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We study the computational complexity of proper equilibrium in finite games and prove the following results.

First, for two-player games in strategic form we show that the task of simply verifying the proper equilibrium

conditions of a given pure Nash equilibrium is NP-complete. Next, forn-player games in strategic formwe show

that the task of computing an approximation of a proper equilibrium is FIXPa -complete. Finally, for n-player
polymatrix games we show that the task of computing a symbolic proper equilibrium is PPAD-complete.

CCS Concepts: • Theory of computation → Problems, reductions and completeness; Exact and ap-
proximate computation of equilibria;

1 INTRODUCTION
We study the Nash equilibrium refinement of proper equilibrium due to Myerson [24] and obtain

new results concerning the tasks of verification, approximation, and computation. Several recent

works have been concerned with the complexity of such tasks for Nash equilibrium refinements in

general, including proper equilibrium.

The task of verifying the conditions of a given Nash equilibrium of a game in strategic form

is computationally a trivial task. On the other hand Hansen et al. [17] showed NP-hardness and

Sqrt-Sum-hardness for verifying the conditions of standard Nash equilibrium refinements in n-
player games for n ≥ 3, including proper equilibrium. Recently Hansen [16] showed that the

problems are in fact complete for ∃R, meaning that they are computationally equivalent to the

decision problem of the existential theory of the reals.

For two-player games, similar results have so far been positive. For games in strategic form,

trembling hand perfect equilibrium coincide with admissible equilibrium and can be verified in

polynomial time using linear programming [28]. For games in extensive form with perfect recall,

Gatti and Panozzo [15] showed that quasi-perfect equilibrium can be verified in polynomial time

and Gatti et al. [14] obtained the same for the strategy part of sequential equilibrium. Determining

the computational complexity of verifying a proper equilibrium was explicitly stated as an open

problem by Hansen et al. [17] and Gatti and Panozzo [15]. Given the equivalence between the

verification problems in n-player games and the positive results so far one may expect that proper

equilibrium in two-player games can be verified in polynomial time as well. As our first result we

show, perhaps surprisingly, that the problem is NP-complete. To the best of our knowledge, this is

the first instance of NP-hardness for verifying whether a fully specified two player strategy profile

satisfies the conditions of an equilibrium refinement. We note that Gatti and Panozzo [15] showed

that it is NP-complete to verify whether a two player strategy profile given as a realization plan is

subgame perfect or part of a sequential equilibrium, but this crucially relies on the strategy not
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being specified in the subgame. If the full strategy profile is specified, the verification can be done

in polynomial time [14].

In seminal work Daskalakis et al. [8] and Chen and Deng [3] showed that computing a Nash

equilibrium in a two-player game is PPAD-complete and Etessami and Yannakakis [11] showed that

computing a Nash equilibrium in a n-player game is FIXP-complete, when n ≥ 3. Thus containment

in PPAD and FIXP are best possible results for computing equilibrium refinements, and such results

show that computing the equilibrium refinements is polynomial time equivalent to computing any
Nash equilibrium.

For two-player games in strategic form, computing a symbolic proper equilibrium was shown

to be in PPAD by Sørensen [26]. For two-player games in extensive form with perfect recall,

computing a quasi-perfect equilibrium was shown to be in PPAD by Miltersen and Sørensen [23],

and computing a trembling hand perfect equilibrium was shown to be in PPAD by Farina and Gatti

[12]. It was asked by Sørensen [26] whether computing a proper equilibrium by itself belongs to

PPAD. The obstacle here was that it was not clear how to efficiently verify a proper equilibrium.

Our NP-hardness result shows that this is not likely to be possible and underlines the importance

and usefulness of computing a symbolic proper equilibrium rather than just a proper equilibrium

by itself, since the former is straightforward to verify efficiently.

For n-player games in strategic form, computing an approximation to a trembling hand perfect

equilibrium was shown to be in FIXPa by Etessami et al. [10]. For n-player games in extensive form

with perfect recall, Etessami [9] proved membership in FIXPa for approximating a quasi-perfect

equilibrium and for approximating trembling hand perfect equilibrium. It was stated as an explicit

open problem by Etessami [9] whether the task of computing a proper equilibrium of a n-player
game in strategic form is in FIXPa . As our second result we give an affirmative answer to this

question. Thus, in strategic form games, computing an approximating to a proper equilibrium is

polynomial time equivalent to approximating any Nash equilibrium. The original proof of existence

of a proper equilibrium in every finite strategic form game by Myerson [24] was based on the

powerful Kakutani fixed point theorem. Our result provides an alternative proof of existence based

on the Brouwer fixed point theorem.

Our final result is that inn-player polymatrix games the task of computing a symbolic proper equi-

librium belongs to PPAD. Thus, in polymatrix games, computing an a symbolic proper equilibrium

is polynomial time equivalent to computing any Nash equilibrium. This significantly strengthens

the result of Sørensen [26].

2 PRELIMINARIES
2.1 Games in Strategic Form
A finite game Γ with n players in strategic form is specified as follows. Player i has a set Si of
mi pure strategies which may be identified with the set {1, . . . ,mi } when needed. We denote by

∆(Si ) = ∆mi the set of mixed strategies for Player i . That is, ∆mi = {y ∈ Rmi | ∥y∥1 = 1;∀j : yj ≥ 0}.

We denote by ∆o(Si ) = ∆o
mi

the set of fully-mixed strategies for Player i . That is, ∆omi = {y ∈

Rmi | ∥y∥1 = 1;∀j : yj > 0}. We let DΓ =
∏n

i=1 ∆mi be the set of all mixed strategy profiles for Γ
and Do

Γ =
∏n

i=1 ∆
o
mi

the set of all fully mixed strategy profiles. Each combination (a1, . . . ,an) of
pure strategies specifies a payoffUi (a1, . . . ,an) to Player i , for every i . The utility functions Ui are

extended to DΓ in the natural way. For a strategy profile x = (x1, . . . ,xn) ∈ DΓ and a pure strategy

k for Player i , we denote by (x−i ;k) the strategy profile where Player i uses the pure strategy k and

Player j uses the mixed strategy x j , for every j , i .
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2.2 Proper Equilibrium
The definition below of proper equilibrium is due to Myerson [24]. Every finite game Γ has a proper

equilibrium and every proper equilibrium is in particular a Nash equilibrium.

Definition 2.1. Given ε > 0, a mixed strategy profile x is an ε-proper equilibrium if it is fully

mixed and satisfies xik ≤ εxiℓ wheneverUi (x−i ;k) < Ui (x−i ; ℓ), for all i ∈ {1, . . . ,n} and k, ℓ ∈ Si .

Definition 2.2. A mixed strategy profile x is a proper equilibrium if it is the limit point of a

sequence {xεk } of εk -proper equilibria where εk → 0
+
for k → ∞.

Definition 2.3. A symbolic proper equilibrium is a collection of polynomials Pi j (ε) in the formal

variable ε , such that the strategy profile xε given by (xε )i j = Pi j (ε)/
∑

k ∈Si Pik (ε) is an ε-proper
equilibrium for every sufficiently small ε > 0.

2.3 Complexity Classes
Our main results are concerned with the complexity classes NP, PPAD, and FIXPa . We give a

brief description of the classes PPAD and FIXP and refer to Papadimitriou [25] and Etessami and

Yannakakis [11] for detailed definitions of the two classes.

