basic TCP fonelity
(RFC 793 [10]) apart from buffering out of order packets tuat within the
receivers advertised window. The Nagle algorithm and thg @lindow
Syndrome (SWS) fix are not implemented. Basic validatiorei$qggmed by
analysing time-sequence graphs in scenarios that testderés of TCP

implemented in the simulation model.

Another approach to TCP simulation with DaSSF is using fluatleis. Fluid
modelling of TCP produces very fast and scalable simulatadrihe cost of
accuracy. The model described by Nicol [241] combines discevent and fluid
modelling to simulate slow start, congestion avoidaneoeetouts, lost data and
fast retransmits. There is potential for very large spegsiwith such a model
though there are still performance problems in some saoatj242]. The
accuracy of such modelling has been shown to be adequateny snanarios TCP
operates in [243], but there is question over the accuraggineral, further

verification and validation work is required [241, 242].

C.3 GTNeTS

The Georgia Tech Network Simulator [244] (GTNeTS) is wntte C++ and
designed and used for large scale network simulation [248,uch as Internet
worms [247]. GTNeTS includes TCP models for Reno, Newreabp€ and Sack.

There is no information on validation performed on these Ti¢ielels.

174

C.4 J-Sim

J-Sim [248, 249], formerly known as JavaSim, is a compoibased simulator
written in Java with an emphasis on network simulation. thistly used for
wireless sensor network research [248, 250] but includd3 mMBdels for the Reno,
Tahoe and Vegas congestion control algorithms, which st joietayed
acknowledgements and understand ECN. No information ged on

verification and validation of the simulation models.

C.5 JiST

The JiST [251] simulator utilises the Java virtual machmperform fast, scalable
simulations. The SWANS framework uses this simulator tousate wireless
networks [252]. This framework includes a TCP model [253]isTmodel
implements basic TCP functionality described in RFC 793 fi@

RFC 2581 [182].

C.6 IRLSIm

IRLSIm [108] is a general purpose packet level network satarl It was
originally designed to simulate the Resource ReservatiotoBol (RSVP) [254]
but expanded over time to be general purpose and includelP@R/dels. IRLSIm
is based on the Parsec [87] simulation language which akagsential and
parallel simulation. Parsec code is similar to C and portioge between the two

languages is easy [108].

The TCP model used in IRLSIm is a port of the BSD 4.4-Lite [126]P
implementation. No validation information about the siatal or its models is

provided. IRLSim is used in some RSVP [255] and routing [2&8karch.

175

176

References

[1]

[2]

[3]

[4]

[5]

[6]

Michael Dales and Madeleine Glick. SWIFT: A high capwgcit
wavelength-striped optically switched network with eteaic control. In
INFOCOM Poster SessioMiami, FL, USA, March 2005.

Matt Mathis, John Heffner, and Raghu Reddy. Web100: el TCP
instrumentation for research, education and diagn&SCOMM Comput.
Commun. Rey33(3):69-79, July 2003.

John Heidemann, Kevin Mills, and Sri Kumar. Expandingfidence in
network simulation]EEE Network Magazinel5(5):58-63, Sept./Oct.
2001.

Sally Floyd and Van Jacobson. Traffic phase effects irkpaswitched
gateways.Journal of Internetworking:Practice and Experience
3(3):115-156, September 1992.

Sally Floyd. Simulator tests. Technical report, LawcerBerkeley
Laboratory, May 1997.

Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffi@ath repository at
the WIDE project. I'USENIX, FREENIX Trackpages 263—-270, San
Diego, CA, June 2000.

[7] A. Romanow and S. Floyd. The dynamics of TCP traffic oveMAT

[8]

[9]

[10]
[11]

[12]

networks.IEEE Journal on Selected Areas In Communicatjdviay 1995.

Mario Gerla, Ken Tang, and Rajive Bagrodia. TCP perfono®in wireless
multi-hop networks. IWMCSA '99: Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and Applicatidfashington, DC,
USA, 1999. IEEE Computer Society.

Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary gase congestion
control (BIC) for fast long-distance networks. IBEE Infocom IEEE,
2004.

J. Postel. Transmission Control Protocol. RFC0799t&aber 1981.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Sele
Acknowledgement Options. RFC2018, October 1996.

R. Ludwig and A. Gurtov. The Eifel Response Algorithnm icCP.
RFC4015, February 2005.

177

[13] The network simulator - ns-htt p: // www. 1 S1 . edu/ nsnam ns/,
Accessed 2008.

[14] David Wetherall. Otcl: MIT Object Tclnttp://otcl-tcicl.
sour cef orge. net/ ot cl /|, Accessed 2006.

[15] Google scholaihttp://schol ar. googl e. conj Accessed 2006.

[16] Citeseer scientific literature digital librargt t p: // ci t eseer .1 st.
psu. edu/], Accessed 2006.

[17] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floydhd Heidemann,
Ahmed Helmy, Polly Huang, Steven Mccanne, Kannan Varad¥iaiXu,
and Haobo Yu. Advances in network simulatidBEE Computer
33(5):59-67, 2000.

[18] Tom Henderson, Sumit Roy, Sally Floyd, and George Rifest3 project
plan.http://ww. 1 cir.org/tloyd/tal ks/ ns3-Jun06. pdt}
June 2006.

[19] Matthew Mathis and Jamshid Mahdavi. Forward acknogéadent:
refining TCP congestion control. BIGCOMM '96: Conference
proceedings on Applications, technologies, architectuasd protocols for
computer communicationgolume 26, pages 281-291, New York, NY,
USA, October 1996. ACM Press.

[20] Kevin Fall and Sally Floyd. Simulation-based companis of Tahoe, Reno
and SACK TCP.SIGCOMM Comput. Commun. Re6(3):5-21, July
1996.

[21] Sally Floyd. Validation experiences with the ns simataTechnical report,
ACIRI, April 1999.

[22] Michael Neufeld, Ashish Jain, and Dirk Grunwald. Nskli bridging
network simulation and deployment. MSWiM '02: Proceedings of the 5th
ACM international workshop on Modeling analysis and siniolaof
wireless and mobile systenmages 74—-81, New York, NY, USA, 2002.
ACM Press.

[23] Eddie Kohler, Robert Morris, Benjie Chen, John Jannatid Frans M.
Kaashoek. The click modular routekCM Trans. Comput. Syst.
18(3):263-297, August 2000.

[24] X. A. Dimitropoulos and G. F. Riley. Creating realis8&P models. In
Modeling, Analysis and Simulation of Computer Telecompaii@ns
Systems, 2003. MASCOTS 2003. 11th IEEE/ACM Internatigmap8sium
on, pages 64-70, 2003.

[25] Inetquaggahtt p: // www. ormet pp. or g/ pmm Ki /1 ndex. php?
n=Mal n. | NETQuaggal, Accessed 2008.

[26] R. J. Gurski and C. L. Williamson. TCP over ATM: simulai model and
performance results. I@omputers and Communications, 1996., Conference
Proceedings of the 1996 IEEE Fifteenth Annual Internatid?tzoenix
Conference oypages 328-335, 1996.

