43 research outputs found

    Optimal Single-Choice Prophet Inequalities from Samples

    Get PDF
    We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of 1/21/2 can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant ε>0\varepsilon > 0, O(n)O(n) samples from the distribution suffice to achieve the optimal competitive ratio (≈0.745\approx 0.745) within (1+ε)(1+\varepsilon), resolving an open problem of Correa, D\"utting, Fischer, and Schewior.Comment: Appears in Innovations in Theoretical Computer Science (ITCS) 202

    Learning Reserve Prices in Second-Price Auctions

    Get PDF
    This paper proves the tight sample complexity of Second-Price Auction with Anonymous Reserve, up to a logarithmic factor, for all value distribution families that have been considered in the literature. Compared to Myerson Auction, whose sample complexity was settled very recently in (Guo, Huang and Zhang, STOC 2019), Anonymous Reserve requires much fewer samples for learning. We follow a similar framework as the Guo-Huang-Zhang work, but replace their information theoretical argument with a direct proof

    Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities

    Get PDF
    Online contention resolution schemes (OCRSs) were proposed by Feldman, Svensson, and Zenklusen [Moran Feldman et al., 2016] as a generic technique to round a fractional solution in the matroid polytope in an online fashion. It has found applications in several stochastic combinatorial problems where there is a commitment constraint: on seeing the value of a stochastic element, the algorithm has to immediately and irrevocably decide whether to select it while always maintaining an independent set in the matroid. Although OCRSs immediately lead to prophet inequalities, these prophet inequalities are not optimal. Can we instead use prophet inequalities to design optimal OCRSs? We design the first optimal 1/2-OCRS for matroids by reducing the problem to designing a matroid prophet inequality where we compare to the stronger benchmark of an ex-ante relaxation. We also introduce and design optimal (1-1/e)-random order CRSs for matroids, which are similar to OCRSs but the arrival order is chosen uniformly at random

    Beating Greedy For Approximating Reserve Prices in Multi-Unit VCG Auctions

    Full text link
    We study the problem of finding personalized reserve prices for unit-demand buyers in multi-unit eager VCG auctions with correlated buyers. The input to this problem is a dataset of submitted bids of nn buyers in a set of auctions. The goal is to find a vector of reserve prices, one for each buyer, that maximizes the total revenue across all auctions. Roughgarden and Wang (2016) showed that this problem is APX-hard but admits a greedy 12\frac{1}{2}-approximation algorithm. Later, Derakhshan, Golrezai, and Paes Leme (2019) gave an LP-based algorithm achieving a 0.680.68-approximation for the (important) special case of the problem with a single-item, thereby beating greedy. We show in this paper that the algorithm of Derakhshan et al. in fact does not beat greedy for the general multi-item problem. This raises the question of whether or not the general problem admits a better-than-12\frac{1}{2} approximation. In this paper, we answer this question in the affirmative and provide a polynomial-time algorithm with a significantly better approximation-factor of 0.630.63. Our solution is based on a novel linear programming formulation, for which we propose two different rounding schemes. We prove that the best of these two and the no-reserve case (all-zero vector) is a 0.630.63-approximation
    corecore