PPAD is a class of discrete total search problems, whose totality is guaranteed based on a parity

argument on a directed graph. More formally PPAD is defined by a canonical complete problem

EndOfTheLine. Here a directed graph is given implicitly by predecessor and successor circuits,

and the search problem is to find a degree 1 node different from a given degree 1 node.

FIXP is the class of real-valued total search problems that can be cast as Brouwer fixed points of

functions represented by {+,−, ∗, /,max,min}-circuits computing a function mapping a convex

polytope described by a set of linear inequalities to itself. The class FIXPa is the class of discrete
total search problems that reduce to approximate Brouwer fixed points.

3 VERIFICATION OF PROPER EQUILIBRIUM IN BIMATRIX GAMES
In this section we show that deciding whether a given pure Nash equilibrium is a proper equilibrium

in a given 2-player game in strategic form is NP-hard. Our reduction is based on a modification of

a game construction used by Conitzer and Sandholm [5] to show that determining existence of

Nash equilibria with several natural properties in 2-player games in strategic form is NP-complete.

The game construction by Conitzer and Sandholm [5] takes any CNF formula Φ and produces a

2-player game in strategic form GCS(Φ) in which, except for a special Nash equilibrium, there is a

one-to-one correspondence between satisfying assignments to Φ and Nash equilibria of GCS(Φ).
We will actually describe the construction from the conference version by Conitzer and Sandholm

[4], which is slightly simpler to use for our purpose. Also for simplicity, and since this is sufficient,

we shall also define the game only for 3CNF formulas Φ.
Let V = {x1, . . . ,xn} be a set of n Boolean variables. It is convenient to have explicit signs on

literals. Thus, a variable xi gives rise to the positive literal +xi and the negative literal −xi . Thus
define L = {+x1,−x1, . . . ,+xn ,−xn} to be the set of literals given by V . We say that +xi and −xi
are opposite of each other and for ℓ ∈ L we denote by −ℓ the opposite of ℓ. Define v : L → V by

v(+xi ) = v(−xi ) = xi . We may now identify the clauses with subsets of L, and a CNF formula Φ
is thus a set of clauses C = {c1, . . . , cm}. Similarly, a truth assignment to variables V is identified

with a subsetT ⊆ L such that for all i , exactly one of +xi and −xi belong toT . We then have thatT
is a satisfying assignment for Φ if and only if ci ∩T , ∅, for all i .

The gameGCS(Φ) is a symmetric game where the players have the set of strategies S = L∪V ∪C∪

{ f }. The payoffs are given as listed in table 1a given ℓ, ℓ′ ∈ L, x ,x ′ ∈ V , and c, c ′ ∈ C . Clearly (f , f )
is a pure Nash equilibrium inGCS(Φ). Conitzer and Sandholm show that a satisfying assignment
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ℓ′ x ′ c ′ f

ℓ
1

−2

if ℓ , −ℓ′

if ℓ = −ℓ′
−2 −2 −2

x
2

2 − n

if v(ℓ′) , x

if v(ℓ′) = x
−2 −2 −2

c
2

2 − n

if ℓ′ < c

if ℓ′ ∈ c
−2 −2 −2

f 1 1 1 0

(a) GCS(Φ)

ℓ′ x ′ c ′ f

ℓ
1

−4n

if ℓ , −ℓ′

if ℓ = −ℓ′
−2 −2 −2

x
2

2 − n

if v(ℓ′) , x

if v(ℓ′) = x
−2 −2 −2

c
2

2 − n

if ℓ′ < c

if ℓ′ ∈ c
−2 −2 −2

f 1/2 1/2 1/2 2

(b) G̃CS(Φ)

Table 1. The Conitzer-Sandholm gameGCS(Φ), with payoffs to the row player, and its robust variation G̃CS(Φ)

A to Φ gives a Nash equilibrium where each true literal ℓ ∈ A is played with probability
1

n , and

that these are the only Nash equilibria, other than (f , f ). These equilibria are however not very
robust, since the pure strategy f weakly dominates all ℓ ∈ L. In addition, should the other player

make a tremble, it would be better to play f . Thus the only trembling hand perfect equilibrium of

GCS(Φ) is (f , f ). The first step of our construction is to change GCS(Φ) into a more robust game

G̃CS(Φ) in which satisfying assignments will correspond to proper equilibria. We obtain robustness

by decreasing the payoff of (f ,a) to 1

2
for all a ∈ S \ { f }. To make up for this in the analysis we

increase the penalty to the players for playing opposite literals from −2 to −4n. A final change, not

done for robustness but for use in the final construction is to change the payoff for (f , f ) from 0

to 2. Clearly (f , f ) remains a pure Nash equilibrium. The next lemma shows that every other Nash

equilibrium identifies a unique satisfying assignment of Φ.

Lemma 3.1. Let Φ be a 3CNF formula. Every Nash equilibrium (σ1,σ2) in G̃CS(Φ) different from
(f , f ) corresponds to a satisfying assignment of Φ.

Proof. For a Nash equilibrium (σ1,σ2)we have that Prσ2 [f ] = 1 implies that Prσ1 [f ] = 1, since f
is the unique best reply to f . Likewise, Prσ1 [f ] = 1 implies that Prσ2 [f ] = 1. Since (σ1,σ2) , (f , f )
it follows that Prσ1 [f ] < 1 and Prσ2 [f ] < 1. We next show that significant probability mass

must be placed on L. We have that Eb∼σ2 [u1(a,b) | b , f ] ≥ 1

2
for all a ∈ supp(σ1) \ { f }, since

otherwise f would be a strictly better reply to σ2 than a. Likewise Ea∼σ1 [u2(a,b) | a , f ] ≥ 1

2
for

all b ∈ supp(σ2) \ { f }. Thus for a ∈ supp(σ1) \ { f } we have

1

2

≤ E

b∼σ2
[u1(a,b)|b ∈ L] Pr

σ2
[L | (S \ { f })] + E

b∼σ2
[u1(a,b)|b ∈ V ∪C)] Pr

σ2
[V ∪C | (S \ { f })]

≤ 2 Pr

σ2
[L | (S \ { f })] − 2 Pr

σ2
[V ∪C | (S \ { f })]

= 2 Pr

σ2
[L | (S \ { f })] − 2

(
1 − Pr

σ2
[L | (S \ { f })]

)
= 4 Pr

σ2
[L | (S \ { f })] − 2 ,

and it follows that Prσ2 [L | S \ { f }] ≥ ( 1
2
+ 2)/4 = 5

8
. Likewise Prσ1 [L | S \ { f }] ≥ 5

8
. We next show

that the probability mass placed on L must be evenly distributed on literal pairs. Let i ∈ {1, . . . ,n}.
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Clearly Eb∼σ2 [u1(a,b) | b ∈ L] ≤ 1 for all a ∈ L. Since

E

b∼σ2
[u1(xi ,b) | b ∈ L] = 2 − n Pr

σ2
[{+xi ,−xi } | L] ,

it follows that 2 − n Prσ2 [{+xi ,−xi } | L] ≤ 1, since otherwise no a ∈ L can be a best reply to

σ2. Hence Prσ2 [{+xi ,−xi } | L] ≥ 1

n and we can conclude that Prσ2 [{+xi ,−xi } | L] = 1

n for all i .

Likewise, Prσ1 [{+xi ,−xi } | L] = 1

n for all i .
We now show that for each literal pair, the players must both favor either the positive or the

negative literal. Consider any i ∈ {1, . . . ,n}. Let ℓ ∈ {+xi ,−xi } and suppose that Prσ2 [ℓ | L] ≥
1

4n .

