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1. Introduction

“In the dim background of our mind, we know what we ought to be doing but

somehow we cannot start.”

(William James)

The modern Internet was born in 1983 when TCP/IP replaced the ARPANET [39,

139]. Since then the Internet has been in use to provide different ser-

vices and transmit various types of traffic. The amount of Internet traffic

has increased tremendously from 1 Exabytes per year in 2001 to 31 Ex-

abytes per month in 2011, and it is expected to grow even more in the

future [87, 43]. This overwhelming traffic growth has had many implica-

tions including the increasing demand for better infrastructures and ser-

vices. To support this demand, today, huge datacenters are in use to store

and manage big amounts of data [81, 15], and cloud computing is becom-

ing more popular in order to benefit from these big datacenters [22]. CDNs

are other examples of new infrastructures that have been introduced to

help dissemination of large amounts of data in the Internet [96, 108]. The

traffic growth has even affected the underlying network and high-speed

routers are in high demand to efficiently handle the increasing traffic [7].

During all these years the TCP/IP protocol suite has been successfully

used to deal with all kinds of demands, and has remained unchanged. Al-

though sometimes there has been concerns regarding inefficiency of the

current Internet protocol suite (e.g. in [42]), there has never been an ab-

solute need to go through the hassle of redesigning the TCP/IP protocol

suite. Only recently, the research community has started to consider the

fact that finally the traffic demand on the network, its growth rate and its

diversity is reaching the point that may enforce an actual change to the

current Internet protocol suite. Many new proposals such as TRIAD [73],

DONA [93], PSIRP [1], NDN [8], and Architecting for Innovation [94]
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Introduction

challenge the TCP/IP model from different aspects including its primi-

tive host-centric design [1, 8]. Although motivated from slightly different

angles, all these proposals agree on the general need for a change, and

they proceed to explore their view of the required change(s).

In this thesis, we explore two closely related criteria, which reflect the

need for change in the current Internet protocol suite. The first criterion

is speed: in a network with an overwhelming traffic growth, it is impor-

tant to process and transmit the traffic fast enough, so that the increasing

demand does not result in unmanageable backlogs. Scaling up the trans-

mission and processing capacity in the network is one solution to adapt to

the traffic growth. However, in this dissertation we mostly concentrate on

the cases in which scaling-up the hardware resources is not an ultimate

solution because of either economical or technical difficulties. Instead we

discuss scenarios in which increasing the speed requires software and ar-

chitectural changes to the current protocol suite, and this brings us to

our second criterion: resource utilization. We argue that improving the

speed, in addition to improving the capacity, also requires being able to

get the most from all available network resources. Therefore, we seek im-

proved in-network resource utilization, either achieved through a minor

change in a protocol implementation or achieved through radical changes

in the network architecture. We discuss both these criteria in this thesis,

and describe our solutions to some of the problems that will be mentioned

later on.

1.1 Problem statement

In this dissertation, we approach the speed as a fundamental issue in the

Internet. We discuss that changing the design of the networking stack

protocols as part of the speed improvement requirements could become

inevitable in near future. We then argue from the protocol design per-

spective emphasizing speed could also be interpreted as requiring more

efficient resource utilizations in the network. In this thesis we investigate

how to efficiently use the available storage, processing, and communica-

tion resources in the network for speed improvement purposes. Part of

this work focuses on combining the communication and storage in the net-

work, enabling a model in which data is written once into the in-network

memory, but can be read multiple times to alleviate the effects of an in-

creasing traffic demand and improve speed. There are two fundamental

12
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questions that form our basic research problems in this thesis:

What kind of protocols and abstractions could get the most out of the

available network resources? This thesis investigates combining storage

and communication as the fundamental approach in the network design.

In particular, we look at different methods to efficiently use the available

bandwidth and the in-network storage, both to improve the speed and

reduce the load. In this thesis, we explore caching and data retrieval at

finer granularities than what the current application-layer methods use

today.

What are the challenges raised in regard to using new protocols, which

change the resource usage model in the Internet? Using in-network stor-

age in more efficient forms and combining it with communication is not

that straightforward. This thesis investigates the challenges introduced

by the new protocols and abstractions that help combining storage and

communication. In particular, we investigate the resource management

and privacy issues that exist within our proposed mechanisms. Both these

issues are the result of the specific form of abstractions and protocol mech-

anisms that we require in our proposed models.

1.2 Context and methodology

In this thesis, two different set of networking protocols are used to moti-

vate the speed and efficiency challenges and give an overview regarding

the related literature. First, we use the TCP/IP protocol stack to describe

the existing challenges and limitations for resource utilization and speed

improvements. Second, most of our work focuses on Information-Centric

Networks (ICN) [88, 8, 1], which is proposed as a solution to the avail-

ability, speed, and security problems that are believed to exist with the

TCP/IP model. Using these two models, we have designed and simulated

different mechanisms that help to utilize the network resources and deal

with the introduced challenges.

Part of our work presented in this thesis uses the TCP/IP model as

the basis for our experiments, and investigates how bandwidth and in-

network storage might be used more efficiently. Designing different mech-

anisms in the context of the TCP/IP protocol suite makes them more

applicable to the current Internet. However, a significant part of our

work presented in this dissertation has originated in the context of dif-

ferent collaborative projects [1, 10] related to revisiting the Internet Ar-
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chitecture. This has been done as part of the EU FP7 PSIRP [1] and

PURSUIT [10] projects with the vision of a publish/subscribe-based [56]

Information-Centric Networking (ICN). The clean-slate approach of these

projects have been to apply a name-oriented publish/subscribe design to

all different modules in the network protocol stack.

In the context of ICN, in one part of this dissertation we use the network-

ing model proposed in [1] to investigate the possibility of in-router packet

caching and data retrieval. For this purpose, we examine the challenges

that might exist with designing a fast enough packet-caching mechanism

in ICN environments. In another part we explore the resource manage-

ment challenges that are created in ICN environments where storage and

communication could be combined and packet caching is possible. We fi-

nally investigate the privacy issues that ICN models introduce as a price

of their new abstraction models.

Our methodology for designing and evaluating our work relies on sim-

ulations and back of the envelope calculations. Most of the results dis-

cussed in this thesis are based on our ns-3 [78] simulations. For our

TCP/IP based solutions, small pieces of code has been added to the ex-

isting ns-3 TCP/IP implementation. We have then evaluated the credi-

bility of our results based on running different simulations with varying

number of parameters in ns-3. For our ICN related solutions, we have

implemented a new ICN stack in ns-3 that replaces the existing imple-

mentation in the IP layer and above. We have then used this publicly

available code 1 for running different simulations.

1.3 Contributions

The research reported in this dissertation has been published in six orig-

inal publications. The specific contributions of the original publications

are as follows:

• Proposing a pathlet-based congestion control and transfer initialization

model (Publication I): The transmission speed in the current Internet

partly depends on the speed of the transport protocol. The transport

control block in today’s Internet is very much dependent on the TCP/IP

model of unicast flows. In Publication I we explain and asses a mech-

anism for creating a more generalized form of transport control blocks

1The code is available at: http://users.piuha.net/blackhawk/contug/
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in the stack, and for dynamically setting the initial congestion control

values, both in hope of increasing the transmission speed.

• Demonstrating the feasibility of having caching routers: In Publication

II we introduce a specific router model for the proposed Information-

Centric Network architecture in PSIRP [1], and assess the benefits, and

feasibility of having such store-and-forward information-centric routers.

• Introducing byte-stream caching in the network to reduce the server

load and increase the speed: Publication III presents a novel mechanism

for adding the byte-stream caching inside the network and benefiting

from that in order to offload part of the servers operation to the network.

In this proposal we apply different ICN concepts to the current TCP/IP

model and introduce new mechanisms whenever applicable.

• Investigating the resource management challenges that exist in a net-

work with store-and-forward caching routers: In [21] we examine an

ICN network which implements the packet caching mechanism intro-

duced in Publication II. We explore the congestion control problem that

is created in this environment. The congestion control solution proposed

in [21] benefits from a similar model to TCP but with minimal changes

that makes it adaptable to router caching. This model is then analyzed

through ns-3 [78] simulations.

• Proposing a new resource management mechanism in a network with

store-and-forward caching routers: Publication IV discusses a novel re-

source management approach for the environments in which storage

and communication are combined together, i.e. environments discussed

in Publication II and Publication III. The mechanism explored in Pub-

lication IV uses packet deadlines for effective network resource man-

agement. We go into the details of deadline-based packet scheduling in

the routers and how such model could benefit both the network and the

applications.

• Exploring privacy issues caused by naming abstractions that alleviates

Information-Centric designs and router caching : In Publication V we

first describe the new form of privacy attacks that ICN networks enable.

We then present a specific method of overcoming these privacy issues,
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and discuss the tradeoffs that concern our solution.

1.4 Structure of the Thesis

This thesis is structured as follows: chapter 2 explores different areas

motivating our research. In chapter 2 we examine different cases that

emphasize the need for having an architectural solution for the speed and

resource utilization issues in current Internet. We discuss the resource

utilization model in the TCP/IP stack and point out some of its deficiencies

and limitations. Chapter 3 describes ICN as a solution for many resource

utilization problems described in chapter 2, and discusses the costs asso-

ciated with it. In chapter 4 we then present different mechanisms that

we have designed and analyzed for better resource utilization in the net-

work. We discuss the challenges and costs associated to our solutions and

address some of them in chapter 4. We finally conclude this thesis with a

discussion in chapter 5.
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2. Speed in the current Internet

“If a problem has no solution, it may not be a problem, but a fact not to be solved,

but to be coped with over time.”

(Shimon Peres (Peres’s law))

2.1 Speed Matters

When roads were made, their main purpose was providing connectivity

between different points. At that time if people wanted to travel some-

where, they first had to check if there was any road to that place or not.

Nowadays, as roads have become an embedded concept in our everyday

life, the question of connectivity does not seem that relevant anymore.

The new questions are related to optimization: Which route is less costly

to take? Which route is faster?

Similar to the roads, the Internet has formed a unique communication

network that connects many nodes across the world. The Internet has

been around long enough to raise optimization questions regarding its

speed [67, 12, 14]: Could the Internet become any faster?. A high speed In-

ternet is the one with high bit rate and low delay. The speed then depends

on low-level physical properties mainly link capacities and transmission

distance. The higher the link capacities and the closer the transmission

distances are, the better the speed is.

However, speed is not all about physical properties. At the end what

matters the most is the end-users’ experience. Speed affects the end-

users’ experience and her level of satisfaction, while using different ser-

vices. A study by Google [2] shows that half a second increase in showing

the search results ends up to a 20% drop in traffic demands from an un-

satisfied user. Therefore, today there are also an increasing number of
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high-level network proposals, i.e. application and transport level proto-

cols, which try to make the Internet faster from the end users’ perspec-

tive. Many of these protocols aim at better utilization of the physical in-

frastructure instead of changing it. One example is Google’s SPDY, which

achieves the particular goal of decreasing the web page load time by using

software methods such as compression [29].

Someone once said: speed is not just a feature, it’s the feature [80].

Today, in addition to being an optimization question, speeding the Inter-

net up is also becoming a crucial requirement for keeping up with the

increasing traffic demand. As the amount of traffic grows the network

could slow down because there would not be enough resources available

for timely traffic handling. In the most extreme scenario, a dramatic slow

down in the speed could even be interpreted as network unavailability.

Thus, keeping the Internet available requires speeding it up, for example

through increasing the bit rate or reducing the buffering delay.

For many people having faster Internet means having higher capacity

links. However, in reality speed is affected not just by link capacity but

also by the network design and the software that uses it. In this context

speeding the Internet up does not necessarily mean increasing the link

capacities, but it could also be interpreted as reducing the design-related

delays introduced by the communication networks and their internal com-

ponents. To understand how we could improve the speed in the Internet,

here we describe the most important elements that affect the speed in the

overall network.

2.1.1 The transmission delay

To speed up the transmission operation in the Internet, one needs to first

identify the basic elements that contribute to the overall transmission de-

lay. We start from the transmission delay for packets as network pro-

tocols’ prominent transfer units. The transmission delay for a packet

is the result of the sender’s and receiver’s processing overhead, the link

bandwidth, the transmission link’s propagation delay, and the traversed

routers’ processing time [72, 113]. In high data rates, the sender and re-

ceiver’s processing overhead in creating, sending, and receiving packets

are one of the main reasons for performance degradation and increased

delay. In addition to that, as shown in Eq. 2.1, the network bandwidth

and the number of bits that could be sent over a link plus routers per

packet processing speed and the link propagation delays also play impor-
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tant roles in determining the transmission delay.

Transmission delay for a packet = sender′s and receiver′s processing delay

+total path propagation delay + total router processing delay

+
packet size

bottleneck bandwidth

(2.1)

In order to speed up the network, one needs to seek solutions that help

to reduce the delay caused by every single element in Eq. 2.1. Sometimes,

though, one element turns to become the most significant speed bottle-

neck. For instance, when the link capacities where much lower than to-

day’s gigabits per second the bottleneck link bandwidth was the single

most important delay component in Eq. 2.1. However, with the increas-

ing link capacities, the propagation delay and other processing related

delays appear to gain more importance in determining the speed. For ex-

ample, results in [28] show that today when comparing the HTTP page

load times, increasing the bandwidth is less important than reducing the

latency. Figures 2.1 and 2.2 illustrate some of the results reported in [28].

Figure 2.1 shows the effects of increasing the bandwidth and figure 2.2 il-

lustrates the effects of reducing the RTT on improving a HTTP page load

time. These figures suggest that for every 20 ms RTT reduction, there is

a linear improvement in HTTP page load times. A similar trend does not

exist with the bandwidth improvement. Doubling the bandwidth from 5

Mbps to 10 Mbps does not have any significant effect on the page load

times. In the next section, we describe some of the physical properties

and their improvement trends affecting the delay components in Eq. 2.1.

In section 2.1.3, we then explain the relevant design and implementation

trends that affect the resource utilization and speed in the network.

2.1.2 Physical properties

The delay components described in Eq. 2.1 are affected by two obvious

physical properties: bandwidth, and latency , as well as two other prop-

erties that might be less obvious: processing speed, and memory capacity.

Bandwidth defines the size or the width of the data transfer channel and

therefore, affects the data rate and processing speed in the source and re-

ceiver, the routers, and the bottleneck link. Latency, on the other hand,

defines the total propagation delay on the path, and also affects the time

that it takes to read the data from the memory either at the source or
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Figure 2.1. Improvement of HTTP page load time with increasing bandwidth and con-
stant RTT of 60 ms (data from [28])

Figure 2.2. Improvement of HTTP page load time with decreasing RTT and constant
bandwidth of 5Mbps (data from [28])
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receiver or in the routers. Less obvious physical properties affecting the

delay include the processing speed and memory capacity. The existing

processing power on different routers and end-points determines how fast

the data could be processed and transmitted in the network. There is

a dramatic speed difference between a network element that for exam-

ple uses a CPU with a clock rate of 100 MHz versus another instance that

uses a 5.5 GHz CPU [84]. Similar to the processing speed, the memory ca-

pacity is another important factor affecting the delay equation. Memory

capacity could either be used for queuing and thus increase the delay [67],

or it could be used for caching and therefore reduce the propagation de-

lay [32].

For many years, there have been discussions regarding the speed and

performance improvement ratios of the physical properties listed above

[72, 113, 125]. These discussions are centered around the fact that the

speed and performance of different elements of communication systems

do not remain the same but they change and they change at different

rates.

In 1965, Gordon Moore described a trend in which the number of tran-

sistors on integrated circuits doubled approximately every 18 months [114].

This has become famous as Moore’s law. Many components of the commu-

nication system have followed a similar trend of improving 4 times per

3 years as described by Moore’s law. However, not all the components of

the communication system follow the same ratios as Moore’s law. In addi-

tion to that Moore’s law is not guaranteed to hold forever, especially when

different components reach their improvement limits.

Starting from the improvement ratios of bandwidth and latency, the

statistics suggest that one is improving much faster than the other [125,

72, 23, 79]. In a 2004 paper [125], Patterson argues that across differ-

ent technologies bandwidth has been improving much faster than latency.