178

http://www.isi.edu/nsnam/ns/
http://otcl-tclcl.sourceforge.net/otcl/
http://otcl-tclcl.sourceforge.net/otcl/
http://scholar.google.com
http://citeseer.ist.psu.edu/
http://citeseer.ist.psu.edu/
http://www.icir.org/floyd/talks/ns3-Jun06.pdf
http://www.omnetpp.org/pmwiki/index.php?n=Main.INETQuagga
http://www.omnetpp.org/pmwiki/index.php?n=Main.INETQuagga

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Guang Lu, R. Simmonds, Xiao Zhonge, B. Unger, and C.idfllson. The
performance of TCP over ATM on lossy ADSL networks.Liocal
Computer Networks, 2000. LCN 2000. Proceedings. 25th A&k
Conference oypages 418-427, 2000.

D. Comer and J. Lin. TCP buffering and performance oveA&M
network, March 1995.

Brian W. Unger, Fabian Gomes, Xiao Zhonge, Pawel Glusky Theodore
Ono-Tesfaye, Srinivasan Ramaswamy, Carey Williamson Adaual
Covington. A high fidelity ATM traffic and network simulatan WSC "95:
Proceedings of the 27th conference on Winter simulapages 996—-1003,
New York, NY, USA, 1995. ACM Press.

H. Obata, K. Ishida, J. Funasaka, and K. Amano. TCP pedoce analysis
on asymmetric networks composed of satellite and teregditnks. InICNP
'00: Proceedings of the 2000 International Conference otwdek
Protocols Washington, DC, USA, 2000. IEEE Computer Society.

Yong Bai, Pengfei Zhu, A. Rudrapatna, and A. T. Ogielskrformance of
TCP/IP over IS-2000 based CDMA radio links. IBEE Vehicular
Technology Conference, 200@Ilume 3, pages 1036—-1040, 2000.

M. Gerla, R. Bagrodia, L. Zhang, K. Tang, and L. Wang. T&/r wireless
multihop protocols: Simulation and experimentsIEEE International
Conference on Communications (ICQune 1999.

Gavin Holland and Nitin H. Vaidya. Analysis of tcp perfeance over
mobile ad hoc networks. IRroceedings of IEEE/ACM MOBICOM '99
pages 219-230, August 1999.

Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. Timgpact of
multihop wireless channel on TCP throughput and lossNFOCOM,
April 2003.

Tianbo Kuang and Carey Williamson. A bidirectional timdhannel MAC
protocol for improving TCP performance on multihop wiraesl hoc
networks. INMSWIM '04: Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wiretggsmobile
systemgspages 301-310, New York, NY, USA, 2004. ACM Press.

Kaixin Xu, Mario Gerla, Lantao Qi, and Yantai Shu. Enbery TCP
fairness in ad hoc wireless networks using neighborhood REBIobiCom
'03: Proceedings of the 9th annual international conferenn Mobile
computing and networkingpages 16—-28, New York, NY, USA, 2003. ACM
Press.

Rajesh Krishnan and James P. Sterbenz. TCP over |@ative links. In
International Conference on Networking Protocdlgashington, DC, USA,
2001. IEEE Computer Society.

179

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Aleksandar Kuzmanovic and Edward W. Knightly. LowedatCP-targeted
denial of service attacks: the shrew vs. the mice and eléphbmn
SIGCOMM ’'03: Proceedings of the 2003 conference on Appboat
technologies, architectures, and protocols for computnmunications
pages 75-86, New York, NY, USA, 2003. ACM Press.

G. Neglia and V. Falletta. Is TCP packet reordering gisvaarmful? In
Modeling, Analysis, and Simulation of Computer and Telenamnications
Systems, 2004. (MASCOTS 2004). Proceedings. The IEEE @ampu
Society’s 12th Annual International Symposium pages 87-94, 2004.

Liang Guo and Ibrahim Matta. The war between mice angheets. In
International Conference on Network Protocalslly 2001.

Wesley M. Eddy and Mark Allman. A comparison of RED’s @nd
packet modesComput. Networks42(2):261-280, June 2003.

Sally Floyd, Ramakrishna Gummadi, and Scott Shenkdaptive RED: An
algorithm for increasing the robustness of RED’s activeugu@anagement.
Available http://www.icir.org/floyd/papers/adaptivedRpdf, August 2001.

Zhang Heying, Liu Baohong, and Dou Wenhua. Design ofcausb active
gueue management algorithm based on feedback compendation
SIGCOMM ’'03: Proceedings of the 2003 conference on Appboat
technologies, architectures, and protocols for computnmunications
pages 277-285, New York, NY, USA, 2003. ACM Press.

Ningning Hu and Peter Steenkiste. Improving TCP sfapgerformance
using active measurements: Algorithm and evaluatiodCMP '03:
Proceedings of the 11th IEEE International Conference otwiEgk
Protocols Washington, DC, USA, 2003. IEEE Computer Society.

H. Wang and C. Williamson. A new scheme for TCP congestiontrol:
Smooth-start and dynamic recovery.MMASCOTS '98: Proceedings of the
6th International Symposium on Modeling, Analysis and &itran of
Computer and Telecommunication SysteWiashington, DC, USA, 1998.
IEEE Computer Society.

Ming Zhang, Brad Karp, Sally Floyd, and Larry Peters®R-TCP: A
reordering-robust TCP with DSACK. MCNP '03: Proceedings of the 11th
IEEE International Conference on Network Protogdéashington, DC,
USA, 2003. IEEE Computer Society.

Ethan Blanton and Mark Allman. On making TCP more roltagiacket
reordering.SIGCOMM Comput. Commun. Re32(1):20-30, January
2002.

S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Endgeon to the
Selective Acknowledgement (SACK) Option for TCP. RFC2888y
2000.

Emulabhttp: 77 www. enmul ab. net /], Accessed 2006.

180

http://www.emulab.net/

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Carey Williamson and Qian Wu. A case for context-awa@TIP.
SIGMETRICS Perform. Eval. Re29(4):11-23, March 2002.

Guanghui He, Yuan Gao, Jennifer C. Hou, and Kihong PArkase for
exploiting self-similarity of network traffic in tcp conggésn control.
Comput. Networks5(6):743—-766, August 2004.

Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Yn&didi, and Ren
Wang. TCP westwood: Bandwidth estimation for enhancedrart over
wireless links. INMobiCom '01: Proceedings of the 7th annual
international conference on Mobile computing and netwagkpages
287-297, New York, NY, USA, 2001. ACM Press.

Luigi A. Grieco and Saverio Mascolo. Performance estibn and
comparison of Westwood+, New Reno, and Vegas TCP congestiatnol.
SIGCOMM Comput. Commun. Re84(2):25-38, April 2004.

L. S. Brakmo and L. L. Peterson. TCP vegas: end to endestign
avoidance on a global interndEEE Journal on Selected Areas in
Communicationsl3(8):1465-1480, 1995.

Carlo Caini and Rosario Firrincieli. TCP Hybla: a TCFhancement for
heterogeneous networkisiternational Journal of Satellite Communications
and Networking22(5):547-566, August 2004.