We then have

E

b∼σ2
[u1(−ℓ,b) | b , f ] ≤ 1 − 4n Pr

σ2
[ℓ | L] Pr

σ2
[L | S \ { f }]

≤ 1 − 4n
1

4n

5

8

=
3

8

<
1

2

,

and we must have Prσ1 [−ℓ] = 0. Likewise, if Prσ1 [ℓ | L] ≥
1

4n we must have Prσ2 [−ℓ] = 0.

We now established that the strategy profile identifies a truth assignment A to the variables.

Namely for each i ∈ {1, . . . ,n} there is ℓ ∈ {+xi ,−xi } with Prσ1 [ℓ | L] = Prσ2 [ℓ | L] = 1

n and

Prσ1 [−ℓ | L] = Prσ2 [−ℓ | L] = 0, and we define A to be the set of these ℓ. We will finally show that

A satisfies all clauses. Let c = {ℓ1, ℓ2, ℓ3} be a clause. Note that

E

b∼σ2
[u1(c,b) | b ∈ L] = 2 − n Pr

σ2
[{ℓ1, ℓ2, ℓ3} | L] ,

We must have 2 − n Prσ2 [{ℓ1, ℓ2, ℓ3} | L] ≤ 1, since otherwise no a ∈ L can be a best reply

to σ2. It follows that Prσ2 [{ℓ1, ℓ2, ℓ3} | L] ≥ 1

n , and there must then be j ∈ {1, 2, 3} for which

Prσ2 [ℓj | L] ≥
1

3n , which means that ℓj ∈ A. �

We are now ready to define final game GProp(Φ) for any 3CNF formula Φ. The game GProp(Φ) is

simply obtained from G̃CS(Φ) by giving each player an additional pure strategy д. By playing the

new strategy д both players are able to fix the payoff to 1, and otherwise the payoffs are unchanged.

The resulting game is shown in table 2.

ℓ′ x ′ c ′ f д

ℓ
1

−4n

if ℓ , −ℓ′

if ℓ = −ℓ′
−2 −2 −2 1

x
2

2 − n

if v(ℓ′) , x

if v(ℓ′) = x
−2 −2 −2 1

c
2

2 − n

if ℓ′ < c

if ℓ′ ∈ c
−2 −2 −2 1

f 1/2 1/2 1/2 2 1

д 1 1 1 1 1

Table 2. GProp(Φ).

Lemma 3.2. Let Φ be a 3CNF formula. If Φ has a satisfying assignment then (д,д) is a proper Nash
equilibrium of GProp(Φ).
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Proof. Let ε > 0 be arbitrary and suppose ti ∈ {+ℓi ,−ℓi } such that A = {(t1, . . . , tn} is a

satisfying assignment of Φ. Write C = C1 ∪C2 ∪C3, where Ck is the set of clauses containing k
literals from A.
Define σ ε

according to table 3, where x ∈ V , c1 ∈ C1, c2 ∈ C2, c3 ∈ C3, and we let N =
1 + nε + nε2 + |C1 |ε

3 + ε4 + |C2 |ε
5 + |C3 |ε

6 + nε7 be a normalizing factor.

i д ti x c1 f c2 c3 −ti

σ ε (i)N 1 ε ε2 ε3 ε4 ε5 ε6 ε7

Table 3. An ε-proper equilibrium of GProp(Φ).

By construction we have that σ ε
is a fully mixed strategy. We claim that (σ ε ,σ ε ) is an ε-proper

equilibrium. In order to verify this we compute the payoffs for all pure strategies played against σ ε
.

Clearly u1(д,σ
ε ) = 1. Next we have that u1(a,σ

ε ) for a ∈ A ∪V ∪C1 are all exactly equal and have

value of the form
1
1 +O(ε2). For instance we have

u1(x ,σ
ε )N = 1 + (n − 1)2ε + (2 − n)ε

− 2(nε2 + |C1 |ε
3 + ε4 + |C2 |ε

5 + |C3 |ε
6) − nε7

= 1 + nε − 2(nε2 + |C1 |ε
3 + ε4 + |C2 |ε

5 + |C3 |ε
6) − nε7

= 1 + nε +O(ε2) ,

from which the stated bound follows using 1/N = 1 − nε +O(ε2).
Similarly we obtainu1(f ,σ

ε ) = 1−nε/2+O(ε2),u1(c2,σ
ε ) = 1−nε +O(ε2),u1(c3,σ

ε ) = 1−2nε +
O(ε2), and u1(−ti ,σ

ε ) = 1 − n(4n + 1)ε +O(ε2). With these computed it is now straightforward to

observe that (σ ε ,σ ε ) is an ε-proper equilibrium for all sufficiently small ε > 0. Since (σ ε ,σ ε ) → (д,д)
for ε → 0

+
, it follows that (д,д) is a proper equilibrium. �

Lemma 3.3. Let Φ be a 3CNF formula. If (д,д) is a proper Nash equilibrium of GProp(Φ) then Φ has
a satisfying assignment.

Proof. By definition of (д,д) being a proper equilibrium there exist a sequence (σ ε
1
,σ ε

2
) of ε-

proper equilibrium with (σ ε
1
,σ ε

2
) → (д,д) for ε → 0

+
. Assume ε ≤ 1

2
, Prσ ε

1

[д] ≥ 1

2
, and Prσ ε

2

[д] ≥ 1

2
.

Then д is a best reply to σ ε
1
and σ ε

2
. This means in particular that Eb∼σ ε

2

[u1(a,b) | b , д] ≤ 1 for all

a ∈ S . Likewise Ea∼σ ε
2

[u2(a,b) | a , д] ≤ 1 for all b ∈ S .
Define the conditional strategies τ ε

1
= σ ε

1
| (S \ {д}) and τ ε

2
= σ ε

2
| (S \ {д}). By our con-

struction of the game GProp(Φ) we have that Eb∼τ ε
2

[u1(a,b)] < Eb∼τ ε
2

[u1(a
′,b)] if and only if

Eb∼σ ε
2

[u1(a,b)] < Eb∼σ ε
2

[u1(a
′,b)] for all a,a′ ∈ S . Likewise Ea∼τ ε

1

[u2(a,b)] < Ea∼τ ε
1

[u2(a,b
′)]

if and only if Ea∼σ ε
1

[u2(a,b)] < Ea∼σ ε
1

[u2(a,b
′)] for all b,b ′ ∈ S .

