6 research outputs found

    Approximate CVP_p in Time 2^{0.802 n}

    Get PDF
    We show that a constant factor approximation of the shortest and closest lattice vector problem w.r.t. any ?_p-norm can be computed in time 2^{(0.802 +?) n}. This matches the currently fastest constant factor approximation algorithm for the shortest vector problem w.r.t. ??. To obtain our result, we combine the latter algorithm w.r.t. ?? with geometric insights related to coverings

    Approximating Distance Measures for the Skyline

    Get PDF
    In multi-parameter decision making, data is usually modeled as a set of points whose dimension is the number of parameters, and the skyline or Pareto points represent the possible optimal solutions for various optimization problems. The structure and computation of such points have been well studied, particularly in the database community. As the skyline can be quite large in high dimensions, one often seeks a compact summary. In particular, for a given integer parameter k, a subset of k points is desired which best approximates the skyline under some measure. Various measures have been proposed, but they mostly treat the skyline as a discrete object. By viewing the skyline as a continuous geometric hull, we propose a new measure that evaluates the quality of a subset by the Hausdorff distance of its hull to the full hull. We argue that in many ways our measure more naturally captures what it means to approximate the skyline. For our new geometric skyline approximation measure, we provide a plethora of results. Specifically, we provide (1) a near linear time exact algorithm in two dimensions, (2) APX-hardness results for dimensions three and higher, (3) approximation algorithms for related variants of our problem, and (4) a practical and efficient heuristic which uses our geometric insights into the problem, as well as various experimental results to show the efficacy of our approach

    Wavelet Trees Meet Suffix Trees

    Full text link
    We present an improved wavelet tree construction algorithm and discuss its applications to a number of rank/select problems for integer keys and strings. Given a string of length n over an alphabet of size σn\sigma\leq n, our method builds the wavelet tree in O(nlogσ/logn)O(n \log \sigma/ \sqrt{\log{n}}) time, improving upon the state-of-the-art algorithm by a factor of logn\sqrt{\log n}. As a consequence, given an array of n integers we can construct in O(nlogn)O(n \sqrt{\log n}) time a data structure consisting of O(n)O(n) machine words and capable of answering rank/select queries for the subranges of the array in O(logn/loglogn)O(\log n / \log \log n) time. This is a loglogn\log \log n-factor improvement in query time compared to Chan and P\u{a}tra\c{s}cu and a logn\sqrt{\log n}-factor improvement in construction time compared to Brodal et al. Next, we switch to stringological context and propose a novel notion of wavelet suffix trees. For a string w of length n, this data structure occupies O(n)O(n) words, takes O(nlogn)O(n \sqrt{\log n}) time to construct, and simultaneously captures the combinatorial structure of substrings of w while enabling efficient top-down traversal and binary search. In particular, with a wavelet suffix tree we are able to answer in O(logx)O(\log |x|) time the following two natural analogues of rank/select queries for suffixes of substrings: for substrings x and y of w count the number of suffixes of x that are lexicographically smaller than y, and for a substring x of w and an integer k, find the k-th lexicographically smallest suffix of x. We further show that wavelet suffix trees allow to compute a run-length-encoded Burrows-Wheeler transform of a substring x of w in O(slogx)O(s \log |x|) time, where s denotes the length of the resulting run-length encoding. This answers a question by Cormode and Muthukrishnan, who considered an analogous problem for Lempel-Ziv compression.Comment: 33 pages, 5 figures; preliminary version published at SODA 201

    Dynamic and Internal Longest Common Substring

    Get PDF
    Given two strings S and T, each of length at most n, the longest common substring (LCS) problem is to find a longest substring common to S and T. This is a classical problem in computer science with an O(n) -time solution. In the fully dynamic setting, edit operations are allowed in either of the two strings, and the problem is to find an LCS after each edit. We present the first solution to the fully dynamic LCS problem requiring sublinear time in n per edit operation. In particular, we show how to find an LCS after each edit operation in O~ (n2 / 3) time, after O~ (n) -time and space preprocessing. This line of research has been recently initiated in a somewhat restricted dynamic variant by Amir et al. [SPIRE 2017]. More specifically, the authors presented an O~ (n) -sized data structure that returns an LCS of the two strings after a single edit operation (that is reverted afterwards) in O~ (1) time. At CPM 2018, three papers (Abedin et al., Funakoshi et al., and Urabe et al.) studied analogously restricted dynamic variants of problems on strings; specifically, computing the longest palindrome and the Lyndon factorization of a string after a single edit operation. We develop dynamic sublinear-time algorithms for both of these problems as well. We also consider internal LCS queries, that is, queries in which we are to return an LCS of a pair of substrings of S and T. We show that answering such queries is hard in general and propose efficient data structures for several restricted cases

    Succinct and Compact Data Structures for Intersection Graphs

    Get PDF
    This thesis designs space efficient data structures for several classes of intersection graphs, including interval graphs, path graphs and chordal graphs. Our goal is to support navigational operations such as adjacent and neighbourhood and distance operations such as distance efficiently while occupying optimal space, or a constant factor of the optimal space. Using our techniques, we first resolve an open problem with regards to succinctly representing ordinal trees that is able to convert between the index of a node in a depth-first traversal (i.e. pre-order) and in a breadth-first traversal (i.e. level-order) of the tree. Using this, we are able to augment previous succinct data structures for interval graphs with the \GDistance operation. We also study several variations of the data structure problem in interval graphs: beer interval graphs and dynamic interval graphs. In beer interval graphs, we are given that some vertices of the graph are beer nodes (representing beer stores) and we consider only those paths that pass through at least one of these beer nodes. We give data structure results and prove space lower bounds for these graphs. We study dynamic interval graphs under several well known dynamic models such as incremental or offline, and we give data structures for each of these models. Finally we consider path graphs where we improve on previous works by exploiting orthogonal range reporting data structures. For optimal space representations, we improve the run time of the queries, while for non-optimal space representations (but optimal query times), we reduce the space needed
    corecore