This trend has also been observed and argued in [72, 113]. We use the

numbers mentioned in the Patterson’s work [125] to illustrate a sum-

mary of relative bandwidth and latency improvement ratios across dif-

ferent technologies in figure 2.3. The figure emphasizes that bandwidth

improvements across different technologies are higher than latency im-

provements. For instance, the network bandwidth in particular seems to

have followed Gilder’s law [11] for quite a few years. The network band-

width has improved 3 times every 4 years between 1995 and 2005 [113].

The bandwidth growth rate has slowed down a little bit since then but it
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Figure 2.3. Log-log scale bandwidth vs. latency improvement ratios (data from [125])

has kept its exponential growth. Latency on the other hand has lagged be-

hind the bandwidth [125]. For many years now, the network latency has

only improved less than 10% a year [113, 125] through applying different

techniques like using new form of encodings as in DSL networks [156].

We observe the same trends of latency lagging bandwidth on the memory

side. During the past few years the DRAM access latency has not im-

proved much while the DRAM access bandwidth has kept on increasing.

Moore’s law affects both the bandwidth and the latency. However, Moor’s

law has greater and more positive effect on bandwidth than latency . For

example, increasing the speed and the number of transistors per chip af-

fects both the latency and the bandwidth, but in different ways. Having

higher number of fast transistors per chip helps to improve the band-

width. Faster transistors help the latency as well, but at the same time,

having higher number of transistors per chip results to increasing the av-

erage distance between different transistors on the chip. Increasing the

average distance could then increase the latency. As across different tech-

nologies, increasing the distance adds to the latency. It is simply because

we are not able to achieve a speed higher than the speed of light over

long distance paths [72]. In a similar manner, many other components

that help to improve the bandwidth hurt latency at the same time. For

example, adding buffers to the routers is desirable as it is useful to more

efficiently benefit from the available bandwidth but it also increases the

latency, creating the phenomena that today is identified as bufferbloat

problem [67].

Storage and memory capacity are other important components affecting

the speed. Storage and memory capacity have kept their high improve-
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ment ratios for many years. An old rule of thumb states that the storage

capacity increases hundred times per decade [72]. Nowadays, it seems

that the improvement ratio of DRAMs, as a particular memory type, have

slowed down and it has become questionable if DRAM capacity could be

improved anymore [79]. But anyhow DRAM capacity is still doubling ev-

ery 2-3 years [79], while other new memory technologies are also being

introduced from time to time[79].

Similar to the memory capacity trends, the processing speed has also im-

proved a lot in the past few years. A single processor’s speed has doubled

every 18 months between 1986 and 2002 [79, 23]. During these years,

performance doubled because the system performance and improvements

of a single processor was not dependent on the limitations of the exter-

nal entities, such as bus I/O speed. However, now this trend has slowed

down [23]. Nowadays any performance improvements is dependent on the

external factors. The memory wall is one external factor that describes the

growing gap between the speed of CPU and the off-chip memory’s access

latency [163]: having a slow memory creates a memory wall by making

the processors wait for accessing the memory. One would think that hav-

ing multi-core architectures with multiple CPUs and memory banks could

be helpful in this case. However, another external factor to performance

improvements is the power wall problem that is created by the increas-

ing heat generated from the transistors [23]. For instance, the increasing

number of on chip processors could soon reach its limits as a result of the

power wall problem [110, 23, 4].

The varying trends between performance ratio improvement of different

system components emphasizes a major phenomenon. The limiting factor

for increasing the speed of data transmission operation is shifting from

the bandwidth to the latency, for example as mentioned above large aver-

age distance in multi-processor architectures creates added latency. With

the growing amount of available bandwidth and memory, it seems that we

are not too far from the future that Gray predicted in 2000: stop worrying

about the bandwidth and memory capacity, and cache everything because

latency is the new bottleneck [72].

2.1.3 Design and implementation trends

Increasing the speed is not a new concern. Most design and implementa-

tion solutions in the filed of computer hardware, software, and networking

have tried to improve the speed before, and many of them had to tackle
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latency as one of the most difficult system bottlenecks. However, since

as an independent component, latency in itself cannot be improved so

much [125], many solutions attack the latency problem by seeking alter-

native ways of operation and utilizing other available resources such as

bandwidth and memory. Here, we take a brief look at some of these solu-

tions.

Node-related trends

At the lowest level in communication systems, different forms of redesign-

ing hardware have been used to improve the speed. Improving the speed

of DRAMs and multi-processor designs are good examples of such meth-

ods. In the case of DRAM increasing the memory bandwidth has been

used to increase the speed and to overcome some aspects of the latency

problems.The logic is simple, if a single memory access is costly in terms

of latency, it would help if every single memory access is done with read-

ing/writing bigger blocks of data [44]. In case of multi-processors increas-

ing the number of processing components has been used to increase the

bandwidth. Therefore, increasing the parallelization and data rate can

reduce the waiting time for the processing operations to be complete [23].

In upper layers of the networking stack, combining the hardware and

software efforts together appears to be a design trend for some solutions.

Transport Offload Engine (TOE) [41] is one example of coupling software

and hardware efforts that takes part of the TCP processing to the network

interface card and in this way avoids going through the CPU for every sin-

gle operation. For instance, TOE could be used to offload TCP’s checksum

computation to the network interface card, and in this way reduce the

end-hosts processing delay.

The pure software design and implementation efforts have also targeted

increasing the speed in communication systems, when feasible. Many

software implementation efforts are concentrated on reducing the delay

introduced by sending and receiving end-hosts. This means most of the

efforts are centered around improving the transport protocol implemen-

tations and packet I/O. NetMap [136] is one of the recent efforts that

achieves fast packet I/O by reducing some of the packet processing steps in

the source and receiver stack. NetMap [136] for instance reduces the de-

lay caused by the required memory copies to generate a packet. NetMap [136]

achieves this by using shared buffers between the kernel and user-space

modules.
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Network-related trends

Most of the mechanisms mentioned above redefine some mechanisms and

utilize the available resources to alleviate increase the speed in a single

node. A resource in this context and in the remainder of this thesis refers

to one the following components: bandwidth, processing power, and mem-

ory. Obviously, the more resources are available and the more freedom

a system has in using them, the easier it is to improve the speed and

overcome the latency bottleneck.

However, it is not always up to a node-specific hardware or software

solution to easily utilizes different resources and address the speed im-

provement issues. The overall system architecture and design also plays

an important role in determining the speed, and even causing limitations

for improving the speed. A network protocol on its own can limit the possi-

bilities of improving the speed. For example in case of TCP, no matter how

efficient its implementation is, TCP by design mandates its own delays.

TCP’s added delay is often the result of the time that a protocol spends

in the initiation and also waiting state before sending out a packet. This

waiting time on its own is often dependent on the link latency and single

packet delay. TCP’s small initial congestion window size and its inter-

twined congestion control and reliability, all contribute to its added delay.

Recent efforts try to overcome the delay caused by the control flow logic

through either changing the existing protocols or designing new protocols.

TCP Quick start [62] is one of the recent mechanisms that try to improve

the speed by introducing incremental changes to the existing protocols.

RCP [50] and XCP [91] transport protocols are examples of the new pro-

tocols that have been designed with the goal of improving the speed. We

will discuss the control flow delay in more details later in this chapter.

When talking about the Internet, designing and implementing the speed

optimization solutions are not only dependent on isolated physical prop-

erties or protocol details, but they are also dependent on the interactions

between different mechanisms and protocols. For instance, in the lowest

levels multi-processor designs are not affective, if a router/ end -host soft-

ware is not optimized for using multi-processors [79]. There are also other

examples that emphasize that isolated optimizations may not necessarily

achieve their expected outcomes without the overall system coordination.

One particular example of this required coordination is the network usage

model enforced by various transport protocols. These specific protocols

could affect the outcome of all different kinds of isolated optimizations in
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the network, as in the following example.

All-optical packet switching 1 has been introduced in early 2000 [113]

to increase the processing speed in the routers (as one of the main delay

components in Eq. 2.1). However, one of the biggest problems in the all

optical packet switching world is the fact that rather big buffers in the

routers are required to keep the link utilization high in the current In-

ternet model. The requirement for buffers comes from the fact that most

traffic in the Internet uses TCP and TCP’s sawtooth behavior mandates

having buffers in the orders of link bandwidth×Round Trip T ime [20, 160].

Figures 2.4 and 2.5 show schematic views of this requirement at the time

this buffer size was suggested for a single TCP flow [160]: the bottleneck

queue drains with a matching speed with a TCP flow. The queue size

increases as TCP keeps on sending data and increases its congestion win-

dow. The queue starts to drain when TCP sender pauses and reduces

its congestion window. Buffers as big as the congestion window are re-

quired to keep the bottleneck link busy all the time. However, the optical

switching components and especially optical RAM’s cannot easily support

big buffers. Therefore, it is difficult to use them with the TCP traffic at

large scale. New optimizations to the TCP and its behavior or even new

networking models [113] might be required to eliminate the software lim-

itations that stand on the way of high speed optical switching.

In the next section, we look at delay components and the type of resource

tradeoffs that exist in the Internet as a whole. We specifically look at the

most common mechanisms for file transfer operations in the Internet, and

describe how an architecture similar to the current Internet could limit

the resource utilization opportunities.

2.2 Delay in the Internet

From the application’s perspective the transmission delay in the Internet

depends on at least two metrics: first, from where a file is transmitted

(affecting the delay components in Eq. 2.1), and second, the speed of the

transmission related protocols. Both these metrics are directly affected

by the architectural design and the implementation of different protocols.

1Note that all-optical packet switching is different from today’s optical circuit
switching and optical burst switching. The closest concept to all-optical packet
switching in the current networks is optical packet networking. However, unlike
in all-optical packet switching, in today’s optical packet networking signals are
converted to electrical before switching and processing.
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Figure 2.5. Schematic view of the queue size matching the TCP sawtooth behavior

Alleviating the delay then depends on how efficient the architecture and

the implementation of different protocols are, and how easy they are to

improve. To understand these better, in this section we try to answer the

following questions in the context of the TCP/IP protocol suite:

1. What defines the distance that a file has to traverse in the network and

how could it be improved?

2. What defines the control flow delay and how could it be reduced?

To be able to answer the above questions we first identify the basics

protocol mechanisms that are used during a file transmission operation.

Figure 2.6 illustrates a simplified version of sample web-based file trans-

mission operation in the Internet. In the the first phase of this operation

a client application requests a DNS server to resolve the domain name

part of a web URI to an IP address. In next steps, after the IP address

is obtained, one application end starts to communicate to the other appli-

cation end residing on another node. IP-based routing and forwarding is

done to navigate the packets within the network. Different protocols and

policies are used for filling up the routing tables and making the routing

decisions. All these operations affect speed, enforce a specific form of re-

source usage, and add their own delay to the overall user-perceived delay

as we describe in the following.
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Figure 2.6. An example file retrieval operation in the Internet

2.2.1 Distance

The file transmission delay depends on the distance from which the file

is served. In the TCP/IP model, the applications need to identify which

nodes they want to connect to before they are able to operate on the net-

work. Thus, an applications either needs to know the node that is of in-

terest to it, or it needs to retrieve this information through a lookup oper-

ation. The choice of the end node that serves the file determines how far

away a file is located in the network. The routing and forwarding module

at the IP level then specifies the path to reach the file location. To be able

to understand the resource usage implications of these mechanisms and

the effect that they have on the user-perceived delay, we take a closer look

at the lookup and routing and forwarding functionalities.

File Location: Application level Lookup

In the current Internet, the most prominent method of node lookup is

DNS. The Domain Name System (DNS) is a hierarchical naming system

that associates various pieces of information with domain names. DNS is

mainly used to translate (resolve) the domain names into the IP addresses

needed for identifying different nodes. More than one IP address could be

associated to a domain name. The DNS hierarchy is divided into zones

and each zone is served by a name server. The top of the hierarchy is

served by the root name servers. Each domain has at least one DNS server

that publishes information about that domain. Domain names consist of

different hierarchically structured parts that are used to find out which
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name server should be contacted when resolving them. The transmission

delay that is experienced by the application depends on both the distance

of the DNS servers used for resolving a name as well as the location of the

node that is resolved by the DNS servers.

Usually an end-host’s web browser is configured to use a default DNS

name server and resolve domain names to IP addresses. The result of

this operation ultimately defines which node and IP address should be

contacted by the application. DNS name servers are not by default de-

signed to take into account the transmission delay and the latency that

are associated to each IP address/node. Therefore, it is probable that an

IP address returned by a name server results in high transmission costs,

for example, because it is located far away from the client application.

In this case the application and lower layer protocols and mechanisms

simply do not have any control on choosing or changing the returned IP

address afterwards.

Today, many DNS level solutions try to optimize the DNS name resolu-

tion and lookup. For instance intelligent DNS methods that are designed

for CDNs take into account the node’s location for finding the closest IP ad-

dress to the requesting node. The closest IP address could be defined based

on different metrics such as requester’s IP address, e.g., [6]. CDNs per-

form DNS redirections using a hierarchy of DNS servers to translate file

request in that CDN’s customer network to a nearby CDN server [155].

In this way, CDNs manage to reduce the distance that a file item has to

transfer to reach the client.

More radical forms of naming and mapping is also suggested in data-

oriented and flat-name based resolution models such as DONA [93]. DONA

uses a route-by-name approach for name resolution in which the file names

are kept in Resolution Handler nodes across the network. A request to

resolve a file name is then routed through the Resolution Handlers to

resolve the name to the nearest node that contains a copy of that file

item [93]. In this model, unlike in the simple DNS, the closest possible

Resolution Handlers are approached and additionally the name resolu-

tion often results in finding the closest IP address.

Other less radical replacements for DNS include using BitTorrent track-

ers [130], and peer-to-peer file sharing mechanisms [75, 74]. Most of these

application-specific location identifiers fail in finding the closest nodes in

terms of latency and delay. This happens because these application level

solution do not have any lower level information about the physical net-
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work topology. However, there are also some mechanisms that could pro-

vide network related information for these kinds of application level solu-

tions. Application Level Traffic Optimization (ALTO) [135] is one example

that defines an API through which topology and infrastructure hints are

requested by the application layer and delivered by the network layer.

File Path: Routing and forwarding

In addition to the file location, the choice of the path also affects the over-

all transmission delay. The choice of the path in an IP-based network de-

pends on the IP layer routing and forwarding modules. IP routing and for-

warding provides support for transferring packets that have pre-identified

source and destination addresses in their header. Within the Internet, a

collection of IP addresses or IP prefixes that are under the control of one

operator are referred to as Autonomous System (AS) [77]. There are dif-

ferent types of routing protocols that are used within each AS or connect

different ASes together. For instance, OSPF [115] is a link state routing

protocol [83] that is used within a single AS. OSPF works by constructing

a connectivity graph of the network in each node, showing which nodes

are connected to which other ones. The routing table is then calculated

by finding the shortest path in the connectivity graph. The shortest path

calculation is based on the link costs across each path which includes the

available bandwidth.

BGP [166] is another routing protocol in which path and network poli-

cies are used to connect different ASes. These policies define the connec-

tivity information that is advertised around the network. Policies define

which paths and prefixes should be advertised further in the network.

Routing tables are filled based on constant metrics such as bandwidth.

One of the main benefits of the IP routing is the fact that the cost func-

tions used in IP provide a stretch which is close to optimal for finding the

shortest possible path between two different nodes. The path stretch fac-

tor is measured by the ratio between the length of the path traversed by

a packet and the length of the shortest path between its source and its

destination. The stretch factor usually defines how efficiently network

resources such as link capacities are used. At the same time the stretch

factor could also be important in defining the propagation delay associ-

ated with a path. This is especially important when comparing the IP

routing to other forms of routing based on flat labels [35, 149].

In addition to being able to find paths with small stretch factors, IP rout-
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ing protocols also share another important property: the cost functions

used by different protocols do not adapt or are slow to adapt to the dy-

namic conditions such as increased traffic. It means the choice of a route

is pretty stable, even with dynamically changing transmission costs. In

most IP routing protocols, the routing table is filled with at least one pos-

sible route choice at a time, and this choice is not necessarily optimized

for latency and delay in all situations. If the network condition and trans-

mission costs change, this change might not be reflected in the routing

table. This is either because routing updates are not propagated quickly

enough or because the routing cost function does not include that specific

condition such as increased traffic. Therefore, the route calculation model

that is used by different IP routing protocols remain relatively rigid to-

wards leveraging other resources (routes). Depending on the context this

might be considered a positive or a negative property. It could be posi-

tive as the routing choices remain rather stable in the network, and it

could be negative as the network resources might not be used in an opti-

mal way. Today traffic engineering methods are used to address some of

the resource optimization issues that could not be addressed by IP rout-

ing( e.g. [164]). Although traffic engineering methods are commonly in

use today, they usually only respond to substantial events in the network.

