133 research outputs found

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    5th SC@RUG 2008 proceedings:Student Colloquium 2007-2008

    Get PDF

    Realistic simulation and animation of clouds using SkewT-LogP diagrams

    Get PDF
    Nuvens e clima são tópicos importantes em computação gráfica, nomeadamente na simulação e animação de fenómenos naturais. Tal deve-se ao facto de a simulação de fenómenos naturais−onde as nuvens estão incluídas−encontrar aplicações em filmes, jogos e simuladores de voo. Contudo, as técnicas existentes em computação gráfica apenas permitem representações de nuvens simplificadas, tornadas possíveis através de dinâmicas fictícias que imitam a realidade. O problema que este trabalho pretende abordar prende-se com a simulação de nuvens adequadas para utilização em ambientes virtuais, isto é, nuvens com dinâmica baseada em física que variam ao longo do tempo. Em meteorologia é comum usar técnicas de simulação de nuvens baseadas em leis da física, contudoossistemasatmosféricosdeprediçãonuméricasãocomputacionalmente pesados e normalmente possuem maior precisão numérica do que o necessário em computação gráfica. Neste campo, torna-se necessário direcionar e ajustar as características físicas ou contornar a realidade de modo a atingir os objetivos artísticos, sendo um fator fundamental que faz com que a computação gráfica se distinga das ciências físicas. Contudo, simulações puramente baseadas em física geram soluções de acordo com regras predefinidas e tornam-se notoriamente difíceis de controlar. De modo a enfrentar esses desafios desenvolvemos um novo método de simulação de nuvens baseado em física que possui a característica de ser computacionalmente leve e simula as propriedades dinâmicas relacionadas com a formação de nuvens. Este novo modelo evita resolver as equações físicas, ao apresentar uma solução explícita para essas equações através de diagramas termodinâmicos SkewT/LogP. O sistema incorpora dados reais de forma a simular os parâmetros necessários para a formação de nuvens. É especialmente adequado para a simulação de nuvens cumulus que se formam devido ao um processo convectivo. Esta abordagem permite não só reduzir os custos computacionais de métodos baseados em física, mas também fornece a possibilidade de controlar a forma e dinâmica de nuvens através do controlo dos níveis atmosféricos existentes no diagrama SkewT/LogP. Nestatese,abordámostambémumoutrodesafio,queestárelacionadocomasimulação de nuvens orográficas. Do nosso conhecimento, esta é a primeira tentativa de simular a formação deste tipo de nuvens. A novidade deste método reside no fato de este tipo de nuvens serem não convectivas, oque se traduz nocálculodeoutrosníveis atmosféricos. Além disso, atendendo a que este tipo de nuvens se forma sobre montanhas, é também apresentadoumalgoritmoparadeterminarainfluênciadamontanhasobreomovimento da nuvem. Em resumo, esta dissertação apresenta um conjunto de algoritmos para a modelação e simulação de nuvens cumulus e orográficas, recorrendo a diagramas termodinâmicos SkewT/LogP pela primeira vez no campo da computação gráfica.Clouds and weather are important topics in computer graphics, in particular in the simulation and animation of natural phenomena. This is so because simulation of natural phenomena−where clouds are included−find applications in movies, games and flight simulators. However, existing techniques in computer graphics only offer the simplified cloud representations, possibly with fake dynamics that mimic the reality. The problem that this work addresses is how to find realistic simulation of cloud formation and evolution, that are suitable for virtual environments, i.e., clouds with physically-based dynamics over time. It happens that techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems based on physics laws are computationally expensive and provide more numerical accuracy than the required accuracy in computer graphics. In computer graphics, we often need to direct and adjust physical features, or even to bend the reality, to meet artistic goals, which is a key factor that makes computer graphics distinct from physical sciences. However, pure physically-based simulations evolve their solutions according to pre-set physics rules that are notoriously difficult to control. In order to face these challenges we have developed a new lightweight physically-based cloudsimulationschemethatsimulatesthedynamicpropertiesofcloudformation. This new model avoids solving the physically-based equations typically used to simulate the formation of clouds by explicitly solving these equations using SkewT/LogP thermodynamic diagrams. The system incorporates a weather model that uses real data to simulate parameters related to cloud formation. This is specially suitable to the simulation of cumulus clouds, which result from a convective process. This approach not only reduces the computational costs of previous physically-based methods, but also provides a technique to control the shape and dynamics of clouds by handling the cloud levels in SkewT/LogP diagrams. In this thesis, we have also tackled a new challenge, which is related to the simulation oforographic clouds. From ourknowledge, this isthefirstattempttosimulatethis type of cloud formation. The novelty in this method relates to the fact that these clouds are non-convective, so that different atmospheric levels have to be determined. Moreover, since orographic clouds form over mountains, we have also to determine the mountain influence in the cloud motion. In summary, this thesis presents a set of algorithms for the modelling and simulation of cumulus and orographic clouds, taking advantage of the SkewT/LogP diagrams for the first time in the field of computer graphics