Cheng P. Fu and Soung C. Liew. TCP Veno: TCP enhanceroent f
transmission over wireless access netwolE&E Journal on Selected
Areas in Communication21(2):216—228, February 2003.

D. Leith and R. Shorten. H-TCP: TCP for high-speed amdjtdistance
networks. InProceedings of the 2nd Workshop on Protocols for Fast Long
Distance NetworksArgonne, Canada, 2004.

Tom Kelly. Scalable TCP: improving performance in rsgleed wide area
networks.SIGCOMM Comput. Commun. Re®3(2):83-91, April 2003.

C. Jin, D. Wei, and S. Low. FAST TCP: Motivation, arclutere,
algorithms, performance. INFOCOM, 2004.

I. Khalifa and L. Trajkovic. An overview and comparisohanalytical TCP
models. InProceedings of the 2004 International Symposium on Cascuit
and Systemsolume 5, pages V-469-V-472 \Vol.5, 2004.

Faroog Anjum and Leandros Tassiulas. Comparativeyst@iggarious TCP
versions over a wireless link with correlated los9E€£E/ACM Trans.
Netw, 11(3):370-383, June 2003.

Michele Garetto, Renato Lo Cigno, Michela Meo, and Mea#fc Marsan.
Closed queueing network models of interacting long-livamftows.
IEEE/ACM Trans. Netw12(2):300-311, April 2004.

Bing Wang, Jim Kurose, Prashant Shenoy, and Don Towsfleytimedia
streaming via TCP: an analytic performance st WMETRICS Perform.
Eval. Rev.32(1):406—-407, June 2004.

181

[64] Aditya Akella, Srinivasan Seshan, Richard Karp, S&ttenker, and
Christos Papadimitriou. Selfish behavior and stabilityhef internet: a
game-theoretic analysis of TCBIGCOMM Comput. Commun. Rev.
32(4):117-130, October 2002.

[65] Xin Liu and Andrew A. Chien. Realistic large-scale ainetwork
simulation. InSC '04: Proceedings of the 2004 ACM/IEEE conference on
SupercomputingVashington, DC, USA, 2004. IEEE Computer Society.

[66] Garrett R. Yaun, David Bauer, Harshad L. Bhutada, Gbpiser D.
Carothers, Murat Yuksel, and Shivkumar Kalyanaraman. ¢-@cale
network simulation techniques: examples of TCP and OSPFefaod
SIGCOMM Comput. Commun. Re83(3):27-41, July 2003.

[67] G.F. Lucio, M. Paredes-Farrera, E; F. Jammeh, and Me@dROPNET
modeler and ns-2 - comparing the accuracy of network sirorddor
packet-level analysis using a network testb&SEAS Transactions on
Computers2(3):700-707, July 2003.

[68] Johan Garcia, Stefan Alfredsson, and Anna Brunstrohe ifhpact of loss
generation on emulation-based protocol evaluatiorPMCN’06:
Proceedings of the 24th IASTED international conferenc@anallel and
distributed computing and networksages 231-237, Anaheim, CA, USA,
2006. ACTA Press.

[69] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, |.Réan, and
D. Chalmers. The state of peer-to-peer simulators and atimuk.
SIGCOMM Comput. Commun. Re®7(2):95-98, April 2007.

[70] Roberto Canonico, Donato Emma, and Giorgio Ventreegeed Nam: An
ns2-compatible network topology editor for simulation aflwcaching
systems on large network topologies, October 2003.

[71] Srinivasan Keshav. REAL: A network simulator. Tectalieport,
University of California at Berkeley, Berkeley, CA, USA, 83.

[72] Alexander Dupuy, Jed Schwartz, Yechiam Yemini, andiD&acon.
NEST: a network simulation and prototyping testb€dmmun. ACM
33(10):63-74, October 1990.

[73] M. Handley, J. Padhye, and S. Floyd. TCP congestion asndalidation.
Technical report, University of Massachusetts, Amherd, MSA, 1999.

[74] G. Hasegawa, K. Kurata, and M. Murata. Analysis and mepment of
fairness between TCP Reno and Vegas for deployment of TCBsMeghe
internet. INICNP '00: Proceedings of the 2000 International Conferenne
Network ProtocolsWashington, DC, USA, 2000. IEEE Computer Society.

[75] M. C. Weigle, K. Jeffay, and F. D. Smith. Quantifying tetects of recent
protocol improvements to standards-track TCP11th IEEE/ACM
International Symposium on Modeling, Analysis and Sinnurtedf
Computer Telecommunications Systepagies 226—-229, 2003.

182

[76] Qian Wu and Carey Williamson. Improving ensemble-T@/@rmance on
asymmetric networks. IRroceedings of the Ninth International Symposium
in Modeling, Analysis and Simulation of Computer and Teletwnication
SystemsWashington, DC, USA, 2001. IEEE Computer Society.

[77] John K. Ousterhoutlcl and the Tk ToolkitAddison-Wesley Professional,
March 1994.

[78] V. Jacobson. Congestion avoidance and con86&6COMM Comput.
Commun. Rey18(4):314—-329, August 1988.

[79] V. Jacobson. Modified TCP congestion control and avaigaalgorithms.
end2end-interest mailing list, April 1990.

[80] S. Floyd and T. Henderson. The NewReno Modification t&>’BG-ast
Recovery Algorithm. RFC2582, April 1999.

[81] K. Fall, S. Floyd, and T. Henderson. Ns simulator testsReno FullTcp,
1997.

[82] ns-2 validation testsht t p: // www. I S1 . edu/ nsnani ns/
ns-tests. htm), Accessed 2006.

[83] Fabian Gomes, John Cleary, Alan Covington, Steve FaBkan Unger,
and Zhong-E Ziao. SimKit: a high performance logical precgsmulation
class library in c++. INWSC '95: Proceedings of the 27th conference on
Winter simulationpages 706—713, New York, NY, USA, 1995. ACM Press.

[84] Gary R. Wright and Richard W. Stevenghe Implementation (TCP/IP
lllustrated, Volume 2) Addison-Wesley Professional, January 1995.

[85] V. Jacobson, R. Braden, and D. Borman. TCP Extensiandifgh
Performance. RFC1323, May 1992.

[86] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoS#xlibrary for
parallel simulation of large-scale wireless networks\Workshop on
Parallel and Distributed Simulatigrpages 154-161, 1998.

[87] R. Bagrodia, R. Meyer, M. Takai, Yu-An Chen, Xiang ZedgMartin, and
Ha Y. Song. Parsec: a parallel simulation environment fonglex systems.
IEEE Computer31(10):77-85, 1998.

[88] Gang Zhou, Tian He, Sudha Krishnamurthy, and John Al&tac. Impact
of radio irregularity on wireless sensor networks MobiSys '04:
Proceedings of the 2nd international conference on Molyitesns,
applications, and servicepages 125-138, New York, NY, USA, 2004.
ACM Press.

[89] K. Tang and M. Gerla. MAC reliable broadcast in ad hoovweks. In
Communications for Network-Centric Operations: Creatihg Information
Force. IEEE Military Communications Conferene®lume 2, pages
1008-1013 vol.2, 2001.

