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Abstract

This thesis designs space efficient data structures for several classes of intersection
graphs, including interval graphs, path graphs and chordal graphs. Our goal is to support
navigational operations such as adjacent and neighborhood and distance operations such
as distance efficiently while occupying optimal space, or a constant factor of the optimal
space.

Using our techniques, we first resolve an open problem with regards to succinctly rep-
resenting ordinal trees that is able to convert between the index of a node in a depth-first
traversal (i.e. pre-order) and in a breadth-first traversal (i.e. level-order) of the tree. Using
this, we are able to augment previous succinct data structures for interval graphs with the
distance operation.

We also study several variations of the data structure problem in interval graphs: beer
interval graphs and dynamic interval graphs. In beer interval graphs, we are given that
some vertices of the graph are beer nodes (representing beer stores) and we consider only
those paths that pass through at least one of these beer nodes. We give data structure
results and prove space lower bounds for these graphs. We study dynamic interval graphs
under several well known dynamic models such as incremental or offline, and we give data
structures for each of these models.

Finally we consider path graphs where we improve on previous works by exploiting
orthogonal range reporting data structures. For optimal space representations, we improve
the run time of the queries, while for non-optimal space representations (but optimal query
times), we reduce the space needed.
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Chapter 1

Introduction

As a result of the rapid growth of electronic data sets, memory requirements have become a
bottleneck in many applications as performance usually drops dramatically as soon as data
structures no longer fit into faster levels of the memory hierarchy in computer systems.
To solve this problem, a class of data structures termed succinct data structures were
proposed by Jacobson [49]. A succinct data structure uses information theoretic optimal
space, plus lower order terms to represent combinatorial objects and perform the expected
queries. Jacobson constructed such data structures for bit-vectors, trees and planar graphs.
Since then many different objects have succinct data structures constructed supporting the
relevant queries on them. For example:

• Strings [39]

• Dictionaries [72]

• Abelian groups [29]

• Permutations and functions [60]

• Many different classes of Graphs [30, 49, 24, 23, 17]

Although many of the results above are purely theoretical in nature, succinct data struc-
tures have found many practical applications as well. For instance many of the succinct
data structures (such as bit-vectors, strings, suffix arrays, trees etc.) have been imple-
mented in the Succinct Data Structures Library [38]. As an example of the space savings
that can be achieved, using succinct trees to support the structure of XML documents
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uses only 3.12 to 3.81 bits per node [27], which is much smaller than the space required
(Θ(lg n) which would be 64 bits in a 64-bit architecture) in a traditional pointer based tree
implementation.

This thesis will primarily focus on the space efficient representations of graphs, a versa-
tile object representing objects and relationships between objects. In particular, we focus
on graphs whose edges can be implicitly represented1, so that even dense graphs with Θ(n2)
edges can be represented in close to linear space.

1.1 Organization of the Thesis

In Chapter 2, we give an overview of the background knowledge needed. We first intro-
duce some standard definitions of the model of computation used and the objects we are
studying. Next we give previous results on succinct data structures that we will use as
building blocks for our results.

In Chapter 3 we give succinct data structures for ordinal trees which supports level-order
(breadth-first traversal) operations in addition to the operations previously supported. The
results will be a key building block for the data structures in subsequent chapters. This
chapter is based on joint work with Meng He, Ian Munro, Yakov Nekrich and Sebastian
Wild [43].

In Chapter 4 we study succinct static interval graphs and some related classes of graphs,
such as proper interval graphs, circular arc graphs, and bounded degree interval graphs. We
give succinct representations of these classes of graphs which supports navigational queries
and distance queries. As mentioned, a key part of the data structures is the succinct level-
order trees from Chapter 3 which allows space efficient implementation of the distance
query. Chapter 4 is also based on joint work with Meng He, Ian Munro, Yakov Nekrich
and Sebastian Wild [43].

In Chapter 5 we study the problem of supporting the beer distance query in interval
graphs. In a beer graph, some of the vertices are designated as beer vertices, and in a beer
distance query, the shortest path between two vertices must pass through one of the these
special beer vertices. We give data structures for both interval graphs and proper interval
graphs and via a counting argument prove a lower bound on the space of any data structure
that supports this operation. This chapter is based on joint work with Ian Munro, Meng
He, Rathish Das, Eitan Kondratovsky, and Anurag Murty Naredla [26].

1Edges are implicit in the sense that they are not given as pairs of vertices, but rather as the consequence
of particular sets intersecting.
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In Chapter 6 we study the problem of supporting the navigational and distance queries
in dynamic interval graphs. In this setting, the interval graph changes by the insertion and
deletion of vertices, as represented by an interval. The edges upon an insertion are exactly
those that the new interval would intersect, and upon a deletion, we also delete all incident
edges. We study the problem under several models of updates: no restrictions, allowing
only insertions or deletions, or knowing all the operations in advance. This chapter is
based on joint work with Meng He, Ian Munro, Richard Peng, Jingbang Chen, and Daniel
Zhang.

In Chapter 7 we study path graphs and chordal graphs, two superclasses of graphs of
interval graphs. We improve on previous results of succinct and compact data structures
for them, with better query times for the navigational and distance queries. This chapter
is based on joint work with Ian Munro and Meng He.

3



Chapter 2

Preliminaries

In this chapter we will introduce the necessary concepts, and results that will be needed
in the rest of the thesis.

We will use the word-RAM model of computation [33] throughout the thesis, with word
size ω = Θ(lg n) where n is the size of input.

2.1 Trees and Graphs

The objects we will study in this thesis are various classes of graphs, including trees. We
begin by defining them.

Definition 2.1.1. A (undirected) graph G consists of a set of vertices V (G) and a set
of edges E(G) ⊂ V (G)2, and if needed write G = (V (G), E(G)). When the graph is
unambiguous, we will use V and E. We will use n = |V | and m = |E|.

Definition 2.1.2. A graph G is weighted if we assign a real numbered weight to each
edge. If all weights are 1, we say that the graph is unweighted .

We will assume that our graphs are unweighted, so that each edge has weight 1, unless
otherwise stated.

Definition 2.1.3. The operations we are interested in supporting in a graph data structure
are:

4



• adjacent(u, v)1: given two vertices, are they adjacent (i.e. is (u, v) ∈ E)?

• degree(v): given a vertex, what is the number of vertices adjacent to it?

• neighborhood(v): given a vertex, list all vertices adjacent to it.

• spath(u, v): given two vertices, return a shortest (weighted) path between them.

• distance(u, v): given two vertices, return the length of a shortest path.

The operations below modify the graph. A graph data structure supporting these are
dynamic.

• insert(v): add a new vertex v to the graph

• insert(u, v): given two vertices in the graph, add an edge between them.

• delete(v): delete the vertex v in the graph

• delete(u, v): delete the edge between u, v in the graph.

The main class of graphs we will study are intersection graphs, where edges are implicitly
defined.

Definition 2.1.4. A graph G is an intersection graph if we may associate every vertex
v with a set sv such that for any two vertices, (u, v) ∈ E if an only if su ∩ sv ̸= ∅. We say
that the family of sets is an intersection model for the graph.

Next we give the definition of a tree:

Definition 2.1.5. A rooted ordinal tree is an acyclic graph consisting of n vertices
(which we will call nodes) and n − 1 edges, with one node designated as the root. All
non-root vertices have a parent vertex, which is closer in distance to the root. The children
of a node v are the nodes whose parent is v. A node is a leaf if it has no children. We note
that for an ordinal tree, the order of the children of a node matters (i.e. two ordinal trees
are isomorphic if for corresponding nodes, the children are the same and have the same
order).

1Our data structures will have their own ways to referring of vertices, typically by giving each vertex a
unique label between 1 and n, and the inputs to our operations will be the label of that vertex.

5



Figure 2.1: The sets of nodes for each of the types of intersection graphs.
.

Definition 2.1.6. A rooted cardinal tree (of cardinality k) is an ordinal tree where for
every node, each child belongs to one of k slots, and no slot is used more than once.

Definition 2.1.7. A binary tree is an cardinal tree of cardinality 2, where we name the
slots as “left” and “right”. Thus, each child of a node v is either a left child or a right
child. Consequently, if a node has a single child, then the 2 trees where the child is a left
child versus a right child are different trees.

Lastly we will give the definition of the specific intersection graphs we will study:

Definition 2.1.8. A graph G is a chordal graph if it is the intersection graph of subtrees
in a tree. That is, there exists an ordinal tree T , such that for every vertex v ∈ V , sv is a
set of connected nodes in T .

Definition 2.1.9. A graph G is a path graph 2 if it is the intersection graph of (simple)
paths in a tree. That is, there exists an ordinal tree T , such that for every vertex v, sv is
a set containing the nodes of a simple path in T .

Definition 2.1.10. A graph G is an interval graph if it is the intersection graph of
(simple) paths in a path. That is, there exists an ordinal tree T that is a path, such that
for every vertex v, sv is a set containing the nodes of a simple path in T .

From these definitions, it is easy to see that the set of graphs form the following inclusion
relationship: interval graph ⊆ path graph ⊆ chordal graph.

2The object we are defining is not a path, which is what is often referred to by the term path graph.
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Example 2.1.11. The following illustrates a graph (right), and the 3 types of sets corre-
sponding to that of a chordal graph, path graph and interval graph, that create this graph
as their intersection structure.

2.2 Succinct Data Structure

The main topic of this thesis is space-efficient data structures. Given set of combinatorial
objects X3, the information theory lower bound states that to represent the objects in X,
some object must use at least ⌈lg |X|⌉ bits. In other words, any data structure for objects
in X must use at least ⌈lg |X|⌉ bits in the worst case. To see this, if we use fewer number
of bits, then as we have fewer bit strings than number of objects, two objects must have
the same bit-string as their data structure, but clearly they cannot since some query must
differ for different objects, but with the same data structure, all queries would be the same.

Definition 2.2.1. A data structure for a class of combinatorial objects X is succinct if
it uses lg |X| + o(lg |X|) bits in the worst case. It is compact if it uses Θ(lg |X|) bits in
the worst case.

The data structure will naturally need to support the relevant queries on X. 4

The information theoretic lower bound is often obtained by counting the number of
objects X. For example, if X is the set of ordinal trees (Definition 2.1.5) with n vertices,
then lg |X| = 2n− o(n) [79]. If X is the set of all graphs (Definition 2.1.1), then lg |X| =
1
2
n2 − o(n2). 5

3Two objects x, y ∈ X are the same if you cannot distinguish them from the queries supported on the
objects. For example, adjacent in a graph.

4One can naively represent the objects by simply enumerating them and giving them numbers 1, . . . , |X|.
Such a scheme is not a data structure since we cannot answer queries - such as adjacent for a graph.

5Each of the
(
n
2

)
possible edges is either there or not. Since each graph has at most n! automorphisms,

we over count by a factor of at most n!. Giving a rough count of 2(
n
2)/n!
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2.3 Simple Succinct Data Structures

Here we give previous results on some simple data structure that we will use as building
blocks throughout the thesis.

First is a bit-vector.

Definition 2.3.1. A bit-vector of length n is an array of n bits. It supports the following
operations:

• access(i): return the bit at index i.

• rankb(i): return the number of “b” bits at or before the index i, where b is either 0
or 1. If we omit b, it is assumed that we mean b = 1.

• selectb(i): return the index of the i-th “b” bit. If we omit b, it is assumed that we
mean b = 1.

Lemma 2.3.2 ([62]). A bit-vector of length n can be represented in n+o(n) bits to support
access, rank, select in O(1) time.

Example 2.3.3. Consider the following bit-vector B.

0 1 0 0 01 1 1 1 1 1

access(B, 3) = 0 as the third bit is 0. rank(B, 5) = 2 since there are 2 1 bits in the prefix
[1, . . . , 5]. Lastly select(B, 6) = 10 as the index of the 6th 1 bit is 10.

When the number of “1” bits is small (i.e. o(n) or symmetrically is large i.e. n− o(n)),
the number of bit-vectors with that many 1s is also smaller, and we can use fewer bits to
represent the bit-vector. These compressed bit-vectors are a generalization of the above.

Lemma 2.3.4 ([69]). For a bit-vector of length n, containing m 1-bits6, and any constant
c, there is a data structure using

lg

(
n

m

)
+O

(
n

lgc n

)
≤ m lg

( n

m

)
+O

(
n

lgc n
+m

)
bits of space that supports access, rank, select in O(1) time.

6The number of such bit-vectors is
(
n
m

)
.
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Next we generalize the bit-vector to larger alphabets.

Definition 2.3.5. A string S of length n on an alphabet Σ = {1, . . . , σ} is a sequence n
characters belonging to Σ. The operations generalize naturally as:

• access(i): return the character at index i.

• rank(c, i): return the number of occurrences of the character c in the prefix up to
(and including) the index i.

• select(c, i): return the index of the i-th occurrence of the character c.

The result we will use is.

Lemma 2.3.6 ([39]). A string S of length n over an alphabet of size σ, can be succinctly
represented using n lg σ + o(n lg σ) bits to support rank, access in O(lg lg σ) time and
select in O(1) time.

Last of the simple data structures we will use is permutations.

Definition 2.3.7. A permutation P of size n is a bijective function from {1, . . . , n} to
itself. The two operations are:

• P [i]: return the value that i is sent to by the function.

• P−1[i]: return the value that is sent to i by the function.

Lemma 2.3.8 ([60]). Let P be a permutation. Then we may represent P using (1 +
1/f(n))n lg n + o(n lg n) bits to support the computation of P and P−1 in O(f(n)) time
(1 ≤ f(n) ≤ n). In particular, if we set 1/f(n) = ε for constant ε > 0, then the space is
(1 + ε)n lg n+ o(n lg n) bits and the time is O(1

ε
) = O(1).

2.4 Trees

As trees are a fundamental object in computer science, succinct trees have been intensively
studied. In Chapter 3 we will make our own contribution in the study of succinct trees. For
now we will describe the operations that succinct trees are able to support, see Table 2.1.
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parent(v) the parent of v, same as anc(v, 1)

degree(v) the number of children of v

child(v, i) the ith child of node v (i ∈ {1, . . . , degree(v)})
child rank(v) the number of siblings to the left of node v plus 1

depth(v) the depth of v, i.e., the number of edges between the root and v

anc(v, i) the ancestor of node v at depth depth(v)− i

nbdesc(v) the number of descendants of v

height(v) the height of the subtree rooted at node v

LCA(v, u) the lowest common ancestor of nodes u and v

leftmost leaf(v) the leftmost leaf descendant of v

rightmost leaf(v) the rightmost leaf descendant of v

level leftmost(ℓ) the leftmost node on level ℓ

level rightmost(ℓ) the rightmost node on level ℓ

level pred(v) the node immediately to the left of v on the same level

level succ(v) the node immediately to the right of v on the same level

prev internal(v) the last internal node before v in a level-order traversal

next internal(v) the first internal node after v in a level-order traversal

node rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN, DFUDS, LEVEL}, i.e., in
a preorder, postorder, inorder, DFUDS order, or level-order traversal of the
tree

node selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN, DFUDS, LEVEL}
leaf rank(v) the number of leaves before and including v in preorder

leaf select(i) the ith leaf in preorder

Table 2.1: Navigational operations on succinct ordinal trees. (v denotes a node and i an
integer). The operations highlighted are not supported in previous results, and are studied
in Chapter 3.

Theorem 2.4.1 ([31]). An ordinal tree can be represented in 2n+ o(n) bits and can sup-
port all the operations of Table 2.1 with the exception of prev internal, next internal,
node rankLEVEL, node selectLEVEL in O(1) time.

Example 2.4.2. Consider the following ordinal tree.
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In a preorder traversal of the tree, the red node is the second node in the traversal and the
blue node is the 8th node in the traversal. Therefore, node selectPRE(2) would return some
representation of the red node, which we can then use as input to the other operations,
which typically is the preorder rank of the node: 2. Using this as our representation,
degree(2) = 3.

Closely related to the lowest common ancestor (LCA) operation is the range-minimum
and range-maximum queries.

Definition 2.4.3. Let A be an array of numbers. A range-minimum query is the
following:

• Given two indices i, j, return the index k, i ≤ k ≤ j such that A[k] = mini≤k≤j A[k]
(i.e. the index between i and j containing the minimum element in that range)

By constructing a Cartesian tree [82], where we take the minimum value of the array
of the root and recursing on both sides, the range-minimum query is equivalent to the LCA
query. The node with the minimum value between i and j has the lowest depth in the
Cartesian tree between then nodes at indices i, j in an in-order traversal.

Thus we have from Theorem 2.4.1:

Lemma 2.4.4. We may solve the range-minimum problem in 2n + o(n) bits and O(1)
time.

Symmetrically, we may define and solve the range-maximum problem.
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2.5 Orthogonal Range Reporting

Next we describe some more complex building blocks that we will need.

The data structure stores n d-dimensional points, and we wish to answer queries based
on the points inside d-dimensional axis aligned rectangles.

Definition 2.5.1. Let S be a set of n d-dimensional points (with polynomial sized co-
ordinates). Let R be a d-dimensional axis aligned rectangle (given as input to a query):
[p1, p2]× [p3, p4] . . . [p2d−1, p2d]

7. The queries we wish to support are:

• emptiness : is there a point of S inside R?

• count : how many points of S are inside R.

• reporting : return every point of S inside R.

The rectangle R is k-sided if there is at most k coordinates among pi that are finite.

It is clear that a data structure that only supports k-sided queries will be easier than
if we do not have this restriction. When we do not mention how many sides, it is assumed
that it is the maximum possible: 2d.

First we consider the problem in 2 dimensions.

Lemma 2.5.2 ([20]). We can solve the 2D range emptiness and reporting queries using
O(n lg n lg lg n) bits of space and O(lg lg n) query time (for the reporting query, this is per
point in the output) or O(n lg n) bits of space and O(lgϵ n) query time for any constant
ϵ > 0.

If we need the space to be exactly n lg n+ o(n lg n) bits, we have:

Lemma 2.5.3 ([16]). Let S be a set of points from the universe M = [1..n]× [1..n], where
n = |S|. S can be represented using n lg n + o(n lg n) bits to support orthogonal range
counting in O(lg n/ lg lg n) time, and orthogonal range reporting in O(k lg n/ lg lg n) time,
where k is the size of the output.

The standard way of generalizing the above restriction on the points to the region
[1..n]× [1..n] is to use a predecessor data structure:

7We use closed interval here, but it is easy to see how to convert these into open/semi-open intervals
when the coordinates are integral
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Definition 2.5.4. The data structure stores a set of n numbers S out of a universe U =
[1, |U |]. The queries are:

• pred(i), given an element i of U , return the largest element j of S that is smaller
than i.

• succ(i), given an element i of U , return the smallest element j of S that is larger
than i.

First we note that if |U | is small, for example |U | = O(n), then we may solve this with
a bit-vector, where a 1 at index i states that i ∈ S. pred and succ can be reduced to rank

and select, the space would be |U | + o(|U |) = O(n) bits with constant time complexity.
For larger universes (|U | =poly(n)), though there have been a lot of work on this problem,
we will only need one of the basic results by Willard [83] which gives a O(n) word space
solution to the problem with O(lg lg |U |) query time.

Lemma 2.5.5 ([83]). There is a data structure for the predecessor/successor problem that
uses O(n) words of space and query time O(lg lg |U |).

By combining the above, if the points’ coordinates stored in Lemma 2.5.3 are O(n), then
we convert them into rank-space (i.e. the index the point would have in sorted order) before
storing the points. When we return the points, we convert them back from rank-space.

Lastly we consider the 2-dimensional 3-sided reporting query problem. This problem
has a folklore solution that we will leverage in this thesis. As we will use this frequently,
we will describe the data structure in detail.

Let S be a set of n points on a 2D plane, and R = [x1, x2]× [y1, y2] be an axis aligned
rectangle. By assumption, one of xi, yi is ±∞.

Without loss of generality, suppose that y2 =∞. We solve the 3-sided range reporting
query in the following way: first convert x1, x2 into rank-space. That is rank(x1) = r1
where there are r1 points with x-coordinates smaller than x1; similarly for x2. Store a
range maximum data structure (Lemma 2.4.4) such that given two ranks r1, r2, it returns
the index (rank) of the point in this range with the maximum y-coordinate - denote this
by r′. If the y-coordinate of this point is greater than y1, return the point and recurse on
the two sub ranges [r1, r

′) and (r′, r2].

If y1 = −∞ instead, we only need to replace the range maximum data structure with
a range minimum data structure. If either x1, x2 = ±∞, then it is symmetric and we need
to be able to compute the rank using y-coordinates.
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x1 x2

y1

Figure 2.2: 2-dimensional range search: the red rectangle would correspond to [x1, x2] ×
[y1,∞], and is 3-sided. A reporting query would return the 2 points in it, an emptiness
query would return false and a counting query would return 2. The blue rectangle is 4-
sided, and would return the single point contained in it.

Thus to support the 2-dimensional 3-sided queries, we must be able to support the
following operation.

• given an x-coordinate convert it to a rank - which we will denote as rank.

• given the rank of the x-coordinate of a point, compute both the x and y-coordinate
of the point - which we will denote as decode.

Aside from these tasks, we will need to store a range minimum/maximum data struc-
ture, which uses 2n+ o(n) bits by Lemma 2.4.4.

The first task, rank is typically done through a predecessor data structure, though if
the universe of the points is small, say x = O(n) we can use a bit vector instead to save
on space.

The second task, decode is typically done by storing the points explicitly using n lg n
bits in sorted order by the x-coordinate. Thus to find the y-coordinate of the k-th point,
we can simply look at the k-th entry in the array. However, if there are many such range
reporting data structures, then we only need to store this array once. Furthermore, if the
y-coordinate is somehow easily computable from the x-coordinate, then we only need to
store the function computing the y coordinate once, and save on space.

The time complexity is O(f + k · g) where k is the number of points returned, f is the
time to convert x coordinates to ranks and g is the time to compute the y-coordinate given
the rank of a point.
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We may summarize result as:

Lemma 2.5.6. Given n 2-dimensional points, and let f be the time cost of rank, g be
the time cost of decode. Then we are able to support 3-sided reporting queries (of the
form [x1, x2]× [−∞, y], to support the symmetric cases, we duplicate the structure) in time
O(f + k · g) where k is the number of points reported. The space cost is 2n+ o(n) plus the
space needed to support the rank and decode operations.

Lastly, we move to 3-dimensions and 5-sided rectangles. The following result is by
Nekrich [68].

Lemma 2.5.7 ([68]). For n 3D points and constant ε > 0, we may support 5-sided orthog-
onal reporting queries using O(n lg n) bits of space and O(k lgε n) time or O(n lg n lg lg n)
bits of space and O(k lg lg n) time, where k is the size of the output.

We may also achieve the same complexities for emptiness as well.

Proof. The original result did not have the emptiness query. However there is a well-known
black box reduction to emptiness queries from reporting. Suppose that the run time of
the query is bounded by t1 + kt2, then we may run the query for time t1 and if it has not
returned, answer no, and otherwise no points are returned and we may answer yes.

In this case t1 = t2 = c lgϵ n or c lg lg n, for some suitably large constant c.
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Chapter 3

Level-Order Succinct Trees

In this chapter, we will study succinct ordinal trees which are able to support level-order
operations. These trees will be a key building block for the data structures we will construct
in later chapters.

This chapter is organized as follows: we begin with an introduction in Section 3.1,
followed by a overview of the vast amount of previous work on constructing succinct tree
data structures in Section 3.2. Next we give the terminology used and other succinct data
structures we will use as our building blocks in Section 3.3. We give the construction of
our data structure and how we support level-order operations in Section 3.4, and how we
support all the operations previously supported in Section 3.5. Finally we summarize our
results and discuss further avenues of research in Section 3.6.

3.1 Introduction

Standard pointer-based representations of trees use Θ(n) words or Θ(n lg n) bits to repre-
sent a tree on n nodes, but as the culmination of extensive work [49, 25, 61, 62, 23, 63, 56,
74, 67, 12, 50, 10, 37, 44, 32], ordinal trees can be represented succinctly, using the optimal
2n+ o(n) bits of space, while supporting a plethora of navigational operations in constant
time, see Table 2.1.

One operation that has gained some notoriety for not being supported by any of
these data structures is mapping between preorder (i.e., depth-first) ranks and level-order
(breadth-first) ranks of nodes. Known approaches to represent trees are either fundamen-
tally breadth first – like the level-order unary degree sequence (LOUDS) [49] – and very
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limited in terms of supported operations, or they are depth first – like the depth-first
unary degree sequence (DFUDS) [12], the balanced-parentheses (BP) encoding [61] and tree
covering (TC) [37] – and do not support level-order ranks.

In this chapter, we construct a tree data structure that bridges the dichotomy, solving
an open problem of [44]1. Our tree data structure is based on a novel way to (recursively)
decompose a tree into forests of subtrees that makes computing level-order information
possible. We describe how to support all operations of previous TC data structures based
on our new decomposition.

3.2 Previous Work

As trees are a fundamental data structure in computer science, there has been intense study
of succinct trees in the literature. Many different approaches have been used, each with its
own strengths and weaknesses, such as the variety of operations supported, whether they
support dynamic operations (such as inserting and deleting nodes). We give an overview
of the history of the study of succinct trees.

The level-order unary degree sequence (LOUDS) representation of an ordinal tree [49]
consists of listing the degrees of nodes in unary encoding while traversing the tree with
a breadth-first search. This is a direct generalization of the representation of heaps, i.e.,
complete binary trees stored in an array in breadth-first order: There, due to the com-
pleteness of the tree, no extra information is needed to map the rank of a node in the
breadth-first traversal to the ranks of its parent and children in the tree. The LOUDS is
exactly the required information to do the same for general ordinal trees. Historically one
of the first schemes to succinctly represent a static tree, LOUDS is still liked for its simplic-
ity and practical efficiency [6], but a major disadvantage of LOUDS-based data structures is
that they support only a very limited set of operations [66].

Replacing the breadth-first traversal by a depth-first traversal yields the depth-first
unary degree sequence (DFUDS) encoding of a tree, based on which succinct data struc-
tures with efficient support for many more operation have been designed [12]. Other
approaches that allow to support largely the same set of operations are based on the
balanced-parentheses (BP) encoding [61] or rely on tree covering (TC) [37] for a hierarchical
tree decomposition.

1The problem of supporting rank/select operations on the level-order traversal of the tree, while at the
same time, supporting all other previous operations.
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As the oldest tree representation after LOUDS, the BP-based representations have a long
history and the support for many operations was added for different applications. Munro
and Raman [61] first designed a BP-based representation supporting parent, nbdesc,
node rankPRE/POST and node selectPRE/POST in O(1) time and child(x, i) in O(i) time. This
is augmented by Munro et al. [62] to support operations related to leaves in constant
time, including leaf rank, leaf select, leftmost leaf and rightmost leaf, which are
used to represent suffix trees succinctly. Later, Chiang et al. [23] showed how to sup-
port degree using the BP representation in constant time which is needed for succinct
graph representations, while Munro and Rao [63] designed O(1)-time support for anc,
level pred and level succ to represent functions succinctly. Constant-time support
for child, child rank, height and LCA is then provided by Lu and Yeh [56], that for
node rankIN and node selectIN by Sadakane [74] in their work of encoding suffix trees,
and that for level leftmost and level rightmost by Navarro and Sadakane [67].

Benoit et al. [12] were the first to represented a tree succinctly using DFUDS, and their
structure supports child, parent, degree and nbdesc in constant time. This representa-
tion is augmented by Jansson et al. [50] to provide constant-time support for child rank,
depth, anc, LCA, leaf rank, leaf select, leftmost leaf and rightmost leaf,
node rankPRE and node selectPRE. To design succinct representations of labelled trees,
Barbay et al. [10] further gave O(1)-time support for node rankDFUDS and node selectDFUDS.

TC was first used by Geary et al. [37] to represent a tree succinctly to support child,
child rank, depth, anc, nbdesc, degree, node rankPRE/POST and node selectPRE/POST in
constant time. He et al. [44] further showed how to use TC to support all other operations
provided by BP and DFUDS representations in constant time. Later, based on a different
tree covering algorithm, Farzan and Munro [32] designed a succinct representation that
not only supports all these operations but also can compute an arbitrary word in a BP or
DFUDS sequence in O(1) time. The latter implies that their approach can support all the
operations supported by BP or DFUDS representations.

3.3 Preliminaries

In this chapter, we will require several results stated in Chapter 2. First are the various
bit-vector results:

Lemma 2.3.2 ([62]). A bit-vector of length n can be represented in n+o(n) bits to support
access, rank, select in O(1) time.
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Lemma 2.3.4 ([69]). For a bit-vector of length n, containing m 1-bits2, and any constant
c, there is a data structure using

lg

(
n

m

)
+O

(
n

lgc n

)
≤ m lg

( n

m

)
+O

(
n

lgc n
+m

)
bits of space that supports access, rank, select in O(1) time.

Using these we have the following notion:

Definition 3.3.1. Let A be an array storing values of k bits. We say that A is piece-wise
linear with M pieces if there are M runs of identical values.

Lemma 3.3.2. Suppose that A is a piece-wise linear array of length N with M pieces
storing values of k bits with k = O(c lg n) for some constant c (i.e at most a constant
number of words).

Suppose that M = n/f(n), N = n lgc1 n and k = o(f(n)) for f(n) = Ω((lg lg n)c2) and
constants c1, c2. Then we may store A in o(n) bits and access A[i] in O(1) time if c2 > 1.

Proof. We store a bit-vector B of length N with M 1s where B[i] = 1 if i is the first index
of a run in A.

Store B using a compressed bit vector Lemma 2.3.4. The space required is M lgN/M+
O(n/ lgc n+M). By our assumption, this is n

f(n)
lg ((c1 lg n)f(n)) +O(n lgc1−c n+ n/f(n))

bits of space. For this to be o(n) we choose c > c1 and c2 > 1 so that lg(c1 lgn)+lg f(n)
f(n)

= o(1).

We store the value of each run of A in a size M array, with each slot using k bits. By
assumption this is o(n) bits. To find A[i], we use rankB(i) to find the run number, then
find the value of that run.

In this chapter, we will be augmenting the previous succinct tree data structures with
level-order based operations. The previous data structure we will augment is:

Theorem 2.4.1 ([31]). An ordinal tree can be represented in 2n+ o(n) bits and can sup-
port all the operations of Table 2.1 with the exception of prev internal, next internal,
node rankLEVEL, node selectLEVEL in O(1) time.

The additional operations we will add are prev internal, next internal, node rankLEVEL
and node selectLEVEL, so that we may support all the operations in Table 2.1 in constant
time.

2The number of such bit-vectors is
(
n
m

)
.
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3.4 Main Data Structure

In this section, we describe the construction of the main data structure for the ordinal tree.
As in the previous works for ordinal trees based on tree covering, the main data structure
describes the decomposition of the tree and uses 2n + o(n) bits. For each tree operation
or query, we construct auxiliary data structures occupying o(n) bits which allows us to
answer the query in O(1) time3.

Let T be an ordinal tree over n nodes. We will identify nodes with their ranks 1, . . . , n
(order of appearance) in a preorder traversal (i.e. node rankPRE). Tree covering relies on
a two-tier decomposition: the tree consists of mini-trees, each of which consists of micro-
trees. The mini-trees will be denoted by µi, the micro-trees (belonging to µi) by µi

j.

We will build upon previously used tree covering decomposition schemes. A greedy
bottom-up approach suffices to break a tree of n nodes into O(n/B) subtrees of O(B)
nodes each [37]. However, more carefully designed procedures yield restrictions on the
touching points of subtrees:

Lemma 3.4.1 (Tree Covering, [31, Thm. 1]). For any parameter B ≥ 3, an ordinal tree
with n nodes can be decomposed, in linear time, into connected subtrees with the following
properties.

1. Subtrees are pairwise disjoint except for (potentially) sharing a common subtree root.

2. Each subtree contain at most 2B nodes.

3. The overall number of subtrees is Θ(n/B).

4. Apart from edges leaving the subtree root, at most one other edge leads to a node
outside of this subtree. This edge is called the external edge of the subtree.

Inspecting the proof, we can say a bit more: If v is a node in the (entire) tree and is
also the root of several subtrees (in the decomposition), then the way that v’s children (in
the entire tree) are divided among the subtrees is into consecutive blocks. Each subtree
contains at most two of these blocks. The case where a subtree contains two blocks arises
when the subtree root has exactly one heavy child: a node whose subtree size is greater
than B, in the decomposition algorithm.

3In the following lemmas in this chapter, we will not explicitly state that the run time of the operations
are O(1).
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The main feature of this decomposition algorithm is that there is at most one external
edge in each subtree, which allows us to compute information about the subtree (which
uses the external edge) in constant time without more careful work.

Now we ask the question: why are level-order operations hard? As discussed, the only
data structure implementing level-order operations is LOUDS [49], which does not support
any operations at all outside of local navigational operations such as parent and child.
First consider the naive approach: suppose we try to compute the level-order rank of a
node v, and we try to reduce the global query (on the entire tree T ) to a local query that
is constrained to a mini tree µi. This task is easy if we can afford to store the level-order
ranks of the leftmost node in µi for each level of µi: then the level-order rank of v is simply
the global level-order rank of w, where w is the leftmost node in µi on v’s level (v’s depth),
plus the local level-order rank of v, minus the local level-order rank of w minus one (since
we double counted the nodes in µi on the levels above w). To see that we need to store the
level-order ranks for every leftmost node in µi, we note that the level-order traversal enters
some level of µi, then leaves it. But the number nodes between leaving µi and re-entering
µi on the next level is arbitrary, and without storing this information, we cannot calculate
the ranks of a node v in µi from only the information of the levels above v.

The problem however is that, for general ordinal trees, we cannot afford to store
the level-order rank of all leftmost nodes. This would require height(µi) · lg n bits for
height(µi) the height of µi; towards a sublinear overhead in total, we would need a o(1)
overhead per node, which would (on average) require µi to have |µi| = ω(height(µi) lg n)
nodes or height(µi) = o(|µi|/ lg n). Since the tree T to be stored can be one long path
(or a collection of few paths with small off-path subtrees etc.), any approach based on
decomposing T into induced subtrees is bound to fail the above requirement.

The solution to this dilemma is the observation that the above “bad trees” have another
feature that we can exploit: The total number of nodes on a certain interval of levels is
small. If we keep such an entire horizontal slab of T together, translating global level-order
rank queries into local ones does not need the ranks of all leftmost nodes: everything in
these levels is entirely contained in µi now, and it suffices to add the level-order rank of
the (leftmost) root in µi.

Our scheme is based on decomposing the tree into parts that are one of these two
extreme cases – “skinny slabs” or “fat subtrees” – and counting them separately to amortize
the cost for storing level-order information.
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3.4.1 Covering by Slabs

To bound the height of the subtrees, we first perform a horizontal partitioning step. We
fix two parameters: H , the height of slabs, and B > H, the target block size. We start
by cutting T horizontally into slabs of thickness/height exactly H, but we allow ourselves
to start cutting at an offset o ∈ [H]. That means that the topmost and bottommost slabs
can have height < H. We choose o so as to minimize the total number of nodes on levels at
which we make the horizontal cuts. We call these nodes s-nodes (“slabbed nodes”), and
their parent edges slabbed edges . A simple counting argument shows that the number of
s-nodes (and slabbed edges) is at most n/H.4

We will identify induced subgraphs with the set of nodes that they are induced by.
So Si =

{
v : depth(v) ∈ [(i− 1)H + o .. iH + o]

}
, the set of nodes making up the

ith slab, also denotes the ith slab itself, i = 0, . . . , h. Obviously, the number of slabs is
h+1 ≤ n/H+2. We note that the s-nodes are contained in two slabs. For any given slab,
we will refer to the first s-level included as (original) s-nodes and the second as promoted
s-nodes. Note that the first slab does not contain any s-nodes and the last slab does not
contain promoted s-nodes.

Since Si is (in general) a set of subtrees, ordered by the left-to-right order of their roots,
we will add a dummy root to turn it into a single tree. We note that the s-nodes are the
first (after the dummy root) and the last levels of any slab.

If |Si| ≤ B, Si is a skinny subtree (after adding the dummy root) and will not be further
subdivided. If |Si| > B, we apply the Farzan-Munro tree-covering scheme (Lemma 3.4.1)
with parameter B to the slab (with the dummy root added) to obtain fat subtrees. This
directly yields the following result; an example is shown in Figure 3.1.

Theorem 3.4.2 (Tree Slabbing). For any parameters B > H ≥ 3, an ordinal tree T
with n nodes can be decomposed, in linear time, into connected subtrees with the following
properties.

1. Subtrees are pairwise disjoint except for (potentially) sharing a common subtree root.

2. Subtrees have size ≤M = 2B and height ≤ H.

3. Every subtree is either pure (a connected induced subgraph of T ), or glued (a dummy
root, whose children are connected induced subgraphs of T ).

4To see this, over all offsets o, every node is a slabbed node for exactly 1 offset. Thus the sum over all
offsets of the slabbed nodes is n. By pigeonhole principle, for some offset, the number of slabbed nodes is
at most the average number of slabbed nodes n/H.
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Figure 3.1: An example of the tree-slabbing decomposition from Theorem 3.4.2 with B =
11 and H = 4. Slabs are shown as shaded areas (light blue for skinny slabs, light gray
for fat slabs). All s-nodes are depicted twice, one in each slab they belong to. The trees
within a slab are connected by a dummy root (not depicted) and further decomposed as
in Lemma 3.4.1; the resulting subtrees are shown by the edge colors.

4. Every subtree is either a skinny (slab) subtree (an entire slab) or fat.

5. The overall number of subtrees is O(n/H), among which O(n/B) are fat.
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6. Connections between subtrees µ and µ′ are of the following types:

(a) µ and µ′ share a common root. Each subtree contains at most two blocks of
consecutive children of a shared root.

(b) The root of µ′ is a child of the root of µ.

(c) The root of µ′ is a child of another node in µ. This happens at most once in µ.

(d) µ′ contains the original copy of a promoted s-node in µ. The total number of
these connections is O(n/H).

The above tree-slabbing scheme has two parameters, H and B. We will invoke it
twice, first using H = ⌈lg3 n⌉ and B = ⌈lg5 n⌉ to form m mini trees µ1, . . . , µm of at most
M = 2B nodes each. While in general we only know m = O(n/H) = O(n/ lg3 n), only
O(n/M) = O(n/ lg5 n) of these mini trees are fat subtrees (subtrees of a fat slab), the
others being skinny.

Mini trees µi are recursively decomposed by tree slabbing with height H ′ = ⌈ lgn
(lg lgn)2

⌉
and block size B′ = ⌈1

8
lg n⌉ into micro trees µi

1, . . . , µ
i
m′

i
of size at most M ′ = 2b = 1

4
lg n.

The total number of micro trees is m′ = m′
1 + · · ·+m′

m = O(n/H ′), but at most O(n/B′)
are fat micro trees. We refer to the s-nodes created at mini resp. micro tree level as tier-1
resp. tier-2 s-nodes.

Definition 3.4.3. The parameters for our tree-slabbing scheme are H = ⌈lg3 n⌉ and
B = ⌈lg5 n⌉ and H ′ = ⌈ lgn

(lg lgn)2
⌉ and B′ = ⌈1

8
lg n⌉

After these two levels of recursion we have reached a size for micro trees small enough
to use a lookup table that takes sublinear space. That is, for every possible micro tree,
and every possible query on the micro tree (such as depth of a node) we store the result
of the query. Since the size of the micro trees is at most 1

4
lg n, the number of such trees

is O(
√
n). If a query takes as input k nodes, and outputs an answer of size O(lg n), then

the space cost of storing that query would be O(
√
n lgk+1 n) = o(n) bits. Over a constant

number of queries, the total space cost would be o(n).

As in previous tree covering data structures, internally to our data structure, we will
identify a node v by its “τ -name”, a triple specifying the mini tree, the micro tree within
the mini tree, and the node within the micro tree. More specifically, τ(v) = ⟨τ1, τ2, τ3⟩
means that v is the τ3th node in the micro-tree-local preorder (DFS order) traversal of µτ1

τ2
;

mini trees are ordered by when their first node appears in a preorder traversal of T , ties
(among subtrees sharing roots) broken by the second node, and similarly for micro trees
inside one mini tree.
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Since there are O(n/H) mini trees, O(B/H ′) micro trees inside one mini tree, and
O(B′) nodes in one micro tree, we can encode any τ -name with ∼ lg n+2 lg lg n+2 lg lg lg n
bits. The concatenation τ1(v)τ2(v)τ3(v) can be seen as a binary number; listing nodes in
increasing order of that number gives the τ -order of nodes.

A challenge in tree covering is to handle operations like child when they cross subtree
boundaries. The solution is to add the endpoint of a crossing edge also to the parent
mini/micro tree; these copies of nodes are called (tier-1/tier-2) promoted nodes. They
have their own τ -name, but actually refer to the same original node; we call the τ -name of
the original node the canonical τ -name.

A major simplification in [31] came from having all crossing edges (except for one)
emanate from the subtree root, which allows us to implicitly represent these edges instead
of promoting their endpoints. Only the external edge of a subtree requires promoting the
endpoint to the subtree.

For tree slabbing, we additionally have slabbed edges to handle. As mentioned earlier,
we promote all endpoints of slabbed edges into the parent slab before we further decompose
a slab. That way, the size bounds for subtrees already include any promoted copies, but we
blow up the number of subtrees by an – asymptotically negligible – factor of 1+ 1/H ∼ 1.
Promoted s-nodes again have both canonical and secondary τ -names.

3.4.2 Internal Data Structure Operations

We begin with some common concepts and operations internal to our data structure that
we will use, and will be helpful in the implementation of many queries.

The type of a micro tree is the concatenation of its size, a description of its local shape
(such as a balanced parenthesis sequence), and the preorder rank of the promoted dummy
node corresponding to the external edge (0 if there is none), and several bits indicating
whether the lowest level are promoted s-nodes, whether the root is a dummy root, whether
the tree was obtained by composing a fat slab or a skinny subtree and so on.

We store a variable-cell array of the types of all micro trees in τ -order. The balanced
parenthesis sequence of all micro trees will sum to 2n + O(n/H ′) = 2n + o(n) bits of
space; the other components of the type are asymptotically negligible. A type consists of
at most ∼ 1

2
lg n bits, so we can store a table of all possible types with various additional

precomputed local operations in O(
√
npolylog(n)) bits.

Let us fix one level of subtrees, say mini trees. Consider the sequence τ1(v) for all the
nodes v in a preorder traversal.
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Definition 3.4.4. A node v so that τ1(v) ̸= τ1(v − 1) is called a (tier-1) preorder
changer [44, Def. 4.1]. Similarly, nodes v with τ2(v) ̸= τ2(v − 1) are called (tier-2)
preorder changers.

We will associate with each node v “its” tier-1 (tier-2) preorder changer u, which is the
last preorder changer preceding v in preorder, i.e., max{u ∈ [1..v] : τ1(u) ̸= τ1(u − 1)};
(Recall that we identify nodes with their preorder rank.)

