140 research outputs found

    Replication of recommender systems with impressions

    Get PDF
    Impressions are a novel data type in Recommender Systems containing the previously-exposed items, i.e., what was shown on-screen. Due to their novelty, the current literature lacks a characterization of impressions, and replications of previous experiments. Also, previous research works have mainly used impressions in industrial contexts or recommender systems competitions, such as the ACM RecSys Challenges. This work is part of an ongoing study about impressions in recommender systems. It presents an evaluation of impressions recommenders on current open datasets, comparing not only the recommendation quality of impressions recommenders against strong baselines, but also determining if previous progress claims can be replicated

    Weighted Random Walk Sampling for Multi-Relational Recommendation

    Full text link
    In the information overloaded web, personalized recommender systems are essential tools to help users find most relevant information. The most heavily-used recommendation frameworks assume user interactions that are characterized by a single relation. However, for many tasks, such as recommendation in social networks, user-item interactions must be modeled as a complex network of multiple relations, not only a single relation. Recently research on multi-relational factorization and hybrid recommender models has shown that using extended meta-paths to capture additional information about both users and items in the network can enhance the accuracy of recommendations in such networks. Most of this work is focused on unweighted heterogeneous networks, and to apply these techniques, weighted relations must be simplified into binary ones. However, information associated with weighted edges, such as user ratings, which may be crucial for recommendation, are lost in such binarization. In this paper, we explore a random walk sampling method in which the frequency of edge sampling is a function of edge weight, and apply this generate extended meta-paths in weighted heterogeneous networks. With this sampling technique, we demonstrate improved performance on multiple data sets both in terms of recommendation accuracy and model generation efficiency

    LIMEADE: A General Framework for Explanation-Based Human Tuning of Opaque Machine Learners

    Full text link
    Research in human-centered AI has shown the benefits of systems that can explain their predictions. Methods that allow humans to tune a model in response to the explanations are similarly useful. While both capabilities are well-developed for transparent learning models (e.g., linear models and GA2Ms), and recent techniques (e.g., LIME and SHAP) can generate explanations for opaque models, no method for tuning opaque models in response to explanations has been user-tested to date. This paper introduces LIMEADE, a general framework for tuning an arbitrary machine learning model based on an explanation of the model's prediction. We demonstrate the generality of our approach with two case studies. First, we successfully utilize LIMEADE for the human tuning of opaque image classifiers. Second, we apply our framework to a neural recommender system for scientific papers on a public website and report on a user study showing that our framework leads to significantly higher perceived user control, trust, and satisfaction. Analyzing 300 user logs from our publicly-deployed website, we uncover a tradeoff between canonical greedy explanations and diverse explanations that better facilitate human tuning.Comment: 16 pages, 7 figure

    From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences

    Full text link
    We describe the state-of-the-art in performance modeling and prediction for Information Retrieval (IR), Natural Language Processing (NLP) and Recommender Systems (RecSys) along with its shortcomings and strengths. We present a framework for further research, identifying five major problem areas: understanding measures, performance analysis, making underlying assumptions explicit, identifying application features determining performance, and the development of prediction models describing the relationship between assumptions, features and resulting performanc
    • …
    corecore