10 research outputs found

    The cell line ontology-based representation, integration and analysis of cell lines used in China

    Full text link
    Abstract Background The Chinese National Infrastructure of Cell Line stores and distributes cell lines for biomedical research in China. This study aims to represent and integrate the information of NICR cell lines into the community-based Cell Line Ontology (CLO). Results We have aligned, represented, and added all identified 2704 cell line cells in NICR to CLO. We also proposed new ontology design patterns to represent the usage of cell line cells as disease models by inducing tumor formation in model organisms, and the relations between cell line cells and their expressed or overexpressed genes or proteins. The resulting CLO-NICR ontology also includes the Chinese representation of the NICR cell line information. CLO-NICR was merged into the general CLO. To serve the cell research community in China, the Chinese version of CLO-NICR was also generated and deposited in the OntoChina ontology repository. The usage of CLO-NICR was demonstrated by DL query and knowledge extraction. Conclusions In summary, all identified cell lines from NICR are represented by the semantics framework of CLO and incorporated into CLO as a most recent update. We also generated a CLO-NICR and its Chinese view (CLO-NICR-Cv). The development of CLO-NICR and CLO-NIC-Cv allows the integration of the cell lines from NICR into the community-based CLO ontology and provides an integrative platform to support different applications of CLO in China.https://deepblue.lib.umich.edu/bitstream/2027.42/148821/1/12859_2019_Article_2724.pd

    A Life Cycle Approach to the Development and Validation of an Ontology of the U.S. Common Rule (45 C.F.R. § 46)

    Get PDF
    Requirements for the protection of human research subjects stem from directly from federal regulation by the Department of Health and Human Services in Title 45 of the Code of Federal Regulations (C.F.R.) part 46. 15 other federal agencies include subpart A of part 46 verbatim in their own body of regulation. Hence 45 C.F.R. part 46 subpart A has come to be called colloquially the ‘Common Rule.’ Overall motivation for this study began as a desire to facilitate the ethical sharing of biospecimen samples from large biospecimen collections by using ontologies. Previous work demonstrated that in general the informed consent process and subsequent decision making about data and specimen release still relies heavily on paper-based informed consent forms and processes. Consequently, well-validated computable models are needed to provide an enhanced foundation for data sharing. This dissertation describes the development and validation of a Common Rule Ontology (CRO), expressed in the OWL-2 Web Ontology Language, and is intended to provide a computable semantic knowledge model for assessing and representing components of the information artifacts of required as part of regulated research under 45 C.F.R. § 46. I examine if the alignment of this ontology with the Basic Formal Ontology and other ontologies from the Open Biomedical Ontology (OBO) Foundry provide a good fit for the regulatory aspects of the Common Rule Ontology. The dissertation also examines and proposes a new method for ongoing evaluation of ontology such as CRO across the ontology development lifecycle and suggest methods to achieve high quality, validated ontologies. While the CRO is not in itself intended to be a complete solution to the data and specimen sharing problems outlined above, it is intended to produce a well-validated computationally grounded framework upon which others can build. This model can be used in future work to build decision support systems to assist Institutional Review Boards (IRBs), regulatory personnel, honest brokers, tissue bank managers, and other individuals in the decision-making process involving biorepository specimen and data sharing

    User-centered semantic dataset retrieval

    Get PDF
    Finding relevant research data is an increasingly important but time-consuming task in daily research practice. Several studies report on difficulties in dataset search, e.g., scholars retrieve only partial pertinent data, and important information can not be displayed in the user interface. Overcoming these problems has motivated a number of research efforts in computer science, such as text mining and semantic search. In particular, the emergence of the Semantic Web opens a variety of novel research perspectives. Motivated by these challenges, the overall aim of this work is to analyze the current obstacles in dataset search and to propose and develop a novel semantic dataset search. The studied domain is biodiversity research, a domain that explores the diversity of life, habitats and ecosystems. This thesis has three main contributions: (1) We evaluate the current situation in dataset search in a user study, and we compare a semantic search with a classical keyword search to explore the suitability of semantic web technologies for dataset search. (2) We generate a question corpus and develop an information model to figure out on what scientific topics scholars in biodiversity research are interested in. Moreover, we also analyze the gap between current metadata and scholarly search interests, and we explore whether metadata and user interests match. (3) We propose and develop an improved dataset search based on three components: (A) a text mining pipeline, enriching metadata and queries with semantic categories and URIs, (B) a retrieval component with a semantic index over categories and URIs and (C) a user interface that enables a search within categories and a search including further hierarchical relations. Following user centered design principles, we ensure user involvement in various user studies during the development process

    Actes des 29es Journées Francophones d'Ingénierie des Connaissances, IC 2018

    Get PDF
    International audienc

    Preface

    Get PDF

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field

    Outputs: Potassium Losses from Agricultural Systems

    Get PDF
    Potassium (K) outputs comprise removals in harvested crops and losses via a number of pathways. No specific environmental issues arise from K losses to the wider environment, and so they have received little attention. Nevertheless, K is very soluble and so can be leached to depth or to surface waters. Also, because K is bound to clays and organic materials, and adsorbed K is mostly associated with fine soil particles, it can be eroded with particulate material in runoff water and by strong winds. It can also be lost when crop residues are burned in the open. Losses represent a potential economic cost to farmers and reduce soil nutritional status for plant growth. The pathways of loss and their relative importance can be related to: (a) the general characteristics of the agricultural ecosystem (tropical or temperate regions, cropping or grazing, tillage management, interactions with other nutrients such as nitrogen); (b) the specific characteristics of the agricultural ecosystem such as soil mineralogy, texture, initial soil K status, sources of K applied (organic, inorganic), and rates and timing of fertilizer applications. This chapter provides an overview of the main factors affecting K removals in crops and losses through runoff, leaching, erosion, and open burning

    Improving Potassium Recommendations for Agricultural Crops

    Get PDF
    This open access book highlights concepts discussed at two international conferences that brought together world-renowned scientists to advance the science of potassium (K) recommendations for crops. There was general agreement that the potassium recommendations currently in general use are oversimplified, outdated, and jeopardize soil, plant, and human health. Accordingly, this book puts forward a significantly expanded K cycle that more accurately depicts K inputs, losses and transformations in soils. This new cycle serves as both the conceptual basis for the scientific discussions in this book and a framework upon which to build future improvements. Previously used approaches are critically reviewed and assessed, not only for their relevance to future enhancements, but also for their use as metrics of sustainability. An initial effort is made to link K nutrition in crops and K nutrition in humans. The book offers an invaluable asset for graduate students, educators, industry scientists, data scientists, and advanced agronomists
    corecore