Also Prτ ε
1

[a] ≤ ε Prτ ε
1

[a′] if and only if Prσ ε
1

[a] ≤ ε Prσ ε
1

[a′] for all a,a′ ∈ S \ {д}, and likewise

Prτ ε
2

[b] ≤ ε Prτ ε
2

[b ′] if and only if Prσ ε
2

[b] ≤ ε Prσ ε
2

[b ′] for all b,b ′ ∈ S \ {д}. It follows that (τ ε
1
,τ ε

2
)

is an ε-proper equilibrium in G̃CS(Φ).
By the Bolzano-Weierstrass Theorem the sequence (τ ε

1
,τ ε

2
) has a limit point (τ1,τ2)which then by

definition is a proper equilibrium of G̃CS(Φ). In particular is (τ1,τ2) a Nash equilibrium. As observed

Eb∼τ ε
2

[u1(a,b)] ≤ 1 for all a ∈ S \ {д}. It follows that also Eb∼τ2 [u1(a,b)] ≤ 1 for all a ∈ S \ {д}, and
in particular Ea∼τ1,b∼τ2 [u1(a,b)] ≤ 1. Likewise we obtain that Ea∼τ1,b∼τ2 [u2(a,b)] ≤ 1. This rules out

1
Here and below we use O (д(ε )) to denote a function f satisfying |f (ε ) | ≤ M |д(ε ) | for every 0 < ε < ε0 given some

M, ε0 > 0. The actual value of u1(a, σ ε ) is strictly less than 1.
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the possibility that (τ1,τ2) = (f , f ), and it follows from Lemma 3.1 that (τ1,τ2) identifies a satisfying
assignment of Φ. �

Theorem 3.4. It is NP-complete to decide if a given pure Nash equilibrium of a two-player game in
strategic form is a proper equilibrium.

Proof. Combining Lemma 3.2 and Lemma 3.3 we have a reduction from 3SAT to the problem of

verifying that a given pure Nash equilibrium is a proper equilibrium, which establishes NP-hardness.

We next sketch the proof of containment in NP. For a given pure Nash equilibrium that is a proper

equilibrium also a symbolic proper Nash equilibrium with coefficients of polynomial bitsize. Given

such a proposed symbolic proper Nash equilibrium it may be checked in polynomial time that it

does define a sequence of ε-proper equilibria for all sufficiently small ε . �

The result directly translates to extensive form as well, so the following corollary follows from

the standard reduction from strategic form to extensive form.

Corollary 3.5. It is NP-hard to decide if a given pure Nash equilibrium of a two-player game in
extensive form is an extensive form proper equilibrium.

4 APPROXIMATING A PROPER EQUILIBRIUM IN STRATEGIC FORM GAMES
In this section we show that approximating a proper equilibrium for a finite game in strategic form

with n ≥ 3 players is FIXPa-complete. On a high level, our proof strategy is similar to previous

work of Etessami et al. [10] who proved the analogous result for approximating (trembling hand)

perfect equilibrium as well as the follow-up work of Etessami [9] who proved several analogous

results for approximating refinements of Nash equilibrium in extensive form games of perfect

recall. As shown by Etessami and Yannakakis [11] computing a Nash equilibrium for a finite

game in strategic form with n ≥ 3 is FIXP-complete and as an immediate consequence of that

it is FIXPa-complete to approximate a Nash equilibrium. This directly implies FIXPa-hardness

for approximating refinements of Nash equilibrium the nontrivial task is to prove containment

in FIXPa . Like proper equilibrium, a perfect equilibrium is defined as a limit point of so-called

ε-perfect equilibrium. Etessami et al. [10] showed that in the perturbed game, where each strategy

must be played with probability at least ε , computing an ε-perfect equilibrium is in FIXP. It is then

shown that for ε sufficiently small relative to a given δ > 0, any ε-perfect equilibrium is δ -close to
an actual perfect equilibrium, and furthermore that such an ε may be computed from δ by means

of repeated squaring, thereby leading to the result.

Given this, it would be natural to try to analogously prove FIXPa-completeness for approximating

a proper equilibrium by showing that computing an ε-proper equilibrium (for a perturbed game) is

in FIXP. Whether this is possible remains an open problem; on the other hand we show how to

approximate an ε-proper equilibrium, and by doing so also approximate an actual proper equilibrium.

This result is obtained by showing that computing a so-called δ -almost ε-proper equilibrium (in

a perturbed game) is in FIXP. The definition of a δ -almost ε-proper equilibrium was suggested

by Etessami [9] as a possible way to define a relaxation of proper equilibrium computable in

PPAD, analogously to other relaxations defined by Etessami [9]. Whether this turns out to be the

case remains to be seen. But the notion does turns out to be the right technical definition for our

purposes.

Let in the following Γ be a fixed finite game in strategic form with n players and with Player i
havingmi pure strategies.

Definition 4.1. Given ε > 0 and δ > 0, a mixed strategy profile x is a δ -almost ε-proper equilibrium
if it is fully mixed and satisfies xik ≤ εxiℓ wheneverUi (x−i ;k)+δ ≤ Ui (x−i ; ℓ), for all i ∈ {1, . . . ,n}
and k, ℓ ∈ Si .
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4.1 Uniform Approximation
Note that an ε-proper equilibrium is a δ -almost ε-proper equilibrium for all δ > 0. We will show

that a proper equilibrium can be approximated by a ε-proper equilibrium, for sufficiently small

ε , which in turn can be approximated by a δ -almost ε-proper equilibrium, for sufficiently small δ .
This is done by invoking the powerful “almost implies near” paradigm of Anderson [1] twice. First

we show that any proper equilibrium may be uniformly approximated by an ε-proper equilibrium.

Lemma 4.2. For any fixed strategic form game Γ, and any γ > 0, there is an ε > 0, so that any
ε-proper equilibrium of Γ has ℓ∞-distance at most γ to some proper equilibrium of Γ.

Proof. Suppose to the contrary there is a game Γ and γ > 0 so that for all ε > 0 there is an

ε-proper equilibrium xε of Γ so that there is no proper equilibrium in a γ -neighborhood (with

respect to the ℓ∞ norm) of xε . Consider the sequence (x1/n)n∈N. Since this is a sequence in a compact

space, by the Bolzano-Weierstrass Theorem it has a limit point, x∗, which is a proper equilibrium

of Γ by definition. But this contradicts the statement that there is no proper equilibrium in a

γ -neighborhood of any of the strategy profiles x1/n . �

We shall next consider a perturbed version of Γ. Let ε > 0 be given and define ηi (ε) = εmi /mi
for i ∈ {1, . . . ,n}. When ε is understood from the context we shall simply denote ηi (ε) by ηi .
We denote by ∆

ηi
mi the set of ηi -perturbed mixed strategies for Player i , meaning that each pure

strategy is played with probability at least ηi . Thus ∆
ηi
mi = {y ∈ Rm | ∥y∥1 = 1;∀j : yj ≥ ηi }. Let

η = (η1, . . . ,ηn), and define D
η
Γ =

∏n
i=1 ∆

ηi
mi to be the set of all η-perturbed mixed strategy profiles

for Γ. Clearly D
η
Γ ⊂ Do

Γ ⊂ DΓ . The η-perturbed game Γη restricts the set of mixed strategy profiles

to the set of η-perturbed mixed strategy profiles. The game Γη was used also by Myerson [24] in

his existence proof of proper equilibrium. One of the important properties of Γη is that any limit

point of a sequence of strategy profiles is fully mixed, which is used in the following proof that any

ε-proper equilibrium may be uniformly approximated by a δ -almost ε-proper equilibrium.

Lemma 4.3. For any fixed strategic form game Γ, any ε > 0 and any γ > 0, there is an δ > 0, so that
any δ -almost ε-proper equilibrium of Γ in D

η
Γ has ℓ∞-distance at most γ to some ε-proper equilibrium

of Γ in D
η
Γ .