By Theorem 3.4.2, the number of tier-1 preorder changers is O(n/H), since the only
times a mini-tree can be broken up is through the external edge (once per tree), the two
different blocks of children of the root, or at slabbed edges. Similarly, we have O(n/H ′) tier-
2 preorder changers. We can thus store a compressed bitvector (Lemma 2.3.4) to indicate
which nodes in a preorder traversal are (tier-1/tier-2) preorder changers. The space for

that is O( n
H
lgH +n lg lgn

lgn
) = o(n) for tier 1 and O( n

H′ lgH
′ +n lg lgn

lgn
) = O(n (lg lgn)3

lgn
) = o(n)

for tier 2.

Thus given a vertex v by its pre-order number, we may find the tier-1/tier-2 preorder
changer associated with v by selecting the first 1 in the appropriate bit vector preceding
the index of v.

Next suppose that v is given by its τ -name, we wish to find the tier-1/tier-2 preorder
changers (by their τ -name) associated with v.

First consider the tier-2 pre-order changer u′. By definition of a preorder changer, we
have that τ1(u

′) = τ1(v) and τ2(u
′) = τ2(v). The node in the micro-tree that is on the

boundary (i.e external edge, blocks of the children of the root, or slabbed edges) can be
precomputed in the micro-tree lookup table, and this is the tier-2 preorder changer. We
note that tier-1 preorder changes are by definition tier-2 preorder changers as well, thus
the tier-1 preorder changer u cannot be between v and u′ and thus u is the tier-1 preorder
changer associated with both v and u′. To find u, we find tier-1 preorder changer associated
with u′. We may do this by explicitly storing τ2 and τ3 (i.e. the pair ⟨τ2, τ3⟩) values for u
since it would be O(lg lg n) bits.

Thus the array containing the tier-1 and tier-2 preorder changers associated with each
node in τ -order is piece-wise linear, of length n · polylog(n), with at most n/H ′ pieces in
the case of tier-2 changers. Therefore we may store these using Lemma 3.3.2 in o(n) bits.
As in the parameter in Lemma 3.3.2, we can afford to store O(lg n) bits for each tier-1
changer and O(lg lg n) bits for each tier-2 changer in an array.

In this way we have the following internal operation:

26



Lemma 3.4.5. We can support the following operation: given a node v in either preorder
numbers or τ -name, we are able to lookup any value associated with v’s tier-1 and tier-2
preorder changer, of size O(lg n) for tier-1 and of size O(lg lg) for tier-2, using o(n) extra
bits of space.

We note that we were able to do this because the number of preorder changers is
relatively small so that we are able to store a compressed bit-vector for them, and secondly,
the tier-2 preorder changer can be determined from the micro-tree alone.

In the same vein, the analogous result can be extended to postorder, inorder etc. as
well.

Now we consider the analogous result for level-order traversals.

Let w1, . . . , wn be the nodes of T in level order, i.e., wi is the ith node visited in the
left-to-right breadth-first traversal of T . Similar to the preorder, we have the definition of
a level-order changer

Definition 3.4.6. A node wi a tier-1 (tier-2) level-order changer if wi−1 and wi are
in different mini- (micro-) trees.

The following lemma bounds the number of tier-1 (tier-2) level-order changers.

Lemma 3.4.7. The number of tier-1 (tier-2) level-order changers is O(n/H + nH/B) =
O(n/ lg2 n) (O(n/H ′ + nH ′/B′) = O(n/(lg lg n)2)).

Proof. We focus on tier 1; tier 2 is similar. Lemma 3.4.2 already contains all ingredients:
A skinny-slab subtree consists of an entire slab, so its nodes appear contiguous in level
order. Each skinny mini tree thus contributes only 1 level-order changer, for a total of
O(n/H) For the fat subtrees, each level appears contiguously in level order, and within a
level, the nodes from one mini tree form at most 3 intervals: one gap can result from a child
of the root that is in another subtree, splitting the list of root children into two intervals,
and a second gap can result from the single external edge. The other connections to other
mini trees are through s-nodes, and hence all lie on the same level. So each fat mini tree
contributes at most 3 changers per level it spans, for a total of O(H · n/B) level-order
changers.

The only corner case is for tier-2, since a skinny micro-tree decomposed from a fat mini-
tree does not contribute a single level-order changer (but a skinny micro-tree decomposed
from a skinny mini-tree still contributes a single one) but rather one for each of its levels.
However, in this case, every tier-2 changer is also a tier-1 changer since the boundary of
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the micro-tree (the left most nodes on each level) is also the boundary of the mini-tree,
and thus the number of such tier-2 changers is negligible.

Furthermore, the tier-2 level-order changer can be found from the micro-tree alone.

Therefore, we have the following result on this internal operation:

Lemma 3.4.8. Given a node v by its place in X-order traversal or by τ -name, where X
is PRE, POST, LEVEL, DFUDS, IN, we may find its tier-1/tier-2 X-order changer and also look
up any information associated with its tier-1/tier-2 X-order changer of size O(lg n) bits
for tier-1 and O(lg lg n) bits for tier-2.

Next we will show that we are able to store information for the mini-trees and micro-
trees. For the mini-trees and micro-trees in τ order we store an array, indexed by the
τ -names of the mini-trees and micro-trees: for a mini-trees, its τ1 and for micro-tree its
⟨τ1, τ2⟩. Since we have at most n/H mini-trees and n/H ′ micro-trees, we are able to store
O(lg2 n) bits per mini-tree and O((lg lg n)c) bits per micro-tree while keeping the space a
lower order term. Thus we have the following lemma:

Lemma 3.4.9. Let v be a node given by τ -name, then we can retrieve any information
related to its mini-tree and micro-tree as long as it is O(lg2 n) bits for mini-trees and
O((lg lg n)c) bits for micro-trees. The space requirement is o(n).

Next we give some operations related to slabbed nodes. First, given a tier-1 slabbed
node, we want its rank among tier-1 slabbed nodes in a level-order traversal. Note that
since slabbed nodes are promoted, each one is traversed twice.

Let v be given by its τ -name. The first task we would like to accomplish is given a
tier-1/tier-2 slabbed node by τ -name, find its rank in level-order among all tier-1/tier-2
slabbed nodes. If v is a promoted s-node, then it is on the last level of both its mini-tree
and micro-tree. If v is an original s-node then it is on the first (after the dummy root)
level of both its mini-tree and micro-tree.

Let u′ be the closest node in level-order to the left of v such that its predecessor is
either not a s-node or belongs to a different micro-tree. That is, in the micro-tree, u′ is
on the same level as v and is either a tier-2 level-order changer, or is the left most node
of that level in the case that it is a skinny subtree and v is promoted so that it is on the
last level of the micro-tree. We store this distance in the micro-tree lookup table. We note
that for any such micro-tree, there is a constant number of possible u′ since the number of
level-order changers is constant and there is 1 extra node that maybe possible. For each
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u′, let u be the analogous node in the mini-tree. By the same analysis, for each mini-tree,
there is a constant number of such possible u. At each micro-tree and for each u′, we store
⟨τ2, τ3⟩ for u and the number of nodes between u′ and u. For each mini-tree, and for each
possible u in the mini-tree, we store the level-order rank of u among s-nodes. Thus the
level-order rank of v among all tier-1 s-nodes can be calculated as u + (u′ − u) + (v − u′)
since every node on this level are s-nodes. Here we have abused notation and denoted u
as the level-order rank of u among s-nodes. By Lemma 3.4.9 we can store this information
in o(n) bits.

Next let v be a tier-2 s-node. We traverse the nodes first by mini-tree (τ1), then traverse
each mini-tree in level-order. In this way we have an ordering on tier-2 s-nodes. We wish
to find the rank of v in this order.

Let v be given by its τ -name be a tier-2 s-node. Again, let u′ be the closest node in
level-order to the left of v such that its predecessor is either not a s-node or belongs to
a different micro-tree. Let u be the first tier-2 s-node in level order in the mini-tree τ1.
We store the distance between u′ and v in the micro-tree lookup table. For each u′ in
the micro-tree, we store the number of s-nodes between u′ and u. For each mini-tree, we
store the rank of u. Thus again we may find the rank of v as u + (u′ − u) + (v − u′). By
Lemma 3.4.9, we may do this in o(n) bits.

Thus we obtain the following lemma:

Lemma 3.4.10. Let v be a tier-1/tier-2 s-node. We may find the rank of v among tier-
1/tier-2 s-nodes.

This allows us to perform the following:

Corollary 3.4.11. Let v be a tier-1/tier-2 s-node given by τ -name. We may lookup any
information associated with v as long as the information is O(lg n) bits for tier-1 and
O(lg lg n) bits for tier-2.5

Proof. We store an array in the order of the s-nodes. Given v, we convert it into a rank
and index that rank in the array. For the array to be o(n) bits we can only store O(lg n)
and O(lg lg n) bits respectively

Some immediate application is the following: given a promoted s-node by τ -name, we
may find the τ -name of the original s-node and vice versa.

5Can even be O(lg2 n) and O((lg lg n)c) bits while keeping the total space o(n) bits.
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Next we wish to support the operations for finding s-node ancestors and s-node de-
scendants of nodes.

Let v be a node given by τ -name. We wish to find u′ the closest tier-1/tier-2 s-node
ancestor of v if they exist.

For tier-2, it is either in the same micro-tree (i.e. the first level possibly after the
dummy root are s-nodes) or it has the same s-node ancestor as the root of the micro tree.
In the first case, we determine if it exists in the micro-tree from the type and the lookup
table. In the second, we store u′ by Lemma 3.4.9. If no such u′ can be found, we store v’s
ancestor on the first level of the mini-tree.

For tier-1, we first find u′ if it exists. If not, then we have either returned the tier-1
s-node (since it is on the first level of the mini-tree) or we have returned the root of the
tree, in which case no tier-1 s-node ancestor exists. If u′ exists, we store the tier-1 s-node
ancestor u at the tier-2 s-node u′ if it exists. We may store this by Lemma 3.4.8.

For descendants, given a node v, we wish to find the next level with tier-1/tier-2 s-
nodes. On this level, there is an interval of s-nodes that are descendants of v (which may
be empty). We wish to return u1, u2 which are the first and last node in this interval which
are descendants of v.

First we consider tier-2. For each micro-tree whose last level are s-nodes, and for each
v, we store in the lookup table, the range of s-nodes descended from v. For each micro-tree,
and for each v, we store whether the external edge is a descendant of v and if so the root of
the micro-tree corresponding to the external edge. Finally, we store the range of s-nodes
that are descended from the root of the micro-tree. All of these are O(lg lg n) bits so we
can do this by Lemma 3.4.9. Thus for each v, if it is the root, we are done. Otherwise, we
union the ranges of the micro-tree descendants and the possible descendants contributed
by the external edge. We note that if there are no such s-nodes because this is the last
slab, the range we obtain are either the last level of the entire tree, or a range of tier-1
s-nodes instead.

For tier-1, we first obtain the range of tier-2 s-nodes. If this is indeed the last (tier-2)
slab we are done as these nodes are tier-1 s-nodes or no such tier-1 s-nodes can be found.
For each tier-2 s-node, we store the range of tier-1 s-node descendants. For each tier-2
s-node we store a bitvector stating whether it has tier-1 s-node descendants. Thus given
u1, u2 tier-2 s-nodes, we use rank and select to find the next/previous u′

1, u
′
2 which have

descendants. Then return the first descendant of u′
1 and the last descendant of u′

2. Again
the space usage for all the information here is O(lg lg n) bits for each tier-2 s-node and so
we may store them by Lemma 3.4.11.
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Thus we obtain:

Lemma 3.4.12. Let v be a node. We may report u, u′ the closest tier-1/tier-2 s-node
ancestor of v. We may also report u′

1, u
′
2 the range of tier-2 s-node descendants of v (on

the closest tier-2 s-node level below v) and u1, u2 the range of tier-1 s-node descendants of
v in o(n) bit of space.

3.4.3 Pre and Level-Order Rank/Select, prev internal,
next internal

We now describe how to support operations efficiently in our data structure. We will
describe the new operations that we are able to support first - the level-order specific
operations, and describe how to support the previous supported operations in Section 3.5.

Preorder Rank In this operation, we are given v by τ(v) = ⟨τ1, τ2, τ3⟩, and we
wish to find the global preorder rank. Let u and u′ be the tier-1 resp. tier-2 preorder
changers associated with v by Lemma 3.4.8. The idea is to compute the preorder rank as
u + (u′ − u) + (v − u′), i.e., the global preorder of u and the distances between u and u′

resp. u′ and v.

Again by Lemma 3.4.8 at each tier-2 preorder changer u′, we store the distance to
its associated tier-1 preorder changer u which is O(lg lg n) bits. At each tier-1 preorder
changer, we store its preorder rank which is O(lg n) bits. In the micro-tree lookup table,
we store the distance between v and u′.

Preorder Select Given the preorder number of a node v, we want to find τ(v). Let u
and u′ be the tier-1 resp. tier-2 preorder changers associated with v. The core observation
that we have made before is that τ1(u) = τ1(v) and τ2(u

′) = τ2(v), since a node’s tier-1
(tier-2) preorder changer by definition lies in the same mini- (micro-) tree as v.

Hence by Lemma 3.4.8, we may store the τ -name of all tier-1 preorder changers, and
⟨τ2, τ3⟩ of all tier-2 preorder changers. Thus given v we may compute τ1(v) and τ2(v).
Finally we obtain τ3(v) using the micro-tree lookup table, found by looking the node at
distance v − u′ away from u′ in the micro-tree.6

6Using the same techniques, we are also able to support the rank and select operations in POST, IN,
DFUDS traversal orders, by applying Lemma 3.4.8.
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Level-Order Rank Given a node v by τ -name, we now seek the i with v = wi (i.e.
the level-order rank of v is i since it is the ith node in a level-order traversal). We compute
i as j+(j′− j)+(i− j′) for wj and wj′ the tier-1 resp. tier-2 level-order changers of v = wi;
In the same way as preorder rank, we store the level-order rank of the tier-1 level-order
changer, and the distance between the tier-1 and tier-2 changers at j′. Finally in the lookup
table, we store the distance between v and wj′ .

Figure 3.2: A rough sketch of the steps in the computation of level-order rank.

Example 3.4.13. Consider Figure 3.2. Suppose the node given is the black node. The
mini-tree is coloured in blue, and the micro-tree in red. The tier-1 level-order changer is
the node coloured in blue (i.e wj), and the tier-2 level-order changer is the node coloured
in red (i.e. wj′), as these are the node where the level-order traversal changes mini- or
micro-trees. We can compute the number of nodes between the red and black nodes in the
level-order traversal using the micro-tree lookup table, since the entire segment lies within
the micro-tree (this term is i− j′). At the red node, we store the distance between it and
the blue node (this term is j′ − j), and at the blue node, we store its level-order rank (the
number j). The level order rank of v can be computed by taking the sum of the 3 terms.

Level-Order Select Given the level-order rank i, find τ(wi). As in preorder, we find
the tier-1/tier-2 changers wj and wj′ associated with wi. This gives us τ1 and τ2. To find
τ3, we again store in the lookup table the node (τ3) that is wi − wj′ away from wj′ in the
micro-tree.
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prev internal and next internal Here we are given τ(v), and we wish to find
prev internal(v) = τ(w), where w is the last non-leaf node (degree(w) > 0) preceding v
in level order. And next internal is analogous (i.e. the first non-leaf node succeeding v
in level-order).

For prev internal, in the micro-tree lookup table, we store whether there is an internal
node to the left of v inside the micro-tree between v and its level-order changer u′. For
next internal, in the micro-tree lookup table, whether there is an internal node to the
right of v between v and the boundary node b immediately preceding the subsequent level-
order changer.

For both prev internal and next internal, if the internal node we are looking

for is within the micro-tree, we store its τ3. Otherwise, w does not lie in µ
τ1(v)
τ2(v)

. By

definition, we have prev internal(v) = prev internal(u′) and next internal(v) =
next internal(b). For next internal, we find the level-order changer b′ where
node rankLEVEL(b

′) = node rankLEVEL(b) + 1. If b′ is a leaf, then next internal(v) = b′,
otherwise next internal(v) = next internal(b′).

At each tier-2 level-order changer, we store ⟨τ2, τ3⟩ of the previous/next internal node
if it is in the same mini-tree. At each tier-1 level-order changer, we store τ of the its
previous/next internal node. Thus the node is not in the same mini-tree, proceed to the
appropriate tier-1 level-order changer and retrieve the answer there.

3.5 Remaining Tree Queries

In this section, we consider the remaining queries implemented in previous results. See
Table 2.1. In many of our operations, the procedure do not need to be changed very much
(or at all) from the previous versions of tree covering. Unless otherwise stated, all nodes
will be given or returned by their τ -names.

parent(v) : If parent(v) is in the same micro-tree as v, then we can find this by the
micro-tree lookup table. Otherwise, the parent of v in the micro-tree is either the dummy
root in which case v is either a tier-1 or tier-2 s-node, and we may store the parent of v
explicitly, or v is the root of the micro-tree. If so, then we may store its parent (which
must be in the same mini-tree if it is not a s-node). We may do this by Lemma 3.4.9 and
Lemma 3.4.11.
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degree : If v is not the root of the micro-tree, then all of it’s children belong to the
micro-tree (if v is a promoted s-node, we use the original s-node instead). If v is the root
of several micro-trees (but not the root of several mini-trees as well) we store the degree
of v in O(lg lg n) bits. If it is the root of several mini-trees then we store the degree of v in
O(lg n) bits. We may do this by Lemma 3.4.9.

child(v, i) : There is no change needed from previous tree covering solutions, as we
will never need to compute children of any dummy roots.

child rank(v) : The only difference is when we find the rank of an s-node. The rank
of an s-node is wrong in its mini-/micro-tree because of the dummy root. To do this, in our
level-order traversal of the s-nodes Lemma 3.4.11, we store a bitvector of length O(n/H)
for tier-1 and O(n/H ′) for tier-2 which has a 1 for an s-node v is the preceding s-node has
a different parent (recall that H = lg3 n and H ′ = lgn

(lg lgn)2
). Then child rank(v) is simply

the distance between v and the closest preceding 1 in the appropriate (tier-1/tier-2) bit
vector.

depth(v) : Let u and u′ be the closest tier-1 and tier-2 s-node ancestors of v. If u′

does not exists, then let u′ be the root of the micro-tree containing v. If u′ is a dummy
root, then u is in the same micro-tree as v. If u does not exist then we are in the first
tier-1 slab which contains the root of the entire tree.

From the micro-tree lookup table, we find the distance between v and u′. At each tier-2
s-node and every micro-tree we store the distance to the closest tier-1 s-node from the
s-node or the root of the micro-tree (or to the root of the entire tree if no tier-1 s-node
ancestors exist). At each tier-1 s-node we store the depth of the s-node. We may do this
by Lemma 3.4.9 and Lemma 3.4.11.

The depth of v is the sum of the distances above.

anc(v, i) : The solution of [37, §3] essentially works without changes, but tree slabbing
actually simplifies it slightly. We start by bootstrapping from a non-succinct solution for
the level-ancestor (LA) problem:

Lemma 3.5.1 (Level ancestors, [11, Thm. 13]). There is a data structure using O(n lg n)
bits of space that answers anc(v, i) queries on a tree of n nodes in O(1) time.
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Geary et al.[37] apply this to a so-called macro tree; we observe that we can instead
build the LA data structure for all tier-1 s-nodes, where s-nodes u and v are connected by a
macro edge if there is a path from u to v in T that does not contain further s-nodes. This
uses O( n

H
lg( n

H
)) = O(n/ lg n) bits. Each mini-tree root stores its closest ancestor that

is a tier-1 s-node. Additionally, mini/micro tree roots and (tier-1/tier-2) s-nodes store
collections of jump pointers : mini trees / tier-1 s-nodes allow to jump to an ancestor at
any distance in 1, 2, . . . ,

√
H or

√
H, 2
√
H, 3
√
H, . . . , H; the same holds for micro trees /

tier-2 s-nodes with H ′ instead of H, and as usual storing only ⟨τ2, τ3⟩. (Mini-tree roots /
tier-1 s-nodes store full τ -names in jump pointers.). The total space for jump pointers are

n

H
· 2
√
H · lg n =

n√
H · lg n

=
n√
lg n

for tier-1 s-nodes and mini-tree roots and

n

H ′ · 2
√
H ′ lg lg n = n

(lg lg n)3√
lg n

for tier-2 s-nodes and micro-tree roots.

Again by Lemma 3.4.11 and Lemma 3.4.9 we may do this in o(n) bits of space.

The query now works as follows (essentially [37, Fig. 6], but with care for s-nodes): We
compute the micro-tree local depth of v by table lookup and check if w lies inside the micro
tree; if so, we find it by table lookup. If not, we move to the micro-tree root – or the tier-2
s-node in case the micro-tree root is a dummy root (using a micro-tree local anc query);
let’s call this node x. We now compute x’s mini-tree local depth (using the data structures
for depth) to check if w lies inside this mini-tree. If it does, we use x’s jump pointers:
either directly to w (if the distance was at most

√
H ′), or to get within distance

√
H ′, from

where we continue recursively. If w is not within the current mini-tree, we jump to y, the
mini-tree root, or a tier-1 s-node in case the mini tree has a dummy root (using a recursive,
mini-tree local anc query). If w is within distance H from there, we use y’s jump pointers
(to either get to y directly, or to get within distance

√
H). Otherwise, we use y’s pointer

to its next tier-1 s-node ancestor (unless y already is such). The LA data structure on
tier-1 s-nodes allows us to jump within distance H of w, from where we continue.

Note that after following two root jump pointers of each kind we are always close enough
to w that the next micro-tree root will have a direct jump pointer to w. The recursive
call to find a tier-1 s-node subforest root (when a mini-tree has a dummy root) is always
resolved local to the mini tree, so cannot lead to another such recursive calls. Hence the
running time is O(1).
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nbdesc(v), leaf size(v) : Given v, we will compute the number of descendants of v
in the micro-tree, the number of descendants of v in the mini-tree but not in the micro-tree,
and the number of descendants of v in the entire tree, but not in the mini-tree. nbdesc(v)
would clearly be the sum of the tree above quantities.

The first is simple, we store this quantity in the micro-tree lookup table. Let u′
1, u

′
2

be the range of tier-2 s-node descendants of v obtained from Lemma 3.4.12. The number
of descendants of v outside of the micro-tree are descendants of these s-node if they exist
and descendants of the micro-tree root corresponding to the external edge. We store the
number of descendants of the root of each micro-tree down to the the level of the tier-2
s-nodes. At each tier-2 s-node we store the number of descendants of it in the mini-tree,
along with a partial sum of all the tier-2 s-nodes of that level in the mini-tree.

The number of descendants of all tier-2 s-nodes between u′
1 and u′

2 is therefore the
difference of the partial sums stored at u′

1 and u′
2.

We repeat the above process for tier-1 s-nodes and mini-tree roots.

For leaf size(v), for the above, we store the number of leaf descendants rather than
the total number of descendants.

height(v) : For a mini-tree root, we may explicitly store the height. For each tier-1
s-node, we may also explicitly store the height. Now we describe how to find the height of a
micro-tree root. We find the range of tier-1 s-node descendants of the root (and also find the
difference in depth of these nodes), and using a range maximum data structure the index
of the tier-1 s-node with the greatest height. If no such tier-1 s-node descendants can be
found then we are on the last tier-1 slab, and the height will be at most O(lgH) = O(lg lg n)
and we may store it explicitly.

If v is not a micro-tree root. We again find the range of tier-1 s-nodes descendants. If
they do not exist we find the range of tier-2 s-nodes and perform the range maximum on
them. For tier-2 s-nodes in the last slab only, we store the height of them explicitly (and a
flag such as -1 otherwise). Finally, if no tier-2 s-nodes range exist, then the height of v is
the height in the micro-tree or is the height contributed from the external edge (plus the
distance to the external edge) which we may lookup.

The range minimum/maximum data structures use space linear in the number of ele-
ments which is at most O(n/H ′) = o(n).

LCA(u, v) : The technique of He et al. [44] based on bootstrapping a non-space efficient
solution (similar to anc) works for tree slabbing, too. The only change we need to make
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is to include tier-1 s-nodes in the tier-1 macro tree and tier-2 s-nodes in each tier-2 macro
tree. These will be included instead of the dummy roots added.

leftmost leaf, rightmost leaf : We may use the same technique with very little
modifications. Since our mini-/micro-trees are cut not only at external edges but also
slabbed edges, we must store at each tier-1 s-node the left/right most leaf. At each tier-2
s-node, the micro-tree containing the left/right most leaf or the tier-1 s-node descendant
(via ⟨τ2, τ3⟩) which contains the left most leaf.

level leftmost, level rightmost : No changes are needed. The previous work
showed that the left most nodes of each level listed by level forms a piece-wise constant
sequence, and thus can be stored in o(n) bits. The same holds true as we only introduce
at most O(n/H) or O(n/H ′) more blocks in the sequence.

level pred, level succ : This is now subsumed by node rankLEVEL and node selectLEVEL.
We simply select the node that is 1 more/less than the given node’s rank in a level-order
traversal.

leaf rank, leaf select : We first consider leaf select in pre-order. The sequence
of leafs is a subsequence of all the nodes, and thus in a preorder traversal, the number
of pre-order leaf changers (i.e. a leaf v where the previous leaf is in a different mini- or
micro-tree) is O(n/H) or O(n/H ′), and the same technique as node selectPRE suffices.

For leaf rank, we use the same technique as node rankPRE, except at every location
storing the number of nodes between pre-order changers, we store the number of leafs
instead, which is a smaller quantity.

Combining our work in Sections 3.5, and 3.4 we have the main result of this chapter:

Theorem 3.5.2 (Succinct trees). An ordinal tree on n nodes can be represented in 2n+o(n)
bits to support all the tree operations listed in Table 2.1 in O(1) time.

3.6 Discussion

In this chapter we used a novel tree decomposition scheme to support level-order operations
in succinct trees. This decomposition scheme has the feature that any subtree created either
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has all their nodes consecutively in a level-order traversal or the number of nodes is much
larger (by a factor of lg2 n for mini-trees and (lg lg n)2 for micro-trees) than the height of
the subtree.

By doing so, we are able to store information for every level of the subtree which is
necessary to support level-order operations. This is because for any of these subtrees, the
level-order traversal enters and leaves the subtree on every level, and the information of
the traversal needs to be stored.

In this way, we are able to give the first succinct representation of static ordinal trees
supporting both level-order operations and depth-first traversal (pre-order, post-order etc.)
operations, whereas previously they were separate.

The consequence of this can be seen in subsequent chapters, where we will use this
result as a key building block for succinct data structures for many variations of interval
graphs.

For future directions, making the work here dynamic is one direction. Dynamic succinct
data structures are much rarer than static succinct data structures. However for trees, there
exist dynamic succinct ordinal trees (supporting the inserting and deletion of both internal
nodes and leaves), supporting all the non-level-order operations in O(lg n/ lg lg n) time
[67]. It is a very nice avenue of work to generalize the ideas in this chapter to the dynamic
setting.

Next avenue of work is succinct forests. That is we have a collect of trees T1, . . . Tk.
and we wish to support traversals on them. A preorder traversal is trivial, as we may add
a dummy root with each of the trees as children of that dummy root. However, in this
manner, the level-order traversal is incorrect as the traversal would repeated enter and exit
each of the trees. We would like to represent the trees so that the level-order traversal
traverse each of the trees sequentially.

A sketch of how this can be done is the following: Add a dummy root as above and slab.
For each slab, add a dummy for each tree, then a dummy root overall, then decompose.
In this manner, we may show that the number of changers is not too large (any changer
for tree in the i-th slab can be charged to O(H) nodes of that tree in the previous slab),
and careful work would be needed for the first slab, where we cannot charge the space to a
previous slab. Details on supporting all the operations would also need to be worked out
as well, but are likely not too different from what is presented in this chapter.

There is work in reducing the redundancy (i.e. the o(n) term) for succinct trees.
Normally, this term is on the order of O(n lg lg n/ lg n), but there is work which reduces
this term to O(n/ lg n) [69]. In this chapter, we have not explicitly analyzed this term, but
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Figure 3.3: We convert the forest into a tree by adding a dummy root. Then for each slab
which consists of a forest, instead of adding a single dummy root to convert it into a tree,
we add 2 layers of dummy roots. First layer to join together all trees that belong to the
same original tree, then add the dummy root to join all the trees together.

it is on the order of O(n(lg lg n)c/ lg n) for some constant c ≥ 3, since we store lg lg n bits
at each tier-2 changer, and there are n/H ′ = O(n(lg lg n)2/ lg n) such changers.

Finally, we have not considered all the operations that can be done in level-order, just
those that are needed for the support of our interval graph data structures. However, other
level-order operations should be easily implementable using the framework developed here.
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Chapter 4

Interval Graphs

In this and the next two chapters we will study data structure problems for interval graphs
(Definition 2.1.10). Specifically, in this chapter, we will study static interval graphs and
related classes of graphs. The chapter is organized as follows: we begin with a brief
introduction in Section 4.1, followed by a review of relevant previous works in Section 4.2,
and an overview of existing results that we will be using in Section 4.3. We will study
the distance oracle in interval graphs in Section 4.4, study bounded degree and bounded
chromatic number interval graphs in Section 4.5, prove lower bounds related to the graphs
studied in Section 4.6. Finally, we will summarize our results and discuss open problems
in Section 4.7.

4.1 Introduction

Graphs are one the most widely used types of data. In this chapter, we study navigation
oracles (i.e. data structures that allow efficient traversal through a graph, through the
operations of adjacent, degree and neighborhood) and succinct distance oracles, i.e.,
data structures that efficiently compute the length of a shortest path between two vertices,
for interval graphs and related classes of graphs.

To support distance queries, researchers have considered the problem of designing data
structures called shortest path oracles or distance oracles. These data structures are con-
structed by preprocessing the given graph G, such that, given a pair of query vertices x
and y of G, the shortest path query, which asks for the list of vertices on the shortest path
between x and y, or the distance query, which asks for the distance between x and y, can
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be answered efficiently. A naive solution is to precompute information between all pairs of
vertices, and this can answer a distance query in constant time but uses Θ(n2) space, where
n is the number of vertices in the graph. As quadratic space is believed to be necessary
for fast distance queries, to improve space efficiency, much work has been done to design
approximate distance oracles for both weighted [80, 21, 78] and unweighted graphs [70, 1].
For example, given a pair of vertices x and y at distance d, the Θ(n5/3)-word distance or-
acles of Pǎtraşcu and Roditty [70] can compute in constant time an approximate distance
in [d, 2d + 1]. It can also return a path between x and y with length upper bounded by
2d + 1 in O(d) time. This result was generalized by Abraham and Gavoille to design an
Θ̃(n1+2/(2k−1))-word1 oracle that can compute in O(k) time a distance in [d, (2k− 2)d+1],
for any integer k > 1.

These distance oracles often use Θ(n1+Ω(1)) space to provide fast support for distance
queries. However, modern applications often process large graphs, and data structures
with such space costs tend not to fit in main memory. Therefore, a trend in the design
of distance oracles is to take advantage of the structural properties of various classes of
graphs to design more space-efficient solutions. The classes of graphs considered include
both sparse graphs such as planar graphs [55, 54] and chordal graphs [76, 65].

Interval graphs are the intersection graphs of intervals on the real line and have ap-
plications in operations research [9] and bioinformatics [84]. Distance oracles are widely
studied; for an overview of the extensive literature see [78, 85, 80, 70].

4.2 Previous Work

In this section, we give a wide variety of previous works on succinct graph data structures,
and in subsequent chapters focus on previous works related to the topics of those chapters.

Several succinct representations of (subclasses of) graphs have been studied, e.g., for
general graphs [30], k-page graphs [49], certain classes of planar graphs [24, 23, 17], sepa-
rable graphs [14], posets [59], distributive lattices [64], chordal graphs [65], path graphs [8],
series-parallel, block-cactus, 3-leaf-power graphs [19], permutation graphs [81]. Acan et
al. [2] showed how to represent an interval graph on n vertices in n lg n+(3+ϵ)n+o(n) bits
to support degree and adjacent in O(1) time, neighborhood(v) in O(degree(v)) time and
spath(u, v) in O(|spath(u, v)|) time, where ϵ is a positive constant that can be arbitrarily
small. To show the succinctness of their solution, they proved that n lg n−2n lg lg n−O(n)
bits are necessary to represent an interval graph. They also showed how to represent a

1The Õ and Θ̃ notation hides polylog(n) multiplicative factors.
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proper interval graph and a k-proper/k-improper interval graph (defined below, Defini-
tion 4.3.2, Definition 4.3.3) in 2n + o(n) and 2n lg k + 6n + o(n lg k) bits, respectively,
supporting the same queries.

For bounded degree interval graphs and bounded chromatic number interval graphs,
Chakraborty and Jo [18] showed lower bounds of 1

6
n lg σ bits where σ is the maximum

degree in bounded degree interval graphs and the chromatic number in bounded chromatic
number interval graphs. For an upper bound, in the case of bounded degree interval
graphs they gave a data structure occupying n lg σ+O(n) bits of space, supporting degree
and adjacent in O(1) time, neighborhood(v) in O(degree(v)) time and spath(u, v) in
O(|spath(u, v)|) time. For bounded chromatic number interval graphs, they gave a data
structure occupying (σ− 1)n+O(n) bits of space supporting adjacent in O(lg lg σ) time,
degree and neighborhood in O(σ lg lg σ) time.

4.3 Preliminaries

As a bit-vector is the most fundamental data structure in succinct data structures, we will
need to make use of it. We will also require the generalization to strings.

Lemma 2.3.2 ([62]). A bit-vector of length n can be represented in n+o(n) bits to support
access, rank, select in O(1) time.

Lemma 2.3.6 ([39]). A string S of length n over an alphabet of size σ, can be succinctly
represented using n lg σ + o(n lg σ) bits to support rank, access in O(lg lg σ) time and
select in O(1) time.

The main building block we will use for the distance query will be succinct trees
presented in Chapter 3.

Theorem 3.5.2 (Succinct trees). An ordinal tree on n nodes can be represented in 2n+o(n)
bits to support all the tree operations listed in Table 2.1 in O(1) time.

We will also make use of the data structures for orthogonal range operations.

Lemma 2.5.6. Given n 2-dimensional points, and let f be the time cost of rank, g be
the time cost of decode. Then we are able to support 3-sided reporting queries (of the
form [x1, x2]× [−∞, y], to support the symmetric cases, we duplicate the structure) in time
O(f + k · g) where k is the number of points reported. The space cost is 2n+ o(n) plus the
space needed to support the rank and decode operations.
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4.3.1 Interval Graphs

We will now expand on Definition 2.1.10. In Definition 2.1.10, we used a set of nodes that
is a path in a tree that was itself a path. Equivalently, if we number the nodes of the path
by strictly increasing real numbers, then the set of nodes can be written as an interval on
the real line. By doing so, we have the equivalent definition of interval graphs:

Definition 4.3.1. A graph G is an interval graph if it is the intersection graph of
intervals on the real line. That is for every vertex v, sv is a set containing the real numbers
in the interval [lv, rv]. In this way, we will name the interval Iv = [lv, rv].

For an interval graph, we may sort the end points so that they lie in the range [1 . . . 2n]
while preserving the intersection structure (if the left endpoint of an interval is the same
as the right end point of a different interval, the left end point comes first to preserve
intersections). See Figure 4.1.

For each vertex v, we will treat v as a number, which is the index of its left endpoint
among all left end points, therefore, the statement u < v, which compares the numbers
assigned to the vertices will also implicitly compare the left end points of the two vertices.

Some subclasses and related classes of interval graphs that we will study are:

Definition 4.3.2. A proper interval graph is an interval graph where there exists a
way to associate each vertex v with an interval Iv = [lv, rv] such that no two interval nest.
That is for all u, v, Iv ∩ Iu /∈ {Iv, Iu}.

Definition 4.3.3. An interval graph is k-proper if there exists an way to associate each
vertex v with an interval such that for every vertex v, the number of intervals containing
it is at most k. An interval graph is k-improper if there exists an way to associate each
vertex v with an interval such that for every vertex v, the number of intervals it contains
is at most k.

Example 4.3.4. Consider the graph defined by the following intervals.

In this way of representing the graph via intervals, the red interval contains the 3 blue
intervals, and each blue interval is contained by the red interval. Thus this graph is 1-
proper and 3-improper. We note that since the definition is an existential statement, this
graph could also be 2-improper or even 1-improper, if a better representation can be found.
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Definition 4.3.5. An interval graph is a bounded degree interval graph with respect
to a parameter σ if the maximum degree over all vertices is σ. An interval graph is a
bounded chromatic number interval graph with respect to a parameter σ if we may
assigned a colour cv ∈ [1, . . . , σ] to each vertex such that any two adjacent vertices have
different colours.

Definition 4.3.6. A graph is a circular arc graph if it is the intersection graph of arcs
on a circle.

We will first briefly describe the data structure of [2] as we will build our data structure
on top of it, and in the case of bounded degree and bounded chromatic number interval
graphs, we will need to interface with it closely.

We store a bit vector B of length 2n with index corresponding to the beginning of an
interval as a 0 and the index corresponding to the end of an interval as a 1. We name the
intervals 1 to n by left endpoint so that the i-th interval’s left endpoint is the index of the
i-th 0. Thus the left endpoint of any interval can be obtained using the select operation.
To obtain the right endpoint, there are 3 obvious ways to do it: store the right endpoint of
the i-th interval explicitly; for each interval [lv, rv], store the difference rv − lv; or store the
rank of the right endpoint (the i-th 0 corresponds to the j-th 1, defining a permutation).
In all of these methods, it takes O(1) time to compute the right endpoint of any interval
and uses n lg n bits of space in the worst case.

For degree(v), we count the number of intervals that do not intersect the given interval
[lv, rv]. That is all intervals of the form [x, y] with y < l or x > r. The count of the first
type we obtain by counting the number of 1s before the index l in the bitvector with rank.
The second we count the number of 0s after the index r in the bitvector.

Finally for neighborhood(v), there are two types of neighbours. The first are neigh-
bours ([x, y]) where lv < x < rv. To output these, we simply output each interval corre-
sponding to a 0 in the indices between lv, rv using rank and select. The second type are
those with x < lv. For these we must have y > lv. If we treat the intervals as points in 2D
space, then these are exactly the points within the 3-sided rectangle [0, lv)× (lv,∞]. Given
the left end point of an interval, rank is simply rankB. As we have a way to compute the
right endpoints given left endpoints (i.e. decode), we may solve this using 2n-bits in O(1)
time. We note that in their paper, the technique they used is exactly the method to solve
2-dimensional 3-side reporting queries, though they did not explicitly say it.

As their solution’s bottleneck for space is the data structure computing the right end-
points, we will leave this part as a placeholder. Thus to use their data structure, it suffices
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to support the operation decode: given the rank of any interval i, we need to be able to
compute both the left and right endpoints. Once we have this, we may store the bitvector
to compute degree and a 2D range reporting data structure for neighbourhood.

We may then restate the theorem of Acan et al. as:

Theorem 4.3.7 ([2]). Let G be an interval graph. Let D be a data structure that can
compute the right endpoints of the i-th interval using g(n) bits of space and f(n) time.
Then we may support adjacent, degree in O(f(n)) time, neighborhood in O(f(n)) time
per neighbour. This takes g(n) + 4n bits of space. Moreover for any vertex v we may
retrieve the interval [lv, rv] in O(f(n)) time.

Furthermore there exists a data structure D where f(n) = O(1) and g(n) = n lg n.

Lastly to handle the case of disconnected interval graphs, we need to be able to know
if two vertices are in the same component. To do this, we will use the equivalence class
data structure of El-Zein et al.

Lemma 4.3.8 (Thm. 7 of [28]). Given a partition of an n-element set into equivalence
classes, O(

√
n) bits are necessary and sufficient for storing the partition and to answer the

equivalence query in constant time if each element is to be given a unique label in the range
{1, 2, . . . , n}. 2 Furthermore, the labelling is given by sorting the equivalence classes from
smallest to largest, then labelling the elements in order.

4.4 Distances in Interval Graphs

In this section, we will describe how to support the distance query in interval graphs by
augmenting the data structure of Acan et al. [2] using O(n) additional bits.

As interval graphs are a subclass of chordal graphs, we will be using the algorithm
of Munro and Wu [65]3 to compute distances. For a vertex v, denote the bag of v by
Bv = {w : ℓv ∈ Iw}, i.e., the set of vertices whose intervals contain the left endpoint of v’s
interval. We define parent(v) = minBv (i.e interval in Bv with the smallest left endpoint).

The shortest path algorithm given in [65] when reduced to interval graphs is similar
to the one in [2]. Given u < v, we compute the shortest path by checking if u and v are

2The input to the equivalence class query are the labels of the two elements.
3This algorithm is not part of this thesis, but rather can be found in the cited paper or the author’s

MMath thesis.
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adjacent. If so, add u to the path; otherwise, add parent(v) to the path and recursively
find spath(parent(v), u).

As the next step for every vertex v is the same regardless of destination u, we can store
this unique step for each vertex as the parent pointer of a tree. We construct a tree T
(denoted as the distance tree) as follows: for every vertex v = 1, . . . , n (in that order),
add node v to the tree as the rightmost (last) child of parent(v); see Figure 4.1 for an
example.

The node v = 1 is the root of the tree. Thus we have identified each vertex of G with
a node of T . This correspondence is captured by Lemma 4.4.1 below.
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Figure 4.1: An Interval Graph (middle) with Interval Representation (left), and distance
tree constructed (right).

We note that the above construction is undefined for a disconnected graph, as the
leftmost interval of a component would have an undefined parent (or rather the parent is
itself, but that would not define a tree). The simplest way to solve this is to set the parent
of such a vertex v as v−1 (that is we add the edge between them). To avoid reporting this
edge in queries, we use Theorem 4.3.8 to detect the boundaries of components (by check
if v − 1 and v are in the same equivalence class). Thus we may detect if v is the first or
last vertex in its component. By Theorem 4.3.8, we first order the components by their
sizes. Any distance queries (between u and v) will first check if the two vertices are in the
same component. Similarly for adjacency and neighborhood queries; we will need to check
if vertices are the first vertex of a component, and if so, make sure the added edge is not
reported.

This uses an additional O(
√
n) = o(n) bits of space, which we will ignore as it is a

lower order term.

Lemma 4.4.1 (Distance tree BFS). Let a1, a2, . . . , an be a breadth-first traversal of T .
Then the corresponding vertices of G are 1, 2 . . . n.
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Proof. First note that it immediately follows from the incremental construction of T in
level order that the node with largest index inserted so far is always the rightmost node
on the deepest level of T . So if the graph is disconnected, our procedure above does not
change the order of the vertices in level order, nor the order of the vertices in G. So we
may assume that the graph is connected.

For vertices u < v, we will show that the node in T corresponding to u appears before
the corresponding node to v in T in level order.