183

http://www.isi.edu/nsnam/ns/ns-tests.html
http://www.isi.edu/nsnam/ns/ns-tests.html

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Sonja Buchegger and Jean-Yves Le Boudec. Performaraigsis of the
CONFIDANT protocol. InMobiHoc '02: Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking & cotim@) pages
226-236, New York, NY, USA, 2002. ACM Press.

Scalable Network Technologies. Qualnet network satarhtt p:/7/
WWW. Scal abl e- net wor Ks. conT, Accessed 2006.

Haejung Lim, Kaixin Xu, and M. Gerla. TCP performancesomultipath
routing in mobile ad hoc networks. ommunications, 2003. ICC '03.
IEEE International Conference orolume 2, pages 1064-1068 vol.2, 2003.

Rajive Bagrodia and Mineo Takai. Position paper ondagion of network
simulation models. IDARPA/NIST Network Simulation Validation
WorkshopMay 1999.

Inc. OPNET Technologies. Opnet modeet.p: / / ww. opnet . com
product s/ nodel er/], Accessed 2006.

Xinjie Chang. Network simulations with opnet. WSC '99: Proceedings
of the 31st conference on Winter simulatipages 307-314, New York, NY,
USA, 1999. ACM Press.

Chengyu Zhu, O. W. W. Yang, J. Aweya, M. Ouellette, and¥rDMontuno.
A comparison of active queue management algorithms use@®NET
Modeler.IEEE Communications Magazin40(6):158-167, 2002.

J. W. K. Wong and V. C. M. Leung. Improving end-to-endfpemance of
TCP using link-layer retransmissions over mobile intenweks. InIEEE
International Conference on Communicatipuslume 1, pages 324-328,
1999.

Jing Wu, Peng Zhang, Tao Du, Jian Ma, and Shiduan Chengraving
TCP performance in ATM network by the fast TCP flow control. In
International Conference on Communication Technolegjume vol.2,
pages 5 pp. vol.2+, 1998.

J. B. Pippas and I. S. Venieris. A RED variation for detayitrol. InIEEE
International Conference on Communicatipuslume 1, pages 475-479,
2000.

Wan G. Zeng, Meihua Zhan, Zhiwen Lin, and Ljiljana k@yic. Improving
TCP performance with periodic disconnections over wirelgsks. In
OPNETWORKWashington D.C., August 2003.

F. Baccelli, D. R. Mcdonald, and J. Reynier. A meandfiglodel for
multiple TCP connections through a buffer implementing REBrform.
Eval, 49(1-4):77-97, 2002.

Norman C. Hutchinson and Larry L. Peterson. The X-ké&rAn
architecture for implementing network protocolEEE Trans. Softw. Eng.
17(1):64-76, January 1991.

184

http://www.scalable-networks.com/
http://www.scalable-networks.com/
ttp://www.opnet.com/products/modeler/
ttp://www.opnet.com/products/modeler/

[103] Lawrence S. Brakmo and Larry L. Peterson. Experiemgdsnetwork
simulation. INSIGMETRICS '96: Proceedings of the 1996 ACM
SIGMETRICS international conference on Measurement ardefimy of
computer systemsolume 24, pages 80-90, New York, NY, USA, May
1996. ACM Press.

[104] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M. Ya@gC.
Chiou, and C. C. Lin. The design and implementation of the N63 1.0
network simulatorComputer Networks: The International Journal of
Computer and Telecommunications Networkihg(2):175-197, 2003.

[105] Craig Bergstrom, Srinidhi Varadarajan, and GodmaskB& he distributed
open network emulator: Using relativistic time for distribd scalable
simulation. In20th Workshop on Principles of Advanced and Distributed
Simulation pages 19-28, 2006.

[106] Roland Bless and Mark Doll. Integration of the FreeBBOP/IP-stack into
the discrete event simulator OMNeT++. \Winter Simulation Conference
pages 1556-1561, December 2004.

[107] Perez Julio. MQTT performance analysis with OMNeTMaster’s thesis,
Networking Insitut Eurecom, September 2005.

[108] A. Terzis, K. Nikoloudakis, Lan Wang, and Lixia Zharn&®LSim: a general
purpose packet level network simulator.38rd Annual Simulation
Symposiumpages 109-120, 2000.

[109] David X. Wei and Pei Cao. Ns-2 TCP-Linux: an ns-2 TCP lenpentation
with congestion control algorithms from Linux. WNS2 '06: Proceeding
from the 2006 workshop on ns-2: the IP network simulat®w York, NY,
USA, 2006. ACM Press.

[110] Scalable Network Technologies. GloMoSim and parsecce code
distribution.ntt p: // pcl . cs. ucl a. edu/ pr o] ect s/ gl omosi m
obt al ni ng_gl onbsi m ht nl |, Accessed 2007.

[111] University of Arizona.z-kernel ande-sim source code distribution.
http://ww. cS. arl zona. edu/ pr o] ect s/ xkernel/
sof twar e. ht m, Accessed 2007.

[112] Christopher C. Knestrick. Lunar: A user-level staitkdry for network
emulation. Master’s thesis, Virginia Tech, February 2004.

[113] David Ely, Stefan Savage, and David Wetherall. AlpiAaiser-level
infrastructure for network protocol development.3iil USENIX
Symposium on Internet Technologies and Systpages 171-184, 2001.

[114] Srinidhi Varadarajan. The Weaves runtime framewdmkParallel and
Distributed Processing Symposium, 2004. Proceedingh. Ib&rnational
pages 197+, 2004.

[115] Jeroen ldserda. TCP/IP modeling in OMNeT++. B-Assignt, July 2004.

185

http://pcl.cs.ucla.edu/projects/glomosim/obtaining_glomosim.html
http://pcl.cs.ucla.edu/projects/glomosim/obtaining_glomosim.html
http://www.cs.arizona.edu/projects/xkernel/software.html
http://www.cs.arizona.edu/projects/xkernel/software.html

[116] Sam Jansen. Network simulation cradle report. Texztimeport,
Department of Computer Science, The University of Waika@f3.

[117] X. W. Huang, R. Sharma, and Srinivasan Keshav. The EAHIR protocol
development environment. INFOCOM (3) pages 1107-1115, 1999.

[118] Marko Zec. Implementing a clonable network stack ia fieebsd kernel. In
USENIX Annual Technical Conferengemges 137-150, 2003.

[119] Bradford Nichols, Dick Buttlar, and Jacqueline P.redir Pthreads
Programming O’Reilly, 101 Morris Street, Sebastopol, CA 95472, 1998.

[120] GNU Project - Free Software Foundation (FSF). Flet p: /7 / Wwwv.
gnu. or g/ sof twar e/ t 1 ex/ |, Accessed 2006.

[121] GNU Project - Free Software Foundation (FSF). Bistont p: / /7 Ww.
gnu. or g/ sof t war e/ b1 son/ |, Accessed 2006.

[122] International Organization for Standardizatidé80O/IEC 9899:1999:
Programming Languages — (nhternational Organization for
Standardization, Geneva, Switzerland, December 1999.