Additionally, they usually also introduce an extra level of complexity into

the network.

Many of the new network architecture proposals that require a radical

change to the TCP/IP protocol suite target the rigidness of the IP rout-

ing protocols. Proposals such as NDN [8] aim at new routing protocols,

which are rather flexible towards dynamic conditions such as increased

load. Some of these proposed routing protocols even combine a DNS-style

lookup infrastructure to the routing module [8, 88]. This combination

is likely to provide better resource utilization opportunities and improve

speed. However, as NDN and most similar solutions remain to be research

proposals for now, their success in optimizing network resources with the

help of flexible routing has yet to be evaluated.

2.2.2 Control flow delay

The overall transmission delay is not only affected by the file location and

the path to reach the file but it is also affected by how quickly a protocol is

able to transmit the whole file. This is dependent both on the file size and

the operational delay caused by the the control logic of different protocols.
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The control flow delay is partly caused by out-of-band operations such as

DNS lookups and partly by the application and the transport protocol.

The transport added delay is especially significant for large files, and is of

interest to us in this section.

In TCP the delay is associated to the connection initiation procedure and

reliability, ordered byte delivery, as well as congestion control algorithm.

TCP’s 3-way handshake is required to negotiate the required parameters

to setup a connection between two end hosts. A 3-step tear down proce-

dure is also required in TCP to end a connection. Connection setup and

tear down are needed to help reliability assurance in TCP, but with the

tradeoff of added delay. This added delay is not significant for big file

transfers but it could cause problem for short file transfers. If a file could

be transferred in less than 2 or 3 round trip times, dedicating one whole

round trip time for connection initiation is too costly. In these cases using

a transport protocol that does not need connection initiation seems a bet-

ter choice than using TCP. There are, although, some new mechanisms

such as TCP Fast Open [131] that go around this problem by transfer-

ring data in the SYN packets exchanged during the connection initiation

phase. Defining reliability as part of TCP can also create delay during a

file transfer operation. This delay depends on the Retransmission Time-

out that determines how long a TCP sender has to wait before it resends

the lost packets. Long Retransmission Timeouts could add unwanted de-

lay to a file transfer operation.

The other part of the control delay in TCP depends on the time that a

receiver has to wait to be able to receive a range of packets in order. Out-

of-order delivery is not supported in TCP. For example, no matter how

fast the 200th byte of a stream arrives at the receiver, it is not delivered

to the receiving application before bytes 0 to 199 have also arrived there.

This adds an unnecessary delay to the file transfer operations that are

not sensitive to loss or out-of-order delivery. One solution to this problem

could be using TCP minion [119] instead of unmodified TCP. TCP minion

adds a few socket options to the normal TCP implementation that allows

out-of-order send and delivery in TCP.

Some of the added control delay issues in TCP is addressed by newer

transport protocols such as QUIC [140]. QUIC does not require a 3-way

handshake before sending data, and also tries to reduce the possibility of

congestion and packet loss by pacing the packets. Additionally, to allevi-

ate the packet loss and the time spent to decide to re-send the lost packet,
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QUIC supports forward error correction in the packets.

In addition to the delay caused by the reliability considerations and or-

dered delivery, significant parts of the transport delay depends on the

congestion control algorithm that is used by that protocol. A good or a bad

congestion control strategy could make a big difference in estimating the

available bandwidth and determining the speed of data transmission. For

example, if the available bandwidth is 1 Mbps and the congestion control

module is already aware of that, then it can right away start sending data

at the rate of 1 Mbps. Obviously data transmission would be much slower

if the congestion control operation starts conservatively and only gradu-

ally probes the bandwidth. In the next part we take a look at congestion

control in the current Internet.

TCP’s Congestion Control

The congestion control algorithm in TCP uses data packets and acknowl-

edgments to implicitly collect information. TCP uses this information to

learn about the resource availability in the network and make decisions

on how much of these resources to use. TCP treats the network as a “black

box”, with all the intelligence located at the end hosts. In this model the

congestion control module does not receive explicit resource availability

information from the network and therefore it operates based on different

assumptions about the network. For instance, a TCP end point assumes

that any packet loss in a connection is the result of congestion. In the fol-

lowing, we explain some of the design and implementation assumptions

that shape TCP’s congestion control model.

TCP’s congestion control algorithm was designed a long time ago [85]

when the network was all wired and 10Mbps links were just introduced.

This means some of TCP’s original resource probing design choices may

not necessarily match the recent resource availability trends in the net-

work. Some of these design choices hinder TCP’s performance especially

regarding speed. For instance, TCP’s inability to quickly benefit from

increased network bandwidth is one of the main concerns for many re-

searchers [91]. The primary reasons for this inefficiency is that the con-

gestion control module is rather conservative and slow in probing the

bandwidth. TCP uses send and receive windows to define the boundaries

for transmission speed. The window size shows the amount of data that

could be in transit in the network. TCP uses the sent data and their ac-

knowledgments as a sign of bandwidth availability in the network. The
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Figure 2.7. The congestion control related added delay

congestion window size at maximum reflects the bandwidth delay prod-

uct where bandwidth specifies the bottleneck link capacity on the path

and delay is the Round Trip Time (RTT) between the sender and receiver.

TCP’s congestion control algorithm is slow as it starts with a very small

window size of 3-10 MSS (Maximum Segment Size [127]) for bandwidth

probing. The congestion control algorithm then follows an additive in-

crease, multiplicative decrease model in which every acknowledgment re-

sults in a maximum window increase of one MSS.

In TCP the congestion control is done on per flow basis. Each flow has

its own share of available bandwidth and seeks optimal ways to probe

the network about that. The optimal window size for each flow equals

that flow’s share of bandwidth times the delay. The available bandwidth

for each flow can change dynamically depending on the status of other

flows that share the same bottleneck link. Therefore, each flow has to

constantly probe the network to find out about the available bandwidth.

This is a slow operation especially in high latency environments, because

every acknowledgment (the implicit probing signal) only arrives to the

sender after a Round Trip Time (RTT). As can be seen in figure 2.7 TCP

spends a lot of time probing the available bandwidth with this method. In

the figure the TCP sender spends a significant amount of time in phase A

just to get an initial estimation of the available bandwidth. The algorithm

then spends a lot of time in consequent phase Bs trying to estimate if the

available bandwidth has increased or decreased, and thus, keep the traffic

rate at balance with the available bandwidth.

Researchers have come up with many different mechanisms to reduce

file transmission delay in the context of TCP’s congestion control algo-

34



Speed in the current Internet

rithm. There are at least two different speed improvement angles that

target TCP ’s congestion control operation: the first one is sharing band-

width availability information among multiple flows [24, 13], and the sec-

ond one is increasing the size of the initial congestion window [14, 52].

Some of these mechanisms are described below.

TCP creates per flow basis boundaries between the resource availability

information that it gains from the network. Assume there are two consec-

utive flows that share the same sender and receiver, there is a high chance

these two flows also share a common set of network resources. However,

with normal TCP each of these two flows have to go through the resource

probing operation independently. If one flow is already aware that the

congestion window could be increased to 32KB it does not share this in-

formation with the other flow that is just going to start resource probing.

This kind of information sharing, if possible, could accelerate the speed

that different flows estimate the network resources and start to use it at

maximum rate. Mechanisms such as congestion manager [24] use cross-

flow information sharing to speed up the bandwidth estimation procedure

and reduce harmful competitions to gain network resources.

Cross-flow information sharing, although good for resource optimization

and speed, has remained an abstract concept. Meanwhile TCP’s conges-

tion control related added delay is still an open issue. A 2009 study by

Qian et al. [129] shows that some TCP flows have been violating some of

TCP’s original assumptions such as initial window size of 3 [18] probably

to overcome TCP’s slowness. In this regard some researchers have ar-

gued that since most of the web objects transferred over TCP are as small

as 16 KB [14, 133], then increasing TCP’s initial congestion window size

could indeed reduce the effects of latency and increase the speed [14, 52].

The latest versions of Linux Kernel already implements initial congestion

window size of 10 (1̃5KB), reducing the time spent in phase A in figure 2.7.

However, the long term effects of increasing the initial window size form

3 to 10 remains unknown.

In addition to the general design choices and the initial parameter set-

tings that could make TCP slow, there is also another congestion control

metric that affects TCP performance, and that is the buffer added delay.

This metric depends on the way that TCP utilizes buffering resources. If

there is available buffer in the network TCP keeps on sending data un-

til the bottleneck buffer gets full. Because of its logic, TCP needs a big

enough buffer to prevents link under-utilization. The trouble is that be-
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cause of the diverse nature of the network estimating the correct buffer

size is not easy. Therefore, as memory gets cheaper more and more buffers

is thrown at the switches and routers to avoid any possible chance of link

under-utilization. However, as the buffer size grows the added queueing

delay becomes troublesome. In a recent study Krishnan et al. [96] report

that in the Google CDNs, latencies are relatively high, and in 40% of the

cases round trip times exceed 400ms. This report also argues that adding

more CDN nodes would not always help to reducing the delay because

high latencies are often the result of excessive queuing rather than not

having nearby copies of the content.

One extensively studied approach to address the added queuing delay

is using Active Queue Management (AQM) methods in the switches and

routers. With AQM methods such as Random Early Detection (RED) [64]

the average queue size and other metrics are used to control the queue

growth rate before the queue size reaches to the maximum buffer size.

More recent AQM works [117, 123] use the packet-sojourn time in the

queue to identify the possibility of excessive queue build up and signaling

it. Similar problems have also been studied in the context of different

datacenters [16, 17]. For example, the work done on Data center TCP

(DCTCP) [16] tries to benefit from shallow buffer space in switches and

early congestion marking, which in turn results to reduced delay.

Other solutions to control the buffer growth rate is implementing delay-

based congestion control algorithm like TCP Vegas [31] could help. In

TCP Vegas [31] packet RTTs are observed carefully and dramatic RTT

increases are often prevented by reducing the sending rate just in time

before a radical RTT increase happens.

Another solution for reducing the added buffer delay in the Internet is

reducing the expected TCP buffer size as a whole, as suggested by [20].

In their work Appenzeller et al. [20] suggest that with the big number of

flows that go through every router, a much smaller buffer size would be

enough to keep the link utilization high compared to an optimal size of a

single flow’s bandwidth-delay product.

Congestion control beyond TCP

The network path between the client and server is opaque to TCP and

it creates its own share of the resource management problems. TCP’s

congestion control has been built based on many assumptions about the

network. From time to time, the network invisibility as well as the specific
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TCP assumptions become problematic for resource optimization.

Many of the TCP assumptions could not be easily changed because the

network is opaque. For instance, consider the case for the cross flow con-

gestion management [24] that we mentioned earlier. While promising to

provide a more optimized way of sharing the bandwidth availability in-

formation, these methods are not exactly successful in categorizing which

flows should share the bandwidth information. The work done by Akella

et al. [13] shows that even flows that share same end-points might not

share the same bottleneck.

Aside from TCP specific optimization, there have been many proposals

that have tried to replace TCP and come up with better forms of conges-

tion control [50, 91]. Most of these proposals aim at optimized resource

probing by getting direct help from the network. These protocols often

require adding more capabilities to the routers to get direct bandwidth

availability report from the routers and make the resource probing oper-

ation quicker [50, 91]. This protocols try to reduce the time spent both

in phase A and Bs in figure 2.7. For instance, XCP [91] requires all the

routers to be able to calculate per flow fair share of traffic in different

time periods and report back to the end-points, therefore, reducing the

time spent both in initial bandwidth estimation (phase A in figure 2.7),

and in continues bandwidth probing (phase Bs in figure 2.7) However, at

least until now none of the congestion control modules that have counted

on the wide-scale network support, have got any chance of being deployed.

The reasoning is simple: most these new protocols such as XCP [91] and

RCP [50] require significant changes in all the routers in the network, but

deploying such changes is not easy.

2.2.3 Resource utilization

In addition to what we have explained above, distance and control flow

delay could also be analyzed from a more general resource utilization per-

spective that is often ignored. It is clear that to reduce the delay it is im-

portant to choose and utilize the best available resources at any given mo-

ment in time. Unfortunately the possibility of choosing the best available

resources at any stage during a file transfer operation is rather limited

in the TCP/IP model. The limitations are caused by at least two different

reasons as we will describe shortly:

• Resource binding happens before a file transfer operation starts.
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• Protocols below the application layer are not designed to benefit from

the available network resource other than for supporting connectivity.

As we have discussed before, end-point binding in TCP/IP happens be-

fore the file transmission starts, and it could not be changed during the

file transfer. Even the path towards an end-point usually only changes

if a link or a router IP address is not reachable through the same inter-

face anymore. If bandwidth, memory, or processing power in a network

path starts to get overloaded, the most probable reaction is just to slow

down the transmission rate. There are limited chances to use other avail-

able network resources that are located nearby but are not part of the

currently congested path or an overloaded end-point.

The limitation in switching to less loaded (re)sources during a file trans-

mission operation is partly caused by the IP routing models and partly

by the end-to-end logic forced at the transport level. We have already

discussed the limitations caused by the IP routing, but the role of the

end-to-end logic needs more explanation. From the early days of Inter-

net, the transport protocol has been defined to support end-to-end opera-

tions [145]. Each transport connection is identified based on its end-point

IP addresses and port numbers. There is a strong correlation between

specific end-to-end identifiers and the way that many of the transport op-

erations are defined. For instance, consider reliability as one of the most

important functions in TCP. In TCP reliability is a function that strictly

depends on a specific end-to-end connection. Bytes are only meaningful

and deliverable if they are identified to be part of a specific end-to-end con-

nection. This means changing a connection identifier and consequently

changing the enforced end-point and path bindings during a file trans-

mission operation, breaks TCP’s reliability logic.

Except early bindings there is another limit in freely choosing the best

available network resources in the TCP/IP model. This relates to the fact

that in TCP/IP network resources mainly includes only links. Other avail-

able resources such as in-network memory and processing power do not

have significant importance when talking about network resource avail-

ability. The reasoning is simple, TCP/IP is only about connectivity, and

it has been designed at the time when bottleneck link bandwidth was

the most valuable/ limiting network resource. In TCP/IP the available

processing and memory resources in the routers are only used to achieve

end-to-end connectivity through routing, forwarding, and buffering. When
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talking about delay reduction and resource utilization these use cases are

not necessarily enough. Assume that the network could provide lots of

processing and memory resources, much more than what is needed for

routing and forwarding operations. But at the same time upstream links

are extremely busy to forward similar packets over different connections.

In this case, TCP/IP can not do much with the available memory and pro-

cessing resources to alleviate the load on the upstream link. It can only

slow down the sending rate over the upstream link and use the available

memory to buffer the packets. A different network design on the other

hand, could have for example used the available memory and processing

power to combine the similar packets into one, and save the bandwidth

while controlling the overall file transmission delay. We discuss more de-

tails regarding such mechanisms in chapter 4.

Being able to switch to less loaded resources during a file transmission

operation, and being able to use the available network resources more

freely, if implemented properly both could result to the file transmission

delay. However, many things need to be changed in the TCP/IP model

before such capabilities could be added to the stack. In the next chapter,

we discuss a new networking paradigm that might create less restrictions

for increasing speed.

2.3 Summary

In this chapter we have discussed various elements affecting speed and

the user-perceived delay in the current Internet. We have argued that

both physical properties, and design and implementation choices are im-

portant in determining speed. Among all physical properties latency ap-

pears to be the new bottleneck in many parts of the system, and improv-

ing speed requires reducing the latency. However, since physical laws

limit the possibility of directly improving the latency in many aspects, it

becomes more important to reduce the delay through applying different

design and implementation choices that alleviate the role of latency.

We have discussed the architecture- and design-related delay in the

TCP/IP protocol suite. Distance and control flow delay were among the

discussed metrics, which affect the delay depending on how many net-

work operations need to be done and in which distance.