Suppose by contradiction that it is not. Thus we must have that sv < su in order for
it to be before u in the breadth-first ordering. If sv = su, then they are siblings and v is
added to the right of u by construction.

Therefore, we have the following facts: i) ℓv > ℓu as v > u, ii) ℓv ∈ Isv by definition
of sv, iii) ℓu ∈ Isu by definition of su, and iv) ℓsv < ℓsu as sv < su. Thus we have
ℓsv < ℓsu < ℓu < ℓv < rsv , and thus ℓu ∈ Isv . By definition, sv ∈ Bu which contradicts the
fact that su = minBu.

With this correspondence, we will abuse notation when the context is clear and refer to
both the vertex in the graph and the corresponding node in the tree by v. Any conversion
that needs to be done will be done implicitly using node rankLEVEL and node selectLEVEL.
Now consider the shortest path computation for u < v. The only candidates potentially
adjacent to u are the ancestors of v at depths depth(u)− 1, depth(u), and depth(u) + 1.
The ancestor z of v at depth depth(u) + 2 cannot be adjacent to u as w = parent(z) > u,
and parent(z) is defined as the smallest node adjacent to z. See Figure 4.2.

Thus the distance algorithm reduces to the following: For vertices u < v, compute
w = anc(v, depth(u) + 1), the ancestor of v at depth depth(u) + 1. Find the distance
between u and w using the spath algorithm. This is at most 3 steps, so in O(1) time.
Finally take the sum of the distances, one from the difference in depth and the other from
the spath algorithm.

We may summarize the above as the following:

Lemma 4.4.2. Let G be an interval graph with distance tree T . Let u, v be two vertices
of G with node rankLEVEL(u) > node rankLEVEL(v). Consider the node to root path of u as
u = u1, . . . , uk = r. Let i be the first index where lui

≤ rv. Then a shortest path from u to
v is u = u1, . . . , ui, v.

Furthermore, depth(ui) is either depth(v)− 1 or depth(v) or depth(v) + 1.

The extra space needed is to store the tree T , using 2n+o(n) bits. The results described
above are summarized in the following theorem:
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Figure 4.2: The computation on a shortest path on the distance tree between the two red
nodes (u at depth 2 and v at depth 5). We repeatedly apply the parent operation. The
orange arrow is taken if those two nodes are adjacent. If they are not, the green path is
taken instead. Due to this, the penultimate vertex on the path cannot have depth smaller
than depth(u)−1 nor greater than depth(u)+1. To compute the distance, we check which
of the 3 possible nodes is the penultimate one, using anc.

Theorem 4.4.3 (Succinct interval graphs with distance). An interval graph G can be
represented using n lg n+(5+ϵ)n+o(n) bits to support adjacent, degree and distance in
O(1) time, neighborhood in O(degree(v)+1) time, and spath(u, v) in O(distance(u, v)+
1) time.

Applying this to the more abstract data structure discussed in Theorem 4.3.7, we obtain
the following more abstract version of the data structure with distances:

Theorem 4.4.4. Let G be an interval graph. Let D be a data structure that can compute
the right endpoints of the i-th interval using g(n) bits of space and f(n) time. Then we
may support adjacent, degree, distance in O(f(n)) time, neighborhood in O(f(n)) time
per neighbour and spath in O(f(n) + distance) time. This take g(n) + 6n bits of space.
Moreover for any vertex v we may retrieve the interval [lv, rv] in O(f(n)) time.

Furthermore there exists a data structure D where f(n) = O(1) and g(n) = n lg n.

Finally we note that this augmentation can without changes be applied to subclasses
of interval graphs; we thus obtain the following theorem (where the increase in space over
the data structure of Acan et al. [2] is 2n bits, and the time complexities are the same):

Theorem 4.4.5 (Succinct k-proper/-improper interval graphs with distance).
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A k-proper (k-improper) interval graph4 G can be represented using 2n lg k+8n+ o(n lg k)
bits to support degree, adjacent, distance in O(lg lg k) time, neighborhood in O(lg lg k ·
(degree(v) + 1)) time and spath(u, v) in O(lg lg k · (distance(u, v) + 1)) time.

The additional space is a lower-order term if k = ω(1). While Acan et al.’s data
structure is not succinct, either, for k = O(1), a different tailored representation for proper
interval graphs is presented there. In this case of proper interval graphs, simply adding
our distance tree is not good enough.

4.4.1 Proper Interval Graphs

Recall that a proper interval graph is an interval graph that admits an interval representa-
tion with no interval contained in another. As before, each vertex v is associated with an
interval Iv and vertices sorted by left endpoints. The information-theoretic lower bound
for this class of graphs is 2n−O(lg n) bits [42, Thm. 12].

While adding the distance tree on top of the existing representation is too costly, our
the key insight here is that the graph can be recovered from the distance tree, and indeed,
we can answer all graph queries directly on the latter. Thus for proper interval graphs,
the representation is succinct. First, the neighbourhood of a vertex can be succinctly
described:

Lemma 4.4.6. Let v be a vertex in a proper interval graph. Then there exists vertices
u1 ≤ u2 such that the (closed) neighbourhood of v is equal to the vertices in [u1, u2].

Proof. Let u1 < v be adjacent to v. Let w = u1 + 1. As G is a proper interval graph, we
have the following inequalities: ℓu1 < ℓw ≤ ℓv < ru1 < rw. Thus Iv intersects Iw and v is
adjacent to w. So the neighbourhood of v consisting of vertices with smaller label forms a
contiguous interval.

Similarly, the same argument can be made for the vertices with larger labels.

Let T be the tree constructed in the previous section. We already showed how to
compute spath and distance for G (based on an implementation of adjacent). We now
show how to compute adjacent, degree and neighborhood 5.

4We note that Klav́ık et al. [51] consider a closely related class of interval graphs, k-NestedINT that is
similar to (and contains) the class of (k − 1)-improper interval graphs considered by Acan et al. [2], but
defines k as the length of longest chain of pairwise nested intervals. The data structures of Acan et al.
directly apply to this notion by adapting the definition of S′.

5We will of course need to perform the same components check as before as well.
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adjacent: Let u < v. We first check if v is the leftmost node in its component; if so, u
and v cannot be adjacent. Otherwise, we compute parent(v); then u and v are adjacent
if and only if parent(v) ≤ u. Correctness follows from the fact that the neighbourhood of
v is a contiguous interval.

neighborhood: Let the neighbourhood of v be [u1, u2]. By the definition of parent(v),
we have that u1 = parent(v) (unless v is leftmost in its component; then u1 = v). Thus
it remains to compute u2. If v is rightmost in its component, u2 = v; otherwise we find u2

using the following lemma in O(1) time.

Lemma 4.4.7. If v is a leaf, then u2 = last child(prev internal(v)); otherwise we
have u2 = last child(v).

Proof. In the case that v is not a leaf in T , we claim that u2 is the last child of v. Denote
this child by w. Clearly v is adjacent in G to all of its children by definition. The parent
of w + 1 is larger than v, and thus w + 1 cannot be adjacent to v by the definition of T .

If v is a leaf of T , we claim that u2 is the last child of the first internal (non-leaf)
node before v in level-order. Let w = last child(prev internal(v)) denote this node.
By definition, parent(w) < v and w ≥ v. As the neighbourhood of w forms a contiguous
interval, w is adjacent to v. Now consider w+1. By definition of w, its level-order successor
w+ 1 must have parent parent(w + 1) > v. Thus by the previous argument, it cannot be
adjacent to v.

degree: |neighborhood(v)| = degree(v) can be found in O(1) time by computing u2− u1

for u1, u2 from neighborhood(v).

The results in this section are summarized in the following theorem; we note that the
succinct representation of neighbours allows to report those faster than what was presented
in Acan et al.’s representation, which returned each of the neighbours one at a time, using
O(degree(v)) time.

Theorem 4.4.8 (Succinct proper interval graphs with distance). An interval graph can be
represented in asymptotically optimal 2n + o(n) bits while supporting adjacent, degree,
neighborhood and distance in O(1) time, and spath(u, v) in O(distance(u, v)) time.

4.4.2 Circular Arc Graphs

We finally show how to extend our distance oracles to circular-arc graphs. We follow the
notation of [2] for circular-arc graphs, in particular, we assume that we are given left and
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right endpoints of the vertices’ arcs in [lv, rv] ∈ [2n] for v = 1, . . . , n, all endpoints are
distinct, and l1 < · · · < ln, i.e., vertex ids are by sorted left endpoints. Moreover, v
is a normal vertex if lv < rv; otherwise it is a reversed vertex corresponding to the arc
[lv, 2n] ∪ [1, rv]. We assume that G is connected; if not, G is actually an interval graph,
and we can use Theorem 4.4.3.

Acan et al. [2] describe two succinct data structures for circular-arc graphs: one based
on succinct point grids (the “grid version”) that supports all operations of Theorem 4.3.7,
but each with a Θ(lg n/ lg lg n)-factor overhead in running time (see [2, Thm. 5]), and a
second (the “grid-less version”) that does not support degree (other than by iterating over
neighborhood), but handles all other queries in optimal time. We describe how to augment
either of these to also answer distance queries (in O(lg n/ lg lg n) resp. O(1) time) using
O(n) additional bits of space.

The idea of our distance oracle is to simulate access to the interval graph obtained
by “unrolling” G twice, and then use the distance algorithm for interval graphs therein.
Figure 4.3 shows an example.

Figure 4.3: An examplary circular-arc graph and its twice-unrolled interval graph. The
figure also shows some of the sequences used in Acan et al.’s succinct representations.
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Gavoille and Paul [35] have shown that this construction preserves distances in the
following sense:

Lemma 4.4.9 ([35, Lem. 6]). Let G = ([n], E) be a circular-arc graph with arcs [lv, rv]
where endpoints are distinct and in [2n] and l1 < · · · < ln. Define G̃ = ([2n], Ẽ) as the
interval graph with the following sets of intervals: for every normal vertex v, include [lv, rv]
and [lv+2n, rv+2n] and for every reversed vertex u, include [ru, lu+2n] and [ru+2n, lu+4n].
Then for any u < v, we have (identifying vertices with the ranks of their left endpoints)

distanceG(u, v) = min
{
distanceG̃(u, v), distanceG̃(v, u+ n)

}
.

Both data structures of Acan et al. store the sequences r′ and r′′ of the rank-reduced
right endpoints for normal resp. reversed vertices, in the order of their left endpoints. Using
rank/select on the bitvectors S and S ′ – storing the “type” of endpoints (left vs. right for
S; left normal, right normal, left reversed, right reversed for S ′) – we can compute the
endpoints (lv, rv) ∈ [2n]2 of any vertex v in the same complexity as reading entries of r′

and r′′, i.e., O(lg n/ lg lg n) time for the grid version and O(1) time for the grid-free version.

Given access to r, the sequence of right endpoints of the circular arcs, we can simulate
access to a right endpoint r̃v, v ∈ [2n], in the twice-unrolled interval graph G̃ as follows:
If v ≤ n and a normal vertex, r̃v = rv. If v ≤ n and a reversed vertex, r̃v = rv + 2n.
Otherwise, v ∈ [n + 1, 2n]; then r̃v = r̃v−n + 2n. (See R in Figure 4.3.) By storing the
bitvector U [1..6n] with rank support where U [i] = 1 iff ℓ̃v = i or r̃v = i for some v, we
can compute the rank-reduced intervals [ℓ̃′v, r̃

′
v] for all vertices v = 1, . . . , 2n of G̃. We also

store the distance tree for G̃ using the data structure of Theorem 3.5.2 in 4n + o(n) bits,
as well as the auxiliary data structures of Acan et al. (without r) from Theorem 4.3.7, all
of which occupy O(n) bits. Together this shows the following result.

Theorem 4.4.10. A circular-arc graph on n vertices can be represented in n lg n+o(n lg n)
bits of space to support either

(a) adjacent, degree, and distance in O(lg n/ lg lg n) time,
neighborhood(v) in O((degree(v) + 1) · lg n/ lg lg n), and
spath(u, v) in O((distance(u, v) + 1) · lg n/ lg lg n) time; or

(b) adjacent and distance in O(1) time,
neighborhood(v) and degree(v) in O(degree(v) + 1), and
spath(u, v) in O(distance(u, v) + 1) time.
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4.5 Bounded Degree and Bounded Chromatic Num-

ber Interval Graphs

In this section, we consider a different subclass of interval graphs by introducing a param-
eter. The two parameters we are interested in is the maximum degree of any vertex, and
the chromatic number of the graph. The chromatic number of a graph is the minimum
number of colours needed so that every vertex is assigned one colour, and two adjacent
vertices are assigned difference colours.

We will denote σ as the maximum degree or chromatic number of an interval graph, and
our goal is to store interval graphs with maximum degree at most σ and interval graphs
with chromatic number at most σ in n lg σ + o(n lg σ) bits. As we will see later, the space
bound we are aiming for is optimal and these are succinct data structure for σ = ω(1).

For both of these cases, we will use the abstract version of the interval graph data
structure Theorem 4.4.4, where the only data structure we need to construct is D, where
given a vertex v (which by our naming scheme, is a number indicating the index of the left
end point of its interval among all left end points of intervals), computing the right end
point of its interval.

In the case bounded degree interval graphs, we have the following result of Chakraborty
and Jo [19].

Theorem 4.5.1. Let G be a interval graph with maximum degree σ, then there exists a
data structure D computing the right end points of intervals in O(1) time and n lg σ+O(n)
bits of space.

The proof is quite simple. We note that in our discussion of Theorem 4.3.7, there are
many ways to compute the right endpoints of intervals, three of which are: writing down the
endpoint explicitly, writing down the difference rv − lv and writing down a permutation.
In the case of bounded degree interval graphs, writing down the difference is the most
natural.

The key observation is that for an interval [lv, rv], it must have at least rv−lv
2

neighbours.
This is because every end point lv < p < rv belongs to a neighbour, and every such
neighbour contributes at most two (one for each of its endpoints) points in this interval.
Thus if the maximum degree is σ, then for every vertex v, rv − lv = Θ(σ). Hence storing
the difference for every vertex uses n lg σ + O(n) bits of space and can compute the right
endpoint in O(1) time.
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Now we consider the case for bounded chromatic number interval graphs. We will give
two data structures, first a succinct data structure using n lg σ+ o(n lg σ) bits of space but
with query times O(σ lg n). The time complexity is quite bad but the goal is the give a
matching upper bounded to the lower bound we will prove. The second is a compact data
structure using 2n lg σ + o(n lg σ) bits with query times O(lg lg σ).

4.5.1 Bounded Chromatic Number Interval Graphs

We will construct the data structure D to compute the right end points, using n lg σ bits
of space.

Consider the intervals of the interval graph. For each index corresponding to the end of
an interval, it corresponds to a previous start of an interval. As the maximal cliques are of
size at most σ,6 the number of unclosed intervals at any point is at most σ (as otherwise,
all of the unclosed intervals are adjacent and would form a clique), thus we may store the
index of the left end point of the unclosed interval matching each index corresponding a
right end point of some interval in lg σ bits. Thus the total space required is n lg σ+O(n)
bits.

Example 4.5.2. In the figure below, consider the right endpoint index corresponding to
the dotted red line.

At this point, the number of unclosed intervals is 3 outlined by the blue intervals. We
store a number between 1 and 3, stating which interval (ordered by left endpoint) this
right endpoint closes. In this case, since the interval being closed is the second smallest
right endpoint, we store a 2. For each of the 6 right endpoints (in sorted order) we similarly
store a number. In this example, the 6 numbers would be 2,2,1,1,2,1.

6Interval graphs are perfect graphs, whose maximum clique size is equal to the chromatic number, this
can be seen by a straightforward greedy colouring algorithm.

54



To show case the algorithm below, consider the third interval by left endpoint (i.e. the
interval being closed at the red dotted line). At its left endpoint, there are 3 unclosed
intervals, so its rank is 3. As we sweep to the right, we encounter the first right endpoint,
which has number 2, so we reduce the rank by 1 (as one of the smaller intervals is now
closed). The next right endpoint also has number 2. Since it matches our current rank,
we have found our matching right endpoint.

To support the navigational operations we will need to be able to find the index of the
right endpoint of the interval given the left end point of an interval.

To do this we use the following algorithm: at the left endpoint, the rank of the vertex v
is the excess (the number of unclosed intervals). For each following index that corresponds
to the right endpoint of an interval there are 3 cases:

• It closes an interval with rank larger than the current rank: there is nothing to be
done and we skip it.

• It closes an interval with rank equal to the current rank: we have found our closing
parenthesis.

• It closes an interval with rank less than the current rank: we decrease our current
rank by 1.

In this way, we are able to compute index of the end of the interval in O(n) time. To
decrease this, we store the indices (left endpoints) of the current (un-closed) intervals at
every σ lg n right endpoints of intervals - and denote these as shortcuts. We binary search
these to find the last shortcut where our query interval is still open - so our matching right
endpoint is between this shortcut and the next. We then apply the above linear search
algorithm. This takes O(σ lg n) time instead, and uses O(n) extra bits. The result can be
summarized as:

Theorem 4.5.3. Let G be a interval graph with chromatic number σ. Then we may
represent G using n lg σ+O(n) bit of space and supports adjacent, degree, neighborhood,
distance in O(σ lg n) time (or per neighbour) and spath in O(σ lg n+ d) time.

We now focus on reducing the time complexity of the operations, at the cost of slightly
increasing the space.

We consider the bitvector denoting pattern of where the intervals begin and end for the
graph G. Colour the graph using at most σ colours. We create the string S by replacing
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each 0 and 1 by the colour of the vertex that is denoted by the bit. For each colour, we
note that any odd occurrence of the colour in the string must be the start of the interval
of a vertex of that colour, and the following even occurrence of that colour is the matching
end of the interval.

We store this string S using 2.3.6. As the length of the string S is 2n, the space required
is 2n lg σ + o(n lg σ) bits.

For the right endpoint, we find the left endpoint lv of the vertex v. We then find the
colour c of the vertex using access(lv) on S and then find the matching right endpoint
using rank and select on that colour. (select(c, rank(c, lv) + 1)).

Applying Theorem 4.4.4, we obtain that neighborhood uses O(lg lg σ) time per neigh-
bour. However, we note that every interval that intersects [l, r] of the type x < l (which
necessitates the 2D range search) are all adjacent to each other, thus all must have differ-
ent colours. Thus the number of vertices of this type is at most σ. Thus the run time is
actually at most O(σ lg lg σ+d) as our range search returns at most σ points. The compact
data structure can be summarized as:

Theorem 4.5.4. Let G be a interval graph with chromatic number σ. Then we may
represent G using 2n lg σ+ o(n lg σ) bit of space and support adjacent, degree, distance
in O(lg lg σ) time, neighborhood in time O(min(d lg lg σ, σ lg lg σ+ d)) time and spath in
O(lg lg σ + d) time.

4.6 Lower Bounds

In this section, we derive lower bounds of n lg σ − o(n lg σ) for both bounded degree in-
terval graphs and bounded chromatic number interval graphs. Improving the result of
Chakraborty and Jo [19] of 1

6
n lg σ.

Given an interval graph G, consider the set of maximal cliques C1, . . . Ck of G with
k ≤ n. For any vertex v of G, let Sv = {Ci; v ∈ Ci} be the set of maximal cliques that
contain v. Booth and Leuker and Fulkerson [15, 34] showed that G is an interval graph
if there exists an ordering of the maximal cliques such that for each vertex v, Sv consists
of consecutive maximal cliques. Thus we will now assume that our ordering of maximal
cliques satisfies this property (consecutive clique property).

In light of this fact, we will now write Sv = [lv, rv] to denote that Sv = {Clv , Clv+1, . . . , Crv}.
We say that a vertex v with support support(v) = [lv, rv] begins in clique lv and ends in
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clique rv. Denote the support of a vertex support(v) = Sv = [lv, rv]. Let V1 ⊂ V be a sub-
set of the vertices, we will extended the definition of support naturally by support(V1) =
∪v∈V1support(v).

To show the lower bound, we will demonstrate a class of interval graphs by an ordering
of maximal cliques. Furthermore, each interval graph in this class will have at most two
ordering of maximal cliques which satisfy the consecutive clique property, thus showing
that we never construct each graph more than twice.

For vertices u, v, we say that they overlap if Sv ∩Su /∈ {Sv, Su, ∅}. That is they overlap
if they intersect but one does not contain the other. For an interval graph G, denote the
overlap graph O(G) on the same vertex set but rather than using intersect of the supports
as the adjacency criteria, we use overlapping as the criteria. Thus (u, v) ∈ E(O(G)) if u, v
overlap. As u, v overlap imply that they intersect, O(G) is a subgraph of G. In particular,
any connected component of O(G) is connected in G.

The theorem of [53] gives a condition for the number of orderings of maximal cliques
of G to be constant.

Theorem 4.6.1. If O(G) has a single component, then the number of orderings of the
maximal cliques of G satisfying the consecutive clique property is at most 2 (one ordering
and the reverse).

Next we give some structural properties of the overlap components of an interval graph.

Lemma 4.6.2. Let V1 be a connected component of the overlap graph of an interval graph
G, then support(V1) is a single interval [l, r].

Proof. Suppose for a contradiction that there are at least two intervals [l1, r1], [l2, r2] that
do not intersect. Then any vertex v with support(v) ⊂ [l1, r1] and any vertex u with
support(u) ⊂ [l2, r2] cannot be adjacent to each other, so the two sets {v; support(v) ⊆
[l1, r1]} and {u; support(u) ⊆ [l2, r2] are disconnected. But by assumption, V1 is overlap
connected, and thus connected, contradiction.

Lemma 4.6.3. Let V1 with support [l, r] such that l ̸= r be a connected component of the
overlap graph of an interval graph. Then for any value x ∈ [l, r], there exists a vertex
v ∈ V1 such that lv ≤ x ≤ rv with lv ̸= rv. Furthermore, if x ̸= l, then we may choose
lv < x ≤ rv.

Proof. First we note that no vertex can have lv = rv since it does not overlap any other
vertex.
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In the case that x = l then as the support of V1 is [l, r] there exists a vertex v with
lv = l and rv > l.

Now suppose that x ̸= l and suppose that no such vertex can be found. Now consider
the two sets of vertices: {v; lv < x} and {v; lv ≥ x} whose union is V1. By assumption
x ̸= l, both sets are non-empty. Note that for the first set, any vertex must have rv < x
otherwise we may pick that vertex. But then the support of the first set is contained in
[l, x− 1] and the second is [x, r], contradicting lemma 4.6.2.

Corollary 4.6.4. Let V1 be a connected component of the overlap graph of an interval
graph with support [l, r], with more than 1 vertex. Then we may find a sequence of vertices
v1, v2, . . . with the following properties: l = lv1 < lv2 < lv3 . . ., and for each vertex: lvi <
lvi+1
≤ rvi

Proof. We repeatedly apply lemma 4.6.3. Stab [l, r] with the value r to obtain the last
vertex in the chain vp. Stab [l, r] with the value lvp to obtain vp−1 with the property that
lvi−1

< lvi ≤ rvi−1
, and repeat.

Next we show how two overlap connected components interact.

Lemma 4.6.5. Let V1, V2 be two connected components of O(G) where G is an interval
graph. Let support(V1) = [l1, r1] and support(V2) = [l2, r2] Then one of the following is
true

• [l1, r1] does not intersect [l2, r2]

• [l1, r1] ⊆ [l2, r2] and there exists a vertex u ∈ V2 such that [l1, r1] ⊆ [lu, ru]. (or the
symmetric case)

Proof. Clearly the two are conditions are mutually exclusive. Thus we will consider the
case where [l1, r1], [l2, r2] intersect. First suppose that they overlap, and without loss of
generality, l1 < l2 ≤ r1 < r2.

We first note that, if l2 = r1, then there exists a vertex v ∈ V1 such that lv < rv = r1
and a vertex u ∈ V2 with l2 = lu < ru by lemma 4.6.3. These two vertices clearly overlap
contradicting the fact that V1 and V2 are distinct overlap connected components.

Again by lemma 4.6.3, there exists a vertex v ∈ V1 with lv < l2 < rv. We note that if
rv = l2 we again have the same scenario as above, so the vertex chosen must have l2 < rv.
Furthermore, there is an vertex u ∈ V2 with lu < r2 ≤ ru. If lu ≥ rv then these two overlap.
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If not, then we stab V2 with the value lu to obtain u1 with lu1 < lu ≤ ru1 . Continue in
this way until we find some vertex ui such that lui

< rv < lui−1
≤ ru. Such a vertex ui

exists because lui
forms a decreasing sequence. This ui overlaps v a contradiction (this is

a restricted from of 4.6.4 where we do not start at the end).

Thus [l1, r1], [l2, r2] cannot overlap and one must be contained in the other. By symme-
try, assume that [l1, r1] ⊆ [l2, r2].

Let u ∈ V2 be the vertex such that lu ≤ l1 such that ru is maximized. We will show
that ru ≥ r1.

First we note that l1 ≤ ru as otherwise, no vertex in V2 contains any point in (ru, l1) in
its support, a contradiction.

Now suppose that ru < r1. by corollary 4.6.4, we find a chain of vertices v1, . . . ∈ V1

such that l1 = lv1 < lv2 . . .. If ru = lvi for some i, then u overlaps with vi. Otherwise, there
either exists some i such that lvi < ru < lvi+1

or lv ≤ ru < rv = r1 where v is the last vertex
in the chain. But in this case, we either have the inequalities, lu < lvi < ru < lvi+1

≤ rvi
and u overlaps with vi or lu < lv ≤ ru < rv = r1 and u overlaps with v, a contradiction.

Thus u has the property that lu ≤ l1 ≤ r1 ≤ ru so that [l1, r1] ⊆ [lu, ru].

With all of our structural lemmas complete we now give our class of interval graphs
by defining our maximal cliques. Fix σ. Let C1 = {1, . . . σ}, C2 = {2, . . . , σ + 1}, Cσ =
{σ, . . . , 2σ − 1} and finally Cσ+1 = {σ + 1, . . . , 2σ}. For Cσ+2 to Cn−σ+1 we apply the
following operation to get Ci+1 from Ci: choose an arbitrary element of Ci that is in the
smaller half of values and remove it, then add the next vertex (i + σ − 1). For example,
to go from Cσ+1 to Cσ+2 we delete one of the elements in the smaller half, that is one of
{σ + 1, . . . , (3/2)σ}, and add the next vertex, which is 2σ + 1. See Figure 4.4.

We will now show that there is at most 2 ways to order the maximal cliques so that it
satisfies the consecutive clique property.

Theorem 4.6.6. Let G be an interval graph obtained in the algorithm above. Then there
are at most two orderings of the maximal cliques which satisfy the consecutive clique prop-
erty.

Proof. First we note that there are exactly two vertices with the same left and right
endpoints: support(v1) = [1, 1] and support(vn) = [n − σ + 1, n − σ + 1]. Furthermore,
if we remove them and try to re-add them, to maintain the same graph, v1 must go in
the first clique and vn must go in the last clique. Thus if we show the rest of the graph is
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· · · · · ·
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σ + 1
σ + 2

2σ

...

Cσ+1 Cσ+2

Remove a vertex in the smaller half, and add the next vertex

σ + 1

2σ + 1

σ + 3
...

Cσ+3 Cσ+4 Cn−σ+1

2σ + 2 2σ + 3 n
n− 12σ + 1

2σ + 1
2σ + 2

...

... ...

Figure 4.4: The construction of our subset of interval graphs. At each maximal clique after
Cσ+1, we remove a vertex from the smaller half, and add the next vertex. In this example,
to obtain Cσ+2 from Cσ+1 we remove the vertex σ+2 in the smaller half, and added 2σ+1

overlap connected, then by theorem 4.6.1 there are at most two ways to order the cliques
and satisfy the consecutive clique property.

Consider any component V1 with support [l, r]. We note that l ̸= r since no vertex
has the same left and right endpoints any more. We claim that l = 1 and r = n − σ + 1.
If r ̸= n − σ + 1, then consider the vertex vr+σ−1 which is added in Cr. Since we do
not remove it this clique, rvr+σ−1 > r. Furthermore, since support(V1) = [l, r], there
exists a vertex v ∈ V1 with lv < rv = r. These two vertices overlap so vr+σ+1 ∈ V1 and
support(V1) ̸= [l, r]. To show that l = 1 is similar by considering the vertex that ends in
Cl, which must overlap the vertex v ∈ V1 that has l = lv < rv.

Now suppose that G\{v1, vn} were not overlap connected, and let V1, V2 be two overlap
connected components. By above, we must have support(V1) = support(V2) = [1, n−σ+
1]. By lemma 4.6.5, there exists a vertex u ∈ V2 such that [1, n − σ + 1] ⊆ support(u).
However, by construction, no vertex that starts in C1 can end in Cn−σ+1 a contradiction.

Therefore G \ {v1, vn} is overlap connected and we are done.

With this we are able to show lower bounds for many classes of interval graphs. First we
give an alternate lower bound proof for interval graphs of Acan et al. by setting σ = n/ lg n.

Theorem 4.6.7. To represent interval graphs, we need n lg n−O(n lg lg n) bits.
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Proof. The number of graphs that can be created using the above algorithm is the following.
We make choices at n− 2σ cliques - to determine which vertex should end at that clique.
Each of these choices is between σ/2 elements. Thus the number of graphs we obtain is

(σ/2)(n−2σ). Hence the information theoretic lower bound is:

lg (σ/2)(n−2σ) = (n− 2σ) lg(σ/2)

Setting σ = n/ lg n completes the proof.

Next we will apply this construction to improve the lower bound results of [18] on
bounded degree and bounded chromatic number interval graphs.

Theorem 4.6.8. To represent interval graphs with bounded chromatic number σ, we need
n lg σ −O(σ lg σ + n) bits. (or equal to n lg n− o(n lg n) when σ ≥ n/ lg n)

Proof. As interval graphs are perfect graphs, the chromatic number is equal the size of
the maximum clique. By construction, all graphs G has maximum clique size σ. Thus the
lower bound is simply

(n− 2σ) lg(σ/2) = n lg σ −O(σ lg σ + n)

Finally we note that this only applies when σ = O(n/ lg n) as larger σ (especially when
σ = Θ(n)) would cause the lower order term to cancel out with the leading term. But as
we have shown that the lower bound is already n lg n− o(n lg n) for σ = n/ lg n, any larger
σ would also inherit this lower bound.

Theorem 4.6.9. To represent interval graphs with bounded degree σ, we need n lg σ −
o(n lg σ) bits.

Proof. First rename the size of the maximal cliques in our construction as Σ to avoid
variable name collisions.

To limit the degree of our vertices, we need to make sure that the clique that any
vertex ends on is not too far from the clique that the vertex begins. For a vertex v with
support(v) = [lv, rv], we have deg(v) = (Σ − 1) + (rv − lv). The first term says that it is
adjacent to Σ− 1 vertices of the clique that it begins at, and the second term says that for
each additional clique, it gains one more neighbour.

To limit the size of rv − lv, rather than selecting an arbitrary vertex to remove, every
∆ cliques, we always remove the smallest vertex. Consider the rank of any vertex v in the
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cliques that contain it (that is, how many vertices are smaller than it in the clique?). In
the clique that it begins at, it is rank Σ - the largest numbered vertex. Since we always
remove a vertex in the smaller half, the next Σ/2 cliques will decrease its rank by 1. Since
we remove the smallest vertex in the clique every ∆ cliques, we are guaranteed to decrease
the rank of v every ∆ cliques and thus remove it after at most ∆ · Σ/2 cliques. Thus
rv − lv ≤ Σ/2 + ∆Σ/2 and deg(v) ≤ Σ/2 + Σ/2 + ∆Σ/2 = Σ

2
(2 + ∆). And thus we set

σ = Σ
2
(2 + ∆).

The number of graphs we obtain is also changed. Rather than making (n−2Σ) choices,
we make ∆−1

∆
(n− 2Σ) choices since we always remove the smallest vertex every ∆ cliques.

Thus the lower bound is instead:

∆− 1

∆
(n− 2Σ) lg(Σ/2)

By setting Σ = 2σ/ lg σ and ∆ = lg(σ)− 2, the lower bound we obtain is

n lg σ −O(n)

4.7 Discussion

In this chapter, we use the results of Chapter 3 to construct succinct distance oracles for
static interval graphs in n lg n+O(n) bit of space and O(1) query times, and proper interval
graphs using 2n+o(n) bits of space and O(1) query times. We also abstracted the solution
so that it can be used easily for other subclasses of graphs to only support the retrieval of
left/right endpoints of intervals.

We also used the reduction of the distance problem from circular arc graphs to distance
graphs to give succinct distance oracles for them as well, using n lg n + o(n lg n) bits of
space and O(1) query times.

We used this abstract solution to give data structures for bounded chromatic number
interval graphs, a succinct data structure occupying n lg σ + o(n lg σ) bits of space and
σ lg n query times and a compact data structure using 2n lg σ + o(n lg σ) bits of space and
O(lg lg σ) query times.

Lastly we showed that the data structures for both bounded degree and bounded chro-
matic number interval graphs are indeed succinct by proving n lg σ lower bounds, improving
on the previous results by a factor of 6.
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Some problems left open are mainly for bounded chromatic number interval graphs.
Our succinct data structure has relatively slow query times of O(σ lg n), and thus it would
be of interest to reduce it, if not to O(1), then reduce the dependence on σ to lg σ. Our
compact data structure’s query time can also potentially be reduced to O(1) rather than
O(lg lg σ).

In the case of circular arc graphs, the two succinct data structures both have flaws.
In one, degree cannot be implemented at all other than naively searching for all the
neighbours and then counting, using O(degree + 1) time. On the other hand, the data
structure computing degree in a more clever way imposes a O(lg n/ lg lg n) overhead on
all other queries.
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Chapter 5

Beer Path Queries in Interval Graphs

In this chapter, we will consider a variant of the distance query. In distance we are looking
for the length of a shortest path between two vertices. In beer distance, in addition to
our graph (in general potentially weighted, though we will consider unweighted graphs),
some of the vertices are designated as beer vertices. The shortest paths (between two
vertices) considered in the query must pass through at least one of the given beer vertices.

This chapter is organized as follows: we being with a brief review of relevant previous
works in Section 5.1, and an review of existing results in Section 5.2. We will first study
the problem in proper interval graphs in Section 5.3, then generalize it to interval graphs
in Section 5.4. We will then consider the problem of enumerating beer interval graphs in
an attempt to prove a lower bound in Section 5.5. Finally, we will summarize the results
and give future areas of consideration in Section 5.6.

5.1 Previous Work

The concept of a beer path was recently introduced by Bacic et al. [7] in 20211. The
premise is simple, suppose you wish to visit a friend, and wish to pick up some beer along
the way because you don’t want to show up empty handed, what is the fastest way to do
so? More formally, for a graph, we specify a set of vertices, which will act as beer stores.
A beer path is one which passes through at least one of these designated vertices. We will
say a beer graph is one where we have designated a subset of the vertices to be beer stores.

1Though the problem is very natural, the routing problem with these constraints does not appear to
have been studied until very recently.
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Though this premise may be somewhat silly, it can have many applications. For example,
suppose you are going on a road trip and to be efficient, want to drop something off at a
post office on the way. Or perhaps on your trip, you realize that you currently don’t have
enough gas, so you must visit a gas station somewhere along the way. Another hypothetical
situation would be if a package needs to be transported, but due to regulations, one of the
stops must be equipped for an inspection. In Bacic et al. [7], they showed that on an
outerplanar graph of n vertices, a data structure of size O(m) words for any m ≥ n can be
constructed in O(m) time to support shortest beer path and beer distance - the length of
the shortest beer path in O(α(m,n)) time, where α is the inverse Ackermann function.

Although a shortest beer path may not be simple, it will always consist of two shortest
paths: from the beer store to the source, and to the destination.

5.2 Preliminaries

In a beer graph, we take any underlying graph G together with a set B ⊆ V of beer vertices.
If G belongs to a class of graphs of interest, we will use the prefix “beer” to denote that
we have also been given the set B of beer vertices. For example, if G is an interval graph,
then corresponding graph with beer vertices is a beer interval graph.

Definition 5.2.1. A beer graph is a tuple (G,B) consisting of a graph and a set of beer
vertices B ⊆ V .

Definition 5.2.2. If (G,B) is a beer graph, then we are interested in these queries:

• beer spath (u, v): return a shortest path between the vertices u and v such that at
least one of the beer vertices appears on the path.

• beer distance (u, v): return the length of the shortest path between vertices u and
v such that at least one of the beer vertices appears on the path.

These are the restricted queries to the ordinary spath and distance queries, which do
not have the constraint that it must pass through a beer vertex.

For example, if B = V , then the two queries reduces to ordinary shortest path or
distance in the graph (this is also the case if either u or v is a beer vertex). On the other
extreme, if B = {b} is a singleton, then the query reduces to two ordinary shortest path
or distance queries in the graph.
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5.2.1 Interval Graphs

We will briefly review the definition of an interval graph here, and restate the two theorems
proved in Chapter 4.

An interval graph G is a graph where we may assign an interval on the real line to
each vertex v: Iv = [lv, rv] such that two vertices u, v are adjacent exactly when the
corresponding intervals intersect [40]. In particular, we may sort the endpoints so that the
values are integers between 1 and 2n. We sort the vertices based on their left endpoints,
so that when we refer to vertex v, we are referring to a number (the rank of the vertex in
the sorted order), and thus, a statement such as u < v makes sense.

Theorem 4.4.3 (Succinct interval graphs with distance). An interval graph G can be
represented using n lg n+(5+ϵ)n+o(n) bits to support adjacent, degree and distance in
O(1) time, neighborhood in O(degree(v)+1) time, and spath(u, v) in O(distance(u, v)+
1) time.

An interval graph G is proper (or a proper interval graph) if we can choose the intervals
corresponding to vertices such that no two intervals are nested.

Theorem 4.4.8 (Succinct proper interval graphs with distance). An interval graph can be
represented in asymptotically optimal 2n + o(n) bits while supporting adjacent, degree,
neighborhood and distance in O(1) time, and spath(u, v) in O(distance(u, v)) time.

5.2.2 Dyck Paths

For our lower bound, we will be discussing Dyck paths as one of the most well known
class of combinatorial objects satisfying the catalan numbers recurrence [79]. A Dyck path
(on the 2D plane) of length 2n is a path from (0, 0) to (2n, 0) using 2n steps, n of which
are (1, 1) steps which are referred to as up-steps, and n of which are (1,−1) steps and
are referred to as down-steps. Such a path must also satisfy the condition that it never
reaches below the x-axis. It is well known that the number of Dyck paths of length 2n is
Cn = 1

n+1

(
2n
n

)
the n-th Catalan number.

A Dyck path that never touches the x-axis except at the start and end, is referred to
as an irreducible Dyck path. By removing the up-step at the beginning and the down-step
at the end, the remainder of the path is simply a Dyck path of length 2(n− 1). Thus the
number of irreducible Dyck paths of length 2n is simply Cn−1.
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For any Dyck path, we may associate an up-step with an open parenthesis ( and a
down-step with a close parenthesis ). The sequence we obtain from a Dyck path is a
balanced parenthesis sequence (and vice versa) as the Dyck path condition is exactly the
condition that the excess in the balanced parenthesis sequence is never negative (i.e each
closing parenthesis has a matching opening parenthsis). This well known bijection allows
us to associate an forest to each Dyck path, using the well known bijection for forests and
balanced parentheses (via a depth-first traversal) [61]. In particular, if the Dyck path were
irreducible, then the forest is just a single tree.

5.2.3 Succinct Data Structures

Recall that information theoretic lower bound to represent a family of objects with N
elements is ⌈lgN⌉ bits. Any fewer bits and we do not have enough bit strings to assign
a unique one to each object, and thus cannot distinguish between them. A succinct data
structure aims to use lgN + o(lgN) bits to represent these objects while supporting the
relevant queries.

We will once again require the various forms bitvectors. Recall:

Lemma 2.3.2 ([62]). A bit-vector of length n can be represented in n+o(n) bits to support
access, rank, select in O(1) time.

Lemma 2.3.4 ([69]). For a bit-vector of length n, containing m 1-bits2, and any constant
c, there is a data structure using

lg

(
n

m

)
+O

(
n

lgc n

)
≤ m lg

( n

m

)
+O

(
n

lgc n
+m

)
bits of space that supports access, rank, select in O(1) time.

We will also require the result from Chapter 3 on ordinal trees. The operations we
will use will mainly be conversions between the nodes’ numbers in the different traversals:
pre-order, post-order, level-order. These operations can be done in O(1).

Theorem 3.5.2 (Succinct trees). An ordinal tree on n nodes can be represented in 2n+o(n)
bits to support all the tree operations listed in Table 2.1 in O(1) time.

We will be using permutations as well.

2The number of such bit-vectors is
(
n
m

)
.
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Lemma 2.3.8 ([60]). Let P be a permutation. Then we may represent P using (1 +
1/f(n))n lg n + o(n lg n) bits to support the computation of P and P−1 in O(f(n)) time
(1 ≤ f(n) ≤ n). In particular, if we set 1/f(n) = ε for constant ε > 0, then the space is
(1 + ε)n lg n+ o(n lg n) bits and the time is O(1

ε
) = O(1).

We will need the various forms of orthogonal range queries.

Lemma 2.5.3 ([16]). Let S be a set of points from the universe M = [1..n]× [1..n], where
n = |S|. S can be represented using n lg n + o(n lg n) bits to support orthogonal range
counting in O(lg n/ lg lg n) time, and orthogonal range reporting in O(k lg n/ lg lg n) time,
where k is the size of the output.

Lemma 2.5.7 ([68]). For n 3D points and constant ε > 0, we may support 5-sided orthog-
onal reporting queries using O(n lg n) bits of space and O(k lgε n) time or O(n lg n lg lg n)
bits of space and O(k lg lg n) time, where k is the size of the output.

We may also achieve the same complexities for emptiness as well.

And finally, predecessor queries:

Lemma 2.5.5 ([83]). There is a data structure for the predecessor/successor problem that
uses O(n) words of space and query time O(lg lg |U |).

5.3 Proper Interval Graphs

In this section we investigate beer paths in proper interval graphs. We will base our data
structure on Theorem 4.4.8, and modify it to account for beer vertices.

We begin with an example:

Example 5.3.1. Consider the graph with the interval representation given by the bit
string: 000001000101001110011011011111 (recall the bit-vector B in Section 4.3.1 as we
were describing the data structure of Acan et al. Each 0 encodes the left endpoint of some
interval, and each 1 encodes the right endpoint of some interval. Since the graph is proper,
the endpoints of the ith vertex must be the indices i-th 0 and the i-th 1.). This gives the
vertex 1 a left endpoint at coordinate 1 and right index at coordinate 6 (the first 0 and
first 1 in the sequence respectively). See Figure 5.1.