[123] Jeff Lee. ANSI C grammalf.tp://Ttp. uu. net/ usenet/ net.
sour ces/ ansi . c. gr anmar . Z, Accessed 2006.

[124] GNU Project - Free Software Foundation (FSF). GNU cibengollection:
C compiler,ntt p: /7 www. gnu. or g/ sof t war e/ gcc/ |, Accessed
2005.

[125] GNU Project - Free Software Foundation (FSF). Usireg@®@NU compiler
collection: C extensionhtt p: // gcc. gnu. or g/ onl | nedocs/
gcc- 4. 0.2/ gcc/1 ndex. ht m #t oc_C Ext ensi ons|, Accessed
2005.

[126] Marshall K. Mckusick, Keith Bostic, Michael J. Kareknd Josn S.
QuartermanThe Design and Implementation of the 4.4BSD Operating
SystemAddison-Wesley, 1996.

[127] Osman Balci. Verification, validation and accreddatof simulation
models. InProceedings of the Winter Simulation Confereric@97.

[128] John S. Carson. Verification validation: model vedtion and validation.
In WSC '02: Proceedings of the 34th conference on Winter sitoula
pages 52-58. Winter Simulation Conference, 2002.

[129] Robert G. Sargent. Verification and validation of siation models. In
WSC '03: Proceedings of the 35th conference on Winter sitoulgpages
37-48. Winter Simulation Conference, 2003.

[130] Van Jacobson, Craig Leres, and Steven Mccanne. tcpchoi p: //
WWW. T cpdunp. or g, Accessed 2005.

[131] Shaun Ostermann. tcptrade.t p: / / ww. t cpt race. or g, Accessed
2006.

186

http://www.gnu.org/software/flex/
http://www.gnu.org/software/flex/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
ftp://ftp.uu.net/usenet/net.sources/ansi.c.grammar.Z
ftp://ftp.uu.net/usenet/net.sources/ansi.c.grammar.Z
http://www.gnu.org/software/gcc/
http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/index.html#toc_C-Extensions
http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/index.html#toc_C-Extensions
http://www.tcpdump.org
http://www.tcpdump.org
http://www.tcptrace.org

[132] WAND network research groufirt t p: / / www. wand. net . nz/},
Accessed 2008.

[133] Brendon Jones. WAND emulation networ t p: / / wwv. wand. net .
nz/ ~bc| 3/ enul at'1 on/ |, Accessed 2006.

[134] Brendon Jones. Architecture and trial implementatba performance
testing framework. Technical report, Waikato Univers@4.

[135] Luigi Rizzo. Dummynet: a simple approach to the evatraof network
protocols.ACM Computer Communication Reviekv(1):31-41, 1997.

[136] Yasushi Saito, Christos Karamanolis, Magnus Karisemd Mallik
Mahalingam. Taming aggressive replication in the pangade-area file
system.SIGOPS Oper. Syst. Re86(SI):15-30, 2002.

[137] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Sher@eithe
characteristics and origins of internet flow ratesSIGCOMM ’'02:
Proceedings of the 2002 conference on Applications, tdolies,
architectures, and protocols for computer communicatieonfume 32,
pages 309-322, New York, NY, USA, October 2002. ACM Press.

[138] Luigi Rizzo. pgmcc: a TCP-friendly single-rate ma#ist congestion control
scheme. IIBIGCOMM ’00: Proceedings of the conference on Applications

Technologies, Architectures, and Protocols for Comput@m@unication
volume 30, pages 17-28, New York, NY, USA, October 2000. AQ#kB.

[139] Mark Allman and Aaron Falk. On the effective evaluataf TCP.
SIGCOMM Comput. Commun. Re29(5):59-70, October 1999.

[140] Luigi Rizzo. IPDUMMYNET documentationhtt p: //1 nfo. 1 et.
uni pi .1t/ ~urgl/1p_dunmynet/| Accessed 2006.

[141] W. A. Vanhonacker. Evaluation of the FreeBSD dummyrattvork
performance simulation tool on a pentium-4 based ethemigd.
Technical report, Center for Advanced Internet Architeesy Swinburne
University of Technology, Melbourne, Australia, DecemBé03.

[142] Mark Carson and Darrin Santay. NIST net: a linux-basetivork
emulation tool.SIGCOMM Computer Communications Revue
33(3):111-126, July 2003.

[143] S. Hemminger. Network emulation with netem.Linux Conf Ay April
2005.

[144] K. Fall. Network emulation in the VINT/NS simulatom Proceedings of
the fourth IEEE Symposium on Computers and Communicatl®es9.

[145] J. Cleary, S. Donnelly, I. Graham, A. Mcgregor, and MaFRson. Design

principles for accurate passive measurement.He First Passive and Active

Measurement Workshppages 1-7, Hamilton, New Zealand, April 2000.

[146] Sam Jansen. tcpperf - tcp performance tooit p: /7 / www. wand. net .
nz/ ~st| 2/ nsc/ sot t war e. ht m |, Accessed 2006.

187

http://www.wand.net.nz/
http://www.wand.net.nz/~bcj3/emulation/
http://www.wand.net.nz/~bcj3/emulation/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://www.wand.net.nz/~stj2/nsc/software.html
http://www.wand.net.nz/~stj2/nsc/software.html

[147] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, agdiiKGibbs.
Iperf version 1.7.0htt p: // dast . nl anr. net/ Proj ects/ I pert/,
Accessed 2006.

[148] Ajay Tirumala, Les Cottrell, and Tom Dunigan. Measigrend-to-end
bandwidth with iperf using web100. Passive and Active Monitoring
Workshop San Diego, CA, USA, April 2003.

[149] S. Tao, L. K. Jacob, and A. Ananda. A TCP socket bufféo-duning
daemon. IrProceedings of the 12th International Conference on Coerput
Communications and Networksages 299-304, 2003.

[150] Ross Mcillroy. Network router resource virtualisati Master’s thesis,
University of Glasgow, 2005.

[151] Sam Jansen. tcpnorint t p: // ww. wand. net . nz/ ~st| 2/ nsc/
sof twar e. ht m, Accessed 2006.

[152] M. Allman, S. Floyd, and C. Partridge. Increasing TERiitial Window.
RFC3390, October 2002.

[153] Sally Floyd and Eddie Kohler. Internet research ndmstter models.
SIGCOMM Comput. Commun. Re83(1):29-34, January 2003.

[154] Vern Paxson and Sally Floyd. Why we don’t know how to giate the
internet. INWSC '97: Proceedings of the 29th conference on Winter
simulation pages 1037-1044, New York, NY, USA, 1997. ACM Press.

[155] K. G. Anagnostakis, M. B. Greenwald, and R. S. Ryger.ti@nsensitivity
of network simulation to topology. IMASCOTS '02: Proceedings of the
10th IEEE International Symposium on Modeling, Analysigl S8imulation
of Computer and Telecommunications Systems (MASCOTS’02)
Washington, DC, USA, 2002. IEEE Computer Society.

[156] Averill M. Law. Practical statistical analysis of sutation output data: the
state of the art. In R. G. Ingalls, M. D. Rossetti, J. S. Snatig B. A.
Peters, editord)Vinter Simulation Conferencpages 67—72. Winter
Simulation Conference, December 2004.

