105 research outputs found

    Enhanced collision avoidance mechanisms for wireless sensor networks through high accuracy collision modeling

    Get PDF
    Wireless channel and multi-hop communications cause a significant number of packet collisions in Wireless Sensor Networks (WSNs). Although a collision may cause packet loss and reduce network performance, low-power wireless transceivers allow packet reception in the presence of collisions if at least one signal can provide a sufficiently high power compared with other signals. Therefore, with respect to the large number of nodes used in WSNs, which necessitates the use of simulation for protocol development, collisions should be addressed at two layers: First, collisions should be modeled at the physical layer through a high-accuracy packet reception algorithm that decides about packet reception in the presence of collisions. Second, collision avoidance mechanisms should be employed at the Medium Access Control (MAC) layer to reduce packet losses caused by collisions. Unfortunately, the existing packet reception algorithms exhibit low accuracy and impede the development of efficient collision avoidance mechanisms. From the collision avoidance perspective, existing contention-based MAC protocols do not provide reliable packet broadcasting, thereby affecting the initialization performance of WSNs. In addition, despite the benefits of schedule-based MAC protocols during the data-gathering phase, the existing mechanisms rely on unrealistic assumptions. The first major contribution of this work is CApture Modeling Algorithm (CAMA), which enables collision modeling with high accuracy and efficiency at the physical layer. The higher accuracy of CAMA against existing approaches is validated through extensive comparisons with empirical experiments. The second major contribution includes mechanisms that improve the reliability of packet broadcasting. In particular, adaptive contention window adjustment mechanisms and the Geowindow algorithm are proposed for collision avoidance during the initialization phases. These mechanisms considerably improve the accuracy of the initialization phases, without violating duration and energy efficiency requirements. As the third major contribution, a distributed and concurrent link-scheduling algorithm (called DICSA) is proposed for collision avoidance during the data-gathering phase. DICSA provides faster slot assignment, higher spatial reuse and lower energy consumption, compared with existing algorithms. Furthermore, evaluating DICSA within a MAC protocol confirms its higher throughput, higher delivery ratio, and lower end-to-end delay

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Exploring Interactions in Vehicular Networks

    Get PDF
    International audienceVehicular networks are networks comprised by vehicles trav-eling cities and highways. During their trajectories, these vehicles interact with other vehicles and road side units in order to make safer and enjoyable trac. These interactions may be influenced by several factors. To mention a few: vehicle speed, roads condition, time of day and weather. Moreover, driver behavior and its interests can influence in vehicle features. In this context, the Vehicular Social Networks arise as a new perspective to vehicular networks, where the vehicles " socialize " and share common interests. In this work, we evaluate the behavior of vehicles using two mobility scenarios, in order to classify them according to the interactions performed, identifying common interests and similar routines. Thus, we use metrics of complex networks and statistical techniques. Results prove the existence of routines and human features in Vehicular Networks

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Simulating Opportunistic Networks: Survey and Future Directions

    Full text link
    (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works[EN] Simulation is one of the most powerful tools we have for evaluating the performance of opportunistic networks (OppNets). In this paper, we focus on available tools and mod- els, compare their performance and precision and experimentally show the scalability of different simulators. We also perform a gap analysis of state-of-the-art OppNet simulations and sketch out possible further development and lines of research. This paper is targeted at students starting work and research in this area while also serving as a valuable source of information for experienced researchers.This work was supported in part by the Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, in part by the Universidad Laica Eloy Alfaro de Manabi, and in part by the Secretaria Nacional de Educacion Superior, Ciencia, Tecnologia e Innovacion, Ecuador. (Corresponding author: Jens Dede.)Dede, J.; Förster, A.; Hernández-Orallo, E.; Herrera-Tapia, J.; Kuladinithi, K.; Kuppusamy, V.; Manzoni, P.... (2018). Simulating Opportunistic Networks: Survey and Future Directions. IEEE Communications Surveys & Tutorials. 20(2):1547-1573. https://doi.org/10.1109/COMST.2017.2782182S1547157320