Proof. Suppose to the contrary there is a game Γ, ε > 0, and γ > 0 so that for all δ > 0 there is

a δ -almost ε-proper equilibrium xδ of Γ in D
η
Γ so that there is no ε-proper equilibrium in D

η
Γ and

in a γ -neighborhood (with respect to the ℓ∞ norm) of xδ . Consider the sequence (x1/n)n∈N. Since
this is a sequence in a compact space, by the Bolzano-Weierstrass Theorem is has a convergent

subsequence (x1/nr )r ∈N. Let x
∗ = limr→∞ x1/nr . We now claim that x∗ is an ε-proper equilibrium,

which will contradict the statement that there is no ε-proper equilibrium in a γ -neighborhood of

any of the strategy profiles x1/n .
First, since x1/nr ∈ D

η
Γ for all n we also have x∗ ∈ D

η
Γ , and in particular is x∗ fully mixed. Define

ν > 0 by

ν = min

i,k, ℓ

{
Ui (x

∗
−i ; ℓ) −Ui (x

∗
−i ;k) | Ui (x

∗
−i ;k) < Ui (x

∗
−i ; ℓ)

}
.

By continuity of the functionsUi we have

lim

r→∞
Ui

(
(x1/nr )−i ;k

)
= Ui (x

∗
−i ;k) ,

for all i and k . Thus let N be an integer such that

|Ui
(
(x1/nr )−i ;k

)
−Ui (x

∗
−i ;k)| ≤ ν/3 ,

and such that 1/nr ≤ ν/3, for all i ,k , and r ≥ N .
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Consider now k and ℓ such thatUi (x
∗
−i ;k) < Ui (x

∗
−i ; ℓ). By construction, for any r ≥ N we also

haveUi ((x1/nr )−i ;k)+ 1/nr ≤ Ui ((x1/nr )−i ; ℓ). Since x1/nr is a (1/nr )-almost ε-proper equilibrium it

follows that (x1/nr )ik ≤ ε(x1/nr )iℓ . Taking the limit r → ∞ we also have x∗ik ≤ εx∗iℓ , which shows

that x∗ is a ε-proper equilibrium as claimed. �

4.2 Approximate Selection and Fixed Points
We shall now work toward a fixed point characterization of δ -almost ε-proper equilibrium in Γη . We

shall first generalize the property defining a δ -almost ε-proper equilibrium in two ways. First, the

definition applies to all scalar multiples of mixed strategies. Secondly, the definition incorporates a

notion of action valuation which take the place of the utilitiesUi (x−i ;k).

Definition 4.4. An action valuation for Player i is an assignmentvi ∈ R
mi

of valuations to actions.

We say that xi ∈ R
mi
+ satisfies the δ -almost ε-proper property with respect to action valuation vi if

and only if xik ≤ εxiℓ whenever vik + δ ≤ viℓ , for all k, ℓ ∈ Si .

Note that while we do not require that xi ∈ ∆o
mi

we have that xi satisfies the δ -almost ε-proper
property with respect to action valuation vi if and only if xi/∥xi ∥1 does as well.

There is a discontinuity in the δ -almost ε-proper property on the upper bounds imposed on the

individual coordinates of xi as a function of the action valuation vi . For δ = 0 this discontinuity

is inherent, but for δ > 0 we can resolve it by defining a notion of δ -approximate selection that

linearly interpolates between two values x and y in an interval of length δ on the right side of a

selection point 0.

Definition 4.5. For given δ > 0, the δ -approximate selection function Selδ is defined by

Selδ (x ,y, z) =


x if z ≤ 0

(1 − z/δ )x + (z/δ )y if 0 ≤ z ≤ δ

y if δ ≤ z

We next incorporate the δ -approximate selection function into a function Pi,ε that captures the
upper bounds imposed on the individual coordinates of xi .

Definition 4.6. Define the function Pi,ε : R
mi
+ × Rmi → Rmi

+ by

(Pi,ε (xi ,vi ))k = min

ℓ
{Selδ (xik , εxiℓ,viℓ −vik )}

For a fixed action valuation vi we obtain an operator Pvii,ε : R
mi
+ → Rmi

+ in the natural way.

Definition 4.7. Let vi be an action valuation. Then the operator Pvii,ε : R
mi
+ → Rmi

+ is defined by

Pvii,ε (xi ) = Pi,ε (xi ,vi ) .

A simple but important property of the operator Pvii,ε is that it is monotone.

Lemma 4.8. For any xi ∈ Rmi
+ and v ∈ Rmi we have Pi,ε (xi ,vi ) ≤ xi .

Proof. This follows from the definition of Pi,ε since Selδ (xik , εxiℓ,viℓ −vik ) = xik for k = ℓ. �

An immediate consequence is that fixed points of the operator are exactly the points whose

L1-norm is preserved by the operator.

Corollary 4.9. Let xi ∈ ∆o
mi

. Then xi is a fixed point of P
vi
i,ε if and only if ∥Pi,ε (xi ,vi )∥1 = 1.

The operator was defined precisely for the purpose that fixed points will satisfy the δ -almost

ε-proper property. This is easy to verify.
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Lemma 4.10. Suppose xi ∈ Rmi
+ is a fixed point of Pvii,ε . Then xi satisfies the δ -almost ε-proper

property with respect to vi .

Proof. Suppose that vik + δ ≤ viℓ . Then viℓ −vik ≥ δ , and since xi is a fixed point of Pvii,ε we
must have xik = (Pi,ε (xi ,vi ))k ≤ Selδ (xik , εxiℓ,viℓ −vik ) = εxiℓ . �

The operator Pvii,ε is by itself not useful for expressing δ -almost ε-proper equilibrium as fixed

points precisely for the reason that it is monotone and hence only preserves that L1 norm at fixed

points. We will instead be able to use it for actually computing a mixed strategy that satisfy the

δ -almost ε-proper property with respect to vi , for a given action valuation vi . We will see that

iterating the Pvii,ε operator on the uniform distribution will work for this purpose.

4.3 Computing a δ -almost ε-proper Mixed Strategy
Let τmi ∈ ∆mi be the uniform distribution over the pure strategies of Player i , i.e. τmik = 1/mi for

k = 1, . . . ,mi . For a fixed action valuation vi , let (P
vi
i,ε )

◦j
denote the j-th iteration of the operator

Pvii,ε . That is we let (P
vi
i,ε )

◦0
simply denote the identity function on Rmi

+ and define (Pvii,ε )
◦(j+1)

:=

Pvii,ε ◦ (P
vi
i,ε )

◦j
. Define for all j ≥ 0 the vectors τ (j)mi = (Pvii,ε )

(j)(τmi ). Starting the iteration of Pvii,ε on
the uniform distribution means that individual coordinates can not become very small.

Lemma 4.11. For all j ≥ 0 and k we have τ (j)mik
≥ εmi−1/mi .

Proof. By possibly reordering coordinates, we may without loss of generality assume that

v1 ≥ · · · ≥ vmi . Note then that Selδ (x ,y,viℓ − vik ) = x for all ℓ ≥ k . We shall then show by

induction in k that τ (j)mik
≥ εk−1/mi for all j. For the base case of k = 1, by the above we have

Selδ (τ
(j)
mik
, ετ (j)mi ℓ

,viℓ −vik ) = τ
(j)
mik

for all j and ℓ, and hence τ (j)mik
= τmik = 1/mi for all j. Consider

now a general k ≥ 2. We get Selδ (τ
(j)
mik
, ετ (j)mi ℓ

,viℓ − vik ) ≥ min{τ (j)mik
, εℓ−1/mi } for all j and ℓ < k

and Selδ (τ
(j)
mik
, ετ (j)mi ℓ

,viℓ −vik ) = τ
(j)
mik

for all j and ℓ ≥ k , from which the result follows. �

Note that by the above lemmas as j tends to infinity the sequence τ (j)mi converges to a limit point

τ ∗ that satisfies the δ -almost ϵ-proper property and furthermore satisfies τ ∗k ≥ εmi−1/mi for all k . It

follows that τ ∗/∥τ ∗∥1 ∈ ∆
ηi
mi and satisfies the δ -almost ϵ-proper property as well. Of course we will

only be able to iterate Pvii,ε polynomially many times. We will next show that this is sufficient for

our purposes.