Consider the shortest path between nodes 13 and 3. By Lemma 4.4.2, a shortest path
is 13 → 7 → 3. The problem would be easy if one of these nodes were a beer node, say
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Figure 5.1: An proper interval graph corresponding to the bitvector
000001000101001110011011011111, and the corresponding distance tree. Each node of the
tree is labelled with its rank in level-order and post order traversals.
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node 7 then there would be far less to do. However consider the case that the only beer
node were node 6, then a beer spath would be 13 → 7 → 6 → 3. On the other hand, if
there were also a beer node at node 8, then we can take the path 13→ 8→ 3.

5.3.1 Calculating Beer Distance

Let us recall that in Theorem 4.4.8, we represented the proper interval graph G using a
distance tree T . There is a bijection between the vertices of the graph G and the nodes of
the tree - vertex v is mapped to the vth node in the tree in level-order by Lemma 4.4.1.
Thus by v we will simultaneously refer to the vertex and the node in the distance tree. As
the conversion between level-order ranks, pre-order ranks and post-order ranks in a tree
are all O(1) (Theorem 3.5.2) (and typically, nodes in a tree are referred by their pre-order
ranks), we will implicitly convert between them as the situation requires. All the queries
are reduced to tree operations and can be done in O(1) time.

Let us recall Lemma 4.4.2. The distance between two vertices u, v with depth(u) ≤
depth(v) is found by taking the node to root path from v. As we will need to refer to these
nodes, instead of naming them v = v1, . . . vk = r, instead let k2 = depth(v), and name the
nodes v = vk2 , . . . v0 = r, so that the subscript denotes the depth of the node on the path.
Let depth(u) = k1.

We note that this is only one of many possible shortest paths. To accommodate the
beer vertices, we will investigate what all the possible shortest paths might look like. To
this end, we will consider the following question: let u < w < v, is w on a shortest path
between u and v? Equivalently, is distance(u, v) = distance(u,w) + distance(w, v)?

Definition 5.3.2. Given two vertices u, v, a vertex w with u < w < v preserves the
distance (w.r.t. u, v) if distance(u, v) = distance(u,w) + distance(w, v).

Let node rankPOST(v) denote the post-order rank of a node in the tree. It is clear that
if node rankPOST(u) < node rankPOST(v), then u is to the left of vk1 , so that u < vk1 , and
similarly for the reversed inequality. Finally, we note that for nodes on the same level of
the tree, their post-order numbers are sorted. That is if u < v are on the same level, then
node rankPOST(u) < node rankPOST(v) (and vice versa).

Lemma 5.3.3. Let u < w < v be 3 nodes in a proper interval graph. In the case that
node rankPOST(u) < node rankPOST(v), then w is on a shortest path exactly when either
node rankPOST(w) < node rankPOST(u) or node rankPOST(w) > node rankPOST(v) (that is w
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Figure 5.2: The union of the two shaded regions capture the nodes
which preserve the distance in Lemma 5.3.3. The left is the case when
node rankPOST(u) > node rankPOST(v), and the right is the case when node rankPOST(u) <
node rankPOST(v). The blue region represents complete subtrees that are included, while
the red represents the nodes to the right of the path to the root from v, used in subsection
5.3.3. Note the nodes on level k1 to the left of u and on level k2 to the right of v are not
included.

preserves the distance). In the case that node rankPOST(u) > node rankPOST(v), then w pre-
serves the distance exactly when node rankPOST(v) < node rankPOST(w) < node rankPOST(u).
Furthermore, if w does not preserve the distance, then the path passing through w increases
the distance by 1. That is distance(u, v) + 1 = distance(u,w) + distance(w, v).

Proof. First we consider the case when node rankPOST(u) < node rankPOST(v). By our
previous remark, this implies that vk1 > u (that is vk1 is to the right of u on level k1).
Furthermore, this implies that distance(u, v) = k2 − k1 + 1.

For each level k1 < k3 ≤ k2, we consider the nodes in level-order between vk3 and
vk3+1 and denote them as Vk3 = {w; vk3 ≤ w < vk3+1}. These are the nodes that are
adjacent to vk3+1 (that are before it in level order) and thus have a distance k2 − k3
from v. You can see this as a shortest path produced by our spath query would be
w, vk3+1, . . . , v. This set contains nodes from two levels in the tree: k3 and k3 + 1. First
consider the nodes w on level k3. These nodes are exactly those that node rankPOST(w) ≥
node rankPOST(vk3) > node rankPOST(v). If we look at a shortest path from w to u, we see
that the chain we produce wk1 , . . . , wk3 , has the property that wk1 ≥ vk1 > u. This is
because as node rankPOST(wk3) > node rankPOST(vk3), and this inequality is preserved as we
repeatedly take the parent operation on both chains. Therefore, the distance between w
and u is k3 − k1 + 1, and w preserves the distance.
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Next consider the nodes on level k3 + 1. These are the nodes with w < vk3+1, and
equivalently, exactly those on this level that node rankPOST(w) < node rankPOST(v). As
above, we consider the path from w to u, which expands out as the chain wk1 , . . . , wk3+1.
In the case that wk1 ≤ u, the distance is k3 − k1 + 1, and if wk1 > u, then the distance
is k3 − k1 + 2. Thus we see that w preserves the distance when wk1 ≤ u. This implies
that node rankPOST(w) < node rankPOST(u), as either wk1 = u and u is the last node in its
subtree by post-order numbers, or wk1 is to the left of u and that relation is preserved down
the chain. Thus in the set Vk3 , the nodes that preserve the distance are exactly those with
node rankPOST(w) < node rankPOST(u) or node rankPOST(w) > node rankPOST(v). Taking
the union of the Vk and we see that this is exactly the condition for a node to preserve
the distance. Furthermore, the nodes that do not preserve the distance only increase the
distance by 1 (distance(u, v) + 1 = distance(u,w) + distance(v, w)).

The second case is when node rankPOST(v) < node rankPOST(u). In this case, we have
vk1 ≤ u and thus distance(u, v) = k2 − k1. Again we consider sets Vk3 and the nodes on
the levels k3 and k3+1. These nodes have a distance of k2− k3 to v. First we consider the
nodes on k3+1. As in the previous case, the distance must be either k3−k1+1 or k3−k1+2,
but in either case, we cannot preserve the distance. In fact, since node rankPOST(vk3+1) ≤
node rankPOST(u), we see that wk1 ≤ vk1 ≤ u, hence the distance must actually be k3−k1+1.

Next we consider the nodes on level k3. Expanding out the path, we have two cases:
either wk1 ≤ u or wk1 > u. In the first case, the distance is k3−k1 and these nodes preserve
the distance, and the second case the distance is k3 − k1 + 1. The condition for wk1 ≤ u is
node rankPOST(w) < node rankPOST(u), as in this case, either w is in the subtree rooted at
u or in the subtree rooted at a node to the left of u on level k1.

Combining the cases we see that the w preserves the distance exactly when
node rankPOST(v) < node rankPOST(w) < node rankPOST(u). And if w does not, it only
increase the distance by 1.

Remark: when u and v are on the same level, then by Lemma 4.4.6, they are adjacent.
Thus no nodes can preserve the distance.

See figure Figure 5.2 for a pictorial representation of the criteria. Now we can describe
the process of determining the beer distance. The idea is to cover the nodes of the tree
with 3 sets, and determine the best possible beer distance using beer vertices in each of
the 3 sets (if a set has no beer vertices, then the distance will naturally be ∞). Finally we
take the minimum of the 3. We will call the best vertex in each set a candidate.

First we note that if either u, v ∈ B, then we do not need to do anything and simply
return distance(u, v) (or spath(u, v)).
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Candidate 1: The set of vertices is {w ∈ B;w > v}. We claim that the best beer
vertex (i.e. the shortest beer path through this vertex is the shortest beer path possible
among all that go through a beer vertex from this set) in this set is the smallest one. To
show this, we will use the following lemma.

Lemma 5.3.4. Let u < v < w be 3 vertices in a proper interval graph, then distance(u, v) ≤
distance(u,w). By symmetry, distance(v, w) ≤ distance(u,w).

Proof. Let the depths be depth(u) = k1, depth(v) = k2, depth(w) = k3 with k1 ≤ k2 ≤ k3.
We consider the chain from w: wk1 , . . . , wk3 = w. Since v < w, there exists an index i
such that wi−1 < v ≤ wi. and i ≤ w3. Hence we may create the path starting from v as
v → wi−1 → wi−2 · · ·wk1 , which is a path to u of at most the length as the path from w.
The result follows.

The vertex in {w ∈ B;w > v} that minimizes the value of distance(u,w)+distance(v, w)
is of course the w of minimal index.

Candidate 2: The set of vertices {w ∈ B;w < u}. We take the largest vertex in the
set as the candidate using Lemma 5.3.4.

Candidate 3: The set of nodes {w ∈ B;u < w < v}. By Lemma 5.3.3, we need to
determine whether there exists a node such that either

node rankPOST(u) < node rankPOST(w) < node rankPOST(v)

or

node rankPOST(w) < node rankPOST(u) or node rankPOST(w) > node rankPOST(v)

depending on node rankPOST(u) < node rankPOST(v). If such a vertex exists, then it is the
candidate, with distance distance(u, v). If no such node exists but the set is non-empty,
we may take any vertex in the set as the candidate, with distance distance(u, v) + 1.

5.3.2 First Data Structure For Beer Distance

Here we discuss how to use the previous results to create a data structure for the queries.
In this subsection, we discuss a relatively simple data structure which has decent run times.
However, the space is dependent on |B|, the number of beer nodes, and in the case that
|B| = Θ(n) is large, the space bound is also unacceptably large. In the next subsection,
we will show how to remove this dependence on |B| at the cost of slightly worse run times.
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To store the beer vertices, we store a bit vector B of length n so that B[i] = 1 if the
ith vertex is a beer vertex. This uses n+ o(n) bits of space. As in the previous subsection
we will assume that neither u nor v are beer vertices (and we can check by looking at
B[u], B[v]).

Candidate 1: We use rank(v) to find how many beer nodes are up to v. The smallest
beer node that is larger than v can be found using select(rank(v) + 1).

Candidate 2: Similarly to candidate 1, we find it by select(rank(u)).

Candidate 3: For every beer node w, we store it in a 2D range emptiness data
structure using the coordinates (w, node rankPOST(w)) (by our notation w is just the level-
order number of the node w). In the case that node rankPOST(u) < node rankPOST(v), we
need the nodes such that node rankPOST(w) < node rankPOST(u) or node rankPOST(w) >
node rankPOST(v) and u < w < v. This is translated to the rectangles
(u, v)× (−∞, node rankPOST(u)) and (u, v)× (node rankPOST(v),∞).

For the second case when node rankPOST(u) > node rankPOST(v), we need the nodes
that node rankPOST(v) < node rankPOST(w) < node rankPOST(u). This is the rectangle
(u, v)× (node rankPOST(v), node rankPOST(u)).

This suffices to determine the distance. To list out the path, we first determine which
candidate to use. Candidates 1 and 2 can simply list out the path using two spath queries.
For candidate 3, it either preserves the distance or does not. If it does not, then any beer
node in the range will suffice, and we list out the path using two spath queries. Otherwise
if there is a node that preserves the distance we list out the path between u, v one step
at a time, and, at each step, we consider the set Vk, which is an interval in level order.
We note that the nodes preserving the distance is a prefix of this interval. Thus we find
the first beer vertex in Vk, and check if it preserves the distance, if so add it to the path
and list out the path from there. Otherwise, we continue to the next level. Since the best
candidate is candidate 3 and it preserves the distance, we are guaranteed that somewhere
along this path, we will find a beer node preserving the distance.

Furthermore, as listing out the path for Candidate 3 is at most O(distance(u, v)) time,
we may do this whenever distance(u, v) = O(lgϵ n) rather than spending the time on the
orthogonal range search in the distance query. Thus we have the following theorem:

Theorem 5.3.5. A beer proper interval graph G can be represented using 3n + o(n) +
O(|B| lg n) bits to support the interval graph queries plus beer spath in O(1) time per
vertex on the path and beer distance(u, v) in O(min(lgϵ n, distance(u, v))) time. If we
increase the extra space to O(|B| lg n lg lg n) bits, we may support beer distance(u, v) in
O(min(lg lg n, distance(u, v))) time instead.
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Proof. The space required is the distance tree from Theorem 4.4.8, a single length n bit
vector for the beer nodes, and a single 2D range emptiness data structure.

We note that if there are many beer vertices, so that |B| ∈ Θ(n), then the space usage
would be Θ(n lg n). However if |B| were small (ex. |B| = O(n/ lg2 n)), then this data
structure will only use 3n+ o(n) bits.

5.3.3 Improved Data Structure for Beer Distance

Here we show how to improve the space usage of our specialized ranged emptiness query,
so that it no longer has any dependence on |B|. Since we have the tree structure, the range
emptiness can be reduced to checking whether a certain set of tree nodes have any beer
nodes in them. In particular, as seen from the previous subsection, we need to support the
following rectangles using o(n) bits:

1. (u, v)× (−∞, node rankPOST(u))

2. (u, v)× (node rankPOST(v),∞)

3. (u, v)× (node rankPOST(v), node rankPOST(u)).

We will call these type 1,2 and 3 rectangles.

To make our notation cleaner, we will use the depth of a node in the first coordinate
of a rectangle. This means to include all the nodes on that level. To accomplish this, we
simply find the first node on that level (in O(1) time) and substitute its level-order number
as the value to be used in the rectangle; similarly use the last node of a level for the right
end point of the rectangle.

Fix ∆ = ω(1), and choose an index 1 ≤ i ≤ ∆ such that the number of nodes on levels
k = i mod ∆ is minimized. 3

We will call these levels selected levels, and the nodes on them selected nodes. Thus the
number of selected nodes is O(n/∆) by the pigeonhole principle. For each of these nodes,
consider the subtree rooted at them that extends down to the next selected level. We will
build the contracted tree T ′ with these subtree as nodes, and the appropriate edges. A
node in T ′ is a beer node if at least one of the original nodes in the corresponding subtree
except the root is a beer node. The intuition behind leaving out the root in our definition

3This is the same slabbing idea from Chapter 3, not surprising as we are dealing with level order trees.
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here is because in our rectangles, both the first and last levels are not full. That is we
only consider the nodes with post order number greater than node rankPOST(u) on the first
level, and those with post order numbers less than node rankPOST(v) on the last level. If
we do not leave out the root, then we cannot support these partially filled levels in our
range search.

We use a bit vector C to store which nodes in level order are selected. As the number
of nodes is O(n/∆) = o(n), this compressed bit-vector uses o(n) bits of space. We store
the contracted tree T ′ succinctly, using 2n/∆ + o(n) = o(n) bits. The bit vector B′ to
mark which nodes of T ′ are beer nodes is also n/∆ = o(n) bits. Thus the total space for
our contracted tree is o(n) bits.

To support these rectangles, we first reduce the general case to one where both u, v are
on a selected level.

Lemma 5.3.6. We may assume that the inputs u, v are on selected levels at the cost of
O(∆) extra time.

Proof. For v, we move up the tree using parent as in the beer spath query. On level
k, we take the all the nodes on that level, and find 1) the first beer node, 2) the first
beer node after vk. If the first beer node w has the property that node rankPOST(w) <
node rankPOST(u), we may answer the type 1 rectangle query as true immediately. If there
exists a beer node after vk, we may answer the type 2 query as true immediately. If the
beer node w after vk has the property that node rankPOST(w) < node rankPOST(u), then we
may answer the type 3 query as true immediately. Thus we assume we find no beer nodes
that will allow us to answer the query immediately. Since each step takes O(1) time, it
takes O(∆) time to reach a node that is on a selected level.

For u, we move down the tree T ′. The essence of the rectangles is that for each level,
we wish to split the nodes on that level into 2: those with post-order numbers less than or
equal to u, and those greater. Thus as we move down the tree T ′ we wish to find the node
that splits the levels in the same way as u.

By the properties of post-order traversal, the node on the next level that has this
property is the largest post-order numbered node less than u. If u has any children, this is
the last child of u. If u has no children, this is the last child of the previous internal node
(in level-order) from u. As shown by He et al. [43] this is the largest neighbour of u. We
will call these nodes uk for the node on level k. In the case that there are no nodes that
satisfy the criteria (that is every node on the next level have a post-order number larger
than u), then as no node to the left of u has any children, we must necessarily have that
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type 1 and type 3 rectangles are empty. As type 2 rectangles do not use node rankPOST(u)
and only its depth, we may choose any node on the closest selected level.

As we descend down the tree, we again take all the nodes on the level, and find 1) the
first beer node before u - or equivalently, the first beer node before the node uk, 2) the last
beer node. For the first kind w, if one exists, we may answer type 1 rectangles as true. We
also check that it satisfies node rankPOST(w) > node rankPOST(v), and if so answer type 3
rectangles as true. The second kind, we check that node rankPOST(w) > node rankPOST(v)
and if so, answer type 2 rectangles as true.

We will now assume that both u, v are on selected levels. To deal with these queries,
we will build the 2D range emptiness query on our contracted tree T ′ and the nodes on
the selected levels in the same way. That is we build two 2D range emptiness query
data structures. One on the contracted tree T ′, and a second on the original tree T ,
but the points will only come from beer nodes that are also selected nodes. We wish to
convert as much of the query to the 2D range emptiness on the contracted tree as possible.
We will denote the corresponding node in the contracted tree to u by u′. We note that
rankC(u) = node rankT

′
LEVEL(u

′) so that we may convert between u and u′ easily.

Type 1 rectangles: we convert (u, v) × (−∞, node rankPOST(u)) to
[depth(u′), depth(v′))× (−∞, node rankPOST(u

′)) in the contracted tree and the same rect-
angle (u, v)×(−∞, node rankPOST(u)) in the selected nodes. We note that in T ′, we exclude
all nodes on depth(v′) since in T this includes only the nodes on that level, but in T ′ this
would include the subtrees as well, which extend down. We also change the left endpoint
so that we include the subtrees to the left of u, but as we exclude the roots from those
subtrees (in our decision to mark them as beer nodes or not), we do not include more nodes
in our search than required.

Type 2 rectangles: In the type 2 rectangles, we note that unfortunately, the rectangle
does not contain all the nodes in the subtree vdepth(u), only those to the right of the path
to v. It does however include the entire subtrees of all the nodes to the right of vdepth(u).
To handle these complete subtrees (and exclude the subtree rooted at vdepth(u)) we use the
rectangle [depth(u′), depth(v′)) × (node rankPOST(vdepth(u′)),∞). Of course we may find
vdepth(u) using level-ancestor. We again handle the selected nodes using the same rectangle
on them (u, v)× (node rankPOST(v),∞).

Finally, we need to handle the the nodes in the subtree rooted at vdepth(u), to the
right of the path to v and above the level of v. We start with the entire subtree of
vdepth(u), whose nodes are an interval in post-order. Then nodes w with node rankPOST(w) >
node rankPOST(v) are exactly the ones we want, except that all the subtrees to the right of
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v extend down to the bottom of the tree, rather than being cut off at the depth of v. Thus
we need to handle them as well. The way to do this in encoded in the lemma below, where
k1 = depth(u).

Lemma 5.3.7. Let v be a node in a tree T at depth k2 and vk1 be the ancestor of v at
depth k1, where both k1, k2 are selected levels with a fixed ∆ > 0. Let T ′ be the contracted
tree as defined above. Then we are able to answer the query: does the rectangle (vk1 , v)×
(node rankPOST(v),∞) in either:

O(n/∆ lg n) + o(n) additional space and O(lg n) time.

O(n/∆ lg n) + n+ o(n) additional space and O(lg lg n) time.

Here we do not count the space taken by the tree T .

Proof. We count number of beer nodes in this rectangle and if the count is 0, return false,
otherwise return true.

We store a bit vector P , where P [i] = 1 if the ith node in post-order is a beer node.
The number of beer nodes in the subtree of vk1 to the right of v using two rank operations
at node rankPOST(vk1) and node rankPOST(v). Finally we need to subtract off the number
of beer nodes below the subtrees rooted at the selected nodes to the right of v. To do this,
at each selected node x, we store the total number of beer nodes in the subtrees to all the
selected nodes on the same level depth(x) to the left of x (including x). The number we
need to compute is the difference in the number of beer nodes at subtrees to left of v and
the last node on depth(v) that is a descendant of vk1 . The space required to store the
number of beer nodes in these subtrees is O((n/∆) · lg n).

We note that normally, to explicitly store P , we need n+ o(n) bits. As the beer node
are stored in B and we can convert between the indices of B and P in constant time, we
may forgo storing the bit vector itself, and only store the auxiliary information. Whenever
we need a bit of P , we convert the post order number to level-order and use our level order
bitvector B instead. As the rank operation is O(1) we thus need at most O(lg n) bits from
the vector P (this occurs when we need O(lg n) contiguous bits as the key into a lookup
table). Thus we may implicitly store P using only o(n) bits, at the cost of O(lg n) rank
query time.

To compute the last node at depth v and is a descendant of vdepth(u), we will store
the post order numbers of nodes in a predecessor data structure. For each selected level,
we store a predecessor structure containing the post order numbers of the selected nodes
at that level. The node in question is found by pred(node rankPOST(vk1)) on the data
structure containing the nodes at level depth(v). As the number of selected nodes in total
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is O(n/∆), the total space cost of all the predecessor structures is O((n/∆) · lg n) bits. The
time complexity is O(lg lg n).

Combining these numbers we obtain the number of beer nodes in the given rectangle.

Thus if we store P explicitly, then the space required is O((n/∆) · lg n)+n+ o(n) with
time O(lg lg n).

If we do not store P explicitly, then the space required is O((n/∆) · lg n) + o(n) with
time O(lg n).

Type 3 Rectangles: Type 3 rectangles are similar to type 2 rectangles. As above, we
use the same rectangle (u, v)×(node rankPOST(v), node rankPOST(u)) for the selected nodes.
We again use the rectangle [depth(u′), depth(v′))×(node rankPOST(vdepth(u′)), node rankPOST(u

′)]
to capture the complete subtrees that we wish to use. The incomplete subtree is exactly
the same as in type 2, so we are able to apply Lemma 5.3.7.

Thus putting everything together we have the following theorem:

Theorem 5.3.8. Let G be a beer proper interval graph. Fix ∆, then G can be represented
using 3n + o(n) + O((n/∆) · lg n) bits and can support adjacent, degree, neighborhood,
distance in O(1) time, spath, beer spath in O(1) time per vertex on the path and
beer distance in O(∆ + lg n) time.

In particular, if we take ∆ = lg n, then the space is O(n) with time O(lg n) and if we
take ∆ = f(n) lg n for some f(n) = ω(1), then the space is 3n + o(n) and the time is
O(f(n) lg n).

If we wish to further our trade off and improve the time, we must explicitly store P
as in the proof Lemma 5.3.7, and use the space inefficient (but time efficient) range query
data structures. Thus we obtain:

Theorem 5.3.9. Let G be a beer proper interval graph. Fix ∆, then G can be repre-
sented using 4n + o(n) + O((n/∆) · lg n lg lg n) bits and can support adjacent, degree,
neighborhood, distance in O(1) time, spath, beer spath in O(1) time per vertex on the
path and beer distance in O(∆+ lg lg n) time. In particular, if we take ∆ = lg lg n, then
the space is O(n lg n) with time O(lg lg n).

5.4 Interval Graphs

In this section, we study how to compute and construct data structures for beer paths and
beer distances. We will begin with Theorem 4.4.3, which stores the distance tree T and
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the navigational data structure of Acan et al. [2]. The major difference between interval
graphs and proper interval graphs is how adjacency can be checked. In a proper interval
graph, for a vertex v, and its parent p in the distance tree, v is adjacent to every vertex
between v and p by Lemma 4.4.6. However, in interval graphs, this is not the case, and
depending on the graph structure, any of those vertices can be adjacent or not adjacent to
v.

5.4.1 Calculating Beer Distance

As in proper interval graphs, we begin by investigating the conditions in which nodes
preserve the distance.

Definition 5.4.1. Given two vertices u, v, for a node w (such that u < w < v), we
say that w is +k the distance (w.r.t. u, v) if distance(u, v) + k = distance(u,w) +
distance(v, w).

We note that preserving the distance is equivalent to being +0 the distance. So, using
w that is +k the distance as a beer node will add k to the optimal (non-beer path) distance.
To do this, we will add one more condition to that of Lemma 5.3.3.

Let u be a node in T . As shown in the proof of Lemma 5.3.6, the node on the next
level that splits it in the same way as u is the largest neighbour of u. We denote this by
last(u). For example, in Example 5.3.1, the largest neighbour of the node 8, is the node
13, as 8 is adjacent to node 13, but not node 14. Thus last(8) = 13.

Lemma 5.4.2. Let u < v be vertices in a beer interval graph G with depths depth(u) =
k1 ≤ k2 = depth(v). Consider the nodes u < w < v. Then we have the following two
criteria:

• If node rankPOST(last(u)) < node rankPOST(v), then either

node rankPOST(w) > node rankPOST(v) or node rankPOST(w) < node rankPOST(last(u))

If node rankPOST(last(u)) > node rankPOST(v), then

node rankPOST(v) < node rankPOST(w) < node rankPOST(last(u))

• If node rankPOST(w) < node rankPOST(v), then

node rankPOST(last(w)) > node rankPOST(v) or
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node rankPOST(last(w)) < node rankPOST(w)

If node rankPOST(w) > node rankPOST(v), then

node rankPOST(v) < node rankPOST(last(w)) < node rankPOST(w)

If w satisfies both criteria, then w preserves the distance. If w satisfies one of the criteria,
then w is +1 the distance and if w satisfies neither criteria, then w is +2 the distance.

We note that the 2 criteria encode the following: first is the same criteria as Lemma 5.3.3
which check if w would preserve the distance. The second criteria checks that we may reach
w from vk (i.e. one of the ancestors of v) in one step (i.e. w is adjacent to vk) or not.
Thus clearly if both are true, then we are in the same situation as Lemma 5.3.3, while each
failed condition add 1 to the distance.

Proof. Consider the path to the root from v: v1, . . . , vk2 = v, and let k be the node where
vk ≤ last(u) < vk+1. As in Lemma 5.3.3, let the nodes Vi = {u < w < v; vi ≤ w < vi+1},
which we will call slices.

We wish to split Vi based on the nodes distances to u. We will show that Vi = V +
i ∪V −

i

where w ∈ V +
i if distance(w, u) = distance(vi, u) and w ∈ V −

i if distance(w, u) =
distance(vi+1, u).

By the distance algorithm, suppose that x ∈ V +
i , then any children of x, c, is in

V +
i+1. We can see this as distance(c, u) = distance(x, u) + 1 = distance(vi, u) + 1 =

distance(vi+1, u).

Suppose that depth(last(u)) = k, so that last(u) is on the same level as vk. Then
V +
i = {w ∈ Vi; depth(w) = i, node rankPOST(w) ≤ node rankPOST(last(u))} and V −

i is the
remaining nodes. Otherwise, if last(u) is on the same level a vk+1, then V +

i = {w ∈
Vi; depth(w) = i or node rankPOST(w) < node rankPOST(last(u))}.

We show this by induction. Consider the first slice that is non-empty, that is Vk. In the
first case that depth(last(u)) = k, the nodes in {w ∈ Vk; depth(w) = k, node rankPOST(w) ≤
node rankPOST(last(u))}, are those adjacent to u, and everything else is non-adjacent, but
are adjacent to vk, hence all other nodes have a distance of 2.

On the other hand, if depth(last(u)) = k + 1, then the nodes {w ∈ Vk; depth(w) =
k or node rankPOST(w) < node rankPOST(last(u))} are those that are adjacent to u and
have distance 1, and the rest have distance 2.

Since if a node x satisfies node rankPOST(x) ≤ node rankPOST(last(u)) if and only if
any children of x, c also satisfies node rankPOST(c) ≤ node rankPOST(last(u)), we have that
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V +
i = {w ∈ Vi; depth(w) = i, node rankPOST(w) ≤ node rankPOST(last(u))} or V +

i = {w ∈
Vi; depth(w) = i or node rankPOST(w) < node rankPOST(last(u))}.

For a node w, consider the interval (w, last(w)]. We are interested in whether this
interval contains one of the nodes vi. We use the open interval on the left because if
w = vk for some k, then last(w) ≥ vk+1, so it still contains one of the vi’s, and by doing
so, we make sure that exactly one vi can be contained in the interval.

First suppose that (w, last(w)] contains one such node, say vk−1. Then w ∈ Vk

and w is adjacent to vk+1. Thus distance(vk, v) = distance(w, v) by the distance
algorithm. Furthermore, if w ∈ V +

k , then distance(u,w) = distance(vk, u), so that
distance(u, v) = distance(u,w) + distance(v, w). On the other hand, if w ∈ V −

k in-
stead, then distance(u, v) + 1 = distance(u,w) + distance(v, w).

Next suppose that (w, last(w)) does not contain any vi, and thus, for some k, vk < w <
vk+1. Since w is not adjacent to vk+1, then we have distance(w, v) = distance(vk, v)+1.
Therefore, if w ∈ V +

k , then distance(u, v) + 1 = distance(u,w) + distance(v, w) and if
w ∈ V −

k , then distance(u, v) + 2 = distance(u,w) + distance(v, w).

Finally we wish to write the criteria that the interval (w, last(w)] contains one of the
vi in a more computable form. In the first case that node rankPOST(w) < node rankPOST(v),
so that w is to the left of the path, we need that either node rankPOST(last(w)) >
node rankPOST(v) or node rankPOST(last(w)) < node rankPOST(w). The first case capture
when the interval stays on the same level in the tree, and the second captures when the
interval wraps to the next. In the second case that node rankPOST(w) ≥ node rankPOST(v),
we need that node rankPOST(v) < node rankPOST(last(w)) < node rankPOST(w).

Again, we will find several sets that cover the beer nodes, and argue about the optimal
beer node in these sets. We then take the minimum distance of these candidates. As
before, we will assume that neither u nor v are beer nodes.

Candidate 1: This is the same as the proper interval graphs: {w ∈ B;w > v} = {w ∈
B; lw > lv}. We again claim that the best beer node is the smallest one. It turns out the
exact same proof of Lemma 5.3.4 will work here.

Candidate 2: We wish to use the symmetric set of Candidate 1. Unfortunately, in
interval graphs, this is not as simple. The set is {w ∈ B; rw < ru}. We note that this
condition and the proper interval graph non-nesting condition gives lw < lu so that w < u,
and thus this is the right analogous set to consider. We claim that the best node is the
node with the largest rw in this set. This can be seen by reflecting the intervals of the
vertices - equivalent to sorting them by the right endpoints instead. In this reflected graph,
apply Lemma 5.3.4, and the result follows.
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Candidate 3: The nodes {w ∈ B;u < w < v}. By Lemma 5.4.2, we can obtain the
distance of the best beer node using the criteria in the lemma.

Candidate 4: The left over nodes. The nodes that do not belong to the previous
candidate sets are w with: lw < lv and rw > ru and lw < lu. Thus these are the nodes with
lw < lu < rw, so they are adjacent to u. Formally, this is the set: {w ∈ B;w < u, rw > ru}.
As these nodes are adjacent to u, all we need to check is their distance to v.

First consider the path from u to v. As in Lemma 4.4.2, we have the path to the root
from v: v = vk2 , . . . , v0 = r, And suppose that k is the index such that vk ≤ u < vk+1. The
end of the path could look like either u, vk+1, . . . or u, vk, vk+1, . . ., depending on whether
vk+1 is adjacent to u or not (i.e. lvk+1

≤ ru?).

First assume that vk+1 is not adjacent to u, then for any possible candidate w, if
w were adjacent to vk+1 (that is last(w) ≥ vk+1), then w preserves the distance (as
distance(w, v) = distance(u, v) − 1). Otherwise, as rw > ru > lvk , w is adjacent to vk
and hence distance(w, v) = distance(u, v) and w is +1 the distance.

Next assume that vk+1 is adjacent to u. Then again for any candidate w, lw < lu <
lvk+1 < ru < rw, so w is adjacent to vk+1 and w is +1 the distance. We note that w cannot
be adjacent to vk+2 as in this case we would contradict that fact that vk+1 is the smallest
node adjacent to vk+2, by the parent relationship in T .

Finally we note that the only property of w that we used is that w is adjacent to u,
and that if x > u is adjacent to u, then w is also adjacent to x and hence we may relax
the set to {w ∈ B;w < u, last(w) ≥ last(u)}.

5.4.2 Data Structure for Beer Distance

We discuss how to use the previous results to create a data structure for the queries. We
begin with the data structure derived in Theorem 4.4.3, which supports the interval graph
queries in optimal time. This uses n lg n+ O(n) bits of space. We store a bit vector B as
before, which stores which nodes are beer nodes in level-order. This take n+ o(n) bits.

Candidate 1, we handle this in exactly the same way as in proper interval graphs, by
using rank and select queries on B.

Candidate 2, we need to be able to find nodes in the mirrored graph.

Lemma 5.4.3. We can find the desired node in the mirrored graph using n lg n+O(n) bits
in O(1) time.
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Proof. To find the appropriate node, we need to be able to implement the following steps:

1) For a node u, what is its index in the mirrored graph?

2) For a node u in the mirrored graph, what is the smallest beer node larger than it?

3) For a node u in the mirrored graph, what is its index in the original graph?

For step 1, for a node u, we get its interval right endpoint ru. In the data structure
of Acan et al. explained when we abstracted it to Theorem 4.3.7, we have a length 2n
bit vector, which stores whether the endpoint at any index i is a right endpoint or a left
endpoint. We use the rank operation to find how many intervals i have right endpoints
less than ru, and thus u is the n− ith node in the mirrored graph.

For step 2, we store the analogous bitvector BR for the mirrored graph, which says
whether vertex i in the mirrored graph is a beer node, and use it to find the appropriate
beer node. This takes n+ o(n) bits.

For step 3, We would like to be able to map the vertex i in the mirrored graph (which
corresponds to the vertex with the n − i-th largest right end point) to the corresponding
vertex in the original graph. That is we wish to find the vertex v such that the right
endpoint of v is the n− i-th largest right end point. As we stated in Theorem 4.3.7, there
are 3 obvious ways of implementing D the data structure used to report right endpoints of
intervals. One such way is storing a permutation P such that the right endpoint of v is the
P [v]-th largest right endpoint. If we store the interval graph with D being a permutation
Lemma 2.3.8, then this operation is exactly P−1(n− i).

In total, this takes O(n) bits, and all of these operations are O(1) except P−1 which
using the parameter of Lemma 2.3.8 uses O(f(n)) time.

Candidate 3 We are able to handle this using 3D 5-sided orthogonal range emptiness
data structures.

Lemma 5.4.4. We can check if a beer node satisfies the criteria of Lemma 5.4.2 using
a constant number of 3D 5-sided orthogonal range emptiness data structures. Thus the
space/time requirements are either O(n lg n) space and lgε n time or O(n lg n lg lg n) space
and lg lg n time.

Proof. We will again use the range emptiness method described for proper interval graphs.
However, as we need an additional criterion, we also need another dimension in the grid to
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store this criterion. Thus for each beer node b, we store the following point in a 3D table:
(b, node rankPOST(b), node rankPOST(last(b))).

We note that it is difficult to express the condition

node rankPOST(last(b)) < node rankPOST(b)

as it depends on the values of the node being filtered. Furthermore in the second criterion,
we would need 6-sided rectangles. To alleviate this, we create 2 tables: 1 for beer nodes
whose intervals stay on the same level (that is node rankPOST(last(b)) > node rankPOST(b)))
and one for those that wrap to the next level. We will names these R1 and R2.

To do this, we will first query the criteria separately, and then query them together. If
either of the criterion returns a positive, then we know that the optimal beer node is either
+0 or +1 the distance, depending on the result of the joint query. If neither the criteria
return a candidate, then the optimal node is +2 the distance (we will need to check using
B that there is a beer node in this range to use).

For the first criterion, directly translating the condition from Lemma 5.4.2, we obtain
the following rectangles.

• (u, v)× (−∞, node rankPOST(last(u)))× [−∞,∞],

• (u, v)× (node rankPOST(v),∞)× [−∞,∞], and

• (u, v)× (node rankPOST(v), node rankPOST(last(u)))× [−∞,∞].

As we have split the beer nodes into two data structures R1 and R2, we need to do the
query on both.

To check only the second criterion, we have the following rectangles:

Does (u, v) × [−∞, node rankPOST(v)] × [node rankPOST(v),∞] in R1 or
(u, v)× [−∞, node rankPOST(v)]× [−∞,∞] in R2 contain any nodes?

Does (u, v)× [node rankPOST(v),∞]× [node rankPOST(v),∞] in R2 contain any nodes?

Finally to check both criteria at the same time, we take the intersection of the rectan-
gles from the two separate criteria. As the intersection of rectangles are rectangles, with
potentially more sides, we may do this. Since the third coordinate is always [−∞,∞] in
criterion 1, and it is open ended on at least 1 side in criterion 2, we see that any intersection
is at most a 5 sided rectangle.
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Candidate 4 We will use the following lemma:

Lemma 5.4.5. We can convert the criterion of candidate 4 into a constant number of
5-sided rectangles.

Proof. The nodes we are interested in are those with w < u and last(w) ≥ last(u).
Let p(u) denote the parent of u in T . All such w are adjacent to last(u) and thus
p(last(u)) ≤ w < u. First we find whether this Candidate set is empty or not. As we are
checking the condition last(u) ∈ [w, last(w)], this will be similar to the second criterion
of candidate 3. The rectangles are:

• [p(last(u)), u)× [−∞, node rankPOST(last(u))]× [node rankPOST(last(u)),∞] in R1,

• [p(last(u)), u)× [−∞, node rankPOST(last(u))]× [−∞,∞] in R2,

• [p(last(u)), u)× [node rankPOST(last(u)),∞]× [node rankPOST(last(u)),∞] in R2.

As described in the previous part, there are two cases, either vk is adjacent to u or vk
is not adjacent to u (we check this in O(1) time from the distance algorithm).

In the case that vk is not adjacent to u. We wish to find a node w < u such that
last(w) > vk (so that vk ∈ [w, last(w)]). Any such w is adjacent to vk and must satisfy
p(vk) ≤ w < vk. Thus we replace all instances of last(u) with vk in the rectangles above.
If a node exists then it preserves the distance, and if no such node is found, then the best
possible is +1 the distance.

In the case that vk is adjacent to u, we do not need to do anything more, since any w
is +1 the distance.

Finally, to handle shortest paths, we use the reporting query rather than the emptiness
query. When the reporting query returns the first point, we stop. After we find the best
beer node, we list out the path using two spath queries.

Theorem 5.4.6. Let G be a beer interval graph, with beer nodes B. The there exists a data
structures using n lg n+o(n lg n)+O(|B| lg n) bits that supports degree, adjacent, distance
in O(1) time, neighborhood, spath in O(1) time per vertex in the path/neighbourhood,
beer distance in O(lgϵ n) time and beer spath in O(lgϵ n + d) time where d is the dis-
tance between the two vertices.

Alternatively, we may increase the space from O(|B| lg n) to O(|B| lg n lg lg n) and re-
place the lgϵ n in beer spath, beer distance with lg lg n.
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Proof. We store the interval graph using Theorem 4.4.4, where D is a permutation stored
using Lemma 2.3.8, where we set the parameter f(n) = lg lg n.

Other extra space needed is the range search data structures occupying O(|B| lg n) bits
and various bit vectors occupying O(n) bits.

The query time for degree, adjacent, distance, neighborhood, spath are inherited
from Theorem 4.4.4. beer distance requires the computation of P−1 and range emptiness
queries, using either O(lgϵ n + lg lg n) = O(lgϵ n) time or O(lg lg n) time. beer spath

requires O(beer distance) time to find the candidate, followed by O(d) time to list out
the vertices on the path.

5.5 Lower Bound

Although we have given upper bounds in the forms of data structure for both beer interval
graphs and beer proper interval graphs, we have not shown that the data structures are
succinct. In this section, we will prove lower bounds for both beer proper interval graphs
and beer interval graphs by enumerating them.

Our first task is to formalize exactly what we are enumerating. Just as when we are
enumerating graphs, we need to consider isomorphisms, we when enumerate beer graphs,
we must also consider isomorphisms. Thus we must formalize what it means for two beer
graphs to be isomorphic.

5.5.1 Beer Graph Isomorphisms

By definition, a beer graph (G,B) is a graph G together with a set B ⊆ V of beer
vertices. We will refer to B as a beer vertex pattern. We will say that two beer graphs
(G1, B1) and (G2, B2) are isomorphic (and thus are the same object) if there exists a
bijection f : V (G1) 7→ V (G2) such that (u, v) ∈ E(G1) ⇔ (f(u), f(v)) ∈ E(G2) and
u ∈ B1 ⇔ f(u) ∈ B2. The first condition is the standard condition for two graphs to
be isomorphic and the second condition says that this isomorphism also preserves beer
vertices. This is the natural definition as under this isomorphism, any path P between two
vertices u, v is a beer path if and only if the corresponding path f(P ) between f(u), f(v) is
a beer path, and thus the isomorphism preserve beer distances. Under this definition, for
two beer graphs to be isomorphic, the underlying graphs must also be isomorphic as well.
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It may be tempting to think that we have a subset of beer vertices B out of set V of size
n. Therefore, we must need n bits to represent this subset. Our main motivating example
shows that this is not the case.

Example 5.5.1. Suppose our graph class are cliques, then how many beer cliques are
there? On n vertices, there is exactly one underlying graph G = Kn on n vertices that is
a clique. Thus it remains to see how many different beer vertex patterns we can have. By
definition, if (Kn, B1) were isomorphic to (Kn, B2), then there exists an automorphism σ
of Kn mapping vertices u ∈ B1 to σ(u) ∈ B2 bijectively, and thus |B1| = |B2|. Conversely,
if |B1| = |B2| then there exists a bijection σ that maps the elements of B1 to B2 and fixes
every other vertex. As the underlying graph is the complete graph Kn, this σ is also an
automorphism of the underlying graph as well. Thus (Kn, B1) is isomorphic to (Kn, B2)
exactly when |B1| = |B2|. The number of different ways to add beer nodes to a clique on
n vertices is thus n+ 1.

As (G1, B1) ∼= (G2, B2) happens only when G1
∼= G2, it remains to develop the theory

to compute the number of beer vertex patterns that are different when given a specific
underlying graph G (and then to find the number of beer graphs, sum over all graphs that
we are considering). Let Aut(G) denote the automorphism group of a graph G. We will
view B ⊆ V as a vector B ⊆ 2n on the hypercube (where the i-th bit denotes whether
the i-th vertex belong to the set or not), and Aut(G) as a group that acts on 2n. In
this lens, two beer vertex patterns B1, B2 are the same if there exists a group element σ
mapping B1 to B2, and thus B1 and B2 belong to the same orbit of this group action.
The number of different beer vertex patterns is thus the number of orbits |2n/Aut(G)|. To
count the number of orbits, we will use the Polya enumeration theorem [71], which in its
most basic form, states that if we denote c(σ) as the number of cycles in σ when viewed
as a permutation of V (G), |2n/Aut(G)| = 1

|Aut(G)|
∑

σ∈Aut(G) 2
c(σ).