We have argued that alleviating the overall user-experienced delay in

the Internet could be possible by optimizing the usage of different avail-
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able resources in the network. If a certain resource is slow, using other

available resources could help improving speed. If a certain design pat-

tern enforces binding to certain resources and thus results in additional

delay, then a new design that relaxes those resource bindings could reduce

the delay. However, we discussed that many design and implementation

choices, especially the ones made for the networking stack in the current

Internet, limit the possibility of optimizing different resources to improve

speed.
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3. Towards the future:
Information-Centric Networking (ICN)

“The world as we have created it is a process of our thinking. It cannot be

changed without changing our thinking.”

(Albert Einstein)

3.1 Information-Centric Networking (ICN)

A significant share of Internet usage is about distributing and transfer-

ring content. However, the Internet architecture and the TCP/IP protocol

suite have been designed to mainly support connectivity between end-

hosts. The mismatching goals between the network and the applications

using it can limit the possibilities to improve the efficiency of the content

delivery operations. For example, as speed becomes an important met-

ric in defining the application’s efficiency in delivering the content, the

underlying network architecture might remain rather indifferent to this

metric and therefore, reduce the chances to improve application efficiency.

Information-Centric Networking (ICN) [88, 126] is a new networking

proposal concentrating on content delivery. ICN aims at improving the

availability, failure resilience, and security of content delivery within the

network [88]. As can be seen in figure 3.1a an ICN API passes the content

names to the underlying network, and the network directly routes and

responds to the requests for specific content names. The same name could

be used to store and access the content in the storage nodes across the

network. As we will explain later, being able to access the network and

the storage with the same API and with the same name that is understood

by the applications could result in unique opportunities for better content

delivery. This is rather different from the IP network [54, 53] in which

only IP addresses are understood by the network, and the network API is
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Figure 3.1. Schematic view of content access in an (a) ICN network on the left, (b) IP
network on the right.

independent from any other API in the system, figure 3.1b.

Distributing and accessing the content is the main goal in ICN. ICN has

more emphasize on accessing content using all available resources, and

less emphasize on connectivity and fixed bindings to certain resources [118,

126]. Thus, compared to the TCP/IP model ICN supports more in-network

optimization opportunities for content delivery. For example, as we will

discuss later, ICN simplifies network wide application-independent caching

that could be used to reduce network congestion, and consequently to im-

prove the speed.

There are many different components in ICN and therefore many con-

cerns regarding their design and implementation. However, our main

interest are the principals and components that deal with the speed and

resource utilization in the network. In this regard, here we describe the

existing ICN concepts that could be used to target TCP/IP’s two main re-

source utilization problems: early bindings, and the resource usage logic.

3.1.1 Bindings

Information Centric Networking is about named data items. The only

enforced early binding in ICN is the binding between an information

item and its name. This binding might be defined to be path/ end-point/

resource-independent. A name could be anything from an IP address to

a hashed identifier [93, 9, 10] to a human readable identifier [88, 8]. The

network infrastructure is expected to provide the routing and forwarding

support for finding and routing these names in the network. ICN propos-

als like NDN [8], PURSUIT [10], and NetInf [9] study different forms of

naming, name resolution, routing and various other concepts related to
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the network infrastructure.

The main form of communication in ICN is consumer-oriented. The con-

sumer of a data item requests that item by name and the network is ex-

pected to deliver that item to the consumer. There are different ways that

this logic could be designed and implemented, for example through hop-

by-hop lookup and forwarding of content names, or through looking up the

name in a centralized database and finding the content location. Here, we

describe some of these different design and implementation choices.

Naming

Different ICN proposals have different views on what is expected from a

name. In most designs, data names that are passed through the API share

the common property of being location-independent, but their structure

varies from one design to another. The choice of a naming structure de-

pends on different factors including human readability, and security. The

data names that are revealed to the network could be human-readable or

non-human-readable (or a combination of both). Human-readable names

are easy to memorize for the users and do not need an additional res-

olution phase [8]. Human-readable names often have varying lengths,

and sometimes they require the existence of a naming assignment au-

thority that will handle various issues regarding who is authorized to

create and/or modify a content item with a certain name. Non-human-

readable names are usually of constant size and can be derived from

the human-readable names that are used at the application level. Non-

human-readable names, which are used within the network could for ex-

ample be resolved through hashing the human-readable name or by using

a directory service similar to DNS [10].

As mentioned earlier, an ICN name in contrast to an IP identifier is of-

ten considered to be location-independent [88, 10]. An API binding in ICN

does not necessarily enforce connecting to a certain end-point. In this en-

vironment, many IP-based security solutions that authenticate, encrypt,

and secure connections based on end-point identities become difficult (if

not impossible) to use. Therefore, it is preferable if authentication, en-

cryption, and security of a content transfer operation becomes embedded

into the name or the data item itself [88, 150]. In this regard, different

ICN proposals suggest either direct or indirect binding between the con-

tent of a data item and its name. In a direct binding, the name or part of

the name is cryptographically derived from the data item itself [93, 10].
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In an indirect binding, the name securely binds to something or someone

who can vouch that the received data item is the correct one matching the

requested name. For instance, if the data item contains some information

about the data source then the receiver that suspects data authenticity

can contact the specified source to make sure that the data is correct. One

example of this kind of indirect binding is the binding to the public key

of the item owner and signing the combination of a content item and its

name [150].

Advertisement and Lookup

Similar to the DNS concept in the Internet, named item advertisement in

ICN creates state in the network indicating where each named item could

be found. Data lookups then utilize this state in order to locate the desired

item. Advertisement and lookup handling may be logically coupled or de-

coupled to the routing protocol of the underlying architecture. Coupled

advertisement/lookup and routing means that the advertisement/lookup

messages directly shape and follow the routing table entries within the

network [8]. Decoupled advertisement/lookup and routing means that

there is an additional advertisement and lookup handling layer on top

of the underlying network, independent of the network structure and the

routing table entries [10].

The decoupled advertisement/lookup and routing enforces some forms

of early binding. This model requires the consumer to first go through the

advertisement and lookup phase, retrieve some location-specific identifier

and then use that identifier to access the actual data item [10, 89]. In sim-

ple terms, the decoupled advertisement/lookup and routing method could

even be considered an equivalent to just replicating content in close-by

caches and servers in IP network, e.g. as in CDNs [122], but at broader

scale and with many more optimization opportunities below the applica-

tion level.

Routing and Forwarding

Different ICN proposals approach routing and forwarding from different

angles. In some proposals like NDN [8], lookup, routing and forwarding

are coupled. Names fill in the router entries and the named data items

get routed and forwarded hop-by-hop from one router to another. Some

other proposals like PURSUIT [10] do not enforce the lookup, routing and

forwarding to be coupled. For instance, PURSUIT’s LIPSIN model [89]

allows an efficient form of fast forwarding with encoded source-routing
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headers.

The important difference between the hop-by-hop methods and the LIPSIN

model is that in LIPSIN the forwarding identifier is not necessarily the

same as the lookup and routing identifier. This means in LIPSIN the

lookup and routing operation could be done based on one form of named

data identifiers but forwarding could be done based on some other form

of identifiers. In this way while the lookup and routing operation can

benefit from using complicated content names, the forwarding operation

could still be done with simple identifiers and at line-speed. This of course

has the drawback that the location/path/destination information should

already be included in the packet header, before that packet could be for-

warded by the network.

3.1.2 Resource Usage Abstractions

Many of the research efforts on ICN are concentrated on a specific form

of naming, lookup, routing and forwarding [10, 8]. Hoping that improving

each of these functionalities, either in isolation or combined, could result

in significant gains for content delivery. However, from our point of view

one of the less emphasized ICN strength points is the form of abstraction

that it provides: the form of abstraction that unconventionally reveals

more about the application level items of interest to the underlying pro-

tocols and not the other way around. Although not totally new, this form

of abstraction should allow better forms of resources optimizations that

suits the application interests, i.e. [42, 57].

The idea of making some information about the application level data

visible to the underlying protocols was first discussed in Clark et al.’s work

in [42]. There the authors argue that in order to improve the speed and

efficiency of the send and receive operations inside the TCP/IP stack im-

plementation, it would be beneficial to reveal the identity/boundary of the

application level data units (ALF) to the underlying transport protocol.

They investigate the speed improvements that this form of abstraction

would bring to the end-host stack implementation, for example through

allowing unordered processing of data units in the stack.

Although not explicitly mentioned anywhere, ICN appears to borrow an

information sharing concept quite similar to the ALF. Application level

data units and/or application level names are not only identifiable to the

transport end-points but they are also visible to the routing and forward-

ing protocols as well as the nodes that reside within the network. Adding
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this level of visibility to the network could potentially lead to making

wiser choices in choosing the route. However, the more interesting aspect

of this abstraction is the new opportunities that it could bring to the net-

work. The network as a whole could become a resource that can freely do

anything to quickly serve the application with the named data [126, 88].

With the new naming abstraction, there are at least two new functions

that could be added to the network. The first functionality is the capa-

bility to directly utilize the available storage and memory within the net-

work. If a forwarded piece of data seems to attract many interests, a

transmitting network node can decide to keep a copy of that data item in

its memory to directly serve future interests. Additionally, if an incom-

ing piece of data could stay valid and useful for a really long time, then

the available memory in the network could be used to benefit from this

durability, e.g., by delayed forwarding of that data item in favor of the

item that will soon expire. These all, if designed and implemented prop-

erly, could be used for better resource utilization as well as speeding up

the content delivery. Many of the contributions of this thesis rely on this

functionality.

The second functionality that could be added to the network is exploiting

its available processing power to create items of interest on the fly. The

ICN abstraction can provide the possibility of optimizing the available

processing power. As an example take the case of network coding [105].

With network coding the simple forwarding of received packets could be

replaced with more sophisticated operations. The forwarding node can

start combining multiple packets, name them, and forward them alto-

gether. This could be used to achieve better throughput in the network

and improve the speed. When it comes to combining multiple packets to-

gether, the bigger the range of available packets is, the chances are higher

to be able choose a better combination of packets for the network coding.

We do not explore this functionality in more details in this thesis, and we

certainly do not want to convince reader to believe in the magical power

of ICN in creating all kinds of items on the fly. However, we hope it is

clear that ICN abstraction eliminates a big number of restrictions that the

TCP/IP model imposes on using different resources including the routers

processing power, and thus ICN could create many opportunities for using

these resources in more creative ways.

Going back to our discussions in the previous chapter: reducing the ef-

fects of latency requires the network to be able to leverage all different
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resources more extensively. In this regard ICN abstraction seems to start

a promising new trend in which not only bandwidth but also in-network

storage and the available processing power could be leveraged. Next, we

are going to have a look at some of the challenges that ICN faces.

3.2 ICN challenges: Congestion Control

Compared to the current Internet, ICN benefits from allowing a less re-

stricted form of leveraging available resources. This is mainly because

the application reveals to the network what it wants, and the network

gets that to the application without binding it to any specific resources.

The network can even use this information to optimize its resources and

operations. For example, in some NDN-based proposals [8] the forward-

ing module can take action in stopping the interest packets to be sent to a

specific interface, if the forwarding module notices that specific interface

is overloaded with data [167].

However, with all its benefits, ICN is not necessarily good in resource

management. This is because resource management is not only about

knowing what are the resources used for and having control on limiting

their usage, but it is also about having information on when a specific re-

source is used or will be used again, or when it is released. For example,

even if the forwarding module is capable of stopping the traffic flow in case

of resource overload, it still needs to know approximately when a resource

is going to be overloaded or when it is going to be free. A resource in the

ICN context is not only the bandwidth, but also the available in-network

storage that could be easily used for caching. However, in this section we

keep these resources as separate as possible, and only look at the band-

width usage model under the general assumption that in-network caching

is possible. Here, we mainly discuss the issues regarding congestion con-

trol and resource (bandwidth) management in ICN.

3.2.1 Resource Probing

Resource probing is done in order to determine the amount of available

resources and the maximum amount of traffic that a resource can handle

at any given moment in time. In networks in which resource availability

information is not already known by the resource management module,

resource probing becomes essential. As described in previous chapter, in
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TCP/IP the resource probing operation is done only implicitly by the con-

gestion control module and on per flow basis. Each flow has to constantly

probe the network to find out about the available bandwidth. Each re-

source probing request takes one RTT to be complete, and the optimal

share of each flow equals the bandwidth delay product at maximum. The

probing operation relies on a few basic assumptions: first, the communi-

cation channel remains rather stable for the lifetime of a flow, and second,

the change in RTT reflects the change in available bandwidth and the

queuing in the network.

ICN deviates radically from the common set of assumptions that form

the resource management logic in the IP network. First and foremost,

the concept of a an end-to-end flow that connects a consumer to a cer-

tain source is almost nonexistent in many ICN proposals. This is because

the API does not bind two specific endpoints together, instead anyone can

respond to a request originated from a consumer. Thus, in some ICN pro-

posals there is no transport protocol [88], and if there is, no end-to-end

communication is defined there [21]. The other important difference be-

tween IP and ICN is that the communication channel does not necessarily

remain the same for the duration of a data transfer operation and can os-

cillate quite radically. This means the change in RTT does not always

reflect the change in bandwidth, and could be the result of a change in

the data origin and/or the path that data traverses. Last but not least,

in this new networking model there is no guarantee that the bandwidth

delay product is a good indicator of the resource availability, as it is in

TCP/IP. The bandwidth delay product becomes especially vague, if avail-

able caches could be used to time shift the traffic for more than a few 100

milliseconds.

Many early efforts in ICN replicated the resource probing problem and

solutions used in the IP network. They try to do the resource probing

on per-flow basis and provide a fair share of bandwidth for each flow. In

most of these solutions the flow concept is usually created based on con-

tent identifiers [37, 143]. The network then can actively participate in

the resource probing operation either by dividing the available bandwidth

among different flows from the beginning as in HoBHIS [143], or by di-

viding the remaining bandwidth among the flows that seem to experience

congestion as in HR-ICP [37]. Some solutions also explicitly define the

resource allocation operation to be a function of a predictable RTT [143].

In these solutions the amount of available bandwidth is divided between
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different flows before any overload happens in the network [143].

3.2.2 Congestion Handling

In an environment without end-to-end connectivity as in ICN, a hop-by-

hop resource management model might become desirable. A simple op-

tion is having a back-pressure style resource management in place [116].

With back-pressure, whenever there is congestion, the congested router

sends a message to its upstream routers to stop forwarding data. The

upstream router repeats the same thing when it realizes there are no

resources available. The chain continues until the feedback reaches the

data source. Except having slow feedback loops toward the sender, this

method also requires per flow1 states to prevent false congestion propaga-

tion towards the traffic flows that do not go through the congested part of

the path. Therefore, the flow-dependent back-pressure logic is not directly

applicable to a flow-less2 ICN model. In order to use back-pressure in ICN

an equivalent abstraction of TCP/IP flow identification in the targeted

ICN environment. For example, one could use content identifiers as flow

identifiers in an ICN network and then apply back-pressure there [143].

Implementing resource management at the end hosts is another option

considered in some ICN proposals. In this case, a resource management

module resides at the end-host and waits to receive resource availability

feedback about the network, before it makes any decisions. In the TCP/IP

world it is simple because a feedback message/bits either arrives within

the duration of an RTT or the feedback message goes missing as a sign

of congestion. However, this logic is not easily applicable in ICN. As dis-

cussed earlier, ICN often supports flexible resource bindings and allows

the source and the route to change quite often. This kind of flexibility

comes at the cost of reducing the overall predictability of the path itself

and the estimated RTT. This means the period of time that an end-point

needs to wait for a feedback is difficult to predict. Therefore, if one wants

to handle congestion through an end-point residing module, then she first

needs to address the unpredictability issues.

ICP [36] and CCTCP [144] are among many proposals that apply receiver-

1A flow is usually used to identify the relation between a traffic stream and its
source and destinations. A flow, therefore, could be identified by its source and
destination, or by a unique stream identifier.
2We call ICN flow-less because a traffic stream might not be identified by its
ultimate source and destination, or by a stream identifier that is unique among
many sources and receivers at the same time.
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driven resource management and congestion handling in the ICN en-

vironments. ICP [36] relies on implicit congestion feedbacks based on

the expiry of the retransmission timeouts. Retransmission timeouts in

ICP are calculated based on the maximum RTT samples of previous data

packets, irrespective of their source of origin. CCTCP [144] is another

proposal, which also uses the expiry of the retransmission timeouts as a

sign of congestion, but it tries to achieve a more accurate form of resource

and RTT estimation by predicting who will respond to a packet request.