    Adaptive Mechanisms to Improve Message Dissemination in Vehicular Networks

    Get PDF
    En el pasado, se han dedicado muchos recursos en construir mejores carreteras y autovías. Con el paso del tiempo, los objetivos fueron cambiando hacia las mejoras de los vehículos, consiguiendo cada vez vehículos más rápidos y con mayor autonomía. Más tarde, con la introducción de la electrónica en el mercado del automóvil, los vehículos fueron equipados con sensores, equipos de comunicaciones, y otros avances tecnológicos que han permitido la aparición de coches más eficientes, seguros y confortables. Las aplicaciones que nos permite el uso de las Redes Vehiculares (VNs) en términos de seguridad y eficiencia son múltiples, lo que justifica la cantidad y recursos de investigación que se están dedicando en los últimos años. En el desarrollo de esta Tesis, los esfuerzos se han centrado en el área de las Vehicular Ad-hoc Networks, una subclase de las Redes Vehiculares que se centra en las comunicaciones entre los vehículos, sin necesidad de que existan elementos de infraestructura. Con la intención de mejorar el proceso de diseminación de mensajes de alerta, imprescindibles para las aplicaciones relacionadas con la seguridad, se ha propuesto un esquema de difusión adaptativo, capaz de seleccionar automáticamente el mecanismo de difusión óptimo en función de la complejidad del mapa y de la densidad actual de vehículos. El principal objetivo es maximizar la efectividad en la difusión de mensajes, reduciendo al máximo el número de mensajes necesarios, evitando o mitigando las tormentas de difusión. Las propuestas actuales en el área de las VANETs, se centran principalmente en analizar escenarios con densidades típicas o promedio. Sin embargo, y debido a las características de este tipo de redes, a menudo se dan situaciones con densidades extremas (altas y bajas). Teniendo en cuenta los problemas que pueden ocasionar en el proceso de diseminación de los mensajes de emergencia, se han propuesto dos nuevos esquemas de difusión para bajas densidades: el \emph{Junction Store and Forward} (JSF) y el \emph{Neighbor Store and Forward} (NSF). Además, para situaciones de alta densidad de vehículos, se ha diseñado el \emph{Nearest Junction Located} (NJL), un esquema de diseminación que reduce notablemente el número de mensajes enviados, sin por ello perder prestaciones. Finalmente, hemos realizado una clasificacion de los esquemas de difusión para VANETs más importantes, analizando las características utilizadas en su diseño. Además hemos realizado una comparación de todos ellos, utilizando el mismo entorno de simulación y los mismos escenarios, permitiendo conocer cuál es el mejor esquema de diseminación a usar en cada momento

    An Energy-efficient Rate Adaptive Media Access Protocol (RA-MAC) for Long-lived Sensor Networks

    Get PDF
    We introduce an energy-efficient Rate Adaptive Media Access Control (RA-MAC) algorithm for long-lived Wireless Sensor Networks (WSNs). Previous research shows that the dynamic and lossy nature of wireless communications is one of the major challenges to reliable data delivery in WSNs. RA-MAC achieves high link reliability in such situations by dynamically trading off data rate for channel gain. The extra gain that can be achieved reduces the packet loss rate which contributes to reduced energy expenditure through a reduced numbers of retransmissions. We achieve this at the expense of raw bit rate which generally far exceeds the application’s link requirement. To minimize communication energy consumption, RA-MAC selects the optimal data rate based on the estimated link quality at each data rate and an analytical model of the energy consumption. Our model shows how the selected data rate depends on different channel conditions in order to minimize energy consumption. We have implemented RA-MAC in TinyOS for an off-the-shelf sensor platform (the TinyNode) on top of a state-of-the-art WSN Media Access Control Protocol, SCP-MAC, and evaluated its performance by comparing our implementation with the original SCP-MAC using both simulation and experiment

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008
    corecore