6 research outputs found

    Semantic Interpretation of User Queries for Question Answering on Interlinked Data

    Get PDF
    The Web of Data contains a wealth of knowledge belonging to a large number of domains. Retrieving data from such precious interlinked knowledge bases is an issue. By taking the structure of data into account, it is expected that upcoming generation of search engines is approaching to question answering systems, which directly answer user questions. But developing a question answering over these interlinked data sources is still challenging because of two inherent characteristics: First, different datasets employ heterogeneous schemas and each one may only contain a part of the answer for a certain question. Second, constructing a federated formal query across different datasets requires exploiting links between these datasets on both the schema and instance levels. In this respect, several challenges such as resource disambiguation, vocabulary mismatch, inference, link traversal are raised. In this dissertation, we address these challenges in order to build a question answering system for Linked Data. We present our question answering system Sina, which transforms user-supplied queries (i.e. either natural language queries or keyword queries) into conjunctive SPARQL queries over a set of interlinked data sources. The contributions of this work are as follows: 1. A novel approach for determining the most suitable resources for a user-supplied query from different datasets (disambiguation approach). We employed a Hidden Markov Model, whose parameters were bootstrapped with different distribution functions. 2. A novel method for constructing federated formal queries using the disambiguated resources and leveraging the linking structure of the underlying datasets. This approach essentially relies on a combination of domain and range inference as well as a link traversal method for constructing a connected graph, which ultimately renders a corresponding SPARQL query. 3. Regarding the problem of vocabulary mismatch, our contribution is divided into two parts, First, we introduce a number of new query expansion features based on semantic and linguistic inferencing over Linked Data. We evaluate the effectiveness of each feature individually as well as their combinations, employing Support Vector Machines and Decision Trees. Second, we propose a novel method for automatic query expansion, which employs a Hidden Markov Model to obtain the optimal tuples of derived words. 4. We provide two benchmarks for two different tasks to the community of question answering systems. The first one is used for the task of question answering on interlinked datasets (i.e. federated queries over Linked Data). The second one is used for the vocabulary mismatch task. We evaluate the accuracy of our approach using measures like mean reciprocal rank, precision, recall, and F-measure on three interlinked life-science datasets as well as DBpedia. The results of our accuracy evaluation demonstrate the effectiveness of our approach. Moreover, we study the runtime of our approach in its sequential as well as parallel implementations and draw conclusions on the scalability of our approach on Linked Data

    Démarche, modèles et outils multi-agents pour l'ingénierie des collectifs cyber-physiques

    Get PDF
    We call a Collective Cyber-Physical System (CCPS), a system consisting of numerous autonomous execution units achieving tasks of control, communication, data processing or acquisition. These nodes are autonomous in decision making and they can cooperate to overcome gaps of knowledge or individual skills in goal achievement.There are many challenges in the design of these collective systems. This Habilitation thesis discusses various aspects of such a system engineering modeled according to a multi-agent approach.First, a complete CCPS design method is proposed. Its special features are discussed regarding the challenges mentioned above. Agent models and collective models suitable to constrained communications and changing environments are then proposed to facilitate the design of CCPS. Finally, a tool that enables the simulation and the deployment of hw/sw mixed collective systems is presented.These contributions have been used in several academic and industrial projects whose experience feedbacks are discussed.Nous appelons "collectif cyber-physique" un système embarqué en réseau dans lequel les nœuds ont une autonomie de décision et coopèrent spontanément afin de participer à l'accomplissement d'objectifs du système global ou de pallier des manques de connaissances ou de compétences individuelles. Ces objectifs portent notamment sur l'état de leur environnement physique. La conception de ces collectifs présente de nombreux défis. Ce mémoire d'Habilitation propose une discussion des différents aspects de l'ingénierie de ces systèmes que nous modélisons en utilisant le paradigme multi-agent. Tout d'abord, une méthode complète d'analyse et de conception est proposée. Ses différentes particularités sont discutées au regard des différents défis précédemment évoqués. Des modèles d'agent et de collectifs adaptés aux communications contraintes et aux environnements changeants sont alors proposés. Ils permettent de simplifier la conception des collectifs cyber-physiques. Enfin, un outil qui permet la simulation et le déploiement de systèmes collectifs mixtes logiciels/matériels est introduit.Ces contributions ont été éprouvées dans des projets académiques et industriels dont les retours d'expériences sont exploités dans les différentes discussions

