12 research outputs found

    On the Edge-length Ratio of Outerplanar Graphs

    Get PDF
    International audienceWe show that any outerplanar graph admits a planar straight-line drawing such that the length ratio of the longest to the shortest edges is strictly less than 2. This result is tight in the sense that for any ε > 0 there are outerplanar graphs that cannot be drawn with an edge-length ratio smaller than 2 −ε. We also show that this ratio cannot be bounded if the embeddings of the outerplanar graphs are given

    Drawing the Horton Set in an Integer Grid of Minimum Size

    Full text link
    In 1978 Erd\H os asked if every sufficiently large set of points in general position in the plane contains the vertices of a convex kk-gon, with the additional property that no other point of the set lies in its interior. Shortly after, Horton provided a construction---which is now called the Horton set---with no such 77-gon. In this paper we show that the Horton set of nn points can be realized with integer coordinates of absolute value at most 12n12log(n/2)\frac{1}{2} n^{\frac{1}{2} \log (n/2)}. We also show that any set of points with integer coordinates combinatorially equivalent (with the same order type) to the Horton set, contains a point with a coordinate of absolute value at least cn124log(n/2)c \cdot n^{\frac{1}{24}\log (n/2)}, where cc is a positive constant

    Almost All Even Yao-Yao Graphs Are Spanners

    Get PDF
    It is an open problem whether Yao-Yao graphs YY_{k} (also known as sparse-Yao graphs) are all spanners when the integer parameter k is large enough. In this paper we show that, for any integer k >= 42, the Yao-Yao graph YY_{2k} is a t_k-spanner, with stretch factor t_k = 6.03+O(k^{-1}) when k tends to infinity. Our result generalizes the best known result which asserts that all YY_{6k} are spanners for k >= 6 [Bauer and Damian, SODA\u2713]. Our proof is also somewhat simpler

    Packing Plane Perfect Matchings into a Point Set

    Full text link
    Given a set PP of nn points in the plane, where nn is even, we consider the following question: How many plane perfect matchings can be packed into PP? We prove that at least log2n2\lceil\log_2{n}\rceil-2 plane perfect matchings can be packed into any point set PP. For some special configurations of point sets, we give the exact answer. We also consider some extensions of this problem
    corecore