Now let us apply this to arbitrary beer graphs. Without even considering the auto-
morphism groups of the graphs, we can see that the minimal automorphism group is the
one element group (i.e. the graph has no automorphisms), and the largest automorphism
group is Sn corresponding to a clique. In the first case, 1

|Aut(G)|
∑

σ∈Aut(G) 2
c(σ) = 2n and

the second 1
|Aut(G)|

∑
σ∈Aut(G) 2

c(σ) = n+ 1.

Therefore, if X is a class of graphs, then the number of beer graphs of this class
is between (n + 1)|X| and 2n|X|. Applying this to beer interval graphs (with lg |X| =
n lg n − o(n lg n)) and we see that the lower bound for beer interval graphs is between
n lg n+ lg n and n lg n+ n. In both bounds the term contributed by the beer vertices is a
lower order term. Thus the lower bound for beer interval graphs (and any other class of

88



graphs with a lower bound ω(n)) remains the same at n lg n bits. This also shows that our
data structure from Theorem 5.4.6 is not succinct for |B| = Θ(n), but rather it is compact.

Next we will consider beer proper interval graphs. Our upper bound data structure
of Theorem 5.3.8 uses 3n + o(n) bits, while a lower bound inherited from proper interval
graphs is 2n − o(n) bits. Thus the analysis above shows that the true lower bound is αn
bits for some 2 ≤ α ≤ 3. If α = 3, then our data structure is succinct. However, we will
ultimately show in this section that the lower bound is lg(4 + 2

√
3)n ≈ 2.9n bits, so that

there is more work to be done in creating a succinct data structure. To compute this, we
will need a better understanding of the automorphism groups of proper interval graphs.

5.5.2 Automorphism Groups of Proper Interval Graphs

Klavic and Zeman [52] showed thatAut(connected PROPER INT) = Aut(CATERPILLAR).
A caterpillar graph/tree is a path together with a set of leaves that are adjacent some ver-
tex on the path. In particular, the automorphism group of any particular connected proper
interval graph is generated by 2 types of automorphisms. First are automorphisms that
swap twin vertices - which corresponds to those that swap the leaves adjacent to the same
vertex on the path of a caterpillar graph. In a proper interval graph, twin vertices are
those that have the same set of maximal cliques. The second is an automorphism that
reverses the proper interval graph, which corresponds to reversing the path of a caterpillar
graph. This reversal corresponds to a reversal of the maximal cliques. Of course, for any
particular graph, there may not be any twin vertices, and thus there are no automorphisms
of the first type. As for the second type, it can only exist when the number of vertices
in the maximal cliques are symmetrical - as the vertices in the first maximal clique are
mapped to those in the last maximal clique etc.

We will assume that the maximal cliques are not symmetrical and thus no automor-
phisms of the second type exists. To see this, we may always desymmetrize the sequence
of maximal cliques by adding one vertex to only the first maximal clique if necessary.

Now suppose that G is a connected proper interval graph. As being twin vertices are
an equivalence relation, let S1, . . . , Sh be the equivalence classes of twin vertices, that is
u, v ∈ Si implies that u, v are twins. Let ki = |Si| and we will say that vertices which have
no twins are in a class of size 1, so that

∑
i ki = n.

Lemma 5.5.2. Let G be a proper interval graph with twin vertex classes of sizes |S1| =
k1, . . . , |Sh| = kh. Then |2n/Aut(G)| ≤ (k1 + 1)(k2 + 1) · · · (kh + 1). This is an equality in
the case that the graph is connected and the maximal cliques are non-symmetrical.
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Proof. In the case that the graph is connected and the maximal cliques are non-symmetrical,
we have only type 1 automorphisms.

Let σi be a permutation that permutes only those vertices of Si and σj permuting those
of Sj, then σiσj = σjσi as Si ∩Sj = ∅. Thus we may write Aut(G) ∼= Sk1 × · · · × Skh where
Sn denotes the symmetric group (set of all permutations) on n elements.

Applying this to Polya enumeration theorem, we obtain that

|2n/Aut(G)| = 1

|Aut(G)|
∑

σ∈Aut(G)

2c(σ)

=
1

k1! · k2! · · · kh!
∑

σ1×σ2×···σh∈Sk1×···×Skh

2c(σ1×σ2×···σh)

=

 1

k1!

∑
σ1∈Sk1

2c(σ1)

 1

k2!

∑
σ2∈Sk2

2c(σ2)

 · · ·
 1

kh!

∑
σh∈Skh

2c(σh)


= |2k1/Aut(Kk1)| · · · |2kh/Aut(Kkh)|
= (k1 + 1)(k2 + 1) · · · (kh + 1)

The last equality comes from our Example 5.5.1 dealing with cliques.

Finally, we note that by the definition of group action, if H1 ⊂ H2 are two groups acting
on a set X, then the orbit of any element x ∈ X under H2, H2 · x = {h · x;h ∈ H2} is a
superset of that of the orbit under H1. Thus the number of orbits |X/H2| ≤ |X/H1|. As
the above equation applies exactly to non-symmetric connected proper interval graphs, and
dropping the connectedness/symmetric property only increases the automorphism groups
(if two connected components are isomorphic, then there is an automorphism that swaps
the two connected components), we conclude that if G were a proper interval graph instead,
we may say that |2n/Aut(G)| ≤ Πi(ki + 1).

As a further remark, we see that any vertex that is not a twin contributes a multi-
plicative factor of 2 to the above quantity (intuitively, this means that you must store a
bit stating whether this vertex is a beer vertex or not) while any vertex that have twin
vertices contributes a much smaller term (intuitively, this means that it is necessary to
only store only the number of beer vertices using lg ki bits, furthering our intuition from
Example 5.5.1).
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For a proper interval graph, we will also refer to the above quantity as its weight, as
the number of beer proper interval graphs would be the weighted sum of proper interval
graphs.

We will first apply the above using a method of bounding the number of beer proper
interval graphs. We will then use it to compute a recurrence which allows us to compute
the lower bound exactly. It is our hope that the techniques used in bounding the number
of beer proper interval graphs will translate to a method of constructing a data structure
using strictly less than 3n bits of space, whereas the recurrence seems less useful in that
regard.

5.5.3 Representation of Proper Interval Graphs

A proper interval graph can be represented using a length 2n bitvector, where the i-th
vertex’s left and right end point are the indices of the i-th 1 and 0 respectively. Conversely,
given a length 2n bitvector such that at any index, the number of 1s in the prefix is at
least the number of 0s (i.e. rank1(i) ≥ rank0(i), so that every 0 - the right end point of
an interval has a matching 1 - the left end point of an interval) we may view it as the
bitvector of some proper interval graph.

A maximal clique is a clique that is maximal under subsets. An equivalent characteri-
zation of Interval graphs is that the set of maximal cliques can be linearly ordered so that
for any vertex v, the set of maximal cliques containing v is contiguous in the ordering [34].
Furthermore if graph is a connected proper interval graph then this order is unique up
to reflection [53] (as connected proper interval graphs by definition of no nested intervals
are overlap connected). Thus, the mapping B 7→ G sending a bitvector with the above
property to a proper interval graph G is an onto map, and furthermore if we restrict this
to only generate connected graphs, no graph is generated more than twice.

To obtain an ordering of the maximal cliques from the bitvector, we consider the 1s
and 0s as blocks. The end points of the i-th vertex is now the block number that the i-th
1 or 0 belongs to.

We will refer to the intervals generated by the bitvector indices as the bitvector repre-
sentation of the graph and by the intervals generated from the block representation as the
clique representation of the graph.

Lemma 5.5.3. Given a proper interval graph, and its interval representation using a length
2n bit vector, there are k maximal cliques where k is the number of blocks of 1s (and 0s) in
the bit vector. If we view the i-th vertices’ left and right endpoints by the block that the i-th
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1 and 0 belongs to, then i-th maximal clique contains all vertices whose intervals contain
i.

Proof. To see that this indeed gives us the desired maximal cliques, consider any maximal
clique C. Then the intervals of the vertices v ∈ C pairwise intersect and thus there exists
some number l that belongs to all the intervals. Conversely all intervals containing l forms
a clique and must be equal to C. Thus all maximal cliques are found by taking some
number l and taking all intervals containing l.

Let l be the index of the last 1 in some block of 1s in the bitvector. We show that l
gives a maximal clique. Let Cl be the set of vertices whose intervals contain l, and suppose
that there exists another number l′ > l (other case is symmetrical) whose clique Cl′ strictly
contains Cl. Let v ∈ Cl′ \Cl. The left endpoint of v is to the right of l. Since l is the index
of the last 1 in a block of 1s, the left endpoint of v must be to the right of the block of
0s immediately following l, and thus so much l′. But this block of 0s represents the right
endpoint of vertices of Cl, which then cannot contain l′.

By collapsing the 1s and 0s into blocks, the vertices whose intervals contain i (in the
block view) are exactly those whose intervals (in the bitvector view) contain li = the index
of the last 1 in the i-th block of 1s.

Conversely, consider any index i such that it is not the last 1 of a block. There are 3
cases, i is between two numbers in the bitvector of the form 11, 00, 01. In the first case and
third cases, moving i to the right past the next 1 increases the clique (that 1 represents a
new vertex whose interval now contains i). In the second case, moving i to the left past
the 0 increases the clique (that 0 represents the right endpoint of some vertex that now
contains i).

Example 5.5.4. The proper interval graph represented by the following bit sequence
1101011000 has maximal cliques {1, 2}, {2, 3}, {3, 4, 5} and in this arrangement, the cliques
that contain any vertex are consecutive.

It is obvious each length 2n bitvector that encodes a proper interval graphs must be
balanced (at any index, the number of 1 preceding must be at least the number of 0s
preceding) so that each interval’s right coordinate is larger than its left coordinate, and
thus can be viewed as a Dyck path or a balanced parenthesis sequence. Consider any index
where the Dyck path touches the line x = 0. Any vertex represented by an interval to the
left of this point does not intersect interval of a vertex to the right of this point, and thus
the graph is disconnected. A proper interval graph is connected then if the Dyck path
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never touches the line x = 0, except at the two end points. Thus connected proper interval
graphs correspond to irreducible dyck paths.

Let k be the number of maximal cliques (and the number of blocks of 1s and 0s in
the bitvector representation). Then the sizes of the blocks of 1s forms a composition of
n. We will represent this by a set of k − 1 barriers that split the n nodes into k parts.
There are n− 1 possible positions that could have barriers (between positions i and i+ 1
for i = 1, . . . n − 1). The positions that do not have barriers will be denoted by the set
Rl (l for the left end point of intervals). Similarly, the sizes of the blocks of 0s is also a
composition of n and can be represented by a set of k− 1 barriers. The positions which do
not have barriers will be denoted by Rr (r for right end points). Finally, let RI = Rl ∩Rr

be the intersection of the two.

Conversely, given two compositions of n, we can recover the block sizes and thus the
bitvector.

Lemma 5.5.5. Two sets Rl, Rr represents a proper interval graph if at any index i, the
set Rl(i) = {x ∈ Rl;x < i} is at least as large as the set Rr(i) = {x ∈ Rr;x < i}.

Proof. Consider the clique representation of a proper interval graph. For any vertex i, we
must have that the left end point is at most equal to the right end point. Translating
to Rl, Rr, at any index i, the number of barriers preceding i in Rl is at most that of the
number of barriers preceding i in Rr (the block number of the i-th 1/0 is equal to the
number of barriers preceding i + 1 in Rl/Rr respectively). Thus the number of positions
which do not have barriers in Rl : Rl(i) must be at least Rr(i).

Given two sets Rr, Rl, we say that they satisfy the Dyck path property if they rep-
resent a proper interval graph, and we will denote Rr, Rl as the barrier or composition
representation of the graph.

Example 5.5.6. In our graph above whose bitvector representation was 1101011000, the
sizes of the blocks of 1s were 2, 1, 2. Thus Rl would be 0010100 (or as a set {1, 4}), where
the 1 represents the barrier and the 0 represents the size of the composition.

Rr would be 0101000 (or as a set {3, 4}) as the sizes of the blocks of 0s are 1, 1, 3.

Finally RI would be 01010100 as only position 4 is shared among Rl, Rr.

5.5.4 First Lower Bound

We will derive a subset of proper connected interval graphs that a) there are a lot of graphs
in the subset, so that the number of bits to represent them is large and b) the number of
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bits needed to store the beer vertices is large, which consequently means the number of
twin vertices is small.

As our lower bound will be information theoretic, we will be taking the lg. The number
of graphs will be exponential in n and thus any poly(n, 1/n) factors will be lower order
terms. For simplicity, we will ignore them. Furthermore, proving a bound on a graph of
n + c vertices for constant c will also introduce lower order terms, and thus we will for
simplicity ignore any constant increase in graph size.

We will use the barrier representation of a proper interval graph, Rl, Rr, as their struc-
ture and in particular RI allows us to compute the sizes of the equivalence classes of twin
vertices nicely.

Lemma 5.5.7. Two vertices i and i+1 are twins if and only if there is no barrier between
them in RI .

Proof. Two vertices i, i + 1 has no barrier between them in RI ⇔ i, i + 1 has no barrier
between them in Rl and Rr ⇔ i, i+ 1’s left endpoints belong to the same block of 1s and
their right endpoints belong to the same block 0s ⇔ i, i+ 1 have the same set of maximal
cliques ⇔ i, i+ 1 are twins.

Thus the composition defined by RI is exactly the sizes of the equivalence classes of
twin vertices.

Example 5.5.8. Again in our graph represented by the bitvector 1101011000, the only
twin vertices are 4, 5 since RI = 01010100.

For a graph on n vertices, there are n − 1 locations to place barriers. To make the
calculations cleaner, we will consider n + 1 vertices so that there are n locations to place
barriers.

Lemma 5.5.9. Let Rr, Rl satisfy the Dyck path property for proper interval graphs on n+1
vertices. Let x = |RI | and y = |Rr \RI |. Then the number of such Rr, Rl is

n∑
x=0

(n−x)/2∑
y=0

(
n

x

)(
n− x

2y

)(
2y

y

)
1

y + 1

Proof. We first select the x positions of RI . Each of Rl \ RI , Rr \ RI have size y, so from
the remaining n− x positions we select 2y elements for their union. Finally out of the 2y
elements, we decide which set each element belongs.
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To satisfy the Dyck path property, the 2y elements distributed to Rl, Rr must satisfy
the Dyck path property. The number of ways to do this is exactly the number of Dyck
paths of length 2y which is the y-th Catalan number

(
2y
y

)
/(y + 1).

Let Sx,y = {Rl, Rr; |RI | = x, |Rl| = |Rr| = x+y,Rl, Rrsatisfies the Dyck path property}.
Then we have shown that |Sx,y| =

(
n
x

)(
n−x
2y

)(
2y
y

)
1

y+1
.

We also note that as an aside, we have proven (or rediscovered) the following Catalan
number identity (Ck denoting the k-th Catalan number), which may be useful for other
applications.

Cn+1 =
n∑

x=0

(n−x)/2∑
y=0

(
n

x

)(
n− x

2y

)
Cy

Let G be any proper interval graph on n + 1 vertices and let Rl, Rr be the Dyck
path representation. Consider the following graph G′ on n + 3 vertices, whose Dyck path
representation is R′

l = 0Rl10, R
′
r = 01Rr0. Note that by removing a barrier in R′

l at
the first index and not in R′

r we obtain the following property: at any index i, |R′
l(i)| is

strictly greater than that of |R′
r(i)| and this translates to a Dyck path that never touches

the x-axis. Therefore, G′ is a connected proper interval graph. Furthermore R′
I = 01RI10

so that the sizes of the twin vertex classes are preserved - we add two more of size 1.

Thus if ki are the sizes of the twin vertex classes of G, then

|2n/G′| = 4Πi(ki + 1)

We will drop the factor of 4 as it contributes to a lower order term.

Lastly, we wish to investigate the number of beer vertex patterns given only the number
of parts in the composition representing the equivalence classes of twin vertices, as that is
what RI gives us.

Let g(Rl, Rr) = g(RI) be the number of beer vertex patterns. That is if ki are the sizes
of the parts in composition defined by RI , then g(RI) = Πi(ki + 1).

Let f(n, x) be the average over all compositions of n with n− x parts of the number of
beer vertex patterns. That is

f(n, x) =
∑
y

∑
Rl,Rr∈Sx,y

g(Rl, Rr)/
∑
y

|Sx,y|

Unfortunately, it is difficult to compute f(n, x) exactly, so the best we can do is bound
it.
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Lemma 5.5.10. 2n(1/2)x ≤ f(n, x) ≤ 2n(3/4)x. Up to poly(n, 1/n) factors.

Proof. Each g(Rl, Rr) computes the number of beer vertex patterns for a composition of
n into n − x parts where x = |RI | (this might be off by 1 but that only contributes a
constant factor). Consider two parts of sizes k1 < k2. These two parts contributes a
factor of (k1 + 1)(k2 + 1). Now consider two parts of k1 + 1, k2 − 1. The factor is now
(k1 + 2)(k2). By doing this we have increased our term by k2 − k1 − 1 ≥ 0. Thus if we
rearrange our composition by evening out the sizes, we achieve a larger total. Conversely,
if we concentrate all of the composition into one term, we obtain the smallest total.

Thus g(Rl, Rr) is maximized when all parts are as equal as possible and g(Rl, Rr) is
minimized when all parts have size 1 except the last part which has n− x+ 1. As f(n, x)
is the average of all composition, it is bounded by the largest valued compositions and the
smallest valued composition.

Thus the lower bound for f(n, x) is the composition (1, 1, . . . , n − x + 1) which has
value approximately 2n−x(n − x + 2). Removing poly factors we obtain the desired term
2n(1/2)x.

For the upper bound, consider 0 ≤ x ≤ n/2. In this region the maximum valued
composition is (1, . . . , 2) where there are n− 2x 1s and x 2s. This composition has a total
value of 2n−2x3x = 2n(3/4)x.

For n/2 ≤ x ≤ 2n/3, the maximum valued composition is (2, 2, . . . , 3, 3). To see that
the maximum of 2n(3/4)x holds, we show that when x increases by 1, the total decreases
by a factor of at least 3/4. To see this in this region, when x increases, we replace 3 parts
of 2 by 2 parts of 3. That is we replace a factor of 27 = 33 by 16 = 42. As 16/27 < 3/4
this holds.

For larger x we replace k+1 copies of k by k copies of k+1. The values are (k+1)(k+1)

and (k + 2)k which in all cases decrease the total by at least (3/4).

We are now finally ready to prove our first lower bound

Theorem 5.5.11. To represent a beer proper interval graph G which is able to support
adjacent and beer distance will require at least (lg 7)n− o(n) ≈ 2.81n bits in the worst
case.

Furthermore, the lower bound cannot be greater than n lg 15/2 ≈ 2.91n bits.

Proof. Our condition on requiring adjacent and beer distance is so that the beer graph
(G,B) can be recovered. G is recovered from adjacent and B[i] can be recovered using
beer distance(i, i).
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First we consider the lower bound. For each beer proper interval graph G on n + 1
vertices, we apply the transformation to make it connected on n + 3 vertices. Since we
are now only generating connected proper interval graphs, we do not generate each graph
more than twice. We will also use the approximation 4y to the y-th Catalan numbers as
that is good enough up to poly(n, 1/n) factors. We will also drop the factor 4 that arises
in the transformation. Thus the number of beer connected proper interval graphs N on
n+ 3 vertices is at least

n∑
x=0

(n−x)/2∑
y=0

∑
Rl,Rr∈Sx,y

g(Rl, Rr)

≈
n∑

x=0

(
n

x

)
f(n, x)

(n−x)/2∑
y=0

(
n

x

)
4y

≈
n∑

x=0

(
n

x

)
f(n, x)3n−x

≥ 6n
n∑

x=0

(
n

x

)
(1/6)x

= 6n(7/6)n = 7n

Taking the log we see that lg(N) ≥ n lg 7 ≈ 2.81n.

On the other hand, for every beer proper interval graph, we may compute g(Rl, Rr)
which is exact if it is connected but is only an upper bound if not, thus we obtain the
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upper bound:

n∑
x=0

(n−x)/2∑
y=0

∑
Rl,Rr∈Sx,y

g(Rl, Rr)

≈
n∑

x=0

(
n

x

)
f(n, x)

(n−x)/2∑
y=0

(
n

x

)
4y

≈
n∑

x=0

(
n

x

)
f(n, x)3n−x

≤ 6n
n∑

x=0

(
n

x

)
(1/4)x

= 6n(5/4)n = (15/2)n

Again taking the log we see that lg(N) ≤ lg(15/2)n ≈ 2.91n

5.5.5 Improved Lower bound

In this section we will improve the lower bound attained in the previous section from n lg 7
to n lg(6 +

√
2).

We begin with our counting identity:

Cn+1 =
n∑

x=0

(n−x)/2∑
y=0

(
n

x

)(
n− x

2y

)
Cy

and rewrite it by switching the order of summation:

Cn+1 =

n/2∑
y=0

n−2y∑
x=0

(
n

2y

)(
n− 2y

x

)
Cy

With the interpretation of first choosing the 2y elements of Rl ∪Rr \RI , then choosing
which set of Rl and Rr each of these element goes - which again must be a Dyck path
on their own. Finally among the remaining elements we choose x of them to be in the
intersection.
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In this view, fix R′
l = Rl \RI and R′

r = Rr \RI , with RI ⊆ [n] \ (R′
l ∪R′

r).

Define T = {(R′
l ∪ RI , R

′
r ∪ RI);RI ⊆ [n] \ (R′

l ∪ R′
r)} be the set of Rl, Rr that we can

obtain.

Let k1, k2 . . . , k2y+1 be the composition defined by RI = [n] \ S. Then for any smaller
RI , the effect on the partition is to split the parts ki into smaller parts. Viewing part
separately, we see that over all RI , we obtain all partitions of each ki independently.

Thus
∑

(Rl,Rr)∈T g(Rl, Rr) = Π2y+1
i=1 (h(ki)) where h(ki) denotes the sum over all par-

titions of (p1, . . . , pj) of ki elements where the value of each partition is of course (p1 +
1)(p2 + 1) . . . (pj + 1).

h(k) follows the recurrence h(k) =
∑k+1

i=2 i ·h(k− i+1) by looking at the size of the last
part of the composition. Furthermore it follows the recurrence h(k) = 4h(k−1)−2h(k+1)

and has the close form formula h(k) = (2+
√
2)k+1−(2−

√
2)k+1

4
√
2

. h(k) is the sequence A003480

of OEIS [77].

As (2+
√
2)k+1−(2−

√
2)k+1

4
√
2

=
(2+

√
2)k+1(1− 1

3
√
2
)k+1

4
√
2

≥
(2+

√
2)k+1(1− 1

3
√
2

2
)

4
√
2

= (2+
√
2)k(2−

√
2) we

obtain a nice form for

∑
(Rl,Rr)∈T

g(Rl, Rr) = Π2y+1
i=1 (h(ki)) ≥ (2 +

√
2)n(2−

√
2)2y+1

.

Theorem 5.5.12. To represent a beer proper interval graph G which is able to support
adjacent and beer distance will require at least (lg 6 +

√
2)n− o(n) ≈ 2.89n bits in the

worst case. Furthermore, the lower bound cannot be greater than n lg 15/2 ≈ 2.91n bits.

Proof. We have already proven the upper bound in the previous section. For the lower
bound, we again consider all Dyck path representation for proper interval graphs on n+ 1
vertices and transform them into connected proper interval graphs on n+ 3 vertices. The
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number of beer connected proper interval graphs is at least

n/2∑
y=0

n−2y∑
x=0

(
n

2y

)(
n− 2y

x

)
Cyg(Rl, Rr)

≥
n/2∑
y=0

(
n

2y

)
22y(2 +

√
2)n(2−

√
2)2y

≥ (2 +
√
2)n(1 + 2(2−

√
2))n

= (6 +
√
2)n

5.5.6 Exact Lower Bound

Now we will derive a recurrence for the number of beer proper interval graphs, where
solving the recurrence will give us the exact number for the lower bound. As we have
shown, the lower bound αn satisfies 2.89 ≈ lg(6 +

√
2) ≤ α ≤ lg 7.5 ≈ 2.91, so we have

narrowed the range significantly already.

To derive the recurrence, we will decompose a Dyck path (which is in more or less a
one-to-one correspondence to proper interval graphs) in such a way that it preserves the
weights.

To see the one-to-one correspondence, we see that by the interval graph recognition
algorithm of Booth and Leuker [15], the PQ-tree of a connected proper interval graph of
the maximal cliques is a single Q node, so that there are at most two ordering of maximal
cliques representing each graph (one order and the reverse of that order) (or we use the
theorem of [53]). As each Dyck path gives a different sequence of maximal cliques, each
graph can have at most two Dyck paths representing it.

For a particular proper interval graph, with twin vertex classes of sizes k1, . . . , kl, the
weight assigned to it is Πi(ki + 1). Now consider the following blocking scheme for the
distance tree associated with the proper interval graph: start at the root and continue in
level-order, add the vertices to the block until either: the vertex has a different parent, or
the vertex is not a leaf. In this manner, we consider the root as a sibling of its left child.

Lemma 5.5.13. In the above blocking scheme, two vertices u, v are in the same block if
and only if they are twins.
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Figure 5.3: The twin vertex classes in the distance tree, and a way to decompose the tree

Proof. By Lemma 4.4.6, we see that the neighbourhood of any vertex v is an interval [v1, v2]
where v1 = parent(v) and v2 is the rightmost child of the previous internal node of v in
level order.

Thus two vertices u < v are twins exactly when their neighbourhoods coincide, and
this neighbourhood is [v1, v2]. They have the same v1 exactly when they have the same
parent. They have the same v2 exactly when the previous internal node is the same, but
that means v must be a leaf (as otherwise by definition, v is the previous internal node to
v, and cannot be the previous internal node to u) and furthermore all the vertices between
u,v are also leaves. Thus by definition, they would all be added to the same block as u.

We may look at this in the same way by replacing the root with a dummy root and
dropping the original root as the first child of the dummy root. This blocking scheme is
illustrated in Figure 5.3.

Note that we do not consider the dummy root as part of our blocks and we can also
view this as deleting the dummy root and consider the roots of this new forest as siblings.
The second is our proposed way to decompose the tree into two trees while preserving all
the blocks. If we consider the balanced parenthesis view of the tree (without the dummy
root), we see that the sequences are the same ()()|((())()), but we cut it into two at the |.
Precisely, | is at the first spot in the sequence such that the excess is 0 and the next two
parentheses are ((. In the language of Dyck paths, this is the first time the path touches
the x-axis and the next two steps are both up-steps.

Let C(n) be the n-th Catalan number and the number of Dyck paths of length 2n. The
above decomposes the path into two subpaths. Let L(n) be the number of paths of length
n for the subpath to the left of |. and R(n) be the number of paths of length n of the
subpath to the right. We will also abuse notation and use L(n), R(n) as the set of Dyck
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paths of the respective forms. Thus we have the recurrence C(n) =
∑n

k=0 L(k)R(n − k).
As a sanity check, we show that this indeed is a recurrence for C(n).

What is L(n)? Let 2l be the first time that the path touches the x-axis. As we cannot
have up-up steps immediately following, the steps to the right of this point must be a
sequence of up-down steps. The path before we touch the x-axis for the first time is a
irreducible dyck path, which is C(l − 1). Thus L(n) =

∑n
l=0 C(l − 1).

R(n) are dyck paths that begin with two up-steps. Since all dyck paths either begin
with up-up or up-down, we have R(n) = C(n)−C(n− 1), where C(n) counts those paths
that begin with up-up and C(n− 1) counts those paths that begin with up-down.

It is easily seen that by expanding out these definitions, we do indeed have the recur-
rence C(n) =

∑n
k=0 L(k)R(n− k) - if we do expand out the definitions, then we obtain a

telescoping sum of C(n)−C(n− 1)+C(n− 1)−C(n− 2) · · ·+C(0)−C(−1) on the right
hand side.

Now we consider the weighted versions. Let C̄(n) be the sum of all Dyck paths with
our weighting system. Similarly for L̄(n) and R̄(n). Because we preserve all the blocks
with our split, we have the same recurrence C̄(n) =

∑n
k=0 L̄(k)R̄(n − k), which holds for

n ≥ 1. For n = 0, we see that L̄(0) = 0, R̄(0) = 1 and C̄(0) = 1. Now it remains to
compute L̄(n) and R̄(n).

Lemma 5.5.14. L̄(n) =
n∑

l=0

C̄(n− l − 1)(l + 2) and R̄(n) = C̄(n)−
n∑

l=1

(l + 1)R̄(n− l).

Proof. We split a Dyck path in L(n) as above: an irreducible Dyck path followed by a
sequence of up-downs. Suppose that the irreducible Dyck path has length 2(n − l), then
the top level has a block of size l + 1, as there are l up-downs and the 1 node contributed
by the irreducible Dyck path. The remainder of the Dyck path is of length 2(n − l − 1)
and thus contributes C̄(n− l − 1).

This is illustrated in Figure 5.4. As the first part of the Dyck path is irreducible, it is
a rooted tree, and the block at level 1 contains l + 1 nodes. The remainder of the blocks
are exactly the same as those in the first node’s subtree.

We again decompose R(n) as all path minus those that begin with up-down. Let l be
the number of up-downs that begins the path. These corresponds to leaves that begin the
tree and are in a block together. The rest of the path must begin with up-up and is thus
a path in R(n− l). Therefore, we have R̄(n) = C̄(n)−

∑n
l=1(l + 1)R̄(n− l).
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Figure 5.4: Decomposition of Dyck paths (as viewed as trees) of the forms L and R

This is illustrated in Figure 5.4 in the second forest. There are 3 leaves that begin the
tree, corresponding to 3 up-downs that starts the path, and creates a block of size 3 (with
weight 4). The rest of the forest must begin with an up-up and belong to R(n− 3).

Now consider the following generating functions. Let f(x) =
∑

n≥0 C̄(n)xn, g(x) =∑
n≥0 L̄(n)x

n and h(x) =
∑

n≥0 R̄(n)xn. The above recurrences says that these generating
functions are linked and that we have a very nice closed form for f .

Lemma 5.5.15. Let b(x) = (1 − x)−2. Then we have f = gh + 1, g = f · (b − 1) and
h = f/b. Finally f =

(
1−
√
1− 8x+ 4x2

)
/ (4x− 2x2).

Proof. We first note that b(x) =
∑

n≥0(n+1)xn. This is easily seen as b(x) is the derivative
of (1− x)−1 =

∑
n≥0 x

n.

Next we note that as C̄(n) =
∑n

k=0 L̄(k)R̄(n− k) for n ≥ 1, we obtain f = gh+1. The
constant term accounts for the initial conditions.

Next we expand the recurrence for L̄ to obtain:

g =
∞∑
n=0

L̄(n)xn =
∞∑
n=0

n∑
l=0

C̄(n− l − 1)(l + 2)xn =
∞∑
l=0

∞∑
n=l

C̄(n− l − 1)(l + 2)xn

=
∞∑
l=0

(l + 2)xl+1

∞∑
n=l

C̄(n− l − 1)xn−l−1 =
∞∑
l=1

(l + 1)xlf

= f · (b− 1)
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Expanding the recurrence for R̄ we obtain:

h =
∞∑
n=0

R̄(n)xn =
∞∑
n=0

R̄(n)xn −
∞∑
n=0

n∑
l=1

R̄(n− l)(l + 1)xn

= f −
∞∑
l=1

∞∑
n=l

R̄(n− l)(l + 1)xn = f −
∞∑
l=1

(l + 1)xl

∞∑
n=l

R̄(n− l)xn−l

= f − (b− 1)h

Collect terms and we obtain f = bh.

Lastly, we have

0 = gh+ 1− f = f 2 (1− x)−2 − 1

(1− x)−2
+ 1− f

= f 2(1− (1− x)2)− f + 1 = (2x− x2)f 2 − f + 1

Apply the quadratic formula and taking the negative root, we obtain the desired f =(
1−
√
1− 8x+ 4x2

)
/ (4x− 2x2)

We note that the sequence A108524 of OEIS [77] has the same generating function
and thus C̄(n) is exactly A108524. Furthermore, we can calculate the asymptotics of
C̄(n) = (4 + 2

√
3)n·poly(n, 1/n), using methods such as Thm 2.11 of [57]. Thus we can

finally prove our desired lower bound for the number of beer proper interval graphs.

Theorem 5.5.16. The number of beer proper interval graphs on n vertices is asymptotically
(4+2

√
3)n·poly(n, 1/n). Therefore to represent a beer proper interval graph G which is able

to support adjacent and beer distance will require at least lg(4 + 2
√
3)n− o(n) ≈ 2.9n

bits in the worst case.

Proof. Consider a connected proper interval graph. The weight assigned to it is the weight
of the distance tree after we add the dummy root and drop the real root as the first child
of the dummy root.

Ignoring the dummy root, this is a particular forest on n nodes and thus is counted
in C̄(n). Hence C̄(n) is an upper bound on the number of beer connected proper interval
graphs.

Conversely, if we simply delete the root of the distance tree, we obtain a Dyck path on
n− 1 vertices, and thus the weight is counted in C̄(n− 1). The root of the tree can only
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increase the weight (either by being in a block by itself or increasing the size of the first
block by 1). Thus C̄(n− 1) is a lower bound.

Since C̄(n) = (4 + 2
√
3)n·poly(n, 1/n), it does not change asymptotically if we change

the number of vertices by 1 (as that only induces a poly(n, 1/n) factor). Hence the
number of beer connected proper interval graphs on n vertices is asymptotically (4 +
2
√
3)n·poly(n, 1/n).

To convert this to count all proper interval graphs, we note that for any proper interval
graph, the blocking scheme is an upper bound on the number of beer vertex patterns (as we
are not considering a number of automorphisms in our count - the ones that swap isomor-
phic components), and thus (4+2

√
3)n·poly(n, 1/n) is an upper bound. Clearly, connected

proper interval graphs is a subset of all proper interval graphs and (4+2
√
3)n·poly(n, 1/n)

is a lower bound.

5.6 Discussion

In this chapter, we studied the shortest beer path problem in interval graphs and proper
interval graphs. For upper bounds, we constructed a 3n+ o(n) bit data structure for beer
proper interval graphs, which can answer queries in O(f(n) lg n) time for f(n) = ω(1) (ex.
lg lg n). For beer interval graphs, we constructed a n lg n+ o(n lg n) +O(|B| lg n) bit data
structure answer queries in O(lgϵ n) time. To do this, we showed that the optimal beer
vertex can be found in a rectangular region of the distance tree, and we search for it using
orthogonal range search data structure.

For lower bounds, we enumerated the number of beer graphs. We first defined a nat-
ural notion of isomorphism between beer graphs, and used results from group theory to
explicitly compute the number of distinct beer vertex patterns a graph G can have from
the automorphism group of G. Using this, we were able to derive a formula for beer proper
interval graphs. We used two approaches to finally conclude that the lower bound for beer
interval graphs is n lg n bits and for beer proper interval graphs is lg(4 + 2

√
3)n bits.

Our results are not optimal, and thus leave quite a bit of room for future research. On
the space side, our data structure for beer proper interval graphs has a gap between 3n
and lg(4 + 2

√
3)n bits. For beer interval graphs, gap is the term O(|B| lg n) required for

the range search data structures. This dependence on |B| could potentially be removed,
perhaps using similar techniques as Section 5.3. On the query time side, both beer proper
interval graphs and beer interval graphs uses orthogonal range search, which has a running

105



time O(lgϵ n). If a different method can be found, it may be possible to reduce the time
complexity as well.

Lastly, there are other classes of graphs to be considered. As far as we know, the only
class of graphs considered are outerplanar graphs [7], and what is considered here. Other
classes that could potentially be considered include path graphs, chordal graphs, planar
graphs among others.
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Chapter 6

Dynamic Interval Graphs

In this chapter, we will study the data structure problem on dynamic interval graphs. In
this setting, we are allowed to make changes to the graph, specifically, we will allow the
addition and deletion of vertices as defined by an interval. We will not explicitly allow the
insertion and deletion of edges as the edges are defined implicitly through the intersection
structure.

The chapter is organized as follows: we begin with a review of relevant previous works
in Section 6.1 and an overview of data structures that we will be using in Section 6.2. We
will first consider the navigation queries adjacent, degree, neighborhood in Section 6.3.
Next we will consider various different models of dynamic operations and the ability to
support the distance operation: first is insertions and deletions in proper interval graphs
in Section 6.4, then we consider either only insertions or only deletions in interval graphs
in Section 6.5, then we consider the case of allow both insertions and deletion, but with
the restriction that we are given all the operations in advance in Section 6.6 and finally,
we relax all the restrictions and allow insertions and deletions in Section 6.7. Lastly, we
will summarize this chapter and give avenues for future work in Section 6.8.

6.1 Previous Work

One reason why the result of Chapter 4 is interesting is that, to achieve linear space, it
is not possible to store the edges explicitly; unlike planar graphs, the number of edges in
an interval graph can possibly be quadratic. Instead, researchers focus on designing data
structures over the intervals represented by the graph. Thus, this provides answers to the
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question about whether one can get more efficient solutions to graph problems when graphs
are provided implicitly. In other words, this is an instance in which graphs cannot be writ-
ten down explicitly, and you want data structures that use Õ(n) space or algorithms that
work in Õ(n) time, where n is the number of vertices, instead of explicitly constructing
all edges. Other instances include the work of Alman et al. [4], who initiated the investi-
gation on what kind of geometric graphs possibly allow faster, O(n1+o(1))-time algorithms
for various problems in spectral graph theory, instead of first spending quadratic time on
explicitly writing down the graph and then applying linear-time algorithms. The work
of Munro and Sinnamon [64] on representing distributive lattices also avoided explicitly
storing the up to n lg n edges of the transitive reduction of a distributive lattice on n ele-
ments, and instead extended the ideal tree structure of a distributive lattice to design an
O(n)-word representation that supports finding meets and joins in O(lg n) time.

In this chapter, we hope to provide some answers to the following question: “What
graphs allow more efficient solutions to dynamic graph problems when the graphs are
provided implicitly?”

The field of dynamic graph algorithms has seen extensive study. The goal is to answer
queries such as connectivity (are two vertices in the same connected component), shortest
paths, matching, among others on an arbitrary graph undergoing edge/vertex insertions
and deletions (though it is often assumed that either no vertex insertions/deletions occur or
they only happen to degree 0 vertices). For connectivity, the first algorithm is by Henzinger
and King [47] and the best known algorithm is by Huang et al. [48]. We refer the reader
to the talk of Hanauer et al. [41] and the survey paper of Henzinger [46].

6.2 Preliminaries

We will restate our definitions of interval graphs.

Definition 2.1.4. A graph G is an intersection graph if we may associate every vertex
v with a set sv such that for any two vertices, (u, v) ∈ E if an only if su ∩ sv ̸= ∅. We say
that the family of sets is an intersection model for the graph.

An interval graph is intersection graph of a set of intervals on the real line. Therefore
for an interval graph G, we may find a set of intervals I(G) as the intersection model (or
more descriptively, an interval representation of G). As we will be inserting and deleting
vertices as represented by an interval, we will fix a particular intersection model for G.
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A proper interval graph is an interval graph where we may associate each vertex
with an interval so that no interval is completely covered by another.

We define the following operations over an interval graph G:

• insert(v): add to G a vertex v given by the interval Iv.

• delete(v): deletes from G a vertex v given the interval Iv.

• distance(u, v): returns the distance between two vertices in G.

We note that rather than inserting vertices and edges independently as in Defini-
tion 2.1.3, we instead only insert vertices as presented by a set, and implicitly insert
all the edges that would exist from the intersection structure.

Now we will restate some of the results proved in Chapter 4 for the static case.

For each interval v, we define the parent relationship parent(v) as the vertex u such
that

u = argmin {lw | rw ≥ lv} (6.1)

This is simply the expanded form of the definition given in Section 4.4.

Our goal is to represent the graph using O(n lg n) bits (i.e. compactly). As we cannot
order the components as in 4.4 (because we do not control the order of the components
and because the equivalence class structure is not dynamic), we will instead store one tree
per component as defined in subsection 4.4.

Thus the distance tree we will use is rather a forest, as defined below:

Definition 6.2.1. Let G be an interval graph, with a fixed interval representation. The
distance tree T (G) is defined under the parent relationship parent(v). For every vertex
v, we order the children of v in order of the left end point of the vertices. That is, if u,w
are two children of v with lu < lw then u is to the left of w.

If the graph is disconnected, then we will have a forest instead. We have one tree per
vertex v where parent(v) = v. Furthermore when we refer to the distance tree T (G) of G
in the context of a vertex v if G is disconnected, it is understood that we refer to the tree
in the forest that contains v.
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For an ordinal (or cardinal) tree T , and a node v, we denote the quantity node rankTX(v)
as the index of v in the X traversal of T , where X could be LEVEL, PRE, POST indicating a
breadth-first traversal, pre-order traversal and post-order traversal respectively. 1

Recall that by Lemma 4.4.1, if u < v (i.e. lu < lv) then node rankLEVEL(u) <
node rankLEVEL(v) and vice versa. We note that by the properties of all of the above traver-
sals, if depth(u) = depth(v), then the relative ranks of u, v are the same in all traversals.
That is node rankLEVEL(u) < node rankLEVEL(v) ⇔ node rankPOST(u) < node rankPOST(v),
and the same with node rankPRE.

Now we recall the way we calculated a shortest path and the distance in an interval
graph, using Lemma 4.4.2, which we will restate here:

Lemma 4.4.2. Let G be an interval graph with distance tree T . Let u, v be two vertices
of G with node rankLEVEL(u) > node rankLEVEL(v). Consider the node to root path of u as
u = u1, . . . , uk = r. Let i be the first index where lui

≤ rv. Then a shortest path from u to
v is u = u1, . . . , ui, v.

Furthermore, depth(ui) is either depth(v)− 1 or depth(v) or depth(v) + 1.

We note that in the proper interval graph case, since the entire graph is encoded in the
distance tree, we may state it more succinctly as:

Lemma 6.2.2. Let G be a proper interval graph with distance tree T (G) and u, v be
two vertices of G with node rankLEVEL(u) < node rankLEVEL(v). Then2 distance(u, v) =
depth(v)− depth(u) + 1 (node rankPOST(u) < node rankPOST(v)), where the last term eval-
uates to 1 if the expression inside the brackets is true and 0 otherwise.

Proof. Let k1 = depth(u) ≤ depth(v) = k2. Let the path to the root from v be named
v = vk2 , . . . , v0 = r. Let i be the first (i.e. largest) index where lvi ≤ ru so that they are
adjacent. We know that a shortest path would be v, . . . vi, u. Furthermore, we know that
i = depth(u) or i = depth(u)+1. In the first case, node rankLEVEL(u) < node rankLEVEL(v),
as otherwise u would be between vi and vi+1 and would be adjacent to vi+1. In this case
the distance is k2 − k1 + 1 which the formula evaluates correctly.

In the second case, if i = depth(u) + 1, then node rankLEVEL(u) ≥ node rankLEVEL(v),
as otherwise, u would not be adjacent to vi. In this case, the distance is k2− k1 and again
the formula evaluations correctly.