Most of these works often concentrate on one aspect of ICN and RTT flex-

ibility and leave out the other aspects. For example, the results of both

ICP and CCTCP are mainly applicable to the scenarios in which fast re-

source probing is not important, and/or the range of packets served by

each source remains stable for the duration of a file transmission opera-

tion. More dynamic scenarios are not the main concern in these proposals.

For example, it is questionable how much one can predict the origin of the

next packet, if the content in a router cache dynamically changes during

a file transmission operation [21].

3.3 ICN Challenges: Privacy

As discussed in section 3.1, ICN benefits from a certain level of trans-

parency between the applications and the network, and provides many

resource optimization and speed up opportunities both for the application

and for the network. ICN implicitly assumes that the users and applica-

tions are happy and eager to share their interests with the network, and

the network is a trustworthy infrastructure that not only uses user’s in-

terests for good, but it is also able to guarantee no one else misuses that

information. This seems to be a naive assumption. Just imagine if during

London unrests in 2011, instead of speculating about filtering Facebook

and Twitter [3], David Cameron could have only asked UK ISPs to im-

mediately filter out every request or data that contains the word London.

Giving more information to the network means giving more freedom to

the network to control who uses the network resources and how. This

could, therefore, result in endangering users privacy.

Privacy is one of those concepts that has no clear definition, and as

Jarvis Thomson puts it “nobody seems to have any very clear idea what

it is.” [148]. But in most contexts revealing any kind of information by

the user could mean giving up privacy in some way, minor or major. Any
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kind of communication creates its own privacy threats for the participat-

ing party. The privacy threats in the TCP/IP network are not necessarily

the same as in ICN. For instance, in an IP network where every packet

has to contain the sender and receiver’s address, IP addresses could be

used to track the geographical origin of a packet. This is not true for most

ICN proposals where ”IP addresses” are not fundamental to the network

operation. In this section we provide an overview of different weaknesses

that can threaten the users privacy in ICN networks.

3.3.1 Revealing information

TCP/IP provides isolation between the network and application. This

has its own efficiency drawbacks but it means the amount of information

revealed between the application and the network remains limited and

manageable. Encryption and other security measures could be applied on

the packets so that IP addresses or in other words the location information

remain the only piece of information that can connect a user to a specific

transmission at any point in the network. If a user wants anonymity she

only has to influence the IP addresses that get inserted into the packet

header. ToR [49] for example can help the users to make packets untrace-

able to a certain location, by interfering with the IP addresses and the

routes that each packet takes .

ICN, on the other hand, puts more emphasis on including other informa-

tion, rather than the global location addressing, into a data name inserted

to each packet. Although, this avoids revealing the location information

just by looking at the packet header anywhere in the network, it could

disclose other information that is embedded into the packet header. Here

we list some of the application-related information that are included in

each ICN data item transmitted over the network.

3.3.2 Communication-related information

Data names are fundamental in ICN networks. Every packet has to con-

tain a certain type of identifier that is understood by the network, and

reveals the data name that is of interest to the user. Depending on its

structure and format, this identifier could reveal different things about

a user. A ICN identifier could be an exact match to what the user have

asked for, or it could just be an ambiguous translation of what user wants.

The less ambiguous the relation between a network identifier and the
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actual user interest is, the easier it is to interpret this relation. A net-

work proposal that enforces human-readable identifiers in the packets,

makes it easier for a random observer to make sense of the data that is

transmitted over the network. An ICN proposal that enforces universal

one-to-one relationships between a human-readable name and its equiv-

alent network understandable identifier is easier to crack compared to a

model without the criteria of universal uniqueness. It is because a uni-

versal one-to-one relationship once revealed could not be concealed again.

Therefore, when deciding about the format and structure of identifiers in

ICN networks, it is important to consider their privacy properties.

3.3.3 Security-related information

A mentioned earlier, security is one of the main motivations behind many

Information-Centric networking proposals [8, 10]. The major goal is se-

curing the content instead of the container to overcome the problem of

misplaced trust on communication channels in the TCP/IP world [88].

Therefore, in a ICN environment protection and trust supposedly is em-

bedded into the data item itself, rather than being a property of the con-

nections over which it travels. In most ICN proposals, the private content

could be encrypted with a content specific key [8, 9, 10].

One of the most important security enablers in ICN proposals is adding

the content owner’s signature somewhere in the data item [93, 150]. This

signature allows for authenticating the content in a network that does not

support end-to-end authentication [98].

Privacy of a content publisher could then be threatened, depending on

the way that a signature is validated. If there is always a universal au-

thorization party that always associates a publishers real identity to a

signature then there remains no way to support anonymous publishing in

the network. This is even worse if the publishers real identity has to be

directly reflected in every data item, for instance in the data name.

3.3.4 Privacy control points

The information that is revealed in every ICN data item does not always

create the same level of privacy threats. The privacy level also depends

on the control points that each infrastructure creates and the type of ser-

vices and functionalities that it supports. In a network in which lookup

and forwarding are necessarily controlled by the same player, it is easier
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to profile different users and at the same time deny their access to the

network.

In many clean slate ICN networks such as the ones proposed in PUR-

SUIT [10] or NDN [8] the basic API is limited to the data name that is of

interest to the user application. In these proposals the network itself is

also designed in a way that a user would not receive the data item that

she has not subscribed for. The user has to subscribe for a data item but

she does not have any control over how the network will deliver this item

to her. If the network is organized in a way that it keeps track of user

location on every hop in the network, then everyone with access to one or

some of these tracking records could learn about users location. Because

of the API limitations, the user herself cannot do much. The user can nei-

ther prevent the network from keeping these location tracks nor she can

make the location information anonymized or ambiguous.

The universal caching and storage feasibility in ICN networks can result

in its own privacy issues. A study by Lauinger et al. [100] suggest that

as a side effect of caching, users privacy could be endangered by revealing

their access patterns. Other similar side effects are yet to be discovered

in ICN networks.

3.4 Summary

In this chapter, we briefly discussed the general ideas behind the Information-

Centric Networking concept. This chapter emphasizes the ICN elements

that more directly influence speed and resource sharing compared to the

other ICN elements. Limited resource-binding and flexible routing/node

assignment help ICN to better support resource optimization in the net-

work. This is achieved through binding and routing based on specific

content names, and creating a content name-based unifying interface be-

tween the application and storage, processing, and forwarding nodes in

the network. These properties make ICN interesting for us as an alter-

native solution in future to overcome the latency limitations and speed

improvement challenges in the network.

ICN’s flexibility in retrieving content creates its own challenges in the

network. Congestion control and privacy are two of these challenges that

are throughly discussed in this chapter. Congestion control and managing

the resource usage is a main concern in many ICN proposals that relax

fixed bindings between a content transfer operation and specific set of
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resources. Privacy is an issue in ICN networks that rely on the user being

eager to share information about his/her item of the interest with the

network.

There are other challenges to the ICN that we have not discussed in this

chapter. These challenges include designing high-speed content routers [157],

and providing support for scalable inter-domain routing [47, 132]. These

remain open questions that affect the wide-scale acceptance and deploya-

bility of ICN in near future.
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4. Network resource utilization and its
challenges

“In any moment of decision, the best thing you can do is the right thing, the next

best thing is the wrong thing, and the worst thing you can do is nothing.”

(Theodore Roosevelt)

4.1 Bandwidth Optimization

In previous chapters, we have discussed that TCP although used quite

commonly, it is not necessarily the most efficient protocol in optimizing

the available network bandwidth as quickly as possible. In Publication

I we re-examine some of TCP’s abstractions, and propose a solution to

improve TCP’s efficiency in bandwidth probing.

4.1.1 Information sharing

Fast data transfer over the network requires bandwidth availability. How-

ever, bandwidth availability is not the only requirement for fast data

transfer. A data source also needs to know about this available band-

width. In TCP, this knowledge comes from bandwidth probing. Every sin-

gle TCP flow begins its own bandwidth probing operation when it starts,

and finishes the bandwidth probing when it ends. The bandwidth prob-

ing starts with a relatively low estimate for the available bandwidth, and

as the flow continues this estimate slowly starts to get closer to the real

value of the available bandwidth.

TCP assumes there is no information about the available bandwidth

when a flow starts. That is the reason that every flow has to start its own

bandwidth probing instance. This assumption might not always be true.

There might be some other existing flows that share the same path as this
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new flow, and they have already estimated the available bandwidth on

that path. What makes things complicated is that even if the bandwidth

availability information already exist in one node, it is not possible to

share this information across different flows. In Publication I, we discuss

the benefits of having a new bandwidth probing module that allows shar-

ing the bandwidth availability information across different flows and over

different time spans, similar to the earlier work in Congestion Manager

(CM) [24]. In this way, a new flow can just use the bandwidth availability

information that is collected by other flows, and speed up its operation.

This information could be retrieved from the flows that are currently in

progress, or it could be retrieved from the existing state of the flows that

have recently ended. Of course, the bandwidth availability information

from the old flows needs to follow some aging patterns to be useful for the

new flows. For example, the available bandwidth estimation for each path

could be halved per last estimated RTT on that path.

In Publication I, we extend the CM [24] idea to provide support for in-

formation sharing between a wider range of flows. In CM the bandwidth

availability information could only be shared among the flows that share

the same end-points, because those are the ones likely to share the same

bottleneck. This limits for number of flows that can benefit from CM style

information sharing. For instance, looking at Figure 4.1, for the flows that

start from node J and end at any of the nodes E, F, or G the bottleneck

link would probably be the slow cellular access link near the node J. How-

ever, a CM-based resource probing instance on node J could only share

the bottleneck information among the flows that end at the same node,

e.g., at F. Separate resource probing instances are then needed to share

the same information among the flows that end at E or G. The particu-

lar problem that Publication I addresses is to find a better abstraction for

capturing and sharing the bandwidth availability information between

different flows, and identifying the bandwidth bottlenecks. This could

help to share the resource probing information among a larger number of

flows compared to the Congestion Manager.

Pathlets

Based on the TCP/IP abstractions, the lowest possible granularity for

which a common resource probing module could be proposed, is an end-

to-end flow. A TCP end point that hosts a congestion control module could

only associate the network resources to a flow, based on the other end’s ad-
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Figure 4.1. A sample instance of the network model

dress prefix. This is a limiting factor for designing a common bandwidth

probing module, as in the current Internet not many flows share the same

source destination pairs.

In Publication I we suggest to keep the congestion control states per

path segments. The congestion control state then remains useful over

time and across different flows. We introduce the concept of congestion

control pathlets. In our proposal, the network path between the sender

and the receiver is split into pathlets, which are separated by specific

Pathlet Routers. Pathlet routers are identified by unique IDs. Pathlets

are then indicated by the ID pair of the pathlet routers at their edges.

Pathlets are identified at the beginning of or during a connection and their

resource availability information is updated and used by different flows.

For example, for connections between the server host G and client host H

in Figure 4.1, the sender learns that the connection consists of pathlets

GD, DA, and AH. In the same scenario, a connection between the server

host G and client host J would consist of pathlets GD, DB, and BJ. In this

case all the connections that go from G to H or J, can at least share the

bandwidth availability information over the pathlet GD.

Our Pathlet-based Transport Architecture (PTA) mode, suggested in

Publication I, supports two distinct operations: the pathlet discovery to

identify which pathlets are traversed by an opened transport connection;

and data collection, which happens during the normal communication.

We use a “Pathlet header”, as shown in Figure 4.2, to collect informa-

tion about the network path both during the initial pathlet discovery, and

during normal data transfer operation. During the pathlet discovery, ev-

ery traversed pathlet router adds its identifier to the first free slot in the

pathlet discovery section in the pathlet header. In this way, when a packet

reaches the receiver, it contains information about the pathlets traversed

on a path. This information will be echoed back to the source. Data col-

lection occurs after the connection setup phase and pathlet discovery. In

addition to the high level path-specific bandwidth estimation, PTA also
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provides the oppertunity to locate the congestion on the path. Basically,

if congestion happens, the pathlet routers that are closest to the conges-

tion point identify themselves in the congested pathlet field in the pathlet

header. This information is then sent to the source allowing the source

to see (and react to) where in the network congestion happens. How-

ever, this approach of data collection requires that congestion is explicitly

understood within the network. For this purpose, every end-point and

router that benefits from PTA should be able to mark and interpret ECN

(Explicit Congestion Notification) [134] bits in packet header. A pathlet

router realizes if it is the closest pathlet router to the congestion point, if

there is an ECN congestion mark in the packet header, but the congestion

pathlet field in the header is not marked. The first pathlet router that

sees the ECN mark then inserts its own identifier into the packet header.

This would the allow the source to approximately identify the congestion

location in the network.

Once the pathlet-based abstraction is in place and the required informa-

tion is collected, various advanced algorithms could be used for different

congestion control and resource optimization purposes. In Publication I,

however, we stick to the simple case when the pathlet-related informa-

tion sharing could be used for changing different default values such as

the slow start threshold, minimum RTT, and the MTU size. In particu-

lar we investigate the initial ICW setting and how it could be changed

dynamically to help faster transmissions.

4.1.2 The ICW setting

The initial bandwidth estimation value in TCP is defined in the ICW size,

which affects the speed of operation especially for short flows. We have

already discussed that reducing the number of RTT rounds that a protocol

spends for a file transmission operation can increase the speed. In TCP,

one way of reducing the number of RTT rounds is increasing the ICW size,
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Figure 4.3. The simulation topology

especially useful to quickly finish short flows.

TCP’s initial bandwidth estimation and the ICW size for every flow has

to be defined conservatively to avoid sudden congestion and too many

packet losses. This setting is constant and cannot be changed, even if

there is a lot of bandwidth available. In Publication I, we argue that

improving the speed and efficiency would be much easier in TCP, if one

could at least change TCP’s default ICW setting dynamically based on the

available network bandwidth. There, we use our suggested PTA model

for estimating the ICW settings for new flows. In this way, a new TCP

flow does not necessarily have to go through using a constant ICW set-

ting for its initial bandwidth estimation, if there is information available

about the pathlets that the new flow traverses. Instead, the new flow can

just use the bandwidth availability information that is collected by other

flows, and speed up its operation.

To evaluate the possibility of dynamic ICW setting with PTA, we ran

some ns-3 simulations. For these simulations we use the topology shown

in Figure 4.3, in which the bottleneck links are the last links next to the

router that connects to the receiver groups. Each group of receivers are

connected to the source through slightly different bottleneck links, with

bandwidths of 100 Mbps, 4 Mbps, and 43 Kbps. The rest of the links have

a bandwidth of 1 Gbps.

We use two different traffic profiles in our simulations, simply calling

them traffic profile 1 and traffic profile 2. Traffic profile 1 follows a Pareto

model with a long tail for short flows (Pareto mean 40 KB, shape 1.5),

as motivated by other studies on increasing initial congestion window

size [14, 52]. Traffic profile 2 has longer flows (Pareto mean 200 KB, shape

1.5). The latter profile emphasizes the effect of larger initial congestion

window because, for short flows, the initial congestion window does not al-
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Figure 4.4. Average ICW size with 1000 TCP flows between servers and clients with 100
Mbps bottleneck

ways have significant effect. Flows arrive in the network based on Poisson

distribution. The inter-arrival times between different flows are exponen-

tially distributed.

As a starting point we show the average ICW size that the PTA model

achieves under various conditions. Figure 4.4 illustrates the average win-

dow size that our PTA-based method achieves with different traffic pro-

files. As can be seen in the figure, the PTA-based method adjusts the

ICW size based on the congestion on the link. Traffic profile 2 with longer

flows naturally causes more load on the network than traffic profile 1 with

shorter flows. The graph shows how this difference is reflected in the ini-

tial window selection made by the PTA.

Goodput defined by the file size divided by the flow completion time,

is one metric to show the performance improvements achieved by PTA

in terms of bytes per second. Figures 4.5 and 4.6 show with low con-

gestion, different initial window sizes results in different performance.

But as the congestion increases the performance differences vanish. The

graphs, again, show that initial window of 10 packets is better for high-

speed links, while initial window of 3 packets works for low-speed links.

PTA is better in both cases, because on high-speed links it can pick even

higher values than 10, and in the low-speed case it stays at initial window

of 1 or 2 packets.

It is also worth mentioning that these results emphasize that even with

PTA the overall goodput remains lower than the nominal link bandwidth.

This is because the goodput covers the whole duration of TCP connec-

tion, including initial SYN handshake and waiting times for the ACKs.