[157] J. Bolot. Characterizing end-to-end packet delaylassd in the internet.
Journal of High-Speed Networka, 1993.

[158] Y. Zhang, V. Paxson, and S. Shenker. The stationafityternet path
properties: Routing, loss, and throughput. Technicalmgp<IRI, 2000.

[159] T. V. Lakshman and Upamanyu Madhow. The performanceG#/IP for
networks with high bandwidth-delay products and randora.Id&SEE/ACM
Trans. Netw.5(3):336-350, June 1997.

[160] T. V. Lakshman, Upamanyu Madhow, and Bernhard Sut€P/TP
performance with random loss and bidirectional congestieBE/ACM
Trans. Netw.8(5):541-555, October 2000.

188

http://dast.nlanr.net/Projects/Iperf/
http://www.wand.net.nz/~stj2/nsc/software.html
http://www.wand.net.nz/~stj2/nsc/software.html

[161] Jitendra Padhye, Victor Firoiu, Donald F. Towsleyddames F. Kurose.
Modeling TCP Reno performance: a simple model and its epadiri
validation.IEEE/ACM Trans. Netw8(2):133-145, April 2000.

[162] Sam Jansen and Anthony Mcgregor. Measured comparnagrformance of
TCP stacks. IfPassive and Active Measurement Workshapume 3431,
pages 329-332, Boston, MA, USA, March 2005.

[163] Sam Jansen and Anthony McGregor. Simulation withweald network
stacks. INWSC '05: Proceedings of the 37th Winter Simulation Confegen
pages 2454-2463, Orlando, Florida, USA, December 200%etydor
Computer Simulation International.

[164] W. Stevens. TCP Slow Start, Congestion Avoidancet Ragansmit, and
Fast Recovery Algorithms. RFC2001, January 1997.

[165] M. Allman, S. Floyd, and C. Partridge. Increasing TERitial Window.
RFC2414, September 1998.

[166] Sally Floyd. Metrics for the evaluation of congestmntrol mechanisms.
Internet Draft, October 2005.

[167] Sally Floyd. Tools for the evaluation of simulationcetestbed scenarios.
Internet Draft, October 2005.

[168] David X. Wei, Pei Cao, and Steven H. Low. Time for a TCIAdienark
suite? Technical report, Caltech, 2005.

[169] Pasi Sarolahti and Alexey Kuznetsov. Congestionrabirt linux TCP. In
Proceedings of the FREENIX Track: 2002 USENIX Annual Tecthni
Conferencepages 49-62, Berkeley, CA, USA, 2002. USENIX Association.

[170] A. Gurtov and R. Ludwig. Responding to spurious timesdn TCP. In
INFOCOM 2003. Twenty-Second Annual Joint Conference dBRE
Computer and Communications Societies. IE#HuUmMe 3, pages
2312-2322, 2003.

[171] lan H. Witten and Eibe FranliData Mining: Practical Machine Learning
Tools and Techniques, Second Editidforgan Kaufmann, June 2005.

[172] Mark A. Hall and Geoffrey Holmes. Benchmarking atirié selection
techniques for discrete class data minitlgEE Transactions on Knowledge
and Data Engineeringl5(6):1437-1447, November 2003.

[173] Mark A. Hall. Correlation-based feature selectiondcscrete and numeric
class machine learning. I€ML '00: Proceedings of the Seventeenth
International Conference on Machine Learnjmmages 359—-366, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[174] S. Floyd. HighSpeed TCP for Large Congestion WindoRiSC3649,
December 2003.

[175] Yee-Ting Li, Douglas Leith, and Robert N. Shorten. Exmental
evaluation of TCP protocols for high-speed networks. Texdimeport,
Hamilton Institute, NUI Maynooth, 2005.

189

[176] Sangtae Ha, Yusung Kim, Long Le, Injong Rhee, and Lgs¥n. A step
toward realistic performance evaluation of high-speed Vaiants. In
Fourth International Workshop on Protocols for Fast Longstance
Networks 2006.

[177] Kazumi Kumazoe, Katsushi Kouyama, Yoshiaki Hori, M@sTsuru, and
Yuji Oie. Can high-speed transport protocols be deployethennternet? :
Evaluation through experiments on jgnii. Fourth International Workshop
on Protocols for Fast Long-Distance Networ2906.

[178] Sally Floyd. The transport modeling research groupd). http:/7/
WWW. | CI . org/tnrg/l Accessed 2006.

[179] Raj Jain.The Art of Computer Systems Performance Analysis: Tecbsiqu
for Experimental Design, Measurement, Simulation, andéliad. John
Wiley and Sons, 1991.

[180] M. Lulling and J. Vaughan. A simulation-based perfamoe evaluation of
Tahoe, Reno and Sack TCP as appropriate transport profoc@°.
Computer Communication27(16):1585-1593, October 2004.

[181] V. Jacobson. Congestion avoidance and controBI(GCOMM ’'88:
Symposium proceedings on Communications architectui@geocols
volume 18, pages 314-329, New York, NY, USA, August 1988. ABidss.

[182] M. Allman, V. Paxson, and W. Stevens. TCP Congestiont(@ob.
RFC2581, April 1999.

[183] Bellcore. LSGRR: Switching system generic requiratador call control
using the integrated services digital network user padin{ip). Technical
report, GR-317-CORE, Bellcore, Morristown, New Jerseycé&sber 1997.

[184] Rishi Sinha, Christos Papadopoulos, and John Heidematernet packet
size distributions: Some observatiofd.t p: / / net web. usc. edu/
~r S1 nhal/ pkt - s1 zes/ |, October 2005, Accessed 2006.

[185] Alberto Medina, Mark Alliman, and Sally Floyd. Measugithe evolution of
transport protocols in the interne@lGCOMM Comput. Commun. Rev.
35(2):37-52, April 2005.

[186] Doug Burger and David A. Wood. Accuracy vs. performaircparallel
simulation of interconnection networks. IAPS '95: Proceedings of the 9th
International Symposium on Parallel Processipgges 22-31, Washington,
DC, USA, 1995. IEEE Computer Society.

[187] Susan J. Eggers. Simplicity versus accuracy in a maidedche coherency
overheadlEEE Trans. Comput40(8):893-906, August 1991.

[188] John Levon. OProfile - a system profiler for Linlnk t p: // oprofile.
sour cef or ge. net /], Accessed 2006.

[189] Will Cohen. Multiple architecture characterizatiofthe build process with
oprofile. Submitted to Workshop on Workload Characterara003, 2003.

190

http://www.icir.org/tmrg/
http://www.icir.org/tmrg/
http://netweb.usc.edu/~rsinha/pkt-sizes/
http://netweb.usc.edu/~rsinha/pkt-sizes/
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/

[190] Julien Seward, Nicholas Nethercote, Cerion Armotovi, Jeremy
Fitzhardinge, Tom Hughes, Paul Mackerras, Dirk Muelled Robert
Walsh. Valgrindht t p: // val gri nd. or g, Accessed 2006.