1We will omit the superscript when the tree being referred to is clear.
2If the two vertices belong to the same tree; otherwise they are in different components and the distance

is ∞
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Some other dynamic data structures we are using are some more specialized trees. First
is a balanced binary search tree [75] that allows batch deletions by delaying rebalancing
until the next insert (a naive approach in AVL [3] trees would require O(lg n) on each
deletion due to rebalancing).

Lemma 6.2.3. There exists a balanced binary search tree using O(n) words of space of
height O(lg n), which supports insertions in O(lg n) plus O(1) amortized time, and deletion
in O(1) time plus the time (O(lg n)) needed to find the node.

Next is a dynamic weighted tree structure which allows the computation of weighted
path lengths in the tree.

Lemma 6.2.4. (Top Tree [5]) Let T be a forest. A top tree data structure on T occupies
O(n) words of space and supports the following operations 3 in O(lg n) time:

• link(u, v), where u and v are in different trees, links these trees by adding the edge
(u, v) to our dynamic forest.

• cut(e), removes the edge e from the forest.

• update weight(e, w), update the weight of the edge e to w and return the previous
weight.

• weighted distance(u, v), returns the weight of the path between u and v.

• anc(u, v, d), returns the first node in the tree on the path from u to v at distance at
least d from u.

We will also need the dynamic form of the orthogonal range search data structure. The
following is a result by Mortensen [58]

Lemma 6.2.5. There is a data structure occupying O(n lg n/ lg lg n) words of space which
supports the insertions and deletion of 2-dimensional points in O(lg n) time and the 2-
dimensional orthogonal range reporting query in O(lg n + k) time where n is the current
number of points in the data structure and k is the number of points reported.

3A top tree is flexible and supports many more operations than listed here, but these are the only ones
we will need
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6.3 Navigational Queries

We will now handle the relatively easy case when the only operations we need to con-
sider are insert, delete, adjacent, neighborhood, degree, spath. We will adapt the data
structure of Acan et al. [2] to to easily handling insertions and deletions.

First we note that their data structure reduces the endpoints of the interval to [1, 2n].
This is allowed in the static case since we can choose the interval representation, but not
in the dynamic case since the intervals are given to us.

In this model, whenever the input to a query is a vertex, it will actually be the interval
corresponding to that vertex.

Therefore, we will store the intervals [lv, rv] in two balanced binary search trees. First
with the left end points as keys, and the second with right end points as keys. At each node,
we will also store the subtree sizes. Furthermore, for the tree on the left endpoints, we will
store the maximum right endpoint in the subtree and a pointer to the node containing this
endpoint, and symmetrically, on the tree on the right endpoints, we store the minimal left
endpoint in the subtree, and the pointer to the node.

We may then easily translate insert and delete to inserting and deleting in trees.

Now adjacent is trivial, since we are given the intervals of the two vertices.

For degree, we are given an interval [lv, rv]. As in Acan et al., we will find the number
of vertices not adjacent to v. This requires to find the number of intervals Iu with ru < lv
and the number of intervals Iw with lw > rv. The first can be obtained by searching for
the value lv in the tree of right endpoints. The nodes with ru < lv are potentially on the
path and in complete subtrees as left children of nodes on the path. Similarly for the nodes
with lw > rv.

As we explained in subsection 4.3 in the abstraction Theorem 4.3.7, neighborhood are
either vertices u with lv ≤ lu ≤ rv, which is a sequence of nodes in the in-order traversal of
the tree on the left endpoints, or vertices w with lw < lv and rw > lv. This second case we
find the nodes by traversing the tree using the maximum right endpoints in each subtree.

Finally, by 4.4.2, to compute a shortest path, it suffices to be able to support parent.
Given a vertex v, we need to find the vertex u satisfying equation 6.1. To find u, we search
for the value lv in the tree on the right endpoints. Among the nodes with right endpoint
larger than lv, we find the node with minimal left endpoint. This takes O(lg n) time.

Thus we have:
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Theorem 6.3.1. Let G be an interval graph with a fixed interval representation I. Then we
may store G using O(n lg n) bits supporting insert, delete in O(lg n) time, adjacent in
O(1) time, degree in O(lg n) time and neighborhood, spath in O(lg n) time per neighbour
or vertex on the path.

6.4 Dynamic Proper Interval Graph

In this section, we will be studying proper interval graphs. In particular, we would like to
support insert, delete, spath and distance. To do this, we will maintain the distance
tree under insertions and deletions of vertices.

As we have restricted the problem we will also naturally modify the insert(v) opera-
tion. If the interval [l, r] inserted is incompatible with the proper interval graph - that is
it either covers or is covered by another interval, we discover this and abort the operation.

6.4.1 Distance Tree Modifications

The main issue is that the distance tree T (G) in general has unbounded degree, which
makes updates difficult since we may need to updated the parent of an unbounded number
of nodes in the case that the parent were to be deleted. To alleviate this, we will apply the
well known isomorphism between ordinal trees and binary trees to ensure that the tree is
binary. To preserve path lengths, sibling edges in the binary tree will have weight 0, while
parent edges in the binary tree will have weight 1.

Definition 6.4.1. Formally the isomorphism that we will use is the following transforma-
tion. Let T be an ordinal tree on n nodes. Define the weighted binary tree TB also on n
nodes as follows: For each vertex v in TB, the left child of v is its left sibling in T , the right
child of v is its right most child in T . Left child edges have weight 0, right child edges have
weight 1.

Using this convention, whenever we add a vertex as the left child of another vertex, it
is implicit that we also set the weight of that edge to 0, similarly for right child edges. This
transformation preserves post order traversal. Furthermore, when we talk about node
depth or path length in TB, we refer to weighted node depth or weighted path length,
respectively. Hence, any path length in T (G) is also invariant under this transformation.

Thus Lemma 6.2.2 still holds under this transformation. Furthermore, we will use
node rankLEVEL(u) to refer to the level-order position of u in T (G) before the transformation
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as the level-order position no longer has any meaning after the transformation. As concepts
are more easily stated on T (G), we will mainly use it for stating relationships between
vertices, but straightforwardly translate the operations on TB(G) which we will maintain.

Under this transformation, we also immediately have the analogous notion of ancestors.
For a vertex v, the node u = ancT (v, d) is the ancestor of v at depth d in T . The node u
in TB is the closest ancestor of v at depth d, which in a top tree would be ancT (v, r, d) (as
the edges may have 0 weight there are multiple ancestors at each depth).

6.4.2 Fully Dynamic Proper Interval Graphs

We are now ready to describe our data structure. For a proper interval graph G, with
intervals I, we will maintain the following:

• A top tree of TB(G). For each component, we store a variable indicating the root r
of that component.

• A mapping between the vertices v of G and the interval Iv = [lv, rv].

• A mapping from the end points of intervals to the vertex itself. Note that no two
intervals can share left end points nor right end points in a proper interval graph,
but the left end point of one interval can be the right end point of another.

• All the left end points of all the intervals.

• All the right end points of all the intervals.

For the last 4 items, we will use a balanced binary tree such as an AVL tree [3], so that
searches can be done in O(lg n) time. For the last 2 items, this also allows us to support
successor and predecessor queries, denoted by predL/succL, on the left end points and
predR/succR on the right end points. The total space is O(n) words.

Thus for any vertex v, depth(v) is obtained by weighted distanceT (G)(r, v) in O(lg n)
time. Furthermore anc(v, d) may also be obtained in O(lg n) time using the ancestor
operation on top trees. Now we show how to immediately translate the distance calculation
from T (G) into our data structure.

Lemma 6.4.2. The data structures in this section can compute distance(u, v) in O(lg n)
time given two vertices, u, v of G.
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Proof. In the case that depth(u) = depth(v), we retrieve the end points. Assume without
loss of generality that lu > lv. Since node rankPOST(u) > node rankPOST(v) ⇔
node rankLEVEL(u) > node rankLEVEL(v)⇔ lu > lv, by Lemma 6.2.2 we have that distance(u, v)
= 1.

Now suppose that depth(u) > depth(v). By the property of a breadth-first traver-
sal, we also have node rankLEVEL(u) > node rankLEVEL(v). Using the top tree, we find
w = anc(u, depth(v)) in O(lg n) time. Then node rankPOST(u) > node rankPOST(v) ⇔
node rankPOST(w) > node rankPOST(v) ⇔ lw > lv, so a comparison between lw and lv is
sufficient to apply Lemma 6.2.2.

Now we consider maintaining the distance tree T (G) (conceptually) and TB(G) (con-
cretely) under updates. To do so, we first characterize the parent relationship in TB(G).

Lemma 6.4.3. Let G be a proper interval graph with distance tree TB(G). Let v be a
vertex. If v is not a root of one of the components, then parentTB(G)(v) is

4

argmin{lw | lw ≥ lv} ∪ {rw | rw ≥ lv} (6.2)

If two vertices u,w have end points such that ru = lw, break ties in the above quantity by
treating lw < ru.

Furthermore, let v′ be the vertex where lv′ = predL(lv) the predecessor of v. Then v is
the root of its component if and only if v′ is not adjacent to v.

Proof. First suppose that v′ is adjacent to v. Then, since lv′ < lv, we have rv′ ≥ lv, and
hence, v′ is a candidate in the parent (in T (G)) relationship of v. Therefore, v would have
a parent in T (G) and thus would not be the root.

Conversely, let p denote the parent of v in T (G). If v′ ̸= p, we have lp < lv′ < lv ≤ rp <
rv′ . The first and third inequality comes from p being the parent of v, while the others
comes from the fact that G is a proper interval graph. Thus v′ is adjacent to v.

Now suppose that v is not the root of its component. By the construction of TB(G), v’s
parent in TB(G) is either its right sibling or, if it has no right sibling, its parent in T (G).
Let u = argmin{lw | lw ≥ lv} ∪ {rw | rw ≥ lv}. Suppose that u is obtained from the first
set which consists of left end points. Then as there are no right end points between lv and
lu, they have the same parent in T (G). Since lu = succL(lv), u must be the immediate

4argmin of a set of values computed from a set of objects (i.e. lw computed from the vertices w) returns
the object achieving the minimum value, rather than the value itself for min.
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right sibling of v. If u is obtained from the second set which consists of right end points,
then as G is a proper interval graph, u = argmin{lw | rw ≥ lv}, so u is the parent of v in
T (G).

We will first consider insertions. Let w be the vertex with interval Iw = [l, r] be our
insertion candidate. We will accomplish this in two steps: first, check that w contains or
is contained by some interval in G. If so, we may stop immediately. Then, determine the
links of TB(G) that need to be updated.

For step 1, we only need to check the containment between the two immediate prede-
cessor and successors of w. This can be done in O(lg n) following from this lemma:

Lemma 6.4.4. Let G be a proper interval graph with intervals I. Let w = [l, r] such that
l ̸= lv is the not the left end point of any interval Iv ∈ I. Let v be the vertex such that
lv = predL(l) and u be the vertex such that lu = succL(l).

Then w is contained in some interval Iv′ if and only if w is contained in Iv, and w
contains some interval Iu′ if and only if w contains Iu.

Proof. By assumption, lv ̸= lw ̸= lu. As v is the predecessor of w, lv′ ≤ lv. If w is contained
in Iv′ , then lv′ ≤ lv < lw < rw ≤ rv′ < rv, so w is also contained in Iv. Conversely, we
choose v′ = v.

Now suppose that w contains some interval Iu′ . Then we have lw < lu ≤ lu′ ≤ ru <
ru′ < rw, so w contains u.

We will now assume that G ∪ {w} is a proper interval graph. It remains to update
parent links in TB(G).

Lemma 6.4.5. O(1) links need to be updated to transform TB(G) to TB(G ∪ {w}).

Proof. By Lemma 6.4.3 for a vertex v, the parent in TB(G) is given by equation 6.2. By
adding lw and rw, the only links we need to add is parentTB(G∪{w})(w), and whenever w
is the result of equation 6.2. Furthermore, as roots do not have parents, if w becomes the
new root of some component, the old root would need to relink as well.

Thus by the analysis above, at most 4 links need to be updated. We note that to
compute the new parent of any node, equation 6.2 can be calculated using succL(lv) and
succR(lv), then taking the minimum of the result.

To be complete, we will explicitly state the vertices that need to relink. If w is the
new root of some component, then the old root is lr = succL(lw) if r is adjacent to w.
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Otherwise, w is in a component by itself. In the case that r is adjacent to w, r will need
to recalculate its parent link.

If w is not the new root of some component, then we calculate the parent of w. The
two children of w are the vertices whose left end point immediately proceeds lw and rw.

Let u, v be the vertices such that lu = predL(lw) and lv = predL(rw). We may need to
relink u and v as they may now be children of w.

Lemma 6.4.6. The transformation from TB(G) to TB(G ∪ {w}) take O(lg n) time and
thus insert has time complexity O(lg n).

Proof. insert first checks that w is consistent with the rest of the intervals. This takes
O(lg n) time. The transformation of the distance trees requires the relinking of O(1) links,
which takes O(lg n) time. Adding w to the maps between vertices and end points and
adding the end points of w to the trees require O(lg n) time.

Thus in total, insert requires O(lg n) time.

The delete operation is in essence the reverse of insert. Furthermore, we do not need
to check that the new vertex is compatible with the rest of the intervals.

Lemma 6.4.7. Removing a vertex w from TB(G) requires the relinking of at most O(1)
links.

Proof. The proof will essentially be the same as in the insertion case.

Clearly the children of w will need to be relinked. The parent pointer of w will need to
be removed if it exists as well. Lastly, if w would disconnect the tree, then we need to find
the new root of the new component as well. This is O(1) links.

Again to be complete, we will find the vertices that will require relinking.

First suppose that w would disconnect the tree. Then the new root is u such that
lu = succL(lw). By Lemma 6.4.3, we can detect that this is a new root by checking the
adjacency between u and its predecessor v found by lv = predL(lw).

The children of w can be found by predL(lw) and predL(rw).

Lemma 6.4.8. Let G be a proper interval graph with distance tree TB(G). Then delete(w)
can be done in O(lg n) time.
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Proof. The transformation of the distance trees requires the relinking of O(1) links, which
takes O(lg n) time. Removing w from the maps between vertices and end points and
removing the end points of w from the trees require O(lg n) time.

Thus in total, delete requires O(lg n) time.

Having shown how to support insert, delete and distance, we have the following
theorem.

Theorem 6.4.9. A proper interval graph G can be represented in O(n) words of space,
where n is the number of vertices currently in G, to support insert, delete, distance in
O(lg n) time, and spath in O(lg n) time per vertex on the path.

Proof. The previous lemmas shows how to support insert, delete and distance. By
Lemma 4.4.2, we may obtain a shortest path by computing parentT (G). By definition of
T (G) and equation 6.1, for a vertex v, parentT (G) is found by succR(lv), and thus spath
can be supported as well in O(lg n) time per vertex on the path.

6.4.3 Computation of Distance on Two Additional Intervals

In this section, we will consider the an additional query over our structures in O(lg n) time,
which is used in Section 6.5: Given two vertices u, v (represented by intervals) not in the
proper interval graph G, compute distance(u, v) in G∪{u, v} without requiring G∪{u, v}
to be a proper interval graph.

Let G be a proper interval graph with intervals I. Let u = [lu, ru], v = [lv, rv] be two
intervals. G ∪ {u, v} is not necessarily a proper interval graph, but is an interval graph.
We would like to find the distance between these two vertices in the interval graph.

Definition 6.4.10. For a proper interval graph G and two vertices u, v not in G defined
by an interval representation, denote

distanceG(u, v) = distanceG∪{u,v}(u, v)

Lemma 6.4.11. Let G be a proper interval graph, and u = [lu, ru], v = [lv, rv] be two
vertices not in G. Suppose that ru < lv, and define u′ = [ru, ru], v

′ = [lv, lv], then

distanceG(u, v) = distance(u′, v′).

118



We note that by symmetry we assume lu < lv. If ru > lv the interval intersect and the
distance is 1. The above lemma ignores this trivial case. The above lemma also says that
we may ignore the intervals and use just the points representing the left/right endpoints
of the intervals instead. Thus the distance does not change if we were to shift the left end
point of u or the right end point of v.

Proof. We will show that distanceG(u, v) = distanceG(u, v
′) = distance(u′, v′).

Let Tx,y be the distance tree of the interval graph G ∪ {x, y} where x, y ∈ {u, v, u′, v′}.

We first consider the differences between Tu,v, Tu,v′ , Tu′,v′ . For the first two, the tree on
the vertices w with lw < lv = l′v is unchanged by the definition of the parent relationship,
since the only difference is v and v′.

Consider the shortest path between u, v (in Tu,v). By the distance algorithm, the next
node in the path from v is parentTu,v

(v). Since the tree is unchanged for vertices w
with lw < lv = l′v, the shortest path between u, v′ must coincide with the shortest path
between u, v, since parentTu,v

(v) = parentTu,v′
(v′). Thus we have distanceG(u, v) =

distanceG(u, v
′).

Now consider the trees Tu,v′ and Tu′,v′ . In particular, the path to the root from v′. Let
this path be v′ = p1, . . . pk = r1 in Tu,v′ and v′ = q1, . . . , ql = r2 in Tu′,v′ . By Lemma 4.4.2,
the path from v′ to u is found by the first index i where pi intersects u. That is the first
index i where lpi ≤ ru. Similarly, the path from v′ to u′ is found by the first index j where
qj intersects u

′. That is the first index j where lqj ≤ r′u.

Now note that for all indices h ≤ i, j, ph = qh (that is they represent the same vertex).
To see this we induct on h. For h = 1, both p1 and q1 represent v′. For any h < i, j
parentTu,v′

(ph) = parentTu′,v′
(qh). This is because the set of candidate vertices in the

definition of parent, given by equation 6.1 are the same. Neither u nor u′ are candidates
and that is the only difference between the two graphs.

Since pmin(i,j) = qmin(i,j) and they both have the property that lpmin(i,j)
= lqmin(i,j)

≤ ru =
ru′ , we see that indeed i = j and distanceG(u, v

′) = distanceG(u
′, v′).

Now we wish to treat G ∪ {u′, v′} as a proper interval graph, so that we may use the
machinery from the previous section. That is we wish to set the left end point of u′ and
right end point of v′ so that it is consistent with the proper interval graph G.

Lemma 6.4.12. Let G be a proper interval graph with intervals I. Let rx, ly be two points
such that rx is not the right end point of any interval Iv ∈ I and ly is not the left end point
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of any interval. Then there exists lx, ry such that G ∪ {[lx, rx], [ly, ry]} is a proper interval
graph.

Proof. For lx, we find the successor u of rx by ru = succR(rx). We set the left end point
so that it is proper by lu′ = predL(lu) and lx ∈ (lu′ , lu). By doing so we guarantee the
inequalities lu′ < lx < lu and ru′ < rx < ru.

For ry, we find the predecessor v of ly by lv = predL(ly). We ensure that it is proper
by setting ry ∈ (rv, rv′) where rv′ = succR(rv).

Now we are able to prove the main theorem for this section. We are able to support the
query of distances not only on vertices of proper interval graphs but on pairs of arbitrary
vertices as well.

Theorem 6.4.13. A proper interval graph G can be represented in O(n) words of space,
where n is the number of vertices currently in G, to support insert, delete, distance in
O(lg n) time, and spath in O(lg n) time per vertex on the path. Furthermore, distance
supports arguments not in the graph G: for intervals x = [lx, rx], y = [ly, ry] not necessarily
in G, distanceG∪{x,y}(x, y) is supported in O(lg n) time.

Proof. First assume that lx < ly. If rx ≥ ly they are adjacent and we return 1.

We add the intervals [l′x, rx], [ly, r
′
y] to G, query the distance, then delete the intervals,

where l′x, r
′
y are found as in Lemma 6.4.12. If rx = rv for some interval v, then we set l′x = lv

and we do not needed to add this interval, and we query using v. Similarly for y. As this
uses O(1) predecessor and successor queries, insertions and deletions, this takes O(lg n)
time. Finally, we have by Lemma 6.4.11, distanceG(x, y) = distanceG([rx, rx], [ly, ly]) =
distanceG([l

′
x, rx], [ly, r

′
y])

6.5 Incremental/Decremental Interval Graph

In this section, we will consider problem in general interval graphs. However, we will
restrict the updates so that it is either only incremental or decremental. In other words,
we are only allowed insert or we are only allowed delete.

We do this by observing that any interval that is contained in some other interval can be
removed without changing the length of shortest paths. By maintaining the set of remaining
intervals, which we will say are exposed, we reduce the problem to the fully dynamic proper

120



case in Section 6.4. In the incremental setting, once an interval becomes contained by
another interval (that is, no longer exposed), it will remain so for the remaining operations;
in the decremental setting, once an interval becomes not contained by another interval (that
is, becomes exposed), it will remain so until it is deleted. Hence, each interval will be added
and deleted from the proper interval graph at most once. Therefore the total number of
updates to the proper interval graph data structure will be O(n) and we will achieve good
amortized query times.

Definition 6.5.1. For an interval graph G with intervals I, we say that an interval/vertex
x ∈ I is exposed if it is not contained by another interval of I, and we let Iexposed(G)
denote the set of all exposed interval of G.

We note that by definition, the subgraph H of G consisting of exposed vertices form a
proper interval graph. Let x, y ∈ Iexposed(G) be two exposed vertices, and by symmetry
suppose that lx < ly. As x, y belong to a proper interval graph H, we also have rx < ry.
As before, we will use x < y to denote that lx < ly for two exposed vertices.

As stated, we will reduce distance queries in G to distance queries in H.

Lemma 6.5.2. Given an interval graph G with fixed interval representation I, its exposed
intervals Iexposed(G) form a proper interval graph H with the following properties:

• For any interval x, x is contained by an interval of G if and only if x is contained
by an interval of H.

• For any two vertices x, y ∈ G, distanceG(x, y) = distanceH∪{x,y}(x, y)

Proof. If x is contained by an interval of H, x is contained by the same interval in G.
Conversely, suppose x is contained by some other interval in G. Among intervals of G
containing x, let y be the one with maximum length. Then, no other interval of G can
contain y, or it would contain x and have longer length. Thus, x ⊆ y ∈ H.

Since H ∪ {x, y} is a subgraph of G, distanceG(x, y) ≤ distanceH∪{x,y}(x, y). Con-
versely, suppose v0 = x, v1, v2, . . . , vk = y is a shortest path between x and y in G. For
each 1 ≤ i ≤ k − 1, we can replace vi by a vertex of H containing it, and still have a path
in H ∪ {x, y} of the same length. Hence, distanceH∪{x,y}(x, y) ≤ distanceG(x, y)

Lemma 6.5.2 implies that to support distance on interval graphs, it suffices to maintain
an instance of fully dynamic proper interval graphs using Theorem 6.4.13, on the exposed
vertices of G. Thus it remains to determine and maintain the exposed vertices of G. To
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do so, in addition to using an instance of the fully dynamic proper interval graphs data
structure, we will also be storing the exposed intervals in an auxiliary data structure to
help determine the changes.

Lemma 6.5.3. There exists a data structure using O(n) words that can store the exposed
intervals and support the following operations:

1. Given an interval x, determine whether x is contained by some interval currently in
the data structure, in O(lg n) time.

2. Given an interval x, report all intervals that are contained by x and delete all of
them, in O(lg n+ k) time, where k is the number of deleted intervals.

3. Insert an interval that does not contain and is not contained by any interval currently
in the data structure, in O(lg n) time.

4. Given an interval in the data structure, return its predecessor with respect to <, or
report that it doesn’t exist.

5. Given an interval in the data structure, return its successor with respect to <, or
report that it doesn’t exist.

Here, n denotes the number of intervals currently in the data structure.

Proof of Lemma 6.5.3 . We use a balanced binary search tree (Lemma 6.2.3) of the inter-
vals using the left end points as the keys, and store the right end points as the value. To
check if x is contained by some interval, it suffices to check the last interval whose left
endpoint is at most lx using Lemma 6.4.4. To check if x contains some interval, we just
need to check the first interval whose left endpoint is at least lx.

To find all such contained intervals we find the last interval y where ry ≤ rx. Since the
right endpoints are sorted in the same order as the left endpoints, we may binary search
for the node in the tree. All nodes between the successor s of x and y are contained by x.
To see this, let w be such a node. Then s ≤ w ≤ y, so that lx ≤ ls ≤ lw and rw ≤ ry ≤ rx.
Any vertices w to the left of s and the right of y by our choice would have either lw < lx
(if it were to the left of s) or rw > rx (if it were to the right of y.

Since the nodes covered form a sequence of nodes in an in-order traversal, we find find
them in O(lg n + k) time. By Lemma 6.2.3, we may delete each of them in O(1) time
each after we have found them. Thus the total time to delete the contained intervals is
O(lg n+ k).

The other operations are standard.
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6.5.1 Online Data Structure for Incremental Interval Graphs

We will now consider the incremental case, where the updates to the graph are only in-
sertions of vertices. To do so, we investigate the changes to the exposed vertices upon the
insertions of a new vertex.

Lemma 6.5.4. Suppose G is an interval graph with fixed interval representation and G′ =
G ∪ {x} for some interval x. Then, Iexposed(G′) ⊆ Iexposed(G) ∪ {x}.

Proof. Let y be an exposed interval of G′. Then, y is not contained by any other interval
of G ∪ {x}. If y ∈ G, then y must be exposed in G as well.

Theorem 6.5.5. There is a data structure that maintains an interval graph G in O(n)
words of space and supports the operations:

1. Insert a vertex represented by interval [l, r] into G in O(lg n) amortized time,

2. Compute the distance between two arbitrary vertices x and y in G in O(lg n) worst-
case time.

Proof. We maintain an instance of the fully dynamic proper interval graph data structure
described in Theorem 6.4.13 on the graph H whose vertices are the exposed intervals of
our current interval graph G. We also maintain an instance of the binary search tree in
Lemma 6.5.3 on the same intervals.

By Lemma 6.5.2, distanceG(x, y) can be computed in O(lg n) time by querying
distanceH∪{x,y}(x, y).

To handle insertion of x: if x is contained by some interval of G, we do nothing.
Otherwise, we remove from H all intervals that are contained by x, and then insert x.

By Lemma 6.5.2, we can test if x is contained in some interval of G by testing if x
is contained in some interval of H, which takes O(lg n) using Lemma 6.5.3. Removing k
intervals from H takes O(lg n+k) time for the BST and O(k lg n) time for Theorem 6.4.13.

Since the total number of insertions to H is bounded by n, so must the total number
of deletions. Hence, n inserts take O(n lg n) time total.
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6.5.2 Online Data Structure for Decremental Interval Graphs

In this subsection, we consider the decremental case, where the updates are the deletion of
intervals. As in the incremental case, first, we investigate how the set of exposed intervals
change after a deletion.

Lemma 6.5.6. Let G be a proper interval graph, and G′ = G − x for some vertex x ∈
G. If x not exposed in G, then, Iexposed(G) = Iexposed(G′). If x is exposed in G, then
Iexposed(G) \ {x} ⊆ Iexposed(G′). Furthermore, for all y ∈ Iexposed(G′) \ Iexposed(G), y ⊆ x.

Therefore, if x− is the predecessor of x in Iexposed(G) and x+ is the successor of x in
Iexposed(G), we have Iexposed(G′) = (Iexposed(G) \ {x})∪̇{y ∈ Iexposed(G′) : x− < y < x+};
that is the newly added elements of Iexposed(G′) are between x− and x+.

Note: if either x− or x+ does not exist, then that constraint is omitted.

Proof. First, we show that Iexposed(G) \ {x} ⊆ Iexposed(G′). Let y ∈ Iexposed(G) \ {x}.
Then, y ∈ G′. Suppose for contradiction that y is contained by z ∈ G′. Then, y is
contained by z ∈ G, contradicting y ∈ Iexposed(G).

In the case that x is not exposed, we have Iexposed(G) ⊆ Iexposed(G′). For the other
direction, let y ∈ Iexposed(G′). Then y is not contained by any interval of G′ = G− x. If y
were contained by x, then as x is not exposed, by Lemma 6.5.2 there exists an interval z
containing x, which would also contain y. As z ∈ G− x = G′, y would not be exposed in
G′, a contradiction. Thus y is not contained by x so y ∈ Iexposed(G).

Now, suppose x is exposed. Let y ∈ Iexposed(G′) \ Iexposed(G). Since y /∈ Iexposed(G), it
must be contained by some interval z ∈ G. Since y ∈ Iexposed(G′), z /∈ G′. Thus, y ⊆ x.

By our choice of x−, lx− < lx ≤ ly. We cannot have ry ≤ rx− as then y ⊆ x−,
contradicting y ∈ Iexposed(G′). Hence, x− < y. The proof that y < x+ for x < x+ is
symmetric.

Lastly we note that by our choice of x− and x+, no element of Iexposed(G) \ {x} is
between x− and x+ and thus (Iexposed(G) \ {x}) ∩ {y ∈ Iexposed(G′) : x− < y < x+} = ∅,
so that the union is a disjoint union.

We will now assume that the deleted vertex x is exposed, as there is nothing to be done
if not. We wish to find set {y ∈ Iexposed(G′) : x− < y < x+}. To do so, we will iteratively
find the exposed intervals y from smallest to largest.
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Lemma 6.5.7. Suppose we have a set of intervals S and let x ∈ S be an exposed interval.
Let y ∈ S be the interval with minimum ly (ties broken by largest ry) such that ry > rx.
Then, y is exposed, and there does not exist any exposed interval z ∈ S such that x < z < y.
If no such y exists, then there is no exposed interval w such that x < w.

Proof. Suppose that w contains y: y ⊊ w ∈ S. Then, rw ≥ ry > rx and lw ≤ ly,
contradicting choice of y. Hence, y is exposed.

Next suppose that x < z < y. Then, rz > rx (since z is exposed) and lz < ly,
contradicting choice of y. Hence, no such z exists.

If x < w, then rw > rx, so w would be a candidate for y.

Now that we know the criteria by which the exposed intervals can be found, it remains
to construct the data structure to do so.

Lemma 6.5.8. There exists a data structure using O(n) words of space that can maintain
a set of intervals (initially a given set) and do the following operations

1. Delete an interval in O(lg n)

2. Given any two exposed intervals x and y where x < y, report all exposed intervals z
such that x < z < y in O((k + 1) lg n), where k is the number of returned intervals.
We also allow x = −∞ or y = ∞ or both, in which case the constraint involving
them is omitted.

Proof. We store the intervals in a balanced binary search tree, where the keys are the
right endpoints of intervals (ties are broken by left end points of intervals in reverse order),
where at each node, we store the minimum left endpoint of all the intervals in the subtree.

To delete an interval, we delete it form the balanced binary search tree in O(lg n) time.

Given a exposed interval x, we can find the exposed interval y such that x < y and
there is no other exposed interval between them in the ordering <, or determine that none
exists, by doing the following: query the BST to find the interval [ly, ry] with minimum l
such that ry > rx. This is our desired interval by Lemma 6.5.7. Note that if x = −∞ we
return the interval y with minimal ly and maximal ry among those tied with minimal ly.

To perform the second operation, we use the following recursive algorithm

• Find exposed z such that x < z and no other exposed interval is between them.
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• If z = y, stop; otherwise, recursively find all exposed intervals between z and y, and
return them together with z.

This finds all exposed intervals between x and y because if w is a exposed interval such
that x < w < y, then either w = z, or z < w < y.

Combining all the above results, we have the analogous theorem for the decremental
case.

Theorem 6.5.9. There is a data structure that starts with a given interval graph G, and
supports using O(n) words of space the operations:

1. Delete a vertex represented by interval [l, r] from G in O(lg n) amortized time.

2. Compute the distance between two arbitrary vertices x and y in G in O(lg n) worst-
case time.

Proof. We maintain an instance of the fully dynamic proper interval graph data structure
described in Theorem 6.4.13 on the graph H whose vertices are the exposed intervals of
our current interval graph G. We also maintain an instance of the binary search tree
in Lemma 6.5.3 on the exposed intervals, and an instance of the binary search tree in
Lemma 6.5.8 on all the intervals of G.

By Lemma 6.5.2, distanceG(x, y) can be computed in O(lg n) time by querying
distanceH(x, y).

When deleting an interval x:

• First, remove x from the BST of all intervals. If x is not exposed, stop.

• Now, suppose x is exposed. Let x− and x+ be the preceding and succeeding exposed
interval, respectively. These can be found in O(lg n) using the BST of Lemma 6.5.3.
Remove x from the proper interval graph data structure. Then, query the BST of all
intervals (Lemma 6.5.8) to obtain all exposed intervals between x− and x+. Insert
these into the the BST of exposed intervals, and into the proper interval graph data
structure.

Correctness follows from Lemma 6.5.6. Since the total number of deletions to H is bounded
by n, and the size of H never exceeds n, so must the total number of insertions. Hence, n
deletes take O(n lg n) time total.
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6.6 Offline Dynamic Interval Graph

In this section, we will study the case when the operations are offline. That is, we are
given the sequence of queries, q1, . . . , qt in advance where each qi is either insert, delete
or distance. Our goal is to return the result of all distance queries, in time Õ(n + t),
where n is the size of the graph before hand, and t is the number of queries.

To do so, we will employ divide and conquer on time. Given a time interval [t1, t2]
(corresponding to queries qt1 , . . . , qt2), we will divide it into two smaller intervals [t1, (t1 +
t2)/2] and ((t1 + t2)/2, t2], and continue in this fashion until there is only a single query
in the interval, then compute the result of the query. In order for the time complexity to
arise, the amount of work needed to divide the time interval must be proportional to the
length of the time interval.

6.6.1 Divide and Conquer on Time

Now we will describe the process for computing the queries using divide and conquer on
time.

Definition 6.6.1. Let G be an interval graph with a fixed interval representation I, and
let S be a set of points. We will say that R(G,S) is an reduced representation of G if:

• for any two intervals u = [lu, ru], v = [lv, rv] with endpoints in S, we may compute
the query

distanceG∪{u,v}(u, v)

using R(G,S)

• If IS is any set of intervals with endpoints in S, then we are able to compute R(G′, S)
from R(G,S) only (that is without requiring knowledge of G) for G′ = G ∪ IS. We
will define this operation as R(G′, S) = batch insert(R(G,S), IS).

• If S ′ ⊂ S, then we are able to compute R(G,S ′) from R(G,S). We will define this
operation as R(G,S ′) = reduce active(R(G,S), S ′).

For an interval of queries [t1, t2], we will say that any vertex of the graph G right
before the query qt1 that does not appear in any insert or delete queries in qt1 , . . . , qt2
as permanent . Thus we may view the updates as small changes on a large permanent
graph. Now consider reducing the interval of queries from [t1, t2] to [t1, t3] and [t4, t2] where
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t4 = t3 + 1. For [t1, t3], any vertex that would be added in [t4, t2] does not matter, since it
would not affect any queries in the time interval [t1, t3]. Any vertex that would be deleted
during [t4, t2] (but not inserted/deleted in [t1, t3]) however would now become permanent,
as they are a vertex in G but now are not part of any updates in [t1, t3].

The opposite is true when we consider reducing to the interval [t2, t4]. Any deletions
that occur in [t1, t3] can be ignored, but any insertions that occur in [t1, t3] must be added.

Thus for an interval graph G and a sequence of queries qt1 , . . . , qt2 , we will define
S(t1, t2) as the set of all endpoints of intervals that occur in some query in the sequence.
We will let P (G, t1, t2) denote the graph on the permanent vertices of G (which is the
graph right before the query qt1) with respect to [t1, t2]. Let R(P (G, t1, t2), S(t1, t2)) be
a reduced representation of P (G). Then when we split the time interval, we will obtain
two new graphs P (G, t1, t3) and P (G, t4, t2), and two new sets S(t1, t3) and S(t4, t2) with
the property that P (G, t1, t2) ⊆ P (G, t1, t3) and P (G, t1, t2) ⊆ P (G, t4, t2) with S(t1, t3) ⊆
S(t1, t2), and S(t4, t2) ⊆ S(t1, t2).

By the properties of a reduced representation, we may obtain all ofR(P (G, t1, t3), S(t1, t3)),
R(P (G, t4, t2), S(t4, t2)) from R(P (G, t1, t2), S(t4, t2)). Our base case is when we reduce the
time period [t1, t1] so that there is a single query. If that single query is an update, we can
ignore it, but if that single query is distance, then since we have G = P (G, t1, t1), the
query answered using R(P (G, t1, t1), S(t1, t1)) will be correct.

The above can be summarized in Algorithm 1.

The correctness of the algorithm follows from the properties of a reduced representation
of G. Now consider the run time. Let k = t2−t1+1 be the number of queries. Suppose that
batch insert takes time O(k lgc k) for c ≥ 1, that reduce active takes time O(k lgc k)
and that distance takes O(1) time, then Algorithm 1 has the recurrence

T (k) = 2T (k/2) +O(k lgc k)

This solves to a run time of T (n) = O(n lgc+1 n).

It now remains to construct a reduced representation of G.

6.6.2 Reduced Representation of an Interval Graph

One obvious candidate for the reduced representation of an interval graph is its distance
tree Definition 6.2.1. However, to be able to support batch insert and reduce active in
time proportional to the number of queries (i.e. k = t2− t1 +1 = O(|S(t1, t2)|)) we cannot
build the tree on all the vertices of G which does not have size proportional to |S|.
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input : Queries qt1 , . . . , qt2 , Reduced representation R(P (G, t1, t2), S(t1, t2)) and
S(t1, t2)

output: The result of all the distance queries in qt1 , . . . , qt2
1 Function ComputeQueries;
2 if t1 = t2 then
3 if qt1 = distance(u, v) then
4 return distanceR(P (G,t1,t1),S(t1,t1))(u, v)
5 end

6 end
7 t3 ←− ⌊(t1 + t2)/2⌋;
8 Compute I1S as the vertices removed in qt3+1, . . . , t2 but not inserted in qt1 , . . . , qt3 ;
9 Compute I2S as the vertices inserted in qt1 , . . . qt3 but not removed in qt3+1, . . . , qt2 ;

10 Compute R(P (G, t1, t3), S(t1, t2)) = batch insert(R(P (G, t1, t2), S(t1, t2)), I1S);
11 Compute

R(P (G, t3 + 1, t2), S(t1, t2)) = batch insert(R(P (G, t1, t2), S(t1, t2)), I2S);
12 Compute S(t1, t3) and S(t3 + 1, t2);
13 Compute

R(P (G, t1, t3), S(t1, t3)) = reduce active(R(P (G, t1, t3), S(t1, t2)), S(t1, t3));
14 Compute R(P (G, t3 + 1, t2), S(t3 + 1, t2)) =

reduce active(R(P (G, t3 + 1, t2), S(t1, t2)), S(t3 + 1, t2)));
15 return ComputeQueries (qt1 , . . . , qt3, R(P (G, t1, t3), S(t1, t3)), S(t1, t3));
16 return ComputeQueries (qt3+1, . . . , qt2, R(P (G, t3 + 1, t2), S(t3 + 1, t2)),

S(t3 + 1, t2))

Algorithm 1: Algorithm for divide and conquer on time
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However, we note that for the computation of distance, we only need the path to the
root. Since all of our queries must come from vertices with end points in S, only the path
to the root from nodes that would represent endpoints in S would matter. All other nodes
in the tree would never be needed for any queries, and can be removed. Thus we need to
store the points of S which are endpoints of possible queries in the tree as well, since their
path to the root is what is important. Therefore in distance tree, we may remove all the
non-necessary nodes.

First we note that by Lemma 6.5.2 it suffices to maintain a proper interval graph.
Furthermore, by Lemma 6.4.11, given two vertices u, v with lu < lv, their distance only
depends on ru and lv, and in Theorem 6.4.13, we add intervals that is consistent with the
interval graph with those end points. However, we note that all nodes in the distance tree
corresponds to the left endpoint of some interval, and ru would be the right endpoint of
some interval. We first remove this inconsistency.

Lemma 6.6.2. Let Ĝ be a proper interval graph with intervals I. Let u′ = [ru, ru] and
v′ = [lv, lv] with ru < lv. Let û = [ru, rû] (lû = ru) be an interval where rû is chosen so that
it is consistent with the intervals I and that it has no children. Then distance(u′, v′) =
distance(û, v′) + 1.

Proof. Consider the path to the root from v′ as v′ = p1, . . . , pk = r. By Lemma 4.4.2 the
shortest path is found by picking the first index i such that lpi ≤ ru.

By minimality of i, we have lpi < ru < lpi−1
. Now consider the interval for û. We claim

that lpi−1
< rû is the first index where this is true.

First we show that lpi−1
≤ rû. By the definition of parent we have lpi−1

≤ rpi , thus we
have lpi < ru = lû < lpi−1

≤ rpi < rû.

Now suppose that lpi−2
≤ rû. By definition of parent, we have lpi−2

≤ rpi−1
≤ rû, and

so lpi−1
≤ lû = ru < lpi−2

≤ rpi−1
≤ rû, contradicting the minimality of i.

The above lemma shows that we may treat ru as the left endpoint of some interval, and
compute the distance using that. Now we show that we may always simply put the point
ru into the distance tree as a leaf without affecting the rest of the tree structure.

Lemma 6.6.3. Let Ĝ be a proper interval graph with intervals I. Let lu be a point that is
not the left endpoint of any interval I ∈ I, then there exists a right end point ru such that
[lu, ru] is consistent with I and the vertex u = [lu, ru] has no children in the distance tree
if it were added to the graph.
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Proof. Let v, v′ be the predecessor and successor of u respectively in G. That is lv < lu <
lv′ are the nearest left endpoints to lu. In order for ru to be consistent, we must have
rv < ru < rv′ . Consider the left endpoints of vertices between rv and rv′ . Let v1, . . . , vk
be these vertices so that rv < lv1 < . . . < lvk ≤ rv′ . We note that by the definition of
parentT (G), all of these vertices have v

′ as their parent. Choose ru ∈ (rv, lv1). This ensures
that u is not the parent of any vertex in G.

Thus given the distance tree of the proper interval graph on the exposed vertices
Iexposed(G), and the set of points S, we may construct an augmented distance tree which
includes the points of S.

Definition 6.6.4. Let G be an interval graph and Ĝ be the proper interval graph, with
intervals I. Let S be a set of points. The graph (Ĝ, S) is the graph obtained by treating
each point in S as the left end point of an interval (if it does not exist as an interval of
Ĝ already) with the left end point being the point in S, and the right endpoint chosen so
that it is consistent with the intervals of Ĝ and that it has no children.

The main thing we note in this definition is that if Ĝ changes, then the interval assigned
to a point in S may no longer be consistent. However, since we do not need to assign an
interval to the points in S (as they are placeholders to represent some consistent interval)
we may always find a new consistent interval for that point. Since the only thing that is
important for these points is their parent, when Ĝ changes, the only thing that matters is
to confirm the new parent of a point in S.