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Volumetric cloud generation using a Chinese brush calligraphy style

    Get PDF
    Includes bibliographical references.Clouds are an important feature of any real or simulated environment in which the sky is visible. Their amorphous, ever-changing and illuminated features make the sky vivid and beautiful. However, these features increase both the complexity of real time rendering and modelling. It is difficult to design and build volumetric clouds in an easy and intuitive way, particularly if the interface is intended for artists rather than programmers. We propose a novel modelling system motivated by an ancient painting style, Chinese Landscape Painting, to address this problem. With the use of only one brush and one colour, an artist can paint a vivid and detailed landscape efficiently. In this research, we develop three emulations of a Chinese brush: a skeleton-based brush, a 2D texture footprint and a dynamic 3D footprint, all driven by the motion and pressure of a stylus pen. We propose a hybrid mapping to generate both the body and surface of volumetric clouds from the brush footprints. Our interface integrates these components along with 3D canvas control and GPU-based volumetric rendering into an interactive cloud modelling system. Our cloud modelling system is able to create various types of clouds occurring in nature. User tests indicate that our brush calligraphy approach is preferred to conventional volumetric cloud modelling and that it produces convincing 3D cloud formations in an intuitive and interactive fashion. While traditional modelling systems focus on surface generation of 3D objects, our brush calligraphy technique constructs the interior structure. This forms the basis of a new modelling style for objects with amorphous shape

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Sketch-based interactive shape deformation using shading isophotes

    Full text link
    De plus en plus d'importance est accordée à la création d'objets 3D en raison des récents essors technologiques. Il est donc crucial de fournir des outils appropriés et accessibles aux utilisateurs de tous les horizons. Malheureusement, les outils traditionnellement utilisés en création 3D sont conçus pour des professionnels, exigent des formations complexes et de longue durée, et ne sont pas adaptés à ceux inexperimentés qui forment la vaste majorité des utilisateurs potentiels. Nous proposons un outil de création simplifié qui utilise des méthodes inspirées d'esquisses. Dans un premier temps, le maillage désiré est créé à partir d'un contour tracé. L'intérieur est gonflé suivant la méthode de Dvoroznak et al. Dans un deuxième temps, la hauteur des sommets du maillage est manipulée en modifiant les courbes formées par l'ombrage. Cet ombrage provient d'un modèle de réflexion Lambertien pour une lumière directionnelle donnée. Notre méthode consiste à utiliser les courbes formées par la méthode des charactéristiques associée au problème de figure dérivée de l'ombre (Shape-From-Shading). Avec les courbes, nous identifions les régions affectées par la modification de l'ombrage. L'une de ces régions sera utilisée pour interpoler l'ombrage d'après la nouvelle isophote. À partir de ce nouvel ombrage, les courbes de la méthode des characteristiques seront utilisées afin de trouver le nouveau déplacement en s'assurant d'altérer uniquement la région affectée par le changement dans l'ombrage. Les maillages créés peuvent ensuite être combinés suivant la méthode proposée par Dvoroznak et al. afin de former un maillage unique et complexe. Notre outil se veut plus intuitif que les outils traditionnels de création. Nos résultats en illustrent le potentiel.Due to recent technological advances, the creation of 3D objects is becoming more important. It is critical to offer appropriate and accessible tools to users from diverse backgrounds. Unfortunately, the tools traditionally used in 3D creation are designed for professionals, require complex and time-consuming training, and are unsuitable for inexperienced users who form the vast majority of potential users. We propose a simplified creation tool that uses sketch-based methods. First, the desired mesh is created from a traced outline. The interior is inflated following the method of Dvoroznak et al. Second, the height (displacement) of the mesh is achieved by altering the strips created by shading. Shading is the result of a Lambertian reflection model for a given directional light. Our method consists of using the strips from the method of characteristics applied to solve Shape-From-Shading. Using the strips, we identify the regions affected by the change in shading. One of these regions will be used to interpolate the shading according to the new isophote. From this new shading, the characteristic strips will be used to find the new height, ensuring that only the region affected by the change in shading is altered. The meshes created can then be combined, inspired by the method proposed by Dvoroznak et al. to form a single, complex mesh. Our tool is designed to be more intuitive than the ones provided by professional 3D software. Our results illustrate its potential
    corecore