[191] Sam Jansen and Anthony McGregor. Performance, vadidand testing
with the network simulation cradle. MASCOTS '06: Proceedings of the
14th IEEE International Symposium on Modeling, Analysmsl Simulation
pages 355—-362, Monterey, California, USA, 2006. IEEE CampBociety.

[192] R. Brown. Calendar queues: a fast 0(1) priority quenglémentation for
the simulation event set proble@ommun. ACM31(10):1220-1227,
October 1988.

[193] Kah L. Tan and Li-Jin Thng. Snoopy calendar queueProceedings of the
32nd conference on Winter simulatigrages 487-495, San Diego, CA,
USA, 2000. Society for Computer Simulation International.

[194] Jongsuk Ahn and Seunghyun Oh. Dynamic calendar qualroceedings
of the Thirty-Second Annual Simulation Symposifashington, DC, USA,
1999. IEEE Computer Society.

[195] Guanhua Yan and Stephan Eidenbenz. Sluggish calgneaes for
network simulation. IrModeling and Simulation of Computer and
Telecommunication Systenpsges 127-136, Monterey, CA, 2006. IEEE
Computer Society.

[196] Sam Jansen. Heapprof heap profiling tédlt p: /7 / wwwv. wand. net .
nz/ ~st| 2/ nsc/ sof t war e. ht m |, Accessed 2006.

[197] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hama Harris, Alex
Ho, Rolf Neugebauer, lan Pratt, and Andrew Warfield. Xen &edart of
virtualization. InNSOSP '03: Proceedings of the nineteenth ACM symposium
on Operating systems principlgsages 164-177, New York, NY, USA,
2003. ACM Press.

[198] Sam Jansen and Anthony McGregor. Static virtualmatf C source code.
Software: Practice and Experiencg8(4):397-416, April 2008.

[199] Sam Jansen. Network simulation cradle softwatel p: // resear ch.
wand. net . nz/ sof t war e/ nsc. phpl, Accessed 2008.

[200] Quagga routing suitéht t p: / / www. quagga. net /|, Accessed 2006.

[201] Bjrn Hggqvist. High quality video conferencing. Mass thesis, Lulea
Technical University, 2005.

[202] J. Dike. A user-mode port of the linux kernel. Pnoceedings of the 4th
Annual Linux Showcase and ConferendSENIX, October 2000.

[203] R. Durst, G. Miller, and E. Travis. TCP extensions fpase
communications. IProceedings of the second annual international
conference on Mobile computing and networkitéhite Plains, NY USA,
1996.

191

http://valgrind.org
http://www.wand.net.nz/~stj2/nsc/software.html
http://www.wand.net.nz/~stj2/nsc/software.html
http://research.wand.net.nz/software/nsc.php
http://research.wand.net.nz/software/nsc.php
http://www.quagga.net/

[204] Scps reference softwailet t p: / 7/ ww. openchannel soft war €.
conm pr o] ect s/ SCPS, Accessed 2006.

[205] Sam Jansen and Anthony McGregor. Validation of sinedaeal world
network stacks. IfProceedings of the Winter Simulation Conferermages
2177-2186, Washington D.C., USA, December 2007. IEEE Press

[206] Adam Biltcliffe, Michael Dales, Sam Jansen, Thomaddei and Peter
Sewell. Rigorous protocol design in practice: An opticatig-switch
MAC in HOL. In 14th IEEE International Conference on Network
Protocols (ICNP) pages 117-126, Santa Barbara, CA, USA, November
2006. IEEE Computer Society.

[207] Mark Apperley, Sam Jansen, Amos Jeffries, Masood Mdism, Laurie
McLeod, Lance Paine, Bill Rogers, Kirsten Thomson, and Tdnyle.
Lecture capture using large interactive display systemiCCE '02:
Proceedings of the International Conference on ComputeEducation
page 143, Auckland, New Zealand, 2002. IEEE Computer Societ

[208] Adam Dunkels, Leon Woestenberg, Kieran Mansley, amd Monoses.
IwlP embedded TCP/IP stacki t p: / / Savannah. nongnu. or g/
proj ects/ 1w p/l, Accessed 2006.

[209] Richard W. StevengJnix Network ProgrammingPrentice Hall PTR,
January 1990.

[210] Chris D. Marlin.Coroutines: A Programming Methodology, a Language
Design and an Implementatipmolume 95 ofLecture Notes in Computer
Science Springer, 1980.

[211] Angela D. Orebaugh and Gilbert and RamirEthereal Packet Sniffing
Syngress, February 2004.

[212] Deborah Estrin, Mark Handley, John Heidemann, Sté&¢ecanne, Ya Xu,
and Haobo Yu. Network visualization with the VINT networkiator
nam. Technical Report 99-703b, University of SouthernfGatia, 1999.

[213] Omnet++ community sitént t p: / / www. ormet pp. or g/, Accessed
2006.

[214] Andras Varga. The OMNET++ discrete event simulatigstem. In
Proceedings of the European Simulation Multiconferepeges 319-324,
Prague, Czech Republic, June 2001. SCS — European Puflidbirse.

[215] A. Varga and G. Pongor. Flexible topology descript@mguage for
simulation programs. IRroceedings of the 9th European Simulation
SymposiumPassau, Germany, October 1997.

[216] Andras Varga. Using the OMNeT++ discrete event siriotesystem in
education|EEE Transactions on Educatioa2(4), 1999.

[217] Chris Savarese, Jan M. Rabaey, and Koen LangendodusRpositioning
algorithms for distributed ad-hoc wireless sensor netaohk Proceedings
of the General Track: 2002 USENIX Annual Technical Confezgpages
317-327, Berkeley, CA, USA, 2002. USENIX Association.

192

http://www.openchannelsoftware.com/projects/SCPS
http://www.openchannelsoftware.com/projects/SCPS
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
http://www.omnetpp.org/

[218] Tijs van Dam and Koen Langendoen. An adaptive eneffigient MAC
protocol for wireless sensor networks. 3enSys '03: Proceedings of the 1st
international conference on Embedded networked sensteragpages
171-180, New York, NY, USA, 2003. ACM Press.

[219] Koen Langendoen and Niels Reijers. Distributed lzedion in wireless
sensor networks: a quantitative comparisGomput. Networks
43(4):499-518, November 2003.

[220] Mirco Musolesi, Stephen Hailes, and Cecilia Masc@daptive routing for
intermittently connected mobile ad hoc networks WOWMOM '05:
Proceedings of the Sixth IEEE International Symposium orodd/éf
Wireless Mobile and Multimedia Networks (WoWMoM'(Qigges 183-189,
Washington, DC, USA, 2005. IEEE Computer Society.

[221] Adam Dunkels, Thiemo Voigt, Juan Alonso, and HartmiiteR Distributed
TCP caching for wireless sensor networksPhoceedings of the Third
Annual Mediterranean Ad Hoc Networking Workshop (MedHa&@084)
June 2004.

[222] Fu-Tai An, Kyeong S. Kim, D. Gutierrez, S. Yam, E. Hu, 8hrikhande,
and L. G. Kazovsky. SUCCESS: a next-generation hybrid WDDIT
optical access network architectuteaghtwave Technology, Journal,of
22(11):2557-2569, 2004.