Definition 6.6.5. For the distance tree T(Ĝ,S), we say that a vertex is active if it is the
vertex corresponding to a point in S or it is a vertex v such that lv ∈ S. (Note that by
Definition 6.6.4, we insert all points in S that is not the left end point of any interval in
Ĝ)

Now we will compress this tree so that updates to it can be done in time proportional
to |S|, which is also the number of active vertices.

Definition 6.6.6. Define the compressed distance tree T̂(Ĝ,S) by compressing all paths
in T(Ĝ,S) by keeping only active vertices and any lowest common ancestors of active vertices.

T̂ is a weighted tree where the edges are weighted by the lengths of the compressed paths.

It is clear that the number of vertices in T̂ is O(|S|). Now we show that T̂ is sufficient
to compute distances.
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Lemma 6.6.7. Consider the proper interval graph (Ĝ, S). Let u, v be two vertices such
that lu, ru, lv, rv ∈ S, Then we may compute distance(Ĝ)(u, v) using T̂(Ĝ,S).

Proof. First we note that all points of S are leaves in the tree and thus do not affect any
shortest paths not involving them. Now suppose that lu < lv. If ru > lv, then we return
1 immediately, so assume that ru < lv. In the uncompressed tree T(Ĝ,S), we note that the
distance is found by using the representatives of ru, lv (via Lemma 6.6.2 wihch states that
we only need to compute the distance between these points and add 1).

By compressing the lengths of the paths, we do not change the distances, nor do we
change the relative positioning of the two vertices (in post-order), and thus Lemma 6.2.2
still holds.

As each node in T̂ represents a compressed path, we will refer to this path as the
compressed path of v.

Now we will describe our reduced representation for an interval graph G with respect
to the queries qt1 , . . . , qt2 . Let S = S(t1, t2) be the endpoints of the queries. We take the
proper interval graph Ĝ using the exposed intervals Iexposed(G). Construct the distance
tree T̂((̂G),S). It is clear that we may construct this in O(n lg n) time by traversing the tree
where n is the number of vertices of G.

We now store some extra information about the nodes of T̂ . For every node v ∈ T̂ , we
store the point (node rankPOST(u), depth(u)) in a dynamic 2-dimensional orthogonal range
search data structure using Lemma 6.2.5

It now remains to show how to implement the operations batch insert and reduce active

on our representation.

First we will handle the easier of the two operations: reduce active.

Lemma 6.6.8. Let (Ĝ, S) be a proper interval graph on vertices and points. Let S1 ⊆ S.
Then we can compute T̂(Ĝ,S\S1)

from T̂(Ĝ,S) in O(|S| lg |S|) time. We may also compute

the range search data structure on T̂(Ĝ,S\S1)
in O(|S| lg |S|) time. Hence we may support

reduce active in O(|S| lg |S|) time.

Proof. By removing S1 from S, we need to relabel nodes in the tree as active. Afterwards,
we need to compress the tree again onto the smaller set of terminals. Both of these
operations takes O(|S| lg |S|) time as the tree has size O(|S|).

Lastly, we perform a post-order traversal of the tree and add the points we obtain to
the range search data structure. The traversal and the construction of the range search
data structure takes O(|S| lg |S|) time.

132



Now we consider the batch insert operation. As shown in Lemma 6.5.4, the insertion
of a vertex would delete many exposed vertices, which must be consecutive. Thus the
modifications to T̂ is the deletion of some vertices of Ĝ and the re-computation of the
parent of some vertices.

In the first case, we will say that a vertex is deleted, in the second we will say that a
vertex is re-parented. In either case, we will say that a vertex participates in the update.
Now consider the case that we are dealing with the compressed tree T̂ . If a vertex in the
compressed path of v is deleted, then some other vertex in the compress path will need
to re-parent. We will say that if a vertex in the compressed path of v re-parents that v
re-parents (since v will now have a new parent in T̂ and it will carry its compressed path
with it).

More specifically, in the batch insert operation, we add a set of intervals with end-
points in S. Let IS be a set of at most |S| intervals with endpoints in S. Define the graph
(G ∪ IS , S) be the graph obtained by adding the intervals in IS to G. Let (Ĝ ∪ IS , S) be
the proper interval graph obtained by considering the exposed vertices. We note that any
non-exposed interval of G does not appear in Ĝ already and thus we may obtain (Ĝ∪IS , S)
from (Ĝ, S).

Since we are only considering exposed intervals, the first step is to make sure that any
two intervals we are adding [lu, ru], [lv, rv] are not contained in each other, as the contained
vertex will not appear in the proper interval graph Ĝ∪IS . We may do this in O(|S| lg |S|)
time since |IS| = O(|S|). One way is to insert all of these vertices into the tree described
in 6.5.3.

We will state results for T , and then translate those into results for T̂ . First we will
begin with effect of a single insertion. Recall that by Lemma 4.4.7, for a vertex v of a
proper interval graph, the right most neighbour of v is either the last child of v or if v is a
leaf, the last child of the previous internal node of v in the distance tree. We will denote
this node as rightmost neighbour(v).

Lemma 6.6.9. Let (Ĝ, S) be a proper interval graph, T(Ĝ,S) be the distance tree, and let
Iu = [lu, ru] be an interval with endpoints in S (we will refer to the nodes in the tree
representing these terminals by lu and ru). Then we obtain T(Ĝ∪{Iu},S) by the following
(note that the set of nodes specified in each of the cases could be empty, and between means
in a level-order traversal):

• Nodes v between lu and (but not including) parent(ru) are deleted - if any are active,
their parent is now the earlier (in level order) between parent(v) and lu.
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• Nodes between the (righter most of parent(ru) (this is included) and
rightmost neighbour (this is excluded)) and ru will now have parent lu (if they
do not already).

• Furthermore, children of delete nodes are either deleted or will now have parent lu.
Therefore any active nodes that are deleted will not have any children.

Proof. We are adding the interval I to the proper interval graph. As the result must be
proper, the intervals v deleted are those with lu ≤ lv < rv ≤ ru. The intervals that satisfy
the condition on lv are the nodes in the tree between lu and ru. We claim the intervals
that satisfy the condition on the right end point rv are those to the left of parent(ru).

Let v be a node in the tree to the left of parent(ru). Then the right most neighbour of
v, rightmost neighbour(v) is to the left of ru. Since v is not adjacent to the vertex with
left endpoint ru, we have rv < ru and it should be deleted.

On the other hand, suppose that v is equal to or to the right of parent(ru). Then
rightmost neighbour(v) is equal to or to the right of ru and thus rv > ru and v is not
deleted.

If any of these deleted nodes are active, then after insertion, these nodes which represent
the left end point of some consistent interval will have parent either lu or the same parent
as before. By Lemma 6.6.3, we may choose a right endpoint so that it is still consistent
with the remaining intervals, and still have no children.

Now we consider the nodes which will have lu as their parent in T(Ĝ∪{Iu},S). These
intervals v must have lu ≤ lv ≤ ru < rv. Thus again, these are the vertices between lu and
ru. Since rv > ru, by above, v must be equal to or to the right of parent(ru). Let u′ be
the predecessor of lu. Then we must have lu′ < lu ≤ ru′ < lv, as other wise v would already
have more leftward parent. Now consider rightmost neighbour(lu). If v equal to or to
the left of this, then either: v has parent lu already and nothing needs to be done, or v
would have a parent to the left of lu and nothing needs to be done. Conversely, if v is to
the right of rightmost neighbour(lu), then as v is not adjacent to u, we have lv > ru > ru′

as needed.

Lastly, suppose that v is deleted, then lu < lv < rv ≤ ru. Let w be a child of v. Since
w is adjacent to v, we have lw ≤ rv and hence lu < lw ≤ ru and w satisfies one of the cases
above.

By our terminology, the nodes which satisfy the first point are deleted. Nodes which
satisfy the second are re-parented. We note that even though active vertices satisfying the
first point remain on the tree, we will still say that they are in the “deleted” category.
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ru

lu

Figure 6.1: A distance tree undergoing a single insert. The nodes with different actions
are coloured.

Example 6.6.10. Consider the tree in Figure 6.1. We have not depicted all the active
nodes, except the two that are important: lu and ru corresponding to the vertex u we are
inserting. The red node is rightmost neighbour(lu) the right-most neighbour of u, and
the blue node is parent(ru). Thus the nodes between lu and ru can be split up into 3
categories: the orange nodes (including the red node in this case) are considered deleted,
and if any are active, keep their parent, as their original parent is to the left of lu. The
magenta nodes are deleted, and if any are active will have lu as their parent. The teal nodes
re-parents and will have parent lu. The following results simply restate this criteria using
depths and post-order numbers so that it can be applied when the tree is compressed.

Now that we have stated the changes needed on the uncompressed tree T(Ĝ,S), we now
need to consider the operation on the compressed tree. Since we do not have all the nodes,
and most paths are compressed, we will rely on the only things that can be translated
between the two trees: depths and relative orderings in a traversal. Thus this is essentially
a restatement of Lemma 6.6.9.

Corollary 6.6.11. Let (Ĝ, S) be a proper interval graph, T(Ĝ,S) be the distance tree, and
let Iu = [lu, ru] be an interval with endpoints in S (we will refer to the nodes in the tree
representing these terminals by lu and ru). Then we obtain T(Ĝ∪{Iu},S) by the following
(note that the set of nodes specified in each of the cases could be empty, and between means
in a level-order traversal):
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• The nodes deleted are those whose 2d point (node rankPOST, depth) satisfies at least
one of the rectangles below:

Case 1: if depth(lu) = depth(parent(ru)): no nodes if node rankPOST(ru) ≤
node rankPOST(lu), otherwise the nodes are in those in the rectangle

(node rankPOST(lu), node rankPOST(ru))× [depth(lu), depth(lu)]

Case 2: The nodes between lu and parent(ru) are those in the rectangles

(node rankPOST(lu),∞]× [depth(lu), depth(lu)]

plus
[−∞,∞]× [depth(lu) + 1, depth(ru)− 2]

plus
[−∞, node rankPOST(ru))× [depth(ru)− 1, depth(ru)− 1]

• The nodes that will now have parent lu are those whose 2d point satisfies one of the
following rectangles:

Case 1: depth(lu) = depth(ru)− 1:

(node rankPOST(lu), node rankPOST(ru))× [depth(ru), depth(ru)]

Case 2: depth(lu) = depth(ru)− 2:

[−∞, node rankPOST(ru))× [depth(ru), depth(ru)]

and

(max{node rankPOST(ru), node rankPOST(lu)},∞]× [depth(ru)− 1, depth(ru)− 1]

Case 3:
[−∞, node rankPOST(ru))× [depth(ru), depth(ru)]

and
(node rankPOST(ru),∞]× [depth(ru)− 1, depth(ru)− 1]
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Proof. First we note that if depth(lu) = depth(ru), then there is nothing to be done as
this guarantees the interval [lu, ru] is contained in another.

For the vertices to be deleted, we break it up into two cases. In the first case,
depth(lu) = depth(ru)−1 so that lu has the same depth as parent(ru). If parent(ru) is to
the left of lu as indicated by their post order numbers, then there are no nodes to the right
of lu but to the left of parent(ru). Otherwise, the nodes deleted are at depth depth(lu)
with post order numbers between the two.

Otherwise, we break the vertices between lu and parent(ru) into a few cases. The ones
on the same level as lu, the ones on the same level as parent(ru) and those in between.
These are given by the 3 rectangles.

Now for the nodes that will point to lu, which are between parent(ru) and ru, but also
to the right of rightmost neighbour(lu). We again break it into a few cases:

First is depth(lu) = depth(ru)−1. In this case, we note that if rightmost neighbour(lu)
has the same depth as ru, then the nodes to its right must have post order numbers greater
than lu. which is captured by the rectangle given. In all cases, no nodes on the same depth
as lu will be to the right of rightmost neighbour(lu).

Next is depth(lu) = depth(ru) − 2. Then all nodes on the same depth as ru will be
to the right of rightmost neighbour(lu). On the level above, the nodes to the right of
parent(lu) and rightmost neighbour(lu) will have post order numbers greater than both
of them, which is given by the rectangle.

Lastly, if depth(lu) < depth(ru) − 2, then parent(ru) is to the right of
rightmost neighbour(lu) and so we do not need to consider rightmost neighbour(lu)
at all.

Now that we’ve restated the conditions in terms of depths and post order numbers, it
becomes clear on how to do this on the compressed tree as it preserves depths and relative
orderings of nodes in the post order traversal. The key insight now is that for a node
v whose path is compressed, if one of the nodes on the compressed path of v satisfies a
rectangle [...] × [a, b] if and only if the post order rank of v satisfies the first dimension,
and its second coordinate satisfies [a,∞] and its parent’s (in the compressed tree) depth
is less than b. Therefore, for deletion, we will only consider the vertices (since if a node
on the compressed path of v would be deleted, but v would not, there exists another node
on the compressed path that would re-parent, which would find v to re-parent), but for
re-parenting, we will consider both vertices and also compressed paths. By above, since
deleted active vertices’ children are considered in deletions and re-parenting, and have no
children afterwards, we do not need to consider deleted active vertices’ children.
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Lemma 6.6.12. Let (Ĝ, S) be a proper interval graph, T̂(Ĝ,S) be the compressed distance
tree, and let Iu = [lu, ru] be an interval with endpoints in S (we will refer to the nodes in the
tree representing these terminals by lu and ru). Then we obtain T̂(Ĝ∪{Iu},S) by the following
(note that the set of nodes specified in each of the cases could be empty, and between means
in a level-order traversal):

• Note that any non-active nodes deleted implies that there is an active node descendant
of it that may need to re-parent. Thus we only consider active node deletions, which
causes the active node in this range to re-parent:

The active nodes deleted are those whose 2d point (node rankPOST, depth) satisfies at
least one of the rectangles below:

If depth(lu) < depth(ru)− 1: The nodes that needs re-parenting are

(node rankPOST(lu),∞]× [depth(lu) + 1, depth(lu) + 1]

and
[−∞,∞]× [depth(lu) + 2, depth(ru)− 2]

and
[−∞, node rankPOST(ru))× [depth(ru)− 1, depth(ru)− 1]

Will need to have parent lu with weight 1, with children ordering based on depth, and
if tied based on post order numbers.

• For a vertex v satisfying one of the rectangles below (which means that for the second
coordinate, if the one given is [a, b], we use [a,∞]), we also require that parentT̂ (v) <
b.

The nodes that will now have parent lu are those whose 2d point satisfies one of the
following rectangles:

Case 1: depth(lu) = depth(ru)− 1:

(node rankPOST(lu), node rankPOST(ru))× [depth(ru), depth(ru)]

Case 2: depth(lu) = depth(ru)− 2:

[−∞, node rankPOST(ru))× [depth(ru), depth(ru)]

and
(max{node rankPOST(ru), node rankPOST(lu)},∞]× [ depth(ru)− 1]
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Case 3:
[−∞, node rankPOST(ru))× [depth(ru), depth(ru)]

and
(node rankPOST(ru),∞]× [depth(ru)− 1, depth(ru)− 1]

If a point satisfies more than one rectangle, the rectangle that is satisfies is the
one with the largest value in the second dimension. The new weight of vertex is
based on the distance formula of Lemma 6.2.2: let v be the vertex and suppose that
the rectangle that is satisfies is [...] × [a, b], the weight is depth(v) − depth(ru) +
1(node rankPOST(v) > node rankPOST(ru)).

Proof. We note that the condition that an active vertex v satisfying [...] × [a,∞] and
depth(parentT̂ (v)) < b implies that the compressed path between v and its parent passes
through the rectangle and thus one of the vertices on that path satisfies the rectangle.

Now we consider the cases: as noted, for the deleted vertices, if they have a descendant,
then one vertex on that path will have lu as its parent, thus we only consider those in the
rectangles that are active, and for these, we do not extend the rectangles.

In Corollary 6.6.11, we had two cases: Case 1: if depth(lu) = depth(parent(ru)): no
nodes if node rankPOST(ru) ≤ node rankPOST(lu), otherwise the nodes are in those in the
rectangle (node rankPOST(lu), node rankPOST(ru))× [depth(lu), depth(lu)].

Case 2: The nodes between lu and parent(ru) are those in the rectangles
(node rankPOST(lu),∞]×[depth(lu), depth(lu)] plus [−∞,∞]×[depth(lu)+1, depth(ru)−2]
plus [−∞, node rankPOST(ru))× [depth(ru)− 1, depth(ru)− 1].

In the first case, all active vertices satisfying the rectangle are on the same level as lu
and thus are to the left of rightmost neighbour(lu). Hence their parents will not change
upon the addition of Iu. In the second case, the first rectangle has the same property.
The second rectangle we split into those on the level directly below lu. The vertices there
to the left of node rankPOST(lu) are to the left of rightmost neighbour(lu) and does not
change their parent. Those to the right now has lu as parent. The rest of the vertices in
the remaining rectangles will also have lu as parent since they are now adjacent to lu and
their original parent is to the right of lu.

Now for the second step. Any active vertex whose path contains a vertex in the rectangle
will re-parent. Note that all such rectangles are of the form [a, a] and thus the vertex on
the path will have depth a. The length of the path to this vertex is depth(v) − a. In all
cases, a = depth(ru) when node rankPOST(v) < node rankPOST(ru) and a = depth(ru) − 1
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when node rankPOST(v) > node rankPOST(ru). Thus the weight is depth(v) − depth(ru) +
1(node rankPOST(v) > node rankPOST(ru)).

As we are implementing batch insert, we will now consider the case of adding multiple
vertices at once. In order to keep the total run time O(|S| lg |S|), we will ensure that each
vertex will be returned by the range reporting data structure a constant number of times
among the insertions, thus we will need to be careful on the vertices returned. We will
again first consider the uncompressed tree T .

Lemma 6.6.13. Let (Ĝ, S) be a proper interval graph with distance tree T(Ĝ,S) and com-

pressed distance tree T̂(Ĝ,S). Let IS = {Iui
| i = 1 . . . k} be a set of at most |S| intervals

with endpoints in S such that for every i, lui
< lui+1 ≤ rui

< rui+1
(that is these intervals

form a connected proper interval graph). Furthermore, suppose that for every interval Iui
,

no interval of Ĝ contains it (otherwise the insertion of this interval has no effect). Then
the effect of inserting these intervals is as follows:

• Only vertices v in T (and thus either in T̂ explicitly or is part of a compressed path)
affected are those with lu1 < lv ≤ ruk

• A vertex v is deleted if there exists i (and we pick i to be the largest) such that
lui
≤ lv < rv ≤ rui

. Furthermore, If v is active, then let j be the first index such that
lv ≤ rj, then the result of v after the insertion of Iul

for all l ≥ j is the same as only
inserting Iuj

.

• Otherwise for a vertex v, there exists an index i such that rui−1
< lv ≤ rui

. The result
of v after the insertion of Iul

for all l ≥ i is the same as the insertion of Iui
. (Here

we allow i = 1 indicating that lv ≤ ru1)

Proof. The first point is clear. Only the vertices in the range are affect by the insertion of
IS as otherwise, they’re parents will definitely not change after the insertion, nor will they
be deleted.

Now consider a vertex v and an index i such that lui
≤ lv < rv ≤ rui

. Then v is
contained in Iui

and thus would be removed after the insertion of ui. However, if v is
active, then it only represents the left end point of an interval, and by Lemma 6.6.3 we
may choose the right end point so that it is consistent with the intervals, thus it must stay.

Now consider its parent. Let j be as defined. Since ruj
is the first right end point, it

is the best candidate to be the parent of v among IS. As lv ≤ ruj
, v will be considered
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in one of the cases when Iuj
is inserted. Now suppose that p the parent of v remains the

same, that is rp < ruj
, then rp < rul

for l > j and thus its parent will remain the same
for the insertion of all other Iul

for l > j. Otherwise, upon the insertion of uj, v will have
parent uj. In both these cases, the effect of insertion Iul

for l > j have no effect on the
final placement of v.

Lastly, we assume that no inserted interval contains v. Then there exists an index i
such that rui−1

< lv ≤ rui
. By the same argument, if after inserting ui, v has it same

parent, then the insertion of all other Iul
with l > i will also keep the parent, and if after

inserting ui, the parent of v is ui. Thus the effect is the same as if we only inserted ui.

Now we will consider the effect on the compressed tree. By doing so, we will have
implemented batch insert as we can construct the new range reporting data structure
by traversing the new T̂ .

Lemma 6.6.14. (Ĝ, S) be a proper interval graph with compressed distance tree T̂(Ĝ,S). Let

IS be a set of at most |S| intervals with endpoints in S. Then we can compute T̂(Ĝ∪IS ,S)
in O(|S| lg |S|) time.

Proof. First remove all intervals of IS that are contained in another interval of IS as they
would not appear in the resulting graph. Next remove all intervals of IS that is contained
in some interval of G. We detect this my constructing the rectangles for that interval and
checking if all of them are trivially empty (i.e one dimension is [a, b] with a > b).

The remaining intervals form a proper interval graph. We insert each component of
this proper interval graph separately. Starting from the right most component, we insert
the intervals of each component starting from the right. Let u1, . . . uk be the vertices of
the component to be added, named from left to right.

Applying Lemma 6.6.13 we insert uk then uk−1 . . . , u1. For the rectangles indicating
deletion, we keep them the same. For the rectangles indication re-parenting, for each ui

we only consider the vertices to the right of ui−1. We note that in the re-parenting step,
any vertex returned will have parent ui.

For each active vertex v satisfying deletion, we find the the first interval uj such that
lv ≤ ruj

. As the effect of inserting ul for l ≤ j is the same as only inserting uj, we delete v
from the range search, and add it back in when we are inserting uj. If the current vertex
we are inserting is uj, then we apply the deletion criteria.

For each compressed path v found in re-parenting, since that would be deleted in the
insertion of ul with l > i are removed from the range search data structure, we may assume
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that v is not deleted. Again by Lemma 6.6.13, we have rui−1
< lv ≤ rui

, and applying the
effect on v from Lemma 6.6.13 now is will be the same as the effect on v from the insertion
of all ul for l ≥ i. At this point, its parent is now ui and we remove it from the range
search data structure (otherwise it is returned from the range search data structure, but
it is determined that its parent is also returned, at which point its action is that of being
a descendant and it is deleted from the range search data structure).

By Lemma 6.6.13, each vertex v considered is either an active interval deleted - with
parent changed or not, or is an interval that re-parents.

In the first case, when we find that a vertex v will be deleted, it found as a deleted
vertex at most twice, since we delete it from the range search data structure, and add it
back at Iuj

at which point it is either deleted for the last time (and its parent is decided)
or it is re-parented.

For a vertex that re-parents, its new parent ui for some i, and henceforth will never be
considered since ui will be and it is a descendant of ui.

Therefore, any active node will be returned by the range search data structure at most
3 times - once when it is deleted for the first time, once if it is deleted from the insertion
of its potential parent uj and once when its compressed path needs to re-parent. Thus the
time taken to change the parents of all active vertices is O(|S| lg |S|).

Theorem 6.6.15. Let G be an interval graph, and let qt1 , . . . , qt2 be a sequence of queries.
Then there exists a reduced representation of G, R(P (G, t1, t2), S(t1, t2)) occupying Õ(t2−
t1) words of space and supports batch insert and reduce active in time O((t2−t1) lg(t2−
t1)).

Therefore, we have the main theorem of this section:

Theorem 6.6.16. Let G be an interval graph, let q1, . . . , qt be a sequence of queries. Then
we can output the result of all distance queries in O(n lg n+ t lg2 t) time.5

Proof. We construct R(P (G, 1, t), S(1, t)) by first finding the exposed vertices Iexposed(G),
then inserting all the points in S(1, t) into it. This takeO(n lg n+t lg t) time. Next compress
the tree and construct the dynamic range reporting data structure in O(n lg n+ t lg t). We
now apply Algorithm 1. Since batch insert and reduce active are both O(|S| lg |S|)
time, the run time of Algorithm 1 is O(t lg2 t) time.

Thus in total, the time cost is O(n lg n+ t lg2 t) time.
5We will assume that it lg t = O(lg n) and if not, break the sequence of queries up into blocks of n

queries.
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6.7 Dynamic Interval Graph

In this section, we will consider the problem without restrictions on general interval graphs.
We will break the interval graph up into smaller sub-interval graphs which will be easier
to maintain. For any path, we may similarly break it into blocks of nodes belong to each
of the smaller sub-interval graphs. We will compute the length of each of the sub-paths
that falls in entirely in a sub-interval graph. By doing so, as the sub-interval graphs are of
smaller size, we are able to maintain them at lower time cost.

Given an interval graph G by an interval representation I in sorted order, we are able
to construct the distance tree (using a pointer representation of the tree in O(n lg n) bit of
space) in O(n) time. We can then construct a anc structure on it in O(n) time as well [13],
therefore we are able to answer all the necessarily queries on the distance tree (anc, depth)
in O(1) time after O(n) preprocessing.

Let S(n) (or just S for short) be a parameter. We break G into n/S blocks B of
vertices by their left endpoints. So that block 1 (B1) contains the first S vertices by left
endpoint and so on. For each block Bi, the graph G(Bi) is the induced subgraph of G
on the vertices of Bi. For each block, we build a distance tree T (Bi). We note that even
if G were connected, each block G(Bi) may not be. As we will now have many different
distance trees, when we refer to parent, we refer to the parent of a vertex in G (that is in
the distance tree T (G)). If we need to refer to the distance tree of a particular block, we
will use parentT (G(Bj))

.

Definition 6.7.1. Let v be a vertex in G, we say that v has an in-block parent if v and
parentT (v) are in the same block (or if v is the root of the distance tree of its component)
and v has an out-of-block parent otherwise.

We note that by this definition, a vertex v belong to block Bi has an in-block parent
implies that parent(v) = parentT (G(Bi))

(v) (i.e, the vertices that these nodes represent are
the same).

Example 6.7.2. Consider Figure 6.2. We see that all the vertices represented by the red
intervals have in-block parents, while all other vertices do not. In particular, for any other
vertex, since they have an out-of-block parent, their parent in the distance tree of their
block T (G(Bi)) would be different than their parent over all. However for the red vertices
these two parent relationships would coincide.

Let v be a vertex, and consider the the path from v to the root r of its component
given by Lemma 4.4.2 as v = v1, . . . , va = r. We may break the path into a sequence of

143



Figure 6.2: An interval graph with the parent relationship depicted by arrows, divided into
blocks of size 3.

sub paths Pj where every vertex in Pj belongs to block Bj, which we will call the block-
compressed-path, where every vertex vi ∈ Pj belong to block j. By this definition, every
vertex vi ∈ Pj except the last have in-block parents, and the last vertex of every block has
an out-of-block parent.

Lemma 6.7.3. Let G be an interval graph, and v be a vertex. Let Pj1 , . . . , Pjb be the
block-compressed-path of the path to the root (of the component of v) from v. Then for any
index k, jk > jk+1.

Proof. For any vertex vi, we have lvi > lvi+1
, so that vi+1 appears in the same or an earlier

block. Thus jk > jk+1.

The above lemma shows that the block numbers are monotonic decreasing. Thus since
no block is used more than once, the number of blocks on any path is at most n/S. As in
Lemma 4.4.2, given u < v a shortest path is found by the first index i such that lvi ≤ ru.
We will now consider how u interacts with the block-compressed-path.

In the first case, u ∈ Pj for some j, and in the second, there is an index jl such that
u ∈ Bk for some index k such that jl+1 < k < jl (here jl+1 may not exist if jl = jb is the
last block in the path). Now consider the first case:

Lemma 6.7.4. Let u, v ∈ Bj be two vertices in the same block. Let vi be the first index
on the path to the root with an out-of-block parent (that is vi > d(Bj) but vi+1 ≤ d(Bj)). If
vi ≤ u then distanceG(u, v) = distanceBj

(u, v). Otherwise, either u, v are not connected
in G or vi+1 is adjacent to u.

Proof. Consider the path to the root from v. Since vi ≤ u, then the first vertex on the
path adjacent to u has smaller index, and thus is in Bj. By Lemma 4.4.2, the shortest
path from v to u would lie entirely in Bj so distanceG(u, v) = distanceBj

(u, v).
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Now suppose that vi > u. Suppose that u, v are connected in G. Then since vi has an
out-of-block parent, vi+1 < u. Thus lvi+1

< lu and rvi+1
≥ lvi > lu. Thus u is adjacent to

vi+1.

We next consider the second case:

Lemma 6.7.5. Let u < v be two vertices. Consider the block-compressed-path of v. Sup-
pose that there exists an index jl such that u ∈ Bk and jl+1 > k > jl. Let vi be the last
vertex in Pjl on the block-compressed-path of v. Then u, v are connected if and only if l is
not the last block on the path. If l is not the last block on the path then either vi or vi+1 is
adjacent to u and vi−1 is not adjacent to u.

Proof. First suppose that jl is the last block on the path. Then consider parent(vi). If it
belongs to block jl, then vi is not the last vertex of the path in that block. If it belongs
to a different block then Pjl is not the last block on the path. In either case, we have a
contradiction. Thus vi must be the root of the distance tree of its component, and u < vi
implies that u is not adjacent to vi and thus not adjacent to v. Conversely, we have that
lvi+1

< lu < lvi ≤ rvi+1
by the block numbers and that vi+1 = parent(vi). Hence vi+1 is

adjacent to u. It is also possible that ru ≥ lvi , so that u is adjacent to vi. Thus either vi
or vi+1 is adjacent to u.

Now consider vi−1. If u is adjacent to vi−1, then ru ≥ lvi−1
, and thus parent(vi−1) ≤

u < vi contradicting the fact that vi = parent(vi−1).

Now suppose that given v, we are able to compute the last vertex on the path to
the root belonging to the same block as v. Then we may iteratively compute this, then
check whether it or its parent is adjacent to u and continue to the next block. We note
that we may compute parent using the data structure in Section 6.3 for the vertices with
out-of-block parents.

Thus we now consider how to compute the sub paths Pj. That is given a vertex vi, we
want to find the next vertex in the path vi′ such that vi′ has an out-of-block parent, which
implies that Pj ends at vi′ . We will denote this operation as out of block ancestor We
first characterize the vertices of a block Bj whose parents are in-block and those vertices
whose parents are out-of-block.

Lemma 6.7.6. Let Bj be a block of vertices. Then there exists an index/vertex w such
that every vertex v ∈ Bj with v > w have in-block parents and every vertex v ≤ w have
out-of-block parents.
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Proof. We will show that if v has an in-block-parent, then so that v + 1, and if vertex v
has an out-of-block-parent, so does v − 1.

Suppose that v has an in-block-parent pv = parent(v). Then pv+1 = parent(v + 1) is
to the right of pv by Lemma 4.4.1. Thus pv ≤ pv+1 ≤ v and pv+1 is in the same block as
pv, v and v+1. Suppose that pv is out-of-block. Then as pv−1 ≤ pv, so must pv−1 and v−1
also has an out-of-block parent.

We will denote this point/vertex as d(Bj), where the vertices v ≤ d(Bj) have out-of-
block parents and vertices v > d(Bj) have in-block parents. To compute Bj we employ the
following:

Lemma 6.7.7. Let Bj be a block of vertices and let v be the first vertex of the block (that
is the vertex with the smallest lv). Then w = d(Bj) = argmax{lw | lw ≤ ru, w ∈ Bj} where
u = argmax{ru | lu < lv}. We note that if u is such that ru < lv, then v would be the
left most vertex of its connected component in G, and every vertex of Bj would have an
in-block parent.

Proof. Let v′ ∈ Bj with v′ ≤ d(Bj). Then lv′ ≤ lw ≤ ru and v′ is adjacent to u. Since
parent(v′) ≤ u, it must be in a different block and it has a out-of-block parent. Conversely
suppose that v′ has an out-of-block parent. Let p = parent(v′). We have lp < lv, and thus
by our choice of u, ru ≥ rp. Since p = parent(v′), we also have lv′ ≤ rp ≤ ru, hence v

′ ≤ w
by our choice of w.

Suppose that for a block Bj we have computed d(Bj), then given a vertex v ∈ Bj, we
can compute v′ = out of block ancestor(v) as follows:

Lemma 6.7.8. Let v ∈ Bj be a vertex with an in-block parent. Let w = d(Bj) be the
divider between vertices with in-block parents and those with out-of-block parents. Let v′

the first ancestor of v with an out-of-block parent. Let v = v1, . . . va be the path to the root
in T (Bj). By Lemma 4.4.2, there exists the first index i where lvi ≤ rw. Then v′ = vi or
v′ = vi+1.

Proof. We note that lw ≤ rw < lvi−1
so that w < vi−1. Hence by Lemma 6.7.6 vi−1 has an

in block parent. Now suppose that lvi ≤ lw. Then vi has an out-of-block parent. Since vi−1

does not, then v′ = vi. On the other hand, suppose that lw < lvi , then vi has an in-block
parent, but as vi+1 ≤ w (by definition of parentT (G(Bj))

), vi+1 has an out-of-block parent
and v′ = vi+1.
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This lemma states that if we can compute d(Bj), then we may compute out of block ancestor

using only depth and anc.

Our data structure is then as follows:

• We maintain a copy of the data structure in Section 6.3, as described in Theo-
rem 6.3.1.

• We break the vertices of the graph into blocks Bj of size O(S(n)) which we will
maintain, and a distance tree T (G(Bj)) on each block, storing a map between the
vertices of the block and the nodes of the tree.

We will compute the distance as follows:

The correctness of Algorithm 2 follows from the previous lemmas and Lemma 4.4.2.

Now we show how to maintain the data structure under insert and delete.

Lemma 6.7.9. Let G be divided into blocks Bj. Upon the insertion or deletion of an
interval w = [lw, rw], the blocks j where d(Bj) may be updated are the blocks between
j1, . . . , j2, where j1 − 1 is the block that w is inserted into (the block that w would be
inserted into is determined by the ordering of the left endpoints, if it could be inserted in
either of two adjacent blocks, we insert it as the first vertex of the larger indexed block) or
deleted from, and j2 is the block containing argmax{lu | lu ≤ rw}.

Proof. By Lemma 6.7.7, for a block Bj, d(Bj) is computed as u = argmax{ru | lu < lv}
where v is the first vertex of the block. In order for w to be considered in the computation,
we must have lw < lv, and rw ≥ lv. Thus the last block to satisfy rw ≥ lv, is the block
containing u = argmax{lu | lu ≤ rw}. The first block considered is the first block whose
first vertex v has lw < lv which is the block following the block that w is inserted into.

We note that by Lemma 6.7.7, upon an insertion aside from Bj2 , all other blocks would
now only contain vertices with out-of-block parents.

Lemma 6.7.10. We may support insert in O(lg n+ S(n)) time.

Proof. By Theorem 6.3.1, inserting the interval into the navigational data structure takes
O(lg n) time. We may also use it to determine the block we need to insert w into, and
re-build the distance tree of that block in O(S(n)) time. If the size of the block exceeds
2S(n), we split it into two blocks and build the distance tree for both.
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input : Dynamic Interval Graph G, two vertices u < v, where u ∈ Bk, v ∈ Bj1

output: The distance between u and v
1 j ←− j1;
2 dist ←− 0;
3 while True do
4 v′ ←− OutOfBlockAncestor(v);
5 if k = j then
6 if v′ ≤ u then
7 return dist +distanceG(Bj)(u, v)
8 end
9 if adjacent(u, v′) then

10 return dist + distanceG(Bj)(v, v
′) + 1

11 end
12 if adjacent(u, parent(v′)) then
13 return dist + distanceG(Bj)(v, v

′) + 2
14 end
15 return Not connected

16 end
17 if adjacent(u, v′) then
18 return dist + distanceG(Bj)(v, v

′) + 1
19 end
20 if v′ = parent(v′) then
21 return Not connected
22 end
23 if adjacent(u, parent(v′)) then
24 return dist + distanceG(Bj)(v, v

′) + 2
25 end
26 dist ←− dist + distanceG(Bj)(v, v

′) + 1;
27 v =←− parent(v′);
28 Set j as the block of v;

29 end

Algorithm 2: Algorithm for computing the distance in dynamic interval graphs
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Lemma 6.7.11. We may support delete in O(lg n+ S(n)) time.

Proof. By Theorem 6.3.1, deleting the interval from the navigational data structure takes
O(lg n) time. We may also use it to determine the block that w belongs to, and re-build
the distance tree of that block in O(S(n)) time. If the block drops below S(n)/2, then
we merge it with one of the adjacent blocks (and split it if the new block exceeds 2S(n)
vertices). We then rebuild the appropriate distance trees for the new blocks.

Lemma 6.7.12. We may support distance in O(n lg n/S(n)) time.

Proof. Consider Algorithm 2. The loop runs at most n/S(n) times since the number of
blocks in the block-compressed-path is at most n/S(n). The time required per loop is dom-
inated by the computation of out of block ancestor. By Lemma 6.7.8, the time cost is
O(1) plus the time to compute d(Bj) for the block Bj. The formula can be computed by
searching for lv where v is the first vertex in Bj in the tree of left end points in Theo-
rem 6.3.1, then among the smaller vertices finding the one with maximal right endpoint.
This takes O(lg n) time.

Lastly, we handle the case when we insert or delete many vertices, so that the number
of blocks and the size of the blocks may no longer be O(S(n)). When this occurs, we
rebuild blocks and the distance trees. Let n′ be the size of the graph at the time of the
previous rebuild, and n be the current size of the graph. If n = 2n′ or n = n′/2 we rebuild
the distance trees using O(n) time. Thus this would require O(1) amortized cost to both
insert and delete.

Theorem 6.7.13. Let G be an interval graph and let S(n) be a parameter. There is a
data structure for G occupying O(n lg n) bit of space which supports adjacent, degree in
O(lg n) time, neighborhood, spath in O(lg n) time per vertex returned, insert, delete in
O(lg n+ S(n)) time and distance in O(n lg n/S(n)) time.

In particular, if we set S(n) =
√
n lg n, then insert, delete, distance all have time

complexity O(
√
n lg n).

Proof. We have shown the above with amortized time bounds. To de-amortize at the time
of a rebuild, we keep the current data structure as is. We begin the construction of the
new data structure at the new block size S(n). Over the next n′/4 updates, we construct
the new data structure using time O(n) and perform the n′/4 updates, using time at most
O(nS(n)) time. At then end of the n′/4 updates, we switch to answering queries on the
newly constructed data structure. In the mean time, we perform all queries and updates on
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the old data structure. On each of the next n′/4 updates, we perform O(1/n) of the work
to build the new data structure, so that at the end, we will have the new data structure
completed. Therefore on each update, we only need to perform O(S(n)) extra work, and
the time complexity is worst case.

6.8 Discussion

In this chapter we considered many variations of the dynamic interval graph problem. Due
the graph being dynamic and the fact that we do not choose the end points of intervals,
our space cost usage is O(n lg n) bits, even in the proper interval graph case.

We showed that due to the operations being local (we only need to search for adjacent
vertices), we are able to support adjacent, degree, neighborhood, spath in O(lg n) time
(per node or value outputted) under both insert and delete, and it can be done by
simply storing balanced binary search trees.

We next considered supporting distance query. First we studied the case of proper
interval graphs. By applying the ordinal-binary tree isomorphism, we were able to reduce
the number of edges changed upon an update to O(1) so that updates can be supported
in O(lg n) time while supporting distance in O(lg n) time as well.

We then considered the case that we only need to support insert or delete but not
both. We showed that in an interval graph, it suffices to only maintain a proper interval
graph of the exposed vertices. However any particular insert or delete could change this
proper interval graph by a large amount. However, over many updates, the total amount
of change is bounded, and thus the amortized cost of insert and delete can be bounded
by O(lg n).

Our next problem tackled the offline version of the problem, where all the updates and
queries are given in advance. To solve this, we employed divide and conquer on time,
to reduce the problem to a large static graph with a small number of updates. We then
reduced our representation of this large static graph so that it’s size is proportional to just
the number of updates, which allowed us to make the updates quickly. For t queries, we
were able to compute the answers in t lg2 t time.

Finally we dropped all the restrictions. We broke the graph into subgraphs of smaller
size which are easily maintained, and computed the path within each subgraph. In doing
so, we were able to support insert, delete and distance in O(

√
n lg n) time.

Our results in this chapter are probably not optimal, especially in the case of fully
dynamic interval graphs. The time complexity of O(

√
n lg n) is much higher than the time
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for all the other versions of the problem, which were Õ(n). Thus further work on improving
the the data structure in this case is needed. For smaller improvements, the data structure
for incremental and decremental interval graphs is amortized O(lg n), since any particular
update may change the graph in a large way. It would be desirable to de-amortize it, so
that it is O(lg n) worst case time.
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Chapter 7

Chordal Graphs and Path Graphs

In this chapter we will study data structure problems for path graphs and chordal graphs.
In the previous chapters, we studied various data structure problems on interval graphs.
Path graphs and chordal graphs are in a sense, generalizations of interval graphs. Whereas
interval graphs are intersection graphs of paths in a path, path graphs generalize this
to paths in a tree, and chordal graphs generalize this further to subtrees in a tree. In
this chapter, we will study the navigational queries and distances in the static case. The
chapter is organized as follows: we begin with a brief review of relevant previous works in
Section 7.1, and an overview of existing results that we will be using in Section 7.2. We
will study study chordal graphs in Section 7.3 and path graphs in Section 7.4. Finally, we
will summarize our results and discuss open problems in Section 7.5.

7.1 Previous Work

On path graphs, they were studied by Gavril [36], who gave a recognition algorithm
for them. The data structure problem was studied by Balakrishnan et al. [8], where
gave gave both succinct and compact data structures. Specifically, they gave a succinct
n lg n+ o(n lg n) bit data structure supporting adjacent in O(lg2 n) time, and degree and
neighborhood in O(lg2 n) time per neighbour. To complete the time-space trade off, they
gave a data structure using O(n lg2 n) bits supporting adjacent in O(1) time, degree and
neighborhood in O(1) time per neighbour.

There have been much more studies of chordal graphs, as they naturally arise in many
situations. For example, in the study of Gaussian Elimination of matrices [73], which gives
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rise to the term perfect elimination order 1. In the studied of data structures, Singh et
al. [76] gave a O(n lg n) bit data structure to compute distance approximately in O(1)
time. If d is the distance between two vertices u, v, then their data structure returned
an answer in the range [d, 2d + 8]. Munro and Wu [65] 2 gave a succinct data structure
occupying n2/4 + o(n2) bits to support adjacent in O(f(n)) time, degree in O(1) time,
neighborhood in O((f(n))2) time, and distance and spath in O(nf(n)) time for any
f = ω(1). Furthermore, Munro and Wu constructed a data structure for approximate
distances occupying O(n lg n) bits which supported reporting the approximate distance

in O(1) time. They range is also reduced from [d, 2d+ 8] to [d, d+ 1].

7.2 Preliminaries

As always, one of the fundamental building blocks of succinct data structures is the bit
vector.

Lemma 2.3.2 ([62]). A bit-vector of length n can be represented in n+o(n) bits to support
access, rank, select in O(1) time.

As the graphs are defined by the intersections of paths and subtrees in a tree, naturally
we will require succinct tree data structures. In this case, we do not need the level-order
operations implemented in Chapter 3.