Lemma 4.12. For a given k suppose that for every ℓ with viℓ ≥ vik we have that τ (j+1)mi ℓ
≥
√
ετ (j)mi ℓ

.

Then τ (j+2)mik
≥
√
ετ (j+1)mik

.

Proof. By assumption, if viℓ ≥ vik we have

Selδ (τ
(j+1)
mik
, ετ (j+1)mi ℓ

,viℓ −vik ) ≥ Selδ (
√
ετ (j)mik

, ε
√
ετ (j)mi ℓ

,viℓ −vik )

=
√
ε Selδ (τ

(j)
mik
, ετ (j)mi ℓ

,viℓ −vik )
,

and by since by definition of Selδ , if viℓ ≤ vik we have Selδ (x ,y,viℓ −vik ) = x it follows that

τ (j+2)mik
= min

ℓ

{
Selδ (τ

(j+1)
mik
, ετ (j+1)mi ℓ

,viℓ −vik )
}

=
√
ε min

ℓ

{
Selδ (τ

(j)
mik
, ετ (j)mi ℓ

,viℓ −vik )
}

=
√
ετ (j+1)mik

.
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Thus, as soon τ (j)mi ℓ
decreases by a factor at no less than

√
ε with each application of Pvii,ε , for all

ℓ such that viℓ ≥ vik , the same will be true for τmik . Since each τ (j)mik
is bounded from below by

εmi−1/mi they must each decrease by a factor no less than

√
ε after polynomially many iterations.

More precisely we have the following precise bound.

Corollary 4.13. If ε ≤ 1/mi and j ≥ 2m2

i then τ
(j+1)
mik

≥
√
ετ (j)mik

for all k .

Proof. Since ε ≤ 1/mi we have τ
(j)
mik

≥ εmi
for all k and j ≥ 0. Thus every τ (j)mik

can decrease by

a factor less than

√
ε at most 2mi times. By possibly reordering coordinates, we may without loss

of generality assume that v1 ≥ · · · ≥ vmi . By induction in k follows that for every ℓ ≤ k we have

that τ (j+1)mi ℓ
≥
√
ετ (j)mi ℓ

whenever j ≥ 2mik by the previous lemma. �

We next show that τ (j)mi for our purposes will be essentially as useful as the limit point τ ∗ for
j ≥ 2m2

i . First we need another simple observation about the operator Pvii,ε .

Lemma 4.14. Suppose k and ℓ are such that vik + δ ≤ viℓ . For xi ∈ Rmi
+ and x ′

i = Pvii,ε (xi ). If
x ′
ik >

√
ϵx ′

iℓ it follows that x
′
iℓ <

√
εxiℓ .

Proof. By the assumptions and the definition of Pvii,ε we have x
′
ik ≤ ϵxiℓ . Thus we have x

′
iℓ <

1/
√
ϵx ′

ik ≤
√
ϵxiℓ as stated. �

We can now finally state our conclusion about τ (j)mi , which follows directly from the above

statements.

Proposition 4.15. Let ε ≤ 1/mi . Then τ
(j)
mi satisfy the δ -almost

√
ε-proper property for all j ≥ 2m2

i .

4.4 Fixed Point Characterization
We are now finally in position to give a fixed point characterization of δ -almost ε-proper equilibrium.

For this we define a function F ε,δΓ : D
η(ε2)
Γ → D

η(ε2)
Γ such that every fixed point of F ε,δΓ is a δ -almost

ε-proper equilibrium of Γ. Let x ∈ D
η(ε2)
Γ be given and define the following for all i and all k ∈ Si :

(1) vik = Ui (x−1;k).

(2) yi = (Pvii,ε2 )
◦(2m2

i )(τmi ).

We now simply define (F ε,δΓ (x))i = yi/∥yi ∥1. Note that by Lemma 4.11 we have that yi ∈ ∆
ηi (ε2)
mi for

all i . Hence (F ε,δΓ (x)) ∈ D
η(ε2)
Γ thereby making F ε,δΓ well defined. We next consider the fixed points

of F ε,δΓ .

Proposition 4.16. Let δ > 0 and 0 < ε < 1. Then every fixed point x ∈ D
η(ε2)
Γ is a δ -almost

ε-proper equilibrium of Γ.

Proof. Suppose that x is a fixed point of F ε,δΓ (x). For each i we then have that xi = yi/∥yi ∥1. By
Proposition 4.15 we have that yi satisfies the δ -almost ε-proper property with respect to action

valuation vi by construction. This implies that xi satisfies the δ -almost ε-proper property with

respect to action valuation vi as well. Since this holds for each i , we conclude that x is a δ -almost

ε-proper equilibrium. �
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From the above description it is easy to construct in polynomial time a {+,−, ∗, /,max,min}-

circuit computing F ε,δΓ (x), where x , ε , and δ are inputs of the circuit. The function Selδ is computable

by the formula Selδ (x ,y, z) = (1 − max(min(z,δ ), 0)/δ )x + (max(min(z,δ ), 0)/δ )y. The operator

Pvii,ε was already defined in the required form, and the description of F ε,δΓ (x) above consists mainly

of polynomially many such functions composed with each other.

Theorem 4.17. There exist a function F ε,δΓ : D
η(ε2)
Γ → D

η(ε2)
Γ given by a {+,−, ∗, /,max,min}-

circuit computable in polynomial time from Γ, with the circuit having inputs x ,ε > 0, and δ > 0 as
inputs, such that for all fixed 0 < ε < 1 and δ > 0, every fixed point of F ε,δΓ is a δ -almost ε-proper
equilibrium of Γ. In particular is the problem of computing a δ -almost ε-proper equilibrium of a finite
game with n players in strategic form in FIXP.

4.5 Approximating Proper Equilibrium
We have now established that proper equilibrium may be approximated by a ε-proper equilibrium
which in turn may be approximated by a δ -almost ε-proper equilibrium which in turn can be

computed in FIXP. What remains for proving that approximating a proper equilibrium can be

done in FIXPa are effective bounds on how small ε and δ need to be in order to guarantee a good

approximation.

We can obtain such bounds in a generic way using the general machinery of real algebraic

geometry, cf. Basu et al. [2]. We shall here just outline how this is done and refer to Etessami et al.

[10] for full details of an analogous derivation given for trembling hand perfect equilibrium. The

main idea is to formalize the “almost implies near” statements of Lemma 4.2 and Lemma 4.3 as

formulas in the first order theory of the reals. For Lemma 4.2 a first-order formula is constructed

from Γ and γ with a single free variable ε , expressing that ε satisfies the conclusion of the lemma.

Applying quantifier elimination to that formula and employing known bounds on the result of this

we obtain the following statement.

Lemma 4.18. There is a constant c1, such that for all integers n,m, and B and every γ > 0, the
following holds for every ε ≤ min(γ , 1/B)n

c
1
m3

. For any finite game Γ withn players having a total of at
mostm pure strategies, and with integer payoffs of absolute value at most B, any ε-proper equilibrium
of Γ has L∞-distance at most γ to some proper equilibrium of Γ.

