9 research outputs found

    Exploring annotations for deductive verification

    Get PDF

    Oracle Assessment, Improvement and Placement

    Get PDF
    The oracle problem remains one of the key challenges in software testing, for which little automated support has been developed so far. This thesis analyses the prevalence of failed error propagation in programs with real faults to address the oracle placement problem and introduces an approach for iterative assessment and improvement of the oracles. To analyse failed error propagation in programs with real faults, we have conducted an empirical study, considering Defects4J, a benchmark of Java programs, of which we used all 6 projects available, 384 real bugs and 528 methods fixed to correct such bugs. The results indicate that the prevalence of failed error propagation is negligible. Moreover, the results on real faults differ from the results on mutants, indicating that if failed error propagation is taken into account, mutants are not a good surrogate of real faults. When measuring failed error propagation, for each method we use the strongest possible oracle as postcondition, which checks all externally observable program variables. The low prevalence of failed error propagation is caused by the presence of such a strong oracle, which usually is not available in practice. Therefore, there is a need for a technique to assess and improve existing weaker oracles. We propose a technique for assessing and improving test oracles, which necessarily places the human tester in the loop and is based on reducing the incidence of both false positives and false negatives. A proof showing that this approach results in an increase in the mutual information between the actual and perfect oracles is provided. The application of the approach to five real-world subjects shows that the fault detection rate of the oracles after improvement increases, on average, by 48.6%. The further evaluation with 39 participants assessed the ability of humans to detect false positives and false negatives manually, without any tool support. The correct classification rate achieved by humans in this case is poor (29%) indicating how helpful our automated approach can be for developers. The comparison of humans’ ability to improve oracles with and without the tool in a study with 29 other participants also empirically validates the effectiveness of the approach

    Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems

    Get PDF
    Following the classical work of Norbert Wiener, Ross Ashby, Ludwig von Bertalanffy and many others, the concept of System has been elaborated in different disciplinary fields, allowing interdisciplinary approaches in areas such as Physics, Biology, Chemistry, Cognitive Science, Economics, Engineering, Social Sciences, Mathematics, Medicine, Artificial Intelligence, and Philosophy. The new challenge of Complexity and Emergence has made the concept of System even more relevant to the study of problems with high contextuality. This Special Issue focuses on the nature of new problems arising from the study and modelling of complexity, their eventual common aspects, properties and approaches—already partially considered by different disciplines—as well as focusing on new, possibly unitary, theoretical frameworks. This Special Issue aims to introduce fresh impetus into systems research when the possible detection and correction of mistakes require the development of new knowledge. This book contains contributions presenting new approaches and results, problems and proposals. The context is an interdisciplinary framework dealing, in order, with electronic engineering problems; the problem of the observer; transdisciplinarity; problems of organised complexity; theoretical incompleteness; design of digital systems in a user-centred way; reaction networks as a framework for systems modelling; emergence of a stable system in reaction networks; emergence at the fundamental systems level; behavioural realization of memoryless functions

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book
    corecore