[223] K. Wehrle, J. Reber, and V. Kahmann. A simulation stotanternet nodes
with the ability to integrate arbitrary quality of servicetmavior, 2001.

[224] Ulrich Kaage, Verena Kahmann, and Friedrich Jondkal OMNET++
TCP model. InProceedings of the European Simulation Multiconference
June 2001.

[225] Johnny Lai, Eric Wu, Andras Varga, Ahmet Y. Sekerciggind Gregory K.
Egan. A simulation suite for accurate modeling of ipv6 poots. In
Proceedings of the 2nd International OMNeT++ WorkshBprlin,
Germany, January 2002.

[226] Ahmet Y. Sekercioglu, Andras Varga, and Gregory K. ieg@arallel
simulation made easy with OMNeT++. Rroceedings of the European
Simulation Symposiunbelft, The Netherlands, October 2003.

[227] Omnet++ model documentaticnt t p: / / www. onmet pp. or g/ doc/
I NET/ neddoc/ 1 ndex. ht m |, Accessed 2006.

[228] R. Braden. Requirements for Internet Hosts - Commatioa Layers.
RFC1122, October 1989.

[229] Scalable Simulation Framework API Reference Manirch 1999.

[230] Dartmouth ssfimplementatioht t p: / / www. Cr hc. ui uc. edu/
~|asonl 1 u/ projects/sst/intro. htm | Accessed 2006.

[231] Scalable simulation frameworki t p: / / www. SST net . or g/}, Accessed
2006.

193

http://www.omnetpp.org/doc/INET/neddoc/index.html
http://www.omnetpp.org/doc/INET/neddoc/index.html
http://www.crhc.uiuc.edu/~jasonliu/projects/ssf/intro.html
http://www.crhc.uiuc.edu/~jasonliu/projects/ssf/intro.html
http://www.ssfnet.org/

[232] T. G. Griffin and B. J. Premore. An experimental anaysiBGP
convergence time. INinth International Conference on Network Protogols
pages 53-61, 2001.

[233] David M. Nicol, Brian Premore, and Andy Ogielski. Ugisimulation to
understand dynamic connectivity at the core of the interimeProceedings
of UKSim Cambridge University, England, April 2003.

[234] Michael Liljenstam and Andy T. Ogielski. Crossoveakiag effects in
aggregated TCP traffic with congestion loss€eKsCOMM Comput.
Commun. Rey32(5):89-100, November 2002.

[235] Michael Liljenstam, David M. Nicol, Vincent H. Berknd Robert S. Gray.
Simulating realistic network worm traffic for worm warningstem design
and testing. I'WORM '03: Proceedings of the 2003 ACM workshop on
Rapid malcodgpages 24-33, New York, NY, USA, 2003. ACM Press.

[236] James H. Cowie, David M. Nicol, and Andy T. Ogielski. tiging the
global internetComputing in Science and Eng@(1):42-50, January 1999.

[237] J. Cowie and H. Liu. Towards realistic million-nodégmet simulations. In
Proceedings of the International Conference on Paralled &nistributed
Processing Techniques and Applicatiph899.

[238] Jason Liu, Felipe L. Perrone, David M. Nicol, Michadljénstam, Chip
Elliott, and David Pearson. Simulation modeling of largeds ad-hoc
sensor networks. IBuropean Simulation Interoperability Worksh&9O01.

[239] David M. Nicol, Jason Liu, Michael Liljenstam, and Gumua Yan.
Simulation of large-scale networks using ssfPimceedings of the 35th
Winter Simulation Conferengcpages 650—657. Winter Simulation
Conference, 2003.

[240] Michael G. Khankin. TCP/IP implementation within thartmouth scalable
simulation framework. Technical report, Dartmouth Codlegune 2001.

[241] D. M. Nicol. Discrete event fluid modeling of TCP. 8imulation
Conference, 2001. Proceedings of the Wintetume 2, pages 1291-1299
vol.2, 2001.

[242] David Nicol, Michael Goldsby, and Michael JohnsoruiBtbased
simulation of communication networks using ssf.Arceedings of the
European Simulation SymposiuErlangen-Nuremberg, Germany, October
1999.

[243] David M. Nicol and Guanhua Yan. Discrete event fluid miath of
background TCP trafficACM Trans. Model. Comput. Simul.
14(3):211-250, July 2004.

[244] George F. Riley. The Georgia Tech network simulatoMbMeTools '03:
Proceedings of the ACM SIGCOMM workshop on Models, methods a
tools for reproducible network researchages 5-12, New York, NY, USA,
2003. ACM Press.

194

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammand G. F.
Riley. Large-scale network simulation: how big? how fast21th
IEEE/ACM International Symposium on Modeling, Analysid &mulation
of Computer Telecommunications Systgpagies 116—-123, 2003.

G. F. Riley. Large-scale network simulations withef8 InProceedings of
the 2003 Winter Simulation Conferene®lume 1, pages 676—684 Vol.1,
2003.

G. E. Riley, M. L. Sharif, and Wenke Lee. Simulatingamet worms. In
The IEEE Computer Society’s 12th Annual International Sysnpm on
Modeling, Analysis, and Simulation of Computer and Telenanications
Systemspages 268-274, 2004.

Hung-Ying Tyan, A. Sobeih, and J. C. Hou. Towards cosgtxde and
extensible network simulation. Oth IEEE International Parallel and
Distributed Processing Symposiupages 225a—225a, 2005.

Hung-Ying Tyan.Design, Realization and Evaluation of a
Component-Based Compositional Software Architecturél&iwork
Simulation PhD thesis, The Ohio State University, 2002.

Ahmed Sobeih, Wei P. Chen, Jennifer C. Hou, Lu C. KunggNLi, Hyuk
Lim, Hung Y. Tyan, and Honghai Zhang. J-Sim: A simulationieswment
for wireless sensor networks. Annual Simulation Symposiyipages
175-187, 2005.

Rimon Barr, Zygmunt J. Haas, and Robbert van Renesste ad efficient
approach to simulation using virtual machines: Researtities. Softw.
Pract. Exper, 35(6):539-576, May 2005.

Zygmunt J. Haas and Rimon Barr. Density-independsatiable search in
ad hoc networks. IProceedings of IEEE International Symposium on
Personal Indoor and Mobile Radio Communicatip8gsptember 2005.

Kelwin Tamtoro. TCP implementation for SWANS. Tectatireport,
Cornell University, January 2004.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. JaResource
ReSerVation Protocol (RSVP) — Version 1 Functional Speatific.
RFC2205, September 1997.

A. Terzis, L. Wang, J. Ogawa, and L. Zhang. A two-tiesaerce
management model for the internet.Gtobal Telecommunications
Conferencevolume 3, pages 1779-1791 vol.3, 1999.

D. Pei, L. Wang, D. Massey, S. F. Wu, and L. Zhang. A statiyacket
delivery performance during routing convergencelntiernational
Conference on Dependable Systems and Netwpdges 183-192, 2003.

195