Similarly, for Lemma 4.3 a first-order formula is constructed from Γ, γ and ε with a single free

variable δ , expressing that δ satisfies the conclusion of the lemma. Again applying quantifier

elimination to that formula and employing known bounds on the result of this we obtain the

following statement.

Lemma 4.19. There is a constant c2, such that for all integers n,m, and B, every γ > 0 and every
ε > 0, the following holds for every δ ≤ min(γ , ε, 1/B)n

c
2
m2

. For any finite game Γ with n players
having a total of at mostm pure strategies, and with integer payoffs of absolute value at most B, any
δ -almost ε-proper equilibrium of Γ has L∞-distance at most γ to some ε-proper equilibrium of Γ.

We can now finally state the main theorem of this section. The proof is again analogous to a

corresponding proof for trembling hand perfect equilibrium by Etessami et al. [10] except that we

here construct two virtual infinitesimals δ ≪ ε by means of repeated squaring instead of a single

such virtual infinitesimal.

Theorem 4.20. Given as input a finite game Γ with n players in strategic form having integer
payoffs and a rational γ > 0, the problem of computing a strategy profile x ′ such that there is a proper
equilibrium x of Γ with ∥x ′ − x ∥∞ < γ is FIXPa-complete.
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Proof. Letm =
∑n

i=1mi be the total number of pure strategies for the players. Let B be the largest

magnitude of a payoff in Γ. By definition of FIXPa our task is to given γ > 0 construct a polytope

P , a circuit C computing a function F : P → P , and a number γ ′
, such that γ ′

-approximations

to fixed points of F can be efficiently transformed into γ -approximations of proper equilibrium

of Γ. We simply let γ ′ = γ/2 and ensure that fixed points of F are themselves γ -approximations

of proper equilibrium of Γ. The polytope P is just the polytope DΓ of all strategy profiles of Γ,
whose defining inequalities can clearly be computed in polynomial time. We next describe the

circuit C . First a suitable ε > 0 satisfying the conditions of Lemma 4.18 is computed by repeated

squaring of the number min(γ/4, 1/B) exactly ⌈c1m
3
lgn⌉ times. Next a suitable δ > 0 satisfying

the conditions of Lemma 4.19 is computed by repeated squaring of the number min(γ/4, ε, 1/B)

exactly ⌈c2m
2
lgn⌉ times. Next the input x ∈ DΓ is mapped to D

η(ε2)
Γ by any mapping that is the

identity function on D
η(ε2)
Γ . This may be done by computing for each i a number ti such that∑mi

j=1 max(xi j − ti ,ηi (ε
2)) = 1 using a sorting network like Etessami and Yannakakis [11] and then

mapping each xi j to max(xi j − ti ,ηi (ε
2)). Next we compute the function F ε,δΓ on the transformed

input with the constructed ε and δ , and let this be the output of C . By Theorem 4.17, any fixed

point of F is a δ -almost ε-proper equilibrium of Γ. By Lemma 4.19 this is a γ/4-approximation to an

ε-proper equilibrium, which in turn by Lemma 4.18 is a γ/4-approximation to a proper equilibrium

of Γ. Finally, by the triangle inequality, any γ ′ = γ/2-approximation to a fixed point of F is a

γ/2 + γ/4 + γ/4 = γ -approximation of a proper equilibrium of Γ. This completes the proof. �

5 COMPUTING PROPER EQUILIBRIUM IN POLYMATRIX GAMES
In this section, we show that computing a proper equilibrium can be done in PPAD for some

multiplayer games. Specifically, we provide a PPAD algorithm for computing a proper equilibrium

of a polymatrix game. We do this by observing that the strategy constraints from Sørensen [26],

which gives a symbolic ε-proper equilibrium, can be incorporated into the LCP formulation of

Howson [18] for equilibria of polymatrix games. Lemke’s algorithm is then shown to always find

a solution to the LCP, which thus yields a PPAD algorithm for computing a symbolic ε-proper
equilibrium of the given polymatrix game. The symbolic ε-proper equilibrium serves both as

a representation of the proper equilibrium (by letting ε → 0
+
), but also as a witness that the

equilibrium is indeed proper, thereby circumventing the hardness of recognizing a solution that is

given only as standard probabilities.

A polymatrix gameG is an n-player game, where the utility of each player can be separated into

independent terms for each opponent. Each player plays their chosen strategy pairwise against

all other players in independent bimatrix games, and receives the sum as the combined utility. As

with strategic form games, player i hasmi pure strategies. The game is specified by a collection

of matrices, one matrix Ai j ∈ R
mi×mj

for each ordered pair of players (i, j). If each player i plays
mixed strategies xi ∈ ∆mi , the expected utility for player i isUi (x1, ...,xn) =

∑
j,i x

⊤
i Ai jx j .

These games can be formulated as symmetric bilinear games [13, 22]. While bilinear games is a

useful abstraction that would allow us to add the needed strategy constraints, that formulation

is not suitable for our purpose for two reasons. First, it needlessly doubles the dimension of the

LCP, which is a bad idea, since the running time for solving LCP is in general exponential in the

dimension. This would not be a problem in itself, if one only cares about the complexity class.

However, secondly, it adds the requirement on the solution to the LCP that it must correspond

to a symmetric equilibrium, and not just any equilibrium. This either adds even more constraints

to the LCP, or requires using a non-standard LCP solver. We therefore stick closer to the original

formulation of Howson [18].
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The approach of Howson [18] can be understood as reformulating the n-player polymatrix game

into a form where a single meta-player specifies the strategy for all players. For conciseness, we

pack all the payoff matrices Ai j into one matrix A and the strategy vectors xi into one vector x in

the following way:

A =



0 A12 . . . A1n

A21 0 . . . A2n
...

...
. . .

...

An1 An2 . . . 0


x =

©­­­­­­­«

x1

x2
...

xn

ª®®®®®®®¬
With this representation, the sum of utilities for all players, when they combined play strategy

x , is given by x⊤Ax . A strategy profile x is then an equilibrium exactly when x⊤Ax = maxy y
⊤Ax .

We now need a brief aside to introduce the strategy constraints from Sørensen [26] that will

ensure the ε-proper equilibria. The constraints are built on a proof of existence of proper equilibria

from Kohlberg and Mertens [19, Prop. 5]. While Sørensen only applies the construction to two-

player games, the proof of Kohlberg and Mertens works for any number of players. In their proof,

an auxiliary gameG ′
is constructed where themi strategies of player i are replaced bymi ! pure

strategies, one for each of the ways that mi first powers of ε can be assigned to the mi pure

strategies of the original game G. Equilibria of G ′
are proved to be ε-proper of the original game.

The construction by Sørensen allows for representing the mixed strategies of G ′
directly as a

restriction of the strategy space ofG, thus avoiding an exponential blowup in size. Specifically, for

any number of pure strategiesmi , it gives strategy constraints Emix = emx , with all entries of Emi

being integers and all entries of emx being either 0 or a power of ε . In the full construction, the

constraints also include inequalities, but standard LP tricks lets us express everything as equalities

for brevity, e.g., by using auxiliary variables. In our construction, we will pack these constraints

into one constraint matrix and vector as follows:

E =



Em1
0 . . . 0

0 Em2
. . . 0

...
...
. . .

...