Theorem 3.5.2 (Succinct trees). An ordinal tree on n nodes can be represented in 2n+o(n)
bits to support all the tree operations listed in Table 2.1 in O(1) time.

We will also rely heavily on the orthogonal range search data structures.

Lemma 2.5.6. Given n 2-dimensional points, and let f be the time cost of rank, g be
the time cost of decode. Then we are able to support 3-sided reporting queries (of the
form [x1, x2]× [−∞, y], to support the symmetric cases, we duplicate the structure) in time
O(f + k · g) where k is the number of points reported. The space cost is 2n+ o(n) plus the
space needed to support the rank and decode operations.

Lemma 2.5.3 ([16]). Let S be a set of points from the universe M = [1..n]× [1..n], where
n = |S|. S can be represented using n lg n + o(n lg n) bits to support orthogonal range
counting in O(lg n/ lg lg n) time, and orthogonal range reporting in O(k lg n/ lg lg n) time,
where k is the size of the output.

1An ordering of vertices such that for every vertex, its adjacent vertices that before it is a clique.
2This work appears in the author’s M.Math thesis.
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And finally permutations.

Lemma 2.3.8 ([60]). Let P be a permutation. Then we may represent P using (1 +
1/f(n))n lg n + o(n lg n) bits to support the computation of P and P−1 in O(f(n)) time
(1 ≤ f(n) ≤ n). In particular, if we set 1/f(n) = ε for constant ε > 0, then the space is
(1 + ε)n lg n+ o(n lg n) bits and the time is O(1

ε
) = O(1).

7.3 Chordal Graph

A chordal graph is 3 the intersection graph of subtrees of a tree. For a chordal graph G,
we may find a tree T such that for every vertex v, we associate v with a subtree Xv such
that two vertices u, v are adjacent if and only if Xv intersects Xu at a node.

In this section, we revisit the data structure problem studied by Munro and Wu [65].
In particular, we give a succinct data structure occupying n2/4+ o(n2) bit which supports
adjacent in O(1) time (rather than O(f(n))) time, degree in O(1) time, neighborhood
in O(f(n)) time (rather than O((f(n))2))), and distance and spath in O(n) time (rather
than O(nf(n)))).

To start, we will briefly review the result of [65]. First we assume that the graph is
connected, and if not apply the following to each connected component. As it is shown,
the tree T can be chosen to have the following properties:

• T has n nodes

• For every vertex v, the node of Xv denoted by Tv with the smallest depth is unique
to Xv. That is for any two vertices u, v, Tu and Tv are distinct.

• For every vertex v, let u be the vertex such that Tu = parent(Tv). Then u is adjacent
to v (that is Tv is in the subtree Xu)

The first two properties allows us to associate every vertex v with a node Tv in the tree,
and we will now abuse notation and call both v and Tv v. We may also now name each
vertex with a number, which corresponds to its index in the preorder traversal of T . Munro
and Wu also defined 4 the set at v, B(v) to be the set of subtrees (not including v) passing
through v. By property 3, parent(v) ∈ B(v).

3Using one of many characterizations of chordal graphs
4Not exactly, but as an immediate consequence.
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Furthermore, as a consequence of this structure, we have that B(v) ⊆ B(parent(v)) ∪
{parent(v)} since any path passing through v must also pass through parent(v). Therefore
the elements of B(v) are a subset of the ancestors of v, and thus the elements of B(v) are
smaller (in the sense of the index in preorder traversal) than v.

Munro and Wu defined the following operations for B(v):

• adjacent, given u < v, is u ∈ B(v)? We note that this is exactly adjacent since
u ∈ B(v) if and only if u is adjacent to v.

• decode, given v and an index i, what is the i-th smallest element of B(v)?

Using these, Munro andWu constructed the data structure for chordal graphs as follows:

• adjacent: This is clear.

• degree: We store the degree of every vertex explicitly in n lg n bit of space.

• neighborhood: The neighbours u of v with u < v can be found by iterating decode.
The neighbours u of v with u > v can be found by compressing the following bitvector.
We consider a bitvector of length n − v where the i-th bit is a 1 if the vertex v + i
is a neighbour of v. We compress the bitvector into a smaller bitvector of length
(n − v)/f(n) by considering blocks of size f(n). The value of the block is a 1 if
there is a 1 in the block. To find all the 1s in the bitvector, we iterate over the 1s
in the compressed bitvector, and for each 1, check every vertex in that block if it is
adjacent to v. Thus we incur a factor of f(n) (since we need to scan the block) for
every vertex reported in this case.

• spath and distance: We use a generalized lemma as Lemma 4.4.2. We again con-
struct the distance tree TD, with the parent relationship parentTD

(v) = min{B(v)},
which is the minimal adjacent ancestor of v. We assume that u, v are not in an
ancestor-descendant relationship, as in the case they they are in an ancestor-descendant
relationship, the graphs restricted to the path between them is an interval graph,
which is covered in Lemma 4.4.2.

Lemma 7.3.1. Let u < v be two vertices of a chordal graph G, with tree T . Let l =
LCAT (u, v), and assume that l ̸= u. Consider the two paths to the root u = uk1 , . . . u0 = r
and v = vk2 , . . . , v0 = r. Let i, j be the indices where ui > l ≥ ui−1, vj > l ≥ vj−1. Then
there are two cases:
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1. If there exists a vertex w such that w is adjacent to both ui and vj (i.e. the subtree Xw

contains both the nodes Tui
and Tvj), then a path is u = uk1 , . . . , ui, w, vj, . . . , vk2 = v.

2. If no such vertex w exists, then a shortest path is u = uk1 . . . , ui, ui−1, vj−1, . . . vk2 = v.

We store TD and a mapping between the vertices v in T and the corresponding node of
TD. To compute a shortest path or a distance, we compute the LCA of u, v, and find ui and
vj. As in the interval graph case, ui and vj can be found using level-ancestor. If w exists,
then w ∈ B(ui)∩B(vj), and we find it by computing this intersection in O(n) applications
of decode - this also determines if w does not exist.

Putting this together, we have the following theorem of Munro and Wu:

Theorem 7.3.2. Let G be a chordal graph. Let D be a data structure answering adjacent,
decode in O(g(n)) time, which occupies n2/4 + o(n2) bits of space. Then we may support
adjacent in O(g(n)) time, degree in O(1) time, neighborhood in O(f(n)g(n)) time for
any function f(n) ∈ ω(1), and spath, distance in O(ng(n)) time. The space is succinct:
n2/4 + o(n2) bits.

Furthermore, we may support approximate shortest paths and distances (which gives an
answer in the range [d, d+ 1]) using O(n lg n) bits of space and O(1) time.

Proof. The lower bound in space is n2/4 bits, so D would need n2/4 bits in the worst
case. The additional space required for neighborhood are bitvectors whose total length is
O(n2/f(n)) = o(n2).

To compute approximate shortest paths and distances, we only need to store T , TD

and the mapping between them, as we do need to need to determine whether w exists in
Lemma 7.3.1, which takes O(n lg n) bits of space.

Munro and Wu showed how to construct D with g(n) = ω(1) and set f = g. We will
show how to construct D with g(n) = O(1).

We select O(
√
n) nodes of the tree so that every node has at least one such node among

its
√
n immediate ancestors. One way to do this is applying the same Lemma 5 used in

[65] to compute a k-path vertex cover. A second way to do this follows from subsection
3.4.1 by selecting the offset i that minimizes the nodes at levels l with l = i mod

√
n.

Following [65], we will denote these nodes as shortcut nodes.

For these shortcut nodes, we store the sets B(v) explicitly using n bits of space as
a bitvector, so that we can answer the set membership queries using rank, select and
access.
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For a node v with parent u, we say v is enlarging if B(v) = B(u) ∪ {u}. We note that
as B(v) ⊆ B(u) ∪ {u}, |B(v)| ≤ |B(u)|+ 1 with equality exactly when v is enlarging.

For an enlarging vertex v, we find the ancestor u of v of greatest depth that is not
enlarging - so that all nodes between u and v are enlarging. If there is a shortcut node
between u and v, we take the shortcut node instead. We store a pointer to that node. Let
u1, . . . , uk be the nodes between u and v. Then by definition, k ≤

√
n and B(v) ⊂ B(u) ∪

{u, u1, . . . , uk}. Since each ui are enlarging, we actually have B(v) = B(u)∪{u, u1, . . . , uk},
and thus we do not need to store anything as long as we can answer the queries on B(u).

For a non-enlarging vertex v, let u be the greatest depth shortcut ancestor. Again let
u1, . . . , uk be the nodes between u and v. By definition, k ≤

√
n and B(v) ⊂ B(u) ∪

{u, u1, . . . , uk}. We store this as a length |B(u)|+ k ≤ |B(u)|+
√
n bit vector.

Furthermore, we store the size of each of the sets B(v), using lg n bits at each node.
The total space for sizes is O(n lg n) bits.

The space used is O(n
√
n) bits for the shortcut nodes.

Let M be the maximum size of |B(v)| for a shortcut node v, then we must have at least
M enlarging vertices and at most n −M non-enlarging vertices. The enlarging vertices
store just a pointer, so we use at most n lg n bits of space. The non-enlarging vertices
use at most M +

√
n bits of space each, totaling at most (1 + o(1))(n −M)(M +

√
n) ≤

n
√
n + (1 + o(1))(n − M)(M) ≤ n

√
n + (1 + o(1))n2/4 bits of space, maximized when

M = n/2.

Now we show how to answer the two queries: adjacent, decode.

For adjacent(x, v) we break it up into two cases: v is enlarging or v is not enlarging.
First we assume that v is not a shortcut node, as we stored the set explicitly and we can
answer the query using access on the bitvector.

If v is not enlarging, let u be the nearest shortcut ancestor of v. We have B(v) ⊂
B(u) ∪ {u, u1, . . . , uk}, where ui are the nodes between u and v. By checking the depths
of nodes, we can see if x ∈ {u, u1, . . . , uk} and if so, check the corresponding bit in the bit
vector. If not, we check if x ∈ B(u), and if so, find the rank of x (i.e. x is the i-th smallest
node in B(u)). We then check the i-th bit in the bitvector at v as this bit corresponds to
the i-th smallest element in B(u).

If v is enlarging, use the pointer to get the non-enlarging node u. We have B(v) =
B(u) ∪ {u, u1, . . . , uk}, where ui are the nodes between v and u on the tree. Again by a
depth argument, we check if x ∈ {u, u1, . . . , uk}. Otherwise we check if x ∈ B(u). By
construction, u is either a shortcut node or is non-enlarging, and we use one of the two
previous cases.
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For decode(v, i) we again break it into two cases v is enlarging or not. As above, if v is
a shortcut node, we find the i-th smallest element of B(v) by using select on the bitvector.

If v is not enlarging, let u be the nearest shortcut ancestor of v. We have B(v) ⊂
B(u) ∪ {u, u1, . . . , uk}, where ui are the nodes between u and v. By selecting the i-th 1
in the bitvector of v, we can decide if it lies in the range {u, u1, . . . , uk}. If so, we return
the appropriate vertex. If it does not, then it corresponds to a node in B(u). If j is the
index of the i-th 1, then we are looking for the j-th smallest element of B(u). Since u is a
shortcut node, this is decode(u, j) and is handled above.

If v is enlarging, use the pointer to get the non-enlarging node u. We have B(v) =
B(u) ∪ {u, u1, . . . , uk}, where ui are the nodes between v and u on the tree. By checking
the sizes of the sets, we decide if it lies in the range {u, u1, . . . , uk}, and if so, return the
appropriate vertex. Otherwise, it corresponds to a node in B(u), and we need to return
the i-th smallest element of B(u). By construction, u is either a shortcut node or is
non-enlarging, and we use one of the two previous cases.

As all the operations are simply bitvector operations, the run time of each are O(1).
Finally we apply Theorem 7.3.2.

Theorem 7.3.3. Let G be a chordal graph. There is a succinct data structure occupying
n2/4 + o(n2) bits of space which supports adjacent in O(1) time, degree in O(1) time,
neighborhood in O(g(n)) time for any function g(n) ∈ ω(1), and spath, distance in
O(n) time.

7.4 Path Graph

In this section, we will give two data structures for supporting adjacent, degree, neighborhood.
The lower bound for path graphs is n lg n − o(n lg n) bits, inherited from the subclass of
interval graphs. A matching upper bound is given by [8]. First we will give a succinct data
structure with O(lg n/ lg lg n) query times. We will follow it with a compact data structure
using (2 + ε)n lg n bits but with O(1) query times.

Tree Structure: Given a path graph G, we may find a intersection model for G using
a tree T and a set of paths of T . As Gavril [36] showed, this tree can be chosen so that it has
at most n nodes (corresponding to the maximal cliques of the graph G). Each vertex v is
associated with a path Pv in T , and by definition, two vertices u, v are adjacent in G if the
associated paths Pv, Pu intersect at some node of T . We will make several modifications to
T while preserving the path intersections. This will allow our data structures to be simpler
as we do not need to worry about multiple paths with the same endpoint.
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First we root the tree arbitrarily. Next consider any endpoint of any path Pv at a node
w of T . Create a child of w and extend the path to the child. We note that since Pv is the
only path through the child, no additional intersections are created. By doing so, we add
2n nodes to T and guarantee that all endpoints of paths are unique.

Next for each internal node w, add a child node cw as its last child. Consider the
preorder numbers of the nodes in the subtree rooted at w. The smallest number is w and
the largest is cw. This also has the nice property that, if we are given a node c and are
told that it is the largest preorder numbered node of some subtree (that is not the subtree
rooted at c in the case that c is a leaf), we know that this subtree must be the one rooted
at the parent of c. This at most adds another n nodes to T .

Therefore, after these modifications, our tree T has at most 4n nodes, with the property
that

• For any two vertices u, v, the end points of the path associated with u, v, Pu, Pv are
distinct nodes in the tree.

• For any internal node in the tree w, The last node in preorder in its subtree is the
last child of w, and that child is necessarily a leaf. Conversely, if a leaf in the tree w
is the last node in preorder of a subtree rooted at some vertex x ̸= w, then x is the
parent of w.

We will refer to the nodes of T by their preorder numbers. Each vertex v is associated
with a path Pv = (lv, rv) in T , where lv < rv are the two end points of the paths. We will
sort the paths based on the values of the left endpoints, and say that vertex v ∈ [1, n] has
the v-th smallest (as end points are unique, we do not have ties) left endpoint. We will
abuse notation and use v to refer to the vertex in G, and the path Pv as well.

For a path v = (lv, rv), denote the apex av as the node LCA(lv, rv) in T . We note that
since we extended the paths to ”dummy” vertices, av ̸= lv, rv. Given the apex of the path,
denote the last node (by preorder numbers, and by construction this is the last child) in
the subtree rooted at av by zv. We will also use the function notation a(v) = av.

We will first describe how to compute the queries in the abstract in the next subsec-
tion, and then discuss the data structures and the concrete queries in the following two
subsections.
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7.4.1 Method

The main problem here is deciding on which criteria to use to decide whether two paths
intersect. We note that in [8], they decomposed the tree using a heavy-light decomposition,
and with it all the paths corresponding to the vertices. To take advantage of this, as they
are now dealing with paths, the graphs restricted to them are interval graphs, and they
can leverage the previous results (i.e. the data structure of Acan et al. [2]) on them. They
then give criteria for each piece of the path based on whether they are on heavy paths or
light edges. We will give a simpler global criteria on how to compute whether two paths
intersect, and in doing so, reduce the amount of space needed and the time required. The
criteria we will use is exactly what will be used in the adjacent query: given two vertices
u, v, return whether they are adjacent or not. To do this, we consider a few cases based
on the relationship between au, av.

• Suppose that au, av have no ancestor/descendant relationship, then as the paths
u, v are contained within the subtrees rooted at au and av respectively, they cannot
intersect and u, v are not adjacent.

• Suppose that au = av, then clearly u is adjacent to v.

• Suppose that au is an ancestor of av, u is adjacent to v iff exactly one of lu, ru is
a descendant of (or equivalently, is in the subtree rooted at) av. To see this, note
that since lu, ru must belong to subtrees rooted at different children of au, we cannot
have both be descendants of av (as that would require them to belong to the same
branch). One direction is clear as if one is a descendant of av then the paths would
intersect at av. Conversely, wlog, suppose that Pv intersects the subpath lu, au. Then
some node w ∈ Pv belongs to both paths, and thus lu is a descendant of w which
itself is a descendant of av.

We note that all the descendants of a node au have preorder numbers between au and
zu, and thus the ancestor/descendant relationships can easily be checked by comparing the
preorder numbers of nodes.

Next we consider the neighborhood query. Given a vertex v, we wish to output all
vertices u that are adjacent to v. We will use the adjacent criterion to filter the vertices
using range reporting queries.

Case 1: au = av: we need to support the following operation: given an apex a, list out
all paths u with it as its apex. We will denote this operation as apex list(a).
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Case 2: au is an ancestor of av: we need to support the following criteria - list out all
paths u such that exactly one of lu, ru is a descendant of av. This can be expressed as the
rectangles (−∞, av)× (av, zv) and (av, zv)× (zv,∞).

Case 3: au is a descendant of av: we need to support the following criteria - list out
all path u such that exactly one of lv, rv is a descendant of au. If we have the points
(au, zu), then the paths u are those with points in the rectangles: (−∞, lv) × (lv, rv) and
(lv, rv)× (rv,∞)

We note that the criteria from cases 2 and 3 are easily expressible in terms of 3-sided
rectangles in a 2-dimensional range query. Thus it remains to realize these data structures.

7.4.2 Succinct Data Structure

The first data structure will use 4 sided queries mainly to implement apex list. Because
of this, the time complexity will be O(lg n/ lg lg n).

First we further modify the tree in the following way: for each internal node a, consider
all paths with a as its apex. Each path passes through two children of a, and in particular
mark the child of a that the left branch of the path passes through. Reorder the children of
a such that marked children come before unmarked children (in a stable manner, the order
of any two marked children should not be changed - thus for any path, the left branch
remains to the left of the right branch).

We will store a bitvector L of length at most 4n such that L[i] = 1 if the i-th node in
preorder is the left end point of some path and 0 otherwise. We will store a bitvector R of
length at most 4n such that R[i] = 1 if the i-th node in preorder is the right end point of
some path and 0 otherwise. Finally, we store bitvectors A,Z such that A[i] = 1 if the i-th
node is the apex of some path, and Z[i] = 1 if the i-th node is zv for some path v, and 0
otherwise. Since we do not know which left end point matches with which right endpoint,
we will consider the permutation P [i] = j where the i-th path is li = select(L, i), ri =
select(R, j). This encodes the statement that right endpoint of the i-th path is the jth
largest right end point. The total space for these bit vectors is at most 16n bits.

We note that given a vertex v, we may compute the pertinent features of the path by:
lv = select(L, v), rv = select(R,P [v]), av = LCA(lv, rv) and zv = last child(av). All of
these operations are O(1) time except P [v].

We will store this permutation in a 2-dimensional 4-sided range search data structure
RS, with the points (i, P [i]) using n lg n+ o(n lg n) bits. Given a rectangle using preorder
numbers as its coordinates, we will need to convert it into rank space that is stored. For
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example, the range [x1, x2] will need to be converted to [r1, r2] where r1 = rank(L, x1−1)+1
(rank of the first left endpoint in the range) and r2 = rank(L, x2) (rank of the last left
endpoint in the range). Similarly for the y-coordinate using the bitvector R. We note that
to compute P [v], we need to report the single point in the rectangle [v, v]× [−∞,∞] using
O(lg n/ lg lg n) time. We will store the tree T succinctly, using 8n+ o(n) bits.

Example 7.4.1. Consider the graph in Figure 7.1, which has 4 vertices on a tree with 19
nodes (which as mentioned we did not start with the optimal tree to show the paths, as
many paths on the optimal tree are trivial paths, which begin and end at the same node).
The relevant numbers for each paths are as follows:

Path v lv rv av zv
Red Path 5 17 1 19
Blue Path 3 14 1 19
Green Path 13 18 1 19
Orange Path 9 11 7 15

The bitvectors would be:

• L = 0010100010001000000 R = 0000000000100100110

• A = 1000001000000000000 Z = 0000010000000010001

The permutation is P [1] = 2, P [2] = 3, P [3] = 1, P [4] = 4. The blue path’s left endpoint is
node 3, so it has the smallest left endpoint. The blue path’s right endpoint is 14, which is
the second smallest right endpoint, so P [1] = 2.

As an example of adjacent, to check if the green path and orange paths are adjacent,
we first check their apex: 1 and 7. Since the green path’s apex is higher, we check that
exactly one of the endpoints is in the subtree rooted at node 7. These nodes have pre-order
numbers between 7 and 15. Since the left endpoint numbered 13 satisfies this, they are
adjacent.

The apex list operation would return the red, blue and green paths (or rather the
preorder numbers of the left endpoint, 5, 3, 13 as we identify the paths by their left
endpoints) for the apex 1 and the orange path for the apex 7. For the apex 1, we check
the following rectangles: [2, 6] × [7, 19], then [7, 15] × [16, 19] then [16, 17] × [18, 19]. The
first rectangle gives us the blue path (3,14) and red path (5,17), the second gives the green
path (13,18), and the third is empty, so we stop there.

Implementing adjacent Query: Given vertices u, v, we obtain lu, ru, lv, rv, au, zu,
av, zv as above, taking O(lg n/ lg lg n) time. We then check the adjacency criteria in O(1)
time. Thus adjacency can be supported in O(lg n/ lg lg n) time.
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Figure 7.1: A path graph with 4 vertices. Note that for clarity, this is not the minimal
tree that can be used for representing the graph (the minimal tree would consist of two
nodes v1, v2 connected by an edge. The red path would only contain v1, the orange only
contain v2 and blue and green would contain both). The four vertices’ paths are coloured
blue, red, green and orange. On the right is our modification to the tree. All endpoints
are extended to the new purple nodes, all internal nodes have a new child added which is
depicted by the teal node.

Implementing neighborhood Query: We consider the three cases from subsection
7.4.1. First, we will need to implement apex list.

Let w1, . . . , wk be the children of a and let z1, . . . , zk denote the last node in the subtree
rooted at w1, . . . , wk. A path with apex a has its two branches in different children of
a. Thus we will capture this by the rectangles [wi, zi] × [wi+1, z] in the range search data
structure RS, which captures the fact that the left endpoint of the path is a descendant
of wi and the right endpoint is a descent of one of wi+1, . . . , wk. We stop once one of the
rectangles is empty. By construction, the non-empty rectangles will be at the start. This
allows us to get each path in O(lg n/ lg lg n) time.

Case 1: au = av: we need to support the following operation: given an apex a, list out
all paths u with it as its apex. We will denote this operation as apex list(a).

Case 2: au is an ancestor of av: we need to support the following criteria - list out all
paths u such that exactly one of lu, ru is a descendant of av. Suppose that we have n points
generated from the paths as (lu, ru), then the paths satisfying the criteria are exactly those
in one of these rectangles: (−∞, av)× (av, zv) and (av, zv)× (zv,∞). Any point in the first
rectangle satisfy the inequalities −∞ < lu < av < ru < zv, which states that only ru is a
descendant of av, similarly for the second rectangle.
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Case 3: au is a descendant of av: we need to support the following criteria - list out
all path u such that exactly one of lv, rv is a descendant of au. Suppose that we have the
at most n points generated from the paths as (au, zu) (removing duplicates which is why
it is at most n points), then the paths satisfying the criteria are exactly those with apex
in one of these rectangles: (−∞, lv)× (lv, rv) and (lv, rv)× (rv,∞). Any point in the first
rectangle satisfies the inequalities −∞ < au < lv < zu < rv, which states that only lv is a
descendant of au, similarly for the second rectangle.

Thus we obtain the following theorem:

Theorem 7.4.2. Let G be a path graph. We may represent G using n lg n+ o(n lg n) bits
to support adjacent in O(lg n/ lg lg n) time and neighborhood using O(lg n/ lg lg n) time
per neighbour. We may also support degree in O(d lg n/ lg lg n) time.

Proof. The only thing we did not discuss above is degree. However, finding the degree of
a vertex follows from neighborhood, by finding all of its neighbhours and counting. The
total space required is:

• The tree T , the bitvectors L,R,A, Z, the 2-dimensional 3-sided range reporting data
structures, stored succinctly: O(n) bits 5.

• The 2-D 4 sided range reporting data structure RS: n lg n+ o(n lg n) bits.

7.4.3 Compact Data Structure

In this subsection, we will improve the runtime of the previous data structure at the cost
of extra space. We note that the time complexity arises because we stored the permutation
P in a range search data structure because we needed 4-sided queries for apex list. If we
are able to implement apex list in a faster way, we can store the permutation so that it
can be computed more efficiently.

We keep the bit vectors L,R,A, Z as before. We store the permutation P using (1 +
1/f(n))n lg n+ o(n lg n) bits so that P [i] and P−1[i] can be accessed in O(f(n)) time.

We store a bitvector A1 of length at most 2n which for each apex (in order by the apex
preorder numbers), has a 0 followed by i 1s, corresponding to the number of paths with

5This linear term can be optimized further, see Section 7.6
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that apex. Finally, we store the paths for each apex explicitly using n lg n bits. Therefore
to implement apex list for an apex i we simply need to find the block of 1s by selecting
for the i-th and i + 1-st 0 in A1 and retrieving the corresponding paths in O(1) time per
path. Thus apex list can be implemented in O(1) time per path.

Again we store T using 8n+ o(n) bits.

Implementing adjacent Query: We are able to compute the pertinent features of
the paths in O(f(n)) time, and thus adjacent can be done in O(f(n)) time.

Implementing neighborhood Query: As noted, we are able to implement apex list

in O(1) time per path.

Case 1: We are able to handle the operation in O(1) time per path.

Case 2: We will need to handle the 3-sided queries. To do so, we will need to be able
to implement rank and decode for both x (l(·)) and y (r(·)) coordinates.

For rank, this is exactly the rank operation on L and R.

For decode, first consider the case that we need to compute the y-coordinate given an
x rank. But this is exactly the case that given a vertex v, compute both its left and right
end points l(v), r(v), which we can accomplish in O(1) time.

Conversely, suppose that we are given a y-coordinate rank r. We compute rank of the
left endpoint using P−1[r]. Once we have the rank of the left endpoint, we compute the
preorder numbers of the left and right endpoints as above.

Thus we are able to implement the 2-D 3-sided queries using O(f(n)) per point.

Case 3: This is identical to the succinct data structure, except apex list is now O(1)
per path.

We may summarize the result as:

Theorem 7.4.3. Let G be a path graph. We may represent G using (2 + 1
f(n)

)n lg n +

o(n lg n) bits to support adjacent in O(1) time and neighborhood using O(f(n)) time per
neighbour. We may also support neighborhood in O(df(n)) time.

In particular, if f(n) = ω(1) then the leading term is 2n lg n. If f(n) = 1
ε
for some

constant ε > 0, then the space is (2 + ε)n lg n and the time is O(1).

Proof. Again degree follows from neighborhood. The total space required is:

• The tree T , the bitvectors L,R,A, Z, four 2-D 3-sided range reporting data structures
from cases 2 and 3, stored succinctly: O(n) bits6.

6This linear term can be optimized further, see Section 7.6
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• The permutation P using (1 + 1
f(n)

)n lg n+ o(n lg n) bits, using Lemma 2.3.8.

• The bitvector A1 and the array storing the paths for apex list: n lg n+ 2n bits.

7.4.4 Distances

As path graphs are chordal graphs, we will use Lemma 7.3.1 to compute the distance.
We note that to compute the distance, we needed a way to determine if there exists a w
such that w ∈ B(ui) ∩ B(vj). Since G is now a path graph, if w ∈ B(ui) ∩ B(vj), then
the two endpoints of w must be descendants of ui and vj as w must be a path. This can
be expressed as a rectangle, stating that the left endpoint of w is a descendant of ui and
the right end point of w is a descendant of vj: [ui, zui

] × [vj, zvj ]. As this is a four sided
rectangle, we will use Theorem 7.4.2.

Theorem 7.4.4 (Corollary to Theorem 7.4.2 and Lemma 7.3.1). In addition to Theo-
rem 7.4.2, we can answer the distance query in O(lg n/ lg lg n) time and the spath query
in O(lg n/ lg lg n + d) time, where d is the distance between the two vertices. The extra
space required for these two queries is (1 + ε)n lg n+O(n) bits.

Proof. We need to store the distance tree TD succinctly, using 2n bits. As Munro and Wu
[65] shown, there does not seem to be any way to easily associate a vertex in the graph
and the corresponding node in TD, and thus we must store a permutation and its inverse
using (1 + ε)n lg n bits using Lemma 2.3.8.

We compute the distance using level ancestor, and a single four sided query using the
rectangle [ui, zui

]× [vi, zvj ], taking O(lg n/ lg lg n) time.

For shortest path, we move up the tree TD using parent, and thus each vertex in the
path takes O(1) time to compute. We must again use O(lg n/ lg lg n) time in our range
query leading to an overall time complexity of O(lg n/ lg lg n+ d).

7.5 Discussion

In this chapter, we gave better data structures for chordal graphs and path graphs than
what is known in the literature.
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For chordal graphs, we gave a more efficient implementation of adjacent and decode,
reducing the time complexity from O(g(n)) for g(n) = ω(1) to O(1). Since the data
structure of Munro and Wu [65] uses these as the fundamental operations to implement
everything, we were able to reduce the factor g(n) for all of the queries.

For path graphs, we used orthogonal range search to realize a simpler global criteria
to compute when two paths in a tree intersect. This lead to a succinct n lg n + o(n lg n)
bit data structure which supported the navigational queries in O(lg n/ lg lg n) time rather
than O(lg2 n) required by Balakrishnan et al. [8] since they needed to examine O(lg n)
interval graphs induced by a heavy-light decomposition of the tree. By exploiting the
result on 2-dimensional 3-sided orthogonal range queries from Lemma 2.5.6, we were able
to support the navigation queries in O(1) time using just 2n lg n+ o(n lg n) bits, where as
Balakrishnan et al. needed O(n lg2 n) bits.

Our results are not optimal, which leads to further research in this area. For chordal
graphs, although we were able to reduce adjacent to O(1), the approach for neighborhood
requires a different approach to reduce it to O(1) time. Both distance and spath use
O(n) time, which could be improved. However as Munro and Wu [65] showed, any such
improvements would need to come from studying the set disjointment problem, which is
thought to be difficult.

For path graphs, we gave two data structures which trades space efficiency for time
efficiency: n lg n → 2n lg n space and O(lg n/ lg lg n) → O(1) time. A data structure that
contains the best of both worlds n lg n space and O(1) time would be desirable.

7.6 Optimizations

Here we give some small optimizations in the lower order terms of our data structures.
Specifically, the linear terms in our n lg n bit space data structures.

First is the optimization for our 2-dimensional 3-sided range search data structure.

We may reduce the space required for the range minimum/maximum data structure by
first reporting an approximate minimum. First divide the array into blocks of size h and
denote the value of each block as the minimum/maximum of the values in the block. Thus
we have a condensed array of size n/h. We build the range minimum/maximum structure
on the condensed array. For any query, we reduce it to a query on the condensed array,
and linearly search the block of the minimum/maximum value. There are two incomplete
blocks that we need to linearly search as well. In this manner, and setting h = 2/ε we
obtain space equal to εn bits and time equal to O(f + k · g) for any constant ε > 0.
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Next is the bit vectors L,R,A, Z of section 7.4. As every node in the tree can be
exactly one of the above categories (left endpoint, right endpoint, apex, last node) we may
represent them instead using a single string of length 4n, where at each index i, the string
stores a digit between 0 and 4 indicating which category the node i belongs to (with 4
being none of the above).

We may store this using Lemma 2.3.6, using space equal to (4 lg 5)n bits instead of 16n
bits. Furthermore, we are guaranteed, exactly n 0s and 1s corresponding to the left and
right end points of the paths. To maximize the entropy, we would like to have 2n/3 nodes
of each of the other 3 categories. This gives a 0-th order entropy of 1 + lg 6

2
≈ 2.29 versus

lg 5 ≈ 2.32. Thus we may further compress these bitvectors down to 4(1+ lg 6
2
)n bits using

the result of [10].

Lastly, the tree T of section 7.4 has many leaves, since any node that is the left end
point or right end point of a path and the last node of subtrees (i.e. zv) are all leaves
by construction. The maximum ratio of leaves to internal nodes is thus 3 leaves for each
internal node. Using the result of [50], we may represent the tree using 3n lg(4/3) +
n lg(1/4) + 2n ≤ 5.25n bits, rather than 8n bits.
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Appendix A

List of Definitions

Definition 2.1.1. A (undirected) graph G consists of a set of vertices V (G) and a set
of edges E(G) ⊂ V (G)2, and if needed write G = (V (G), E(G)). When the graph is
unambiguous, we will use V and E. We will use n = |V | and m = |E|.

Definition 2.1.2. A graph G is weighted if we assign a real numbered weight to each
edge. If all weights are 1, we say that the graph is unweighted .

Definition 2.1.3. The operations we are interested in supporting in a graph data structure
are:

• adjacent(u, v)1: given two vertices, are they adjacent (i.e. is (u, v) ∈ E)?

• degree(v): given a vertex, what is the number of vertices adjacent to it?

• neighborhood(v): given a vertex, list all vertices adjacent to it.

• spath(u, v): given two vertices, return a shortest (weighted) path between them.

• distance(u, v): given two vertices, return the length of a shortest path.

The operations below modify the graph. A graph data structure supporting these are
dynamic.

• insert(v): add a new vertex v to the graph

1Our data structures will have their own ways to referring of vertices, typically by giving each vertex a
unique label between 1 and n, and the inputs to our operations will be the label of that vertex.
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• insert(u, v): given two vertices in the graph, add an edge between them.

• delete(v): delete the vertex v in the graph

• delete(u, v): delete the edge between u, v in the graph.

Definition 2.1.4. A graph G is an intersection graph if we may associate every vertex
v with a set sv such that for any two vertices, (u, v) ∈ E if an only if su ∩ sv ̸= ∅. We say
that the family of sets is an intersection model for the graph.

Definition 2.1.5. A rooted ordinal tree is an acyclic graph consisting of n vertices
(which we will call nodes) and n − 1 edges, with one node designated as the root. All
non-root vertices have a parent vertex, which is closer in distance to the root. The children
of a node v are the nodes whose parent is v. A node is a leaf if it has no children. We note
that for an ordinal tree, the order of the children of a node matters (i.e. two ordinal trees
are isomorphic if for corresponding nodes, the children are the same and have the same
order).

Definition 2.1.6. A rooted cardinal tree (of cardinality k) is an ordinal tree where for
every node, each child belongs to one of k slots, and no slot is used more than once.

Definition 2.1.7. A binary tree is an cardinal tree of cardinality 2, where we name the
slots as “left” and “right”. Thus, each child of a node v is either a left child or a right
child. Consequently, if a node has a single child, then the 2 trees where the child is a left
child versus a right child are different trees.

Definition 2.1.8. A graph G is a chordal graph if it is the intersection graph of subtrees
in a tree. That is, there exists an ordinal tree T , such that for every vertex v ∈ V , sv is a
set of connected nodes in T .

Definition 2.1.9. A graph G is a path graph 2 if it is the intersection graph of (simple)
paths in a tree. That is, there exists an ordinal tree T , such that for every vertex v, sv is
a set containing the nodes of a simple path in T .

Definition 2.1.10. A graph G is an interval graph if it is the intersection graph of
(simple) paths in a path. That is, there exists an ordinal tree T that is a path, such that
for every vertex v, sv is a set containing the nodes of a simple path in T .

2The object we are defining is not a path, which is what is often referred to by the term path graph.
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Definition 2.2.1. A data structure for a class of combinatorial objects X is succinct if
it uses lg |X| + o(lg |X|) bits in the worst case. It is compact if it uses Θ(lg |X|) bits in
the worst case.

The data structure will naturally need to support the relevant queries on X. 3

Definition 2.3.1. A bit-vector of length n is an array of n bits. It supports the following
operations:

• access(i): return the bit at index i.

• rankb(i): return the number of “b” bits at or before the index i, where b is either 0
or 1. If we omit b, it is assumed that we mean b = 1.

• selectb(i): return the index of the i-th “b” bit. If we omit b, it is assumed that we
mean b = 1.

Definition 2.3.5. A string S of length n on an alphabet Σ = {1, . . . , σ} is a sequence n
characters belonging to Σ. The operations generalize naturally as:

• access(i): return the character at index i.

• rank(c, i): return the number of occurrences of the character c in the prefix up to
(and including) the index i.

• select(c, i): return the index of the i-th occurrence of the character c.

Definition 2.3.7. A permutation P of size n is a bijective function from {1, . . . , n} to
itself. The two operations are:

• P [i]: return the value that i is sent to by the function.

• P−1[i]: return the value that is sent to i by the function.

Definition 2.4.3. Let A be an array of numbers. A range-minimum query is the
following:

• Given two indices i, j, return the index k, i ≤ k ≤ j such that A[k] = mini≤k≤j A[k]
(i.e. the index between i and j containing the minimum element in that range)

3One can naively represent the objects by simply enumerating them and giving them numbers 1, . . . , |X|.
Such a scheme is not a data structure since we cannot answer queries - such as adjacent for a graph.
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Definition 2.5.1. Let S be a set of n d-dimensional points (with polynomial sized co-
ordinates). Let R be a d-dimensional axis aligned rectangle (given as input to a query):
[p1, p2]× [p3, p4] . . . [p2d−1, p2d]

4. The queries we wish to support are:

• emptiness : is there a point of S inside R?

• count : how many points of S are inside R.

• reporting : return every point of S inside R.

The rectangle R is k-sided if there is at most k coordinates among pi that are finite.

Definition 2.5.4. The data structure stores a set of n numbers S out of a universe U =
[1, |U |]. The queries are:

• pred(i), given an element i of U , return the largest element j of S that is smaller
than i.

• succ(i), given an element i of U , return the smallest element j of S that is larger
than i.

Definition 3.3.1. Let A be an array storing values of k bits. We say that A is piece-wise
linear with M pieces if there are M runs of identical values.

Definition 3.4.3. The parameters for our tree-slabbing scheme are H = ⌈lg3 n⌉ and
B = ⌈lg5 n⌉ and H ′ = ⌈ lgn

(lg lgn)2
⌉ and B′ = ⌈1

8
lg n⌉

Definition 3.4.4. A node v so that τ1(v) ̸= τ1(v − 1) is called a (tier-1) preorder
changer [44, Def. 4.1]. Similarly, nodes v with τ2(v) ̸= τ2(v − 1) are called (tier-2)
preorder changers.

Definition 3.4.6. A node wi a tier-1 (tier-2) level-order changer if wi−1 and wi are
in different mini- (micro-) trees.

Definition 4.3.1. A graph G is an interval graph if it is the intersection graph of
intervals on the real line. That is for every vertex v, sv is a set containing the real numbers
in the interval [lv, rv]. In this way, we will name the interval Iv = [lv, rv].

4We use closed interval here, but it is easy to see how to convert these into open/semi-open intervals
when the coordinates are integral
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Definition 4.3.2. A proper interval graph is an interval graph where there exists a
way to associate each vertex v with an interval Iv = [lv, rv] such that no two interval nest.
That is for all u, v, Iv ∩ Iu /∈ {Iv, Iu}.

Definition 4.3.3. An interval graph is k-proper if there exists an way to associate each
vertex v with an interval such that for every vertex v, the number of intervals containing
it is at most k. An interval graph is k-improper if there exists an way to associate each
vertex v with an interval such that for every vertex v, the number of intervals it contains
is at most k.

Definition 4.3.5. An interval graph is a bounded degree interval graph with respect
to a parameter σ if the maximum degree over all vertices is σ. An interval graph is a
bounded chromatic number interval graph with respect to a parameter σ if we may
assigned a colour cv ∈ [1, . . . , σ] to each vertex such that any two adjacent vertices have
different colours.

Definition 4.3.6. A graph is a circular arc graph if it is the intersection graph of arcs
on a circle.

Definition 5.2.1. A beer graph is a tuple (G,B) consisting of a graph and a set of beer
vertices B ⊆ V .

Definition 5.2.2. If (G,B) is a beer graph, then we are interested in these queries:

• beer spath (u, v): return a shortest path between the vertices u and v such that at
least one of the beer vertices appears on the path.

• beer distance (u, v): return the length of the shortest path between vertices u and
v such that at least one of the beer vertices appears on the path.

Definition 5.3.2. Given two vertices u, v, a vertex w with u < w < v preserves the
distance (w.r.t. u, v) if distance(u, v) = distance(u,w) + distance(w, v).

Definition 5.4.1. Given two vertices u, v, for a node w (such that u < w < v), we
say that w is +k the distance (w.r.t. u, v) if distance(u, v) + k = distance(u,w) +
distance(v, w).

Definition 6.2.1. Let G be an interval graph, with a fixed interval representation. The
distance tree T (G) is defined under the parent relationship parent(v). For every vertex
v, we order the children of v in order of the left end point of the vertices. That is, if u,w
are two children of v with lu < lw then u is to the left of w.
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If the graph is disconnected, then we will have a forest instead. We have one tree per
vertex v where parent(v) = v. Furthermore when we refer to the distance tree T (G) of G
in the context of a vertex v if G is disconnected, it is understood that we refer to the tree
in the forest that contains v.

Definition 6.5.1. For an interval graph G with intervals I, we say that an interval/vertex
x ∈ I is exposed if it is not contained by another interval of I, and we let Iexposed(G)
denote the set of all exposed interval of G.

Definition 6.6.1. Let G be an interval graph with a fixed interval representation I, and
let S be a set of points. We will say that R(G,S) is an reduced representation of G if:

• for any two intervals u = [lu, ru], v = [lv, rv] with endpoints in S, we may compute
the query

distanceG∪{u,v}(u, v)

using R(G,S)

• If IS is any set of intervals with endpoints in S, then we are able to compute R(G′, S)
from R(G,S) only (that is without requiring knowledge of G) for G′ = G ∪ IS. We
will define this operation as R(G′, S) = batch insert(R(G,S), IS).

• If S ′ ⊂ S, then we are able to compute R(G,S ′) from R(G,S). We will define this
operation as R(G,S ′) = reduce active(R(G,S), S ′).

Definition 6.6.5. For the distance tree T(Ĝ,S), we say that a vertex is active if it is the
vertex corresponding to a point in S or it is a vertex v such that lv ∈ S. (Note that by
Definition 6.6.4, we insert all points in S that is not the left end point of any interval in
Ĝ)

Definition 6.6.6. Define the compressed distance tree T̂(Ĝ,S) by compressing all paths
in T(Ĝ,S) by keeping only active vertices and any lowest common ancestors of active vertices.

T̂ is a weighted tree where the edges are weighted by the lengths of the compressed paths.

Definition 6.7.1. Let v be a vertex in G, we say that v has an in-block parent if v and
parentT (v) are in the same block (or if v is the root of the distance tree of its component)
and v has an out-of-block parent otherwise.
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