This becomes troublesome especially with short flows and longer relative

round-trip time. One still needs to consider these aspects when thinking

about improving the speed and efficiency in the network.
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4.2 In-network Storage Optimization

Our discussions above partly focuses on reducing the RTT rounds that

a protocols spends for a file transmission operation. There are also other

ways of reducing the RTT-dependent portion of the overall user-experienced

delay, e.g. propagation and queuing delay. In this regard we think benefit-

ing from other available network resources such as using in-network stor-

age for caching could be useful in reducing the user-perceived delay. Our

work in Publication II and Publication III focuses on in-network caching.

Caching is one of the oldest network mechanisms used to reduce band-

width consumption and latency, and to increase speed [60, 137]. It is

commonly believed that caching is a costly extra service that only pays

off if there is a high probability that the cached objects are going to be

re-used [68, 162]. This mindset makes it difficult to argue in favor of

supporting wide-spread in-network caching [61]. However, based on our

earlier discussions in chapter 2, we think as the price of memory and stor-

age drops the costs associated with caching could also reduce to the level

that it is better to cache than not to cache . In Publication II and Publica-
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tion III we discuss the caching style of in-network storage optimization.

Here, we summarize some of the important points shaping our thinking

in Publication II and Publication III.

4.2.1 Object Granularity

Application level proxy caches are the most common form of caches. HTTP

proxies as well as caching solutions designed for peer-to-peer applications

are examples of these application-specific mechanisms [66, 165, 90, 102,

147]. However, there are at least two problems with application specific

caching: first, it is difficult to design and manage different caching nodes

for different applications, and second, application level objects do not al-

ways provide the best granularity for storage and re-use. In both our

proposals in Publication II and Publication III we consider caching below

the application layer, and use the ICN [88] and ALF [42] style of identifier

transparency to define finer granularity objects for caching.

Packet granularity

When thinking about caching below the application layer, packets do not

even seem significant enough to be considered. This is because appli-

cation level caching might just be enough by eliminating most of the

redundant transfers [61]. However, in Publication II we take the ICN

view [88, 10, 146] into account that if packet level objects are identifiable

anyway, then the router and transport protocols might as well use those

objects to improve their own operations. For example, the transport pro-

tocol and its dependent modules can benefit from these identified objects

to share the common bytes across different flows.

In Publication II, inline with many other ICN works, we identify ev-

ery packet by means of a content-specific identifier. This content-specific

identifier is shared across the transport end-points as well as the routers.

These identifiers allow the packets to meaningfully reside in some mem-

ory and stay inside the network independent of any transport level con-

cept such as flows. Different protocols that can access these identified

packets can then benefit from them, e.g., for replacing a lost packet, or

eliminating redundant transfers of the same packet over a congested link.

Byte-stream granularity

In Publication II we assume that routers are interested in content-centric

routing and forwarding and therefore, it makes sense that each packet
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is identified independently. Nevertheless, if routers are not able to use

the packet specific content identifier for routing and forwarding, other

object granularities could be preferable for caching. In Publication III we

suggest byte-stream identification to be used inside the network and for

caching. A byte stream is identified by the means of using a seed identifier

plus a range. The seed identifier is often an application specific identifier

that represents the beginning of a file/stream and the range defines which

part of that file/stream is being presented.

Similar to the named packets, every router that sees a named byte

stream can cache and reuse these bytes. With byte stream identifica-

tion the cacheable objects still remain independent from both applications

and TCP style end-to-end flows.The biggest advantage of this model is

that byte stream granularity allows size flexibility and partial caching of

higher granularity objects. But unlike packet caching, the flexibility for

partial caching is achieved without any need to define restrict boundaries

for the cached items. Depending on the situation, bytes belonging to an

object could be put together or separated easily inside the cache. There-

fore, byte stream caching brings a new dimension to caching below the

application layer: no size restricted object identification.

4.2.2 Pull-based transport protocols

Adding object identifiers and caching capabilities below the application

layer requires defining new methods of accessing cached items. There-

fore, in both Publication II and Publication III we introduce pull-based

transport protocols which can specifically ask for data items with differ-

ent granularities. The most important commonality between these pro-

tocols is their binding to a location-independent identifier. In both these

protocols, the data transmission operation is identified through binding to

content identifiers instead of location identifiers. This is a radical change

compared to most transport protocols that are in use today.

In Publication II we use a pull-based content-centric transport proto-

col. In this protocol, the requester knows the packet identifiers before-

hand (possibly through querying someone) or can generate them locally.

The requester then requests each of the packets (logically) separately; in

practice, several requests can be generated in parallel, following a logic

somewhat similar to the TCP. As each caching node within the network

understands the request and response packets, it can easily cache the re-

sponses (data packets) and reply to data requests. If a request packet is
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answered from the cache, the request need not be forwarded. In this way,

a router cache can independently reduce the load on the upward path,

without necessarily requiring any inter-cache co-ordination effort. It is

also expected to reduce the content retrieval time that the transport pro-

tocol achieves.

In Publication III we introduce a pull-based transport protocol that is

adapted to requesting identified byte-streams. In this protocol, the re-

ceiver can request a window of bytes identified with the content-based

stream identifier and the byte range. This is done using a REQUEST

packet. Any stream caching node on the route between the server and the

client can interpret this request and reply to it without having to consult

the application layer. Only the server would do the latter to, e.g., fetch

the required data from the source (e.g., a file). Data is carried in DATA

packets. If intermediate nodes are able to supply part of the data on be-

half of the sender, they update the offset and byte range in the REQUEST

packet accordingly.

Packets with the same content identifier and byte range are inter-changeable,

regardless of the application that has triggered them. Due to the stream

caching nature, also overlapping fractions of packets with partially inter-

secting byte ranges may be stored, as packet boundaries are no longer an

issue.

4.2.3 Costs and policies

Reducing the transmission costs is one of the main reasons for using the

in-network storage and caching. However, if not designed or used prop-

erly, the caching operation could become useless or, in the worst case, it

can even add to the cost itself. Thus, the design of a proper caching mech-

anism plays an important role in defining the system costs. Often in these

systems the caching success itself is then evaluated based on the cache hit

rates and the latency [152, 151].

When the storage space is limited and there are many items to cache, it

is necessary to define a proper policy to keep the cache useful. In this case

it is important to track the content popularity trend, and choose the right

storage and replacement policy to keep the cache hit rate as high as pos-

sible, either in a single cache or in a set of collaborative caches [120, 101,

45, 153]. The success of a caching policy depends on the traffic (cacheable

content) and access (request diversity) pattern of the cache. For example,

in one local setting replacing the Most Recently Used (MRU) item could
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result in the highest hit rate, while in another setting replacing Most Fre-

quently Used (MFU) item could increase the hit rate. In these cases the

cache designer should carefully investigate the traffic and access patterns

in a local setting, before defining and implementing a specific policy for a

cache.

Although the cache hit rate is an important factor, the system costs are

not always reflected in an absolute hit rate value, and policies are not

always defined to increase that absolute value. Complexity is another

important factor in choosing a caching policy. For example, Least Re-

cently Used (LRU) caching policy is widely used today, because it is sim-

ple. There possibly are many other algorithms that specifically consider

different items popularity and achieve higher hit-rates, but none of them

is as widely used as LRU. The reasoning is simple, the benefits of using

popularity-based schemes are not often big enough to justify the added

complexity of monitoring the popularity.

The added latency is another factor that affects the choice of caching

policies. In some environments like multiprocessors, caching is mainly

used to overcome the latency issues that exist between different levels of

memory and the processors [5, 168]. In such environments, in addition to

the hit rate, the success of a caching policy depends on the latency that

it adds to the system. If a specific policy can achieve a high hit rate but

it is slow in doing that, it becomes less useful for the latency-sensitive

environments. In these cases, a cache designer has to pay extra attention

to the simplicity and the speed of a caching policy.

In Publication II and Publication III we discuss caching policies in two

different scenarios in which increasing the hit rate by careful investiga-

tion of traffic and access pattern is not our main concern. Instead Publica-

tion II and Publication III look at some other factors affecting the system

costs from the speed and load sharing point of view: this is either because

the cache space is big enough to reduce the concerns regarding the hit

rates (as in Publication II), or it is because the caching system can evalu-

ate its hit rate in real time and affect the traffic pattern towards the cache

(as in Publication III).

Random caching

We have previously discussed that router processing can add to the la-

tency and reduce the speed in the network. Even in current routers in

which the basic functionality is limited to routing, forwarding, speed is an
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issue. In such routers, adding yet another cycle consuming functionality

seems to be out of question. This is because of the possibility of added

latency and the reduced speed implications that a new function such as

caching can impose to the routers. However, in Publication II we intro-

duce packet level caching in routers as a optional functionality that takes

into account the speed limitations.

Similar to the caching in multiprocessor environments, the packet level

caching described in Publication II cares most about simplicity and speed.

The reading and writing operations to memory have to be done quickly

enough so that it does not add to the latency. In Publication II we address

this issue by introducing random caching. A packet is only written to the

memory with a random probability and it is only read from the router

memory if there are enough available resources to do this operation in

line speed.

The random caching method suggested in Publication II benefits from

a specific form of addressing and memory hierarchy to control the added

latency in each router. Figure 4.7 shows one sample cache structure pro-

posed in Publication II. There, we rely on the fact that once a packet has

been written to the memory, it remains there until it is overwritten by

another packet. Each incoming packet with some probability is written

to the available packet cell in the DRAM packet store, and its index in-

formation is updated at the index table. Depending on the structure and

the randomness of the Packet Identifiers (PIds), the index address corre-

sponding to a PId can be defined from a range of the PId bits, e.g. bits

0...23. The SRAM entry for an index needs to store a non-overlapping

range of the PId bits, e.g. bits 24...51. With this,the router can check

from the SRAM if it has any packet with the bits 0..51 matching those

of a given PId. Then, if that packet exist, it could be retrieved from the

DRAM. For storing a packet in the cache, different range of bits, Si s, and

packet access times could be used to compare different entries and choose

the best one to write a new packet in place of an old one.

In Publication II the random caching functionality in one router is ex-

tended to be supported by a chain of the routers on a path. These routers

could implicitly help each other to reduce the load on on one cache. Each

packet has an equal chance of being written to the cache memory in differ-

ent routers and it could be read from any of them. Each router then could

choose to serve a packet or not depending on its load or some other metric.

In Publication II we have used some simulation examples to describe the
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Figure 4.7. The proposed router cache structure in Publication II

usage of router chains in our random caching model. Our simulation set-

tings consists of an ns-3 implementation of a native content-centric pro-

tocol stack, using in-packet Bloom Filters [89] for forwarding. The basic

scenario includes one of the branches shown in Fig. 4.8, with 8 routers in

the path. Each router is considered a possible cache source and is identi-

fied with its hop number from the receiver. Each router caches the packets

passing by with the probability d. In our experiments we have varied the

percentage of packets cached at each router, choosing the cached packets

randomly with the probability d of 1, 1/2, 1/3, 1/4, and 1/8.

Figure 4.8. Example topology with requesters on the left, original sources on the right,
and potential caches along the path.

In one set of the experiments, we have transferred an application level

content item once and applied the random caching method on the path.

We have then started requesting that same item for the second time. We

have used a pull-based transport protocol for requesting named packets.

As a result, requests for cached packets arrived at the first router on the

path, and if not served, continued upward.

The results, shown in Fig. 4.9, indicate that the overall mean efficiency
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Figure 4.9. A sample packet retrieval percentage from different cache hops

can be quite high, even with partial caching at each router. With full

caching, the first cache essentially covers all the requests, while with 50%

random caching, 4 caches achieve ∼ 95% hit rate. For the relatively low

caching fraction of 12.5%, the hit rate across 8 hops reached only ∼ 60%,

indicating that some sort of simple inter-cache coordination might be use-

ful at such low caching rates. For example, similar to the work in [104]

the list of cached items in each node could be announced to its neighbors.

The random caching policy discussed in Publication II relies on the fact

that most retransmissions of the same packets happen during a period of

a few seconds. Therefore, the size of the cache could often be big enough

to cover all the packet retransmission requests that happen during that

period. Based on the results shown in [19] 10 seconds of packet caching is

enough to capture 60% of the redundancies in the network traffic. Addi-

tionally, studies done by Rossi et al. [141] and Psaras et al. [128] empha-

size that in different ICN settings a reasonably sized packet/chunk cache

with random caching can achieve a reasonable hit rate anyways. This is

because in a random caching scheme the most popular content is trans-

ferred through the cache most often and thus, it has the highest chance

of being written to the cache. Therefore, as mentioned earlier the focus of

our work in Publication II has been towards simplicity and affordability of

the cache, and not towards the cache sizing or different cache replacement

policies, and hit rate.

Anyhow, it is not always possible to define big enough caches that achieve

a good hit rate in all kinds of scenarios. In Publication III we discuss

one such case in which in-network caching is used to reduce the high

server load. But similar to Publication II instead of investigating which
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algorithm achieves the highest hit rate, we focus on a different criteria,

namely: controlling the amount of traffic that is considered for caching.

Resource-aware caching

When there is limited space compared to the amount of data that needs

to be cached, there is also the chance that the cache becomes useless be-

cause of too many re-writes in a short period of time. Cache pollution is

also another possibility. In cache pollution data items that are never going

to be used again fill in the cache and prevent the more useful data items

from being cached. However, controlling the amount of the traffic that

enters the cache could limit the chances of re-writing the cache too often

or even polluting the cache. In Publication III we propose to control the

cache traffic by marking the most valuable items beforehand. In a router

caching case, this marking could significantly reduce the number of items

considered for caching compared to the number of items that enter the

router every second. In Publication III we rely on the simple observa-

tion that the server is the first entity to notice the potential redundancy.

Therefore, if in-network caching is needed, the server itself can assist

the network in deciding which items are worth caching.The server identi-

fies the most valuable contents for caching by giving corresponding hints

to the network: the server sets cache-me bits in the packet headers.The

stream caching nodes on the path from the server to different clients will

only consider caching those bytes that are marked with the cache-me bit.

Putting the servers in the position of marking different items for caching

and using downstream network resources obviously raises its own issues.

Every server could simply set the cache-me bits for every item, which

would lead to cache pollution and the caching nodes would be back to

second-guessing which items to store. Therefore, we need a mechanism

that penalizes for excess cache-me requests and gives incentives for the

senders to be selective about when to send them. To address this issue we

have used a method similar to ECN [134] in which the sender is notified

about overload, and re-ECN [33] in which whoever sends excess traffic to

the network is held accountable for that. In Publication III we suggest to

use an overload bit that is always initialized to zero by the sender. If the

rate of incoming cache-me bits at a stream cache exceeds an threshold be-

yond which the caching node considers itself overloaded by the cache-me

requests, it sets the overload bit in the packet. The state of the overload

bit is echoed back to the sender through setting the overload echo bit in
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Figure 4.10. The hit rate difference without and with the cache-me bits

a different packet. As the sender receives overload echoes, it reduces its

allowed rate of outgoing cache-me bits. In addition, there can be a po-

licer near the sender (e.g., run by a network operator) that monitors the

overload echoes and cache-me bits for each source, and clears any excess

cache-me bits that the sender might try to send.

To show the validity of our design we ran some initial simulations using

ns-3, for a case with 6 traffic sources and 1000 receivers routed through a

common cache (shared buffer). Between the sources and the shared buffer

there also is a policer that monitors the rate of cache-me bits per source

against the overload signals, and eliminates excess cache-me bits based

on this information. The senders have 100 files that have zipf popularity

and are requested according to Poisson distribution with mean 50. The

file sizes follow Pareto (mean:40 KB, shape: 1.5) distribution. When there

is no overload, the cache-me bit is set purely based on the popularity of

each file, so that the popular files are more likely to be transmitted with

the cache-me bits compared to the non-popular files. Inside the network

the cache-me bits are erased after an item gets cached. In case of overload

as indicated by the network the senders stop setting the cache-me bits in

the packet headers.

In the simplest scenario, figure. 4.10 shows that adding the cache-me

bits can increase the cache hit rate. Figure. 4.10 shows with limited cache

capacity using the cache-me bits can double the hit rate compared to the

case where cache-me bits are not in use. The huge hit rate difference

starts to fade as the cache capacity grows.

In Publication III we have also examined the role of the policer in case
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Figure 4.11. The request hit rate distribution with 1000 files and variable size cache.

malicious sources do not react to the overload bits set by congested caches.