0 0 . . . Emn


e =

©­­­­­­­«

em1

em2

...

emn

ª®®®®®®®¬
With this, Ex = e will restrict the strategy profile x such that each player of the polymatrix game

to play within the ε-permutahedron as defined by Sørensen.

The following derivation will stay fairly closely to that of Koller et al. [20] for the sequence form,

since their proofs of correctness almost directly works for our case as well. In fact, the following

derivation is almost identical, except that it is specialized to finding an x that is a best response to

itself instead of an (x ,y) pair that are mutual best responses.

Given a strategy profile y, the task of computing a best response within the strategy constraints

is captured by the following LP in the left and its dual on the right

maximize

x
x⊤(Ay)

subject to x⊤E⊤ = e⊤

x ≥ 0

minimize

p
e⊤p

subject to E⊤p ≥ Ay
(1)
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By complementary slackness, x is a best response to y whenever

x⊤(−Ay + E⊤p) = 0 (2)

This also holds true for y = x , so replacing y with x and constraining x to the desired strategy

space, we get

x⊤(−Ax + E⊤p) = 0

Ex = e

x ≥ 0

(3)

An LCP in standard form is specified by a pair (b,M) with b ∈ Rn andM ∈ Rn×n . The problem
is to find z ∈ Rn such that

b +Mz ≥ 0

z⊤(b +Mz) = 0 (4)

z ≥ 0

The constraints specified in this section can be packed into an LCP in standard form in the

following way. If we let z = (x ,p ′,p ′′)⊤, where p = p ′ − p ′′, and

M =
©­­­«
−A E⊤ −E⊤

−E 0 0

E 0 0

ª®®®¬ and b =
©­­­«

0

e

−e

ª®®®¬ . (5)

then the LCP standard form of (4) gives us exactly the desired constraints. This means that in a

solution to the LCP, the strategy profile x is a best response to itself within the restricted strategy

space, and therefore an equilibrium of the auxiliary game, and therefore an ε-proper equilibrium of

the given polymatrix game.

It is worth making two observations here. First, the above construction generalizes that of

Sørensen, since a bimatrix game is the special case of polymatrix games with only two players.

This generalization is direct in that if a bimatrix game is seen as a polymatrix game, the above

construction will yield exactly the LCP of Sørensen. Secondly, the derivation above is the same for

many other strategy constraints. In fact, if we just restrict the strategies to be the normal strategies

of polymatrix games, we get exactly the original LCP of Howson.

5.1 Solving the LCP with Lemke’s algorithm
The standard algorithm for solving LCPs in standard form is the one provided by Lemke [21]. The

algorithm performs a sequence of complementary pivots on a relaxation of the LCP, maintaining the

complementarity condition z⊤(b+Mz) = 0 while searching for a basic solution where the relaxation

disappears. The pivots are similar to those of the simplex method [7] for linear programming, but

the complementarity condition specifies the entering and leaving variables (for non-degenerate

LCPs). Pivoting continues until the variable introduced by the relaxation can leave the basis and

become 0. If this happens, the current solution to the relaxed problem is also a solution to the

original problem. For a thorough exposition of Lemke’s algorithm, see the monograph by Cottle

et al. [6].

When applying Lemke’s algorithm to find a solution to an LCP, there are two pitfalls that must

be avoided. The first was hinted at in the above; an LCP can be degenerate, in which case the
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complementarity condition is not enough to specify the next pivot. This is typically handled by

slightly perturbing b with different powers of an indeterminate infinitesimal ε , which is ignored

when reading off the solution at the end. Just like for Sørensen [26], this perturbation of the b vector

can also give an way of keeping the powers of ε needed for the ε-permutahedra in the strategy

constraints. Those ε end up in the b vector of the LCP, so they can serve a dual purpose. Any

implementation of Lemke’s algorithm using the perturbation trick can easily output the solution

with these perturbations intact.

The second, and more troublesome pitfall, is an alternative undesirable way to terminate: the

current entering variablemight not be restricted by a basic variable. This is known as ray termination.

To prove that the algorithm works for our case, we must prove that ray termination cannot happen.

To do this, we use the following theorem by Koller et al. [20]

Theorem 5.1 (Koller et.al.’96). If (i) z⊤Mz ≥ 0 for all z ≥ 0, and (ii) z ≥ 0, Mz ≥ 0 and
z⊤Mz = 0 imply z⊤b ≥ 0, then Lemke’s algorithm computes a solution of the LCP (2.9) and does not
terminate with a secondary ray.

Our application of the theorem is similar to that of Koller et al., and we need a similar set of

lemmas.

Lemma 5.2. The only non-negative solution x to Ex = 0 is x = 0.

Proof. Observe that the constraint Ex = 0 unfolds into independent constraints Em1
x1 = em1

,

Em2
x2 = em2

, . . . , Emnxn = emn . By Lemma 5.2 of Sørensen [26], the statement holds true for each

of those individually, and therefore also for the combined constraint. �

Lemma 5.3. If E⊤p ≥ 0, then e⊤p ≥ 0.

Proof. Consider the LP for finding any feasible strategy profile, (and it’s dual on the right):

maximize

x
0

subject to Ex = e

x ≥ 0

minimize

p
e⊤p

subject to E⊤p ≥ 0

(6)

Since the primal is feasible and has value 0, by weak duality the objective function of the dual is

lower bounded by 0, i.e., e⊤p ≥ 0. �

Theorem 5.4. If A ≤ 0, thenM and b in (5) satisfy all assumptions of Theorem 5.1.

Proof. Let z = (x ,p ′,p ′′)⊤ ≥ 0 and p = p ′ − p ′′. Then we have that z⊤Mz = −x⊤Ax ≥ 0,

satisfying condition (i) of Theorem 5.1. Furthermore,Mz ≥ 0 implies −Ax + E⊤p ≥ 0 and Ex = 0.

Combining the latter with non-negativity of x , Lemma 5.2 implies that x = 0. Combining this with

the first, we get E⊤p ≥ 0. By Lemma 5.3, this implies that e⊤p ≥ 0. Finally, z⊤b = e⊤p ≥ 0, showing

that we satisfy condition (ii) of Theorem 5.1. �

The condition A ≤ 0 can be ensured by subtracting a suitably large constant from the payoff

of all players. This does not change the set of proper equilibria, as the value of best replies are

shifted by the same amount. Thus, ray termination is not a possibility, and Lemke’s algorithm will

terminate with an equilibrium of G ′
. The solution can be read of with the values being formal

polynomials in ε , with ε itself being an indeterminate infinitesimal. For all sufficiently small values

of ε , this solution is an ε-proper equilibrium of the original polymatrix game. The limit point for

ε → 0
+
is simply the 0-th order terms of the polynomials. Thus the solution provides both a proper

equilibrium, and a witness of this in the form of a symbolic sequence of ε-proper equilibria.
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All of this combined allows us to strengthen the main result of Sørensen [26] from bimatrix

games to polymatrix games:

Theorem 5.5. A symbolic ε-proper equilibrium for a given polymatrix game can be computed by
applying Lemke’s algorithm to an LCP of polynomial size.

The last step of the way to PPAD is by using an orientation [27] of Lemke’s algorithm, thus again

strengthening the matching corollary of Sørensen [26]

Corollary 5.6. The refinement of proper equilibria, corresponding to Kohlberg and Mertens’ proof
of existence, is PPAD-complete to compute for a given polymatrix game.
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