    Automating Geospatial RDF Dataset Integration and Enrichment

    Get PDF
    Over the last years, the Linked Open Data (LOD) has evolved from a mere 12 to more than 10,000 knowledge bases. These knowledge bases come from diverse domains including (but not limited to) publications, life sciences, social networking, government, media, linguistics. Moreover, the LOD cloud also contains a large number of crossdomain knowledge bases such as DBpedia and Yago2. These knowledge bases are commonly managed in a decentralized fashion and contain partly verlapping information. This architectural choice has led to knowledge pertaining to the same domain being published by independent entities in the LOD cloud. For example, information on drugs can be found in Diseasome as well as DBpedia and Drugbank. Furthermore, certain knowledge bases such as DBLP have been published by several bodies, which in turn has lead to duplicated content in the LOD . In addition, large amounts of geo-spatial information have been made available with the growth of heterogeneous Web of Data. The concurrent publication of knowledge bases containing related information promises to become a phenomenon of increasing importance with the growth of the number of independent data providers. Enabling the joint use of the knowledge bases published by these providers for tasks such as federated queries, cross-ontology question answering and data integration is most commonly tackled by creating links between the resources described within these knowledge bases. Within this thesis, we spur the transition from isolated knowledge bases to enriched Linked Data sets where information can be easily integrated and processed. To achieve this goal, we provide concepts, approaches and use cases that facilitate the integration and enrichment of information with other data types that are already present on the Linked Data Web with a focus on geo-spatial data. The first challenge that motivates our work is the lack of measures that use the geographic data for linking geo-spatial knowledge bases. This is partly due to the geo-spatial resources being described by the means of vector geometry. In particular, discrepancies in granularity and error measurements across knowledge bases render the selection of appropriate distance measures for geo-spatial resources difficult. We address this challenge by evaluating existing literature for point set measures that can be used to measure the similarity of vector geometries. Then, we present and evaluate the ten measures that we derived from the literature on samples of three real knowledge bases. The second challenge we address in this thesis is the lack of automatic Link Discovery (LD) approaches capable of dealing with geospatial knowledge bases with missing and erroneous data. To this end, we present Colibri, an unsupervised approach that allows discovering links between knowledge bases while improving the quality of the instance data in these knowledge bases. A Colibri iteration begins by generating links between knowledge bases. Then, the approach makes use of these links to detect resources with probably erroneous or missing information. This erroneous or missing information detected by the approach is finally corrected or added. The third challenge we address is the lack of scalable LD approaches for tackling big geo-spatial knowledge bases. Thus, we present Deterministic Particle-Swarm Optimization (DPSO), a novel load balancing technique for LD on parallel hardware based on particle-swarm optimization. We combine this approach with the Orchid algorithm for geo-spatial linking and evaluate it on real and artificial data sets. The lack of approaches for automatic updating of links of an evolving knowledge base is our fourth challenge. This challenge is addressed in this thesis by the Wombat algorithm. Wombat is a novel approach for the discovery of links between knowledge bases that relies exclusively on positive examples. Wombat is based on generalisation via an upward refinement operator to traverse the space of Link Specifications (LS). We study the theoretical characteristics of Wombat and evaluate it on different benchmark data sets. The last challenge addressed herein is the lack of automatic approaches for geo-spatial knowledge base enrichment. Thus, we propose Deer, a supervised learning approach based on a refinement operator for enriching Resource Description Framework (RDF) data sets. We show how we can use exemplary descriptions of enriched resources to generate accurate enrichment pipelines. We evaluate our approach against manually defined enrichment pipelines and show that our approach can learn accurate pipelines even when provided with a small number of training examples. Each of the proposed approaches is implemented and evaluated against state-of-the-art approaches on real and/or artificial data sets. Moreover, all approaches are peer-reviewed and published in a conference or a journal paper. Throughout this thesis, we detail the ideas, implementation and the evaluation of each of the approaches. Moreover, we discuss each approach and present lessons learned. Finally, we conclude this thesis by presenting a set of possible future extensions and use cases for each of the proposed approaches

    The AORTA Reasoning Framework - Adding Organizational Reasoning to Agents

    Get PDF
    corecore