Figure 4.11 shows the effect of malicious hosts on the data hit rate on

requests arriving at a caching node. By malicious host we mean the hosts

that set the store me bits randomly and do not respond to the overload

bits. The graph shows that the presence of malicious host significantly

hurts the request hit rate at the shared cache, but the presence of policer

helps to repair the situation.

4.3 Congestion control

The in-network caching models that we have proposed in Publication II

and Publication III are most useful if there is no strict binding between

a receiver and a specific source, and the receiver can receive the data

freely from the best available sources. This freedom and unpredictability

in resource assignments makes it rather challenging to make a reasonable

association between the packet arrivals (loss) and the overall resource

availability (unavailability) in the network. This could result in added

difficulties for congestion control.

In this section we first explain how a TCP-like method might be adapted

to deal with the congestion in ICN environments. This identifies the chal-

lenges that one have to deal with when adapting an end-to-end conges-

tion control mechanism to be used in an environment with the possibil-

ity of packet caching and without strict end-to-end bindings. We then go

through the details of one specific method that could help to address some
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of the congestion-control issues in such environments.

4.3.1 TCP-like congestion control

In order to deal with congestion in ICN the first solution that came to our

mind was designing a TCP-like congestion control mechanism. Therefore,

in our earlier work that has been partly documented in [21], we have

designed and simulated, ConTug. ConTug was one of the earliest works

that explored congestion control issues in an ICN environment. Therefore,

it is important to discuss its design and the related findings here.

In ConTug we rely on an ICN network in which there are no specific

bindings between different sources and receivers. However, a source-

routing-based channel identifier is always inserted into the packet header

that specifies the packet route [89] (as illustrated in figure 4.12). The

sender sends request packets to the network and the network routes them

based on the source routing header, and then finds and forwards the

proper response to that request. On the route that a packet takes, any

node can act as an in-network cache responding to or storing that packet.

Proper rate control with implicit resource probing is difficult in this envi-

ronment, as any router along the path can store any response and respond

to any request. However, ConTug introduces a TCP-like module, which re-

sides at the end-host and makes rate adjustment decisions based on the

observed packet arrivals and packet losses.

ConTug is a receiver-driven transport protocol that probes resources and

handles congestion in a similar fashion as TCP. To achieve the congestion

control functionality in ConTug we introduce a Conceptual Congestion

Control Window (CCWND) to estimate the available network resources.

Unlike TCP, in ConTug CCWND resides at the receiver, and the receiver

adjusts its packet request rate based on the CCWND size. Another major

difference between CCWND and a TCP window is that CCWND does not

actually define any lower or upper bounds on the sequence number of the

requested/ sent packets. CCWND only defines the number of on-the-fly

requests that the receiver can send out to the network, without worrying

about the sequence number of each request. The logic is adapted simply

because there could be many sources that contribute to a content transfer

operation, and thus, packets might be sent back to the receiver in any or-

ders depending on their availability in different sources (caches). In this

scenario re-ordering does not necessarily mean congestion or resource un-

availability.
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The operational logic for adjusting the CCWND size is a bit more com-

plicated compared to TCP. That is because of the specific challenges at-

tributed to environments with no binding to a particular source, and with

the possibility of reactive caching as in Publication II. As an example

of CCWND adjustment challenges, in figure 4.12 consider the case when

the receiver R1 has just started to request packets belonging to a content

item C1 and some range of these packets start to get cached in the nearby

router A. Before R1 finishes requesting and receiving the packets that it

needs, the receiver R2 starts to request the same packets belonging to C1.

In this case, from the R2 point of view, at first many of the requested data

packets start to appear in the nearby cache A and cause R2’s perception

of network resource availability to increase to near 1Mb/s with the min-

imum RTT of for example 20ms. However, because not all packets that

belong to C1 has been already transferred to the the cache, A can not re-

spond to the new packet requests made by R2. In this case, R2 needs

to retrieve the rest of the packets from a further away source behind the

64Kb/s bottleneck with the minimum RTT of 100ms. In this case in R2,

quick reception of packets could have resulted to a huge CCWND, which

does not reflect the bottleneck near the source and its added delay. This

could create sudden and unnecessary congestion on the bottleneck link.

This effect could get worse, considering that while R1 and R2 are both

requesting the same range of packets, their perception of the network re-

source availability could easily oscillate depending on who gets a specific

packet first and leaves a copy of it in the nearby cache. In this case, re-

active packet caching continuously changes the order and proportion of

packets that are being served from different caches. Therefore, the RTT

and the CCWND size could slowly oscillate between low and high values

that are not a real reflection of the real-time resource availability in the

network. We call this the source unpredictability problem and we discuss

its side-effects in more details in [21].

In ConTug, we define multiple CCWNDs per transmission. Each CCWND

is then expected to reflect the resource availability towards a specific

source. At first this might seem a contradictory assumption, because our

primary assumption was that there is no binding to a specific source in

ICN. However, we argue that even if there is no specific binding between

a specific source and receiver, the receiver could still cluster the received

data packets and associate them to a specific source. In [21] for simplic-

ity, we cluster the data packets based on the forwarding channel identi-
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Figure 4.12. An example caching-enabled network setting

fiers included in the headers [89]. The receiver then creates a distinct

CCWNDi for each identified segment source i. The sum over different

CCWNDi yields the overall CCWND. The number of requests that are

sent out to the networks is not specific to each CCWNDi, but it is defined

by the the overall size of the CCWND.

The receiver starts requesting segments with one conceptual window,

CCWND1. Then, it enters the slow start (later congestion avoidance)

ramp-up phase for that window, increasing its size on successful responses.

Whenever there is a response from a new source, ConTug creates a new

CCWNDi. Each response from the source i triggers an increase on the

correspondent CCWNDi, thereby increasing the overall CCWND size, al-

lowing more outstanding requests to be sent to the network.

RTT-based congestion indication

In ConTug the request rate is decreased upon the reception of a congestion

indication. We mainly use RTT-based timeouts as the sign of congestion.

Our first choice is using the forwarding channel timeouts (Eq. 4.1), which

are triggered by packets that never reach the receiver. In Eq. 4.1 we use

the maximum observed RTT to make sure that a loss has actually hap-

pened. A channel timeout will cause every single CCWNDi size to reduce

to half. Every request, which is not answered by the channel timeout, will

be repeatedly sent to the network until it gets answered.

Channel T imeout = C ×MAXi∈{0,n}RTTi (4.1)

Using the above methods, ConTug aims at adapting the rate based on

the available bandwidth. However, ConTug channel timeouts (alone) are

inadequate and would yield performance results even worse than TCP.

This is because in ConTug reception of the data packets at the receiver

side is considered a sign of resource availability, either this resource is
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Figure 4.13. Four concurrent ConTug transfers in a scenario with caches when only sign
of congestion are channel timeouts (a) Queue occupancies in different inter-
mediary nodes on the left, (b) RTT changes on responses arriving from the
original source (node #9) on the right.

bandwidth or it is the in-router cache memory. A packet might be re-

ceived from any range of nodes starting from a first hop cache to an orig-

inal source which is located behind one or many bottleneck links. At the

same time, timeouts are only triggered based on the RTT of the furthest

away source or the source located behind the most congested link. In this

scenario the number of packets that are received at the receiver in a time-

out period "T" from all available sources could be multiple times more

than the number of packets that are received from only one source over a

TCP connection in the same period. Therefore, the CCWND size could in-

crease much faster than a TCP window, and cause more severe congestion

effects.

Our ns-3 simulations in a network setting similar to the figure 4.8 con-

firm this claim. In this high-delay network setup different links have 100

Kbps bandwidth and their delay is set to be 20ms. There is unlimited

caching capacity in all the nodes on the path, and the caches are empty at

the beginning. Figures 4.13a, and 4.13b then show the queue size and the

observed RTT for the packets that arrive from the furthest away source.

One can clearly see that this simple initial algorithm is not able to control

the RTT, and queue size and, as a result, the amount of the congestion in

the network can remain drastically high (note: in this setup the maximum

queue size is 20 packets). The queue size remains at its maximum value

in first 2 hops from the receiver, and naturally result in many timeouts

and packet drops.

The one difference that might make these many timeouts and losses

more tolerable in ConTug compared to the TCP is the caching adaptation

in the network. In TCP, congestion could cause packet drops and retrans-

missions of the same packet over and over on the same set of links. In
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ConTug caching to some level can reduce the number of retransmissions

from the original source. Instead packets which are dropped from the

queue could be served from the caches that have a copy of them. For In-

stance, figure 4.14 shows in the above scenario most received packets are

served from the first 2 hop caches. This happens even though caches were

initially empty and during the simulations they are filled with copies of

the packets that have reached the cache, and got forwarded/ dropped af-

terwards. Most packets that ultimately get served from the cache are the

ones, which have actually been served from an original server before, but

got dropped before reaching the receiver. In this way, as long as there is

enough space, caches can compensate for exhaustive retransmissions.

0 
5 

10 
15 
20 
25 
30 
35 
40 

1 2 3 4 5 6 7 8 9 

R
et

re
iv

ed
 p

ac
ke

ts
 [%

] 

Source [#] 

Figure 4.14. The proportion of packets received from each source for one transfer

Nevertheless, the unmanaged congestion results as shown in figures

4.13a, and 4.13b suggest that we might need to use other indicators for

congestion and resource unavailability in the network. Therefore, in Con-

Tug we use two other signs of resource unavailability, first a source spe-

cific timeout, and second, the increase in the source-specific RTT. Source

specific timeouts (Eq. 4.2) identify less availability towards a specific source,

either it is because there is no data available in that source or it is because

of the congestion. This kind of timeouts happens when no packet from the

source i arrives during the timeout period. In this case the CCWNDi

reduces to half.

Source T imeout = C ×RTTi (4.2)

In ConTug we also exploit an RTT-based resource estimation approach

similar to the one in TCP Vegas [31]. This is to alleviate the consequences,

when reception of the packets from nearby caches results to misleading

estimates about the available bandwidth further away down the path.
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Figure 4.15. RTT variations in a scenario with four concurrent ConTug transfers; show-
ing the case on responses arriving from the original source (node #9) (a)
without caching on the left, (b) with caches on the right.

We use the increased RTT estimation as a sign of congestion that is re-

flected in the decreased packet arrival rate. Similar to TCP Vegas [31]

the difference between the expected rate and actual rate is counted as an

indication for the amount of resource unavailability in the network, and

defines the proper CCWND size.

In ConTug, the expected rate at each time is calculated based on Eq. 4.3.

Expected Ratei =
CCWNDi × Segment Size

BASERTTi
(4.3)

The BASERTTi is the minimum RTT that receiver sees in the batch of

samples coming from source i. The actual rate is then calculated based on

Eq. 4.4.

Actual Ratei =
CCWNDi × Segment Size

RTTi
(4.4)

At the beginning, if the difference between the expected and actual rate

is more than a value γ, the algorithm enters the congestion avoidance

phase. In the congestion avoidance phase, if the difference is less than an

α value the CCWNDi will increase and if it is bigger than a β value then

CCWNDi will decrease linearly.

Adding the new resource unavailability indicators to our design makes

it a better fit for congestion control in models with reactive packet caching

and without any support for source binding. To initially confirm this

claim we compare the window and RTT changes in both caching and non-

caching environments. Figure. 4.15b illustrates the RTT changes of 4 si-

multaneous receivers; there we use RTT9 (RTT of packets served from

source #9) as indicative variables for our algorithm. Figure. 4.15b shows

that the RTT estimates for source #9 are a bit higher on the caching-

enabled channel compared to the case shown in figure. 4.15a. However,

RTTs remain rather stable and reasonably controlled compared to fig-

ure. 4.13b. Figures. 4.16a and 4.16b also show that the queue occupancies
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Figure 4.16. Queue occupancies in different intermediary nodes with four concurrent
ConTug transfers; showing the case (a) without caching on the left, (b) with
caches on the right.

are better controlled with using the new congestion indications. In this

model the major queue occupancy happens at the bottleneck queue resid-

ing at node #8 both in the caching and non-caching scenario.

Although RTT measurements and queue size variations show positive

and rather stable trends in our evaluations, CCWND size and rate ad-

justments do not follow the same behavior. The plot in figure 4.17 shows

that in our simulations the estimated CCWND size does not become sta-

ble. For instance, considering the case for CCWND9 in 4.17 the size os-

cillates for the duration of content transfer. This is because with random

caching present on different routers on the channel, some random packets

are found in sources closer to the receiver than #9, resulting in changing

CCWND for the source #9. The same unstable window adjustment applies

to CCWNDi for other sources, and as a result to the overall CCWND

estimate. Therefore, even with our new congestion control countermea-

sures rate or window adjustment stability is still hard to achieve, which

is mainly because of the randomness and unpredictability of caching and

packets availability in different places in the network. One needs to take

into account other countermeasures, if a stable rate estimate is desirable.

Otherwise, she needs to change her exceptions about the outcomes of a

congestion control algorithm in an ICN environment with the capability

of in-router caching.

In addition to congestion control related evaluations, our findings in

[21] show positive results regarding ConTug’s efficiency in improving the

speed of a content transfer operation. The average Flow Completion Times

(FCT) shown in Table 4.1 is a sign that because of exploiting in-network

caching opportunities, on similar routes, ConTug could finish the file trans-

mission operations faster than the simple TCP. More details can be found

in [21].
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Figure 4.17. CCWNDi variations for a sample flow in a scenario with four concurrent
ConTug transfers

Flows(#) ConTug’s Mean FCT TCP’s Mean FCT

4 511.34 756

8 613.42 1512

16 782.81 3024

32 883.34 6048

Table 4.1. Mean FCT of ConTug and TCP flows requesting same content in caching en-
abled network

Although ConTug suggests one particular mechanism for controlling the

congestion, there are still some open issues regarding the feasibility and

efficiency of our proposed solution in relation to the source unpredictabil-

ity problem. In the next section we explore some of these open issues and

discuss an alternative approach for controlling the resource usage in the

network.

4.3.2 Deadline-based congestion control

Our work in [21] emphasizes that congestion control in ICN networks

requires a different treatment compared to the TCP/IP. In [21] we over-

come some of the (re)source unpredictability issues in ICN by making

weak correlations between the data packets and their sources, and by us-

ing RTT-based congestion indications. However, alternative solutions are

needed in case making such correlations between the data packets and

their sources are not feasible, or RTT-based congestion indications are

not enough, or even if a better form of congestion prevention and resource

management is required. One such alternative solution would be to re-

quire the network itself to take part in controlling its resource usage. If

the network is involved in the congestion control then it can prevent over-

subscriptions to its resources. It can even act intelligently and communi-
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cate its resource availability information to the applications/end-hosts.

Most of the classic works that focus on network involvement in the con-

gestion control operation [91, 50, 116] operate based on specific identi-

fication of a flow, and RTT measurements for that flow. The concept of

the “flow” and its related RTT measurements are required for fair divi-

sion of the network resources and preventing congestion [91, 50], and/or

to properly feedback the network resource (un)availability status to the

data source [116]. However, as discussed earlier finding an equivalent

concept to a TCP flow or even proper RTT estimations for a content trans-

fer operation is not that easy in ICN. This is because neither the end-to-

end bindings nor the content to location bindings are enforced in ICN, see

chapter 3.

In Publication IV we propose a new congestion control model that has

little dependency if any, on correct RTT estimations and flow identifica-

tions. In the proposed model, we benefit from the fact that the network is

more knowledgable about what it is transferring and how each transfer

is done. Therefore, in our model the network can take advantage of this

knowledge and deal with the congestion rather differently compared to

the TCP/IP.

Deadlines

In Publication IV we introduce packet delivery deadline or lifetime as a

prominent component used for congestion control and network resource

management. In our model each packet is provided with an application

specific deadline. For example, a real-time streaming or a web search

application might request a packet deadline of 100 milliseconds, whereas

for batch file transfer significantly longer deadlines (in order of seconds)

would be sufficient. The data receiver specifies the packet deadline based

on how long it is ready to wait for a response. The deadline setting then

allows the data receiver to know how long it must wait before declaring

the packet lost, and re-request the data if needed.

With the additional knowledge of packet deadlines, the network nodes

can perform advanced scheduling algorithms for more efficient resource

management. Before acting on a data request (e.g., an Interest packet

in CCN [88]), the router checks the current load on the return path, and

calculates whether it is possible to deliver the response to the data re-

quest within the assigned deadline, considering the currently scheduled

data transmissions. If it seems that the data cannot be delivered by the
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deadline, the data request is dropped immediately. This way the router

proactively avoids using the upstream network resources, and helps in

reducing load on the return path. For example, if the router already

sees that forwarding the currently queued packets will take more than

200 milliseconds, there would be no use in forwarding packets have have

deadlines equal to or below the 200 milliseconds 1.

In our proposed model in Publication IV, the network is not just a pas-

sive entity that has to use its resources to blindly and quickly forward

anything. The network can check if the resources are available for serving

a specific set of bytes within a specific time period. Setting deadlines that

are visible to the network allows the network to control the resource usage

within a well-defined time period and overcome the problem of tackling

uncertain RTTs. Applications/transport protocols can also rely on dead-

lines instead of RTTs to choose when they have to re-request something

or choose the proper request rate.

Scheduling

One of the biggest issues that can rise from our application-specific dead-

line setting is the issue of handling different set of deadlines in one net-

work node. The problem arises as every single packet could conceptually

have a different deadline setting, and for optimal resource usage the net-

work nodes have to be able to schedule all these packets in an efficient

manner. In Publication IV we suggest a simple deadline-based scheduling

method that could help network resource management. In our suggested

model, when a packet arrives at a node, the node checks its deadline car-

ried in the packet header. If the packet is not expired, it is scheduled for

forwarding.

The queue management in routers can leverage the deadline informa-

tion in packets for better resource utilization. As summarized in Fig-

ure 4.18 in our specific model the router queue space is divided into N dif-

ferent subqueues to which packets are assigned based on their deadlines.

In the figure, T indicates the starting time of the first queue that con-

tains packets with deadline between time T and T+K, the second queue

contains packets that have deadline between T+K and T+2K, and so on.

At any moment, the current time is between T and T+K, and when the

time reaches T+K, the first queue, and any possible unsent packets in the

1There is no flow-based QoS style guarantee in this model. The over-
subscriptions are only controlled restrictedly to prevent congestion collapse in
the network
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Figure 4.18. A sample queuing model for deadlines

queue are discarded, because the remaining packets have missed their

deadline. The number of packets that could fit in each queue is limited

based on the link capacity and the duration of K. Over-subscription is

then controlled based on the number of the packets that could fit in to a

subqueue.

We have done an initial evaluation for this proposal by using the ndnSIM

simulation framework for ns-32, and conducting simulations on a dumb-

bell topology. Bandwidth of the bottleneck link in our simulation model

is 1 Mbps, while other links have the capacity of 1 Gbps. The round-trip

delay between data sources and receivers ranges from a few milliseconds

to 100 ms, excluding the possible effects of queuing.

Figures 4.19 and 4.20 compare the goodput in our deadline-based schedul-

ing heuristics and a simple FIFO. The FIFO scheduling results in devas-

tating effect on the content with short deadlines, because as the queues

build up on higher load, these packets have no chance of surviving. The

deadline-based scheduling gives more capacity to the packets with short

deadlines, but less capacity to the traffic with longer deadlines. We can

2http://ndnsim.net/
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also see that under high load, although deadline-based queues manage

to prevent over-subscription and control the congestion, the FIFO per-

formance suffers with the single queue models, leading to unpredictable

behavior.
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Figure 4.19. Number of received packets with FIFO style scheduling
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Figure 4.20. Number of received packets with time scheduled queues

Finally, it is important to distinguish the earlier queue management

proposals and QoS mechanisms [70, 124] from the approach described

above. The queues in the queue stack do not reflect priorities of traf-

fic, and are not flow-aware: each packet is processed independently, and

preventing over-subscription is achieved within the network only through

the knowledge of the packet deadlines. Plus, the deadlines and the queue

management model are used for in-network congestion control without

requiring the routers to know the flow/ packet RTTs as it is the case in

ICN.
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4.4 Privacy

In section 3.3 we have discussed that using ICN model although might

improve the content delivery experience by the user, but it could also cost

the users’ privacy. Common privacy issues that are associated with the

IP network might still exist in ICN. For example, tracking user’s location

is not necessarily impossible in all ICN proposal [46]. But in addition

to that, things get more complicated from the privacy perspective as the

network and the available storage within the network form a new combi-

nation, accessible through the same interface. Privacy attacks that were

previously considered only relevant to the storage nodes suddenly become

relevant to the network as well, e.g. not being able to identify which data

item has been requested. In Publication V we investigate the specific

problem of name privacy in ICN, and propose a solution to address the

privacy issues.

4.4.1 Privacy attacks

In Publication V, we assume that all parties attach to a public network

in which all content requests (fetches) and content deliveries, can be ob-

served by the adversary. We focus on two types of attacks in this scenario.

First, a name-watchlist attack, in which the adversary has a list T of

content names that it wishes to filter or eliminate. It then monitors

the links in the network performing real-time filtering; if a content fetch

matches against T the adversary may squelch the request and/or record

the user that requested that data. In addition, the adversary may attempt

to delete the data with names in this target list T . The watchlist attack

can be thwarted by query and data anonymity—if it is difficult for an ad-

versary to determine whether a fetch or a piece of stored content matches

against T , then it is difficult for the adversary to effectively interfere with

the dissemination of this content.

Second, a content-analysis attack, in which the adversary does not use

a precompiled watchlist, but instead inspects the data to see if it should

have been flagged (it contains the wrong keywords, etc.). This attack can

be thwarted by providing plausible deniability for users (which means

that they can plausibly claim that they did not ask for bad data).
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4.4.2 Privacy-preserving names

Since both the user and the adversary share the same information in our

setting or any ICN setting that we know of, in Publication V we propose

a mechanism, which creates some form of computational asymmetry that

allows users to retrieve content efficiently but that makes it computation-

ally expensive for the adversary to:

• Identify that the name being requested refers to flagged content. This

makes name-watchlist attacks hard to mount on a large scale.

• Identify that the content retrieved should have been flagged. This makes

large scale content-analysis attacks difficult.

For the purpose of creating computational asymmetry we hide the names

and the content the adversary wishes to blacklist or discover by mixing

the target content’s constituent data blocks with the blocks of normal con-

tent or cover file. A user can then fetch the content by judiciously selecting

mixed data blocks to reconstruct the desired content, while the adversary

is forced to perform significant computation to determine the true name

of and content in those mixed blocks.

In our proposed solution, an interested user first needs to use a back

channel to retrieve a metadata file that enlists the name of the chunks

belonging to a target file and its cover files. The metadata file can change

dynamically, so that the combination of the cover files associated to a tar-

get file changes over time. The publisher of a target file needs to be aware

of these changes and it needs to publish a reasonable set of chunks that

at least partially matches the combination of the target file and the cover

file chunks. In our solution, the original name for each chunk could be

generated by applying a hash function H to different chunks. The name

n(t, i) for block ti is n(t, i) = H(H(t), i) where H is a well-known cryp-

tographic hash function. The same applies to cover blocks ci, taking the

name n(c, i) = H(H(c), i). This naming convention applies to all cover and

target files; in the presentation of our notation we only referred explicitly

to a single cover and target file, but our process applies to the entire set

of target files and cover text cover files. The user can use the original

name of different chunks, retrieved from the metadata file, to generate

new names for new chunks that are a combination of the original ones.
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The names of composite chunks are then computed by taking the hash

of the names of the constituent blocks: for example, the name of the pair

(t2, c7) is H(n(t, 2), n(c, 7)) which is given by H(H(H(t), 2), H(H(c), 7)). Re-

questing and retrieving a combination of multiple chunks works as a sim-

ple form of encoding, without requiring any agreement between the user

and the publisher. It is the responsibility of the publisher to generate

many combination of different chunks that belong to the the original and

the cover file. It is the responsibility of the user to request different com-

binatory names, and re-build the original file by decoding (decomposing)

the retrieved combined chunks.

4.4.3 Performance

In our proposed solution in Publication V the ICN style routing and con-

tent matching could be done without creating any permanent unique match-

ing between a content item and its requested name. In this model com-

bination of different names could result in retrieving the same object by

a receiver. The computational asymmetry is created by making the re-

lationship between name and content less predictable compared to what

most ICN designs assume today.

In Publication V we discuss different aspects of computational asymme-

try that could be created between the data requester and the adversary

as well as the data publisher and the adversary. We base our discussions

on the assumption that the content publisher creates chunks by mixing

blocks of k tuples of the n target and m cover blocks. We then argue that in

our model the cost to the user in requesting and later determining the con-

stituent blocks of a chunk is O(1), since the user explicitly selects chunks

based upon the blocks it desires. For the adversary, the cost depends on its

resources (time and storage). The adversary can either pre-compute and

store all possible chunk names and their constituent block-names, or, if it

has limited resources, the cost for it to decode each chunk is O((n +m)k)

at best, since for each comparison the adversary needs to calculate all

possible chunk names.

We also discuss that, while the work required of the content requester(user)

is constant, content publishers must produce all the chunks in advance,

and thus must perform O((n + m)k) work to generate, name, and pub-

lish the chunks for a given file. While this is more work than users must

perform, especially in the general case in which the adversary does not

pre-compute names, the amount of work the publisher must do is likely
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Figure 4.21. Having more blocks or increasing k makes the adversary’s cost grow expo-
nentially (linear in log scale) while the user’s costs increase linearly.

less than the adversary since the content publisher knows exactly which

flagged and cover files to consider during chunk generation, figure 4.21.

More importantly, there is no time constraint for the content publisher,

since chunk generation does not need to be done in real time. We also

suggest that a more sophisticated way of preserving-privacy is when pub-

lisher is not forced to publish all possible combinations of target and cover

blocks and instead publishes only a proportion of possible chunks it an-

nounces. This approach is much less resource-intensive for the publisher

as it can announce a huge set of cover blocks to keep the adversary busy

but not publish/match all the combinations itself.

The privacy benefits in our solution, however, come with their own per-

formance limiting costs. Making the relationship between a content item

and its corresponding name transient, makes it difficult to benefit from

the in-network caching. If every requester can ask for the same object

with a different name, then the cache might become useless because it is

rare that the same name is requested again.

Another performance side effect of our proposal is the possible waste

of bandwidth and the added delay that it can cause for the content re-

trieval. A specific form of performance deficiency would result, if a con-

tent publisher only publishes random mix of chunks and leaves it to the

requester to ask as many chunks as possible to finally find the correct set

of existing chunk mixes. This property although provides a good compu-

tational asymmetry between the publisher and the adversary, can result

in an undesirable amount of wasted time and bandwidth. One needs to

think about better solutions if s/he want to achieve both the privacy and

improved performance at the same time.
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4.5 Summary

In the first part of this chapter we have explored various solutions that

relate to better resource optimization in the network. First, we have

explored information sharing among different TCP flows to learn about

different segments of a path and their congestion state. Then, we have

suggested two different methods to benefit from the available in-network

storage. One suggestion is to provide support for packet caching in the

routers and the other is byte-stream caching. Both these caching meth-

ods are supported below the application layer and as part of the network/

transport layer functionality. A pull-based transport protocol is discussed

to benefit from these in-network caches.

In the second part of this chapter, we have discussed the challenges that

are created with the introduction of our specific caching models and their

requirements. These challenges are mainly caused by accessing data by

name below the application layer, and lack of binding between specific

source and receiver during a content transfer operation. We have ex-

plored the congestion control, and privacy issues in such environment and

proposed some solutions for each problem. We have discussed a deadline-

based congestion control approach, which helps to manage the network

resources in a highly flexible network environment with oscillating routes

and oscillating sources, as it is in ICN.

There are many loose ends to our work, especially in the area of Informa-

tion Centric Networks. Some of these issues that we have not addressed

include: considering the fairness metrics in resource management, and

defining privacy methods that work with different styles of naming other

than the discussed hash-based flat names. In a more general level, we

unfortunately lack a realistic traffic pattern that could have been used to

evaluate our claims, especially when talking about caching and resource

management in ICN. This means implementing and using each of our sug-

gested methods still requires a much more detailed assessment of each

solution. Such a detailed assessment would be helped, if there is an (ex-

perimental) implementation of an ICN model in use.
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“The only reason for time is so that everything doesn’t happen at once.”

(Albert Einstein )

In this dissertation improving speed is the main motivation for our dis-

cussions. We have argued that in the near future delay and specifically

physical latency could turn to be the major speed bottleneck in the net-

work. Therefore, the network and different protocols should take mea-

sures to alleviate latency and its effects, and reduce delay. One counter-

measure against latency effects is designing new mechanisms that reduce

the number of latency-bounded operations in different protocols. For ex-

ample, we have suggested a possible change to the TCP logic in order to

speed-up its initial bandwidth estimation.

We have discussed latency effects could also be alleviated through sup-

porting flexibility and better utilization of the available network resources

such as the bandwidth, storage, and processing power. We have talked

about ICN as one of the alternative network solutions that could help

with speed improvement through flexibility and resource utilization. In

this thesis we have namely discussed the usage of in-network storage as

one form of simplified resource utilization in ICN. In our work, ICN ab-

straction could be used to cache fragments of the data in the network and

below the application layer.

Any system that moves towards more flexibility to improve speed natu-

rally loses its simplicity. In this thesis, we have for example argued that,

although the idea of flexible resource binding as proposed in ICN could

provide the network with better opportunities for resource utilization, it

could also make it difficult to control the network resource usage. The pos-

sibility of changing the route and the source during a content transmis-

sion operation, contrasts the design assumption of most current conges-
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tion control modules. Most congestion control modules assume the source

and the route are fixed during a connection. Therefore, new forms of con-

gestion control mechanisms are needed to address the requirements of

a non-source-binding environments. We have proposed two different con-

gestion control solutions that suit the source and route unpredictability in

ICN. One solution relies on making weak associations between different

data sources and the receiver, and manages the congestion at the receiver

side. The other solution uses packet lifetimes. The network then can use

the packet lifetime information to control the over-subscription to its re-

sources.

Our work also discusses some of the privacy concerns regarding access-

ing data by name in the network. There we argue that this feature makes

users more vulnerable to some privacy attacks, such as name-watchlist

attack. We propose a specific naming solution that can alleviate some of

the privacy vulnerabilities regarding accessing data by name. There are

also other engineering challenges that tend to exist with most ICN pro-

posals and we have not touched them in this thesis. These challenges

include: scalable inter-domain routing, proper API design, handling real-

time application scenarios, and etc. Nevertheless, when one considers the

possibility of implementing and using ICN in near future, it becomes im-

portant to address all these engineering challenges.

Some argue that the speed and latency improvements achieved by widespread

caching are not significant enough to justify the costs of adapting ICN to

the current network [68, 61]. That might be true if ICN is summarized to

be only about widespread network caching (as it might appear to be the

case in most of this thesis). However, in a broader scale we see the power

of ICN to be in the flexibility and freedom that it brings for resource uti-

lization in the overall system and not just for in-network caching. For

example, using ICN concepts the available processing power in the net-

work could be utilized by the network itself in order to reduce the effects

of latency and delay. For instance, the processing power in one router

could be used to multiplex different copies of the same data item to one

copy at one end of the link, and demultiplex and deliver those copies to

different processes/ interfaces at the other end of the link. This could re-

duce the average experienced delay for each single copy. Although we did

not discuss these ideas in this thesis, we argue that it is not fair to vote

for or against usefulness of ICN only based on the criteria of widespread

network caching and bringing the content closer to the users. In short,
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to us the flexibility and resource utilization opportunities that ICN pro-

vides are important for improving speed, either used for caching or used

for something else like switching to less loaded servers during a file trans-

fer. Researchers need to concentrate more on rather unexplored aspects of

ICN flexibility and speed improvements, especially in new contexts such

as in data centers or between different virtual machines.

Regardless of the fact that ICN as a whole might never get implemented,

we believe over time some of the ICN features could get embedded into

the segments of the current network. That would be the time when the

challenges and solutions discussed in this thesis could actually be inves-

tigated and evaluated. Before that time, most of our discussions remain

at a general level with only initial evaluations.

Finally, we remind the reader that we discussed ICN only as one pos-

sible mean to improve speed, but even without ICN the motivation to

change the network mechanisms and protocols does not change. The re-

quirements for speeding up the internet is only going to increase in the

future [80], and it is important to be prepared for the time our assump-

tions about the network and how it should work does not match our ex-

ceeding exceptions from it. Until that day we can only continue exploring

new models and mechanisms in hope of finding a model that would better

support our increasing demands.
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