3,229 research outputs found

    Logical behaviors

    Get PDF
    technical reportIn this paper we describe an approach to high-level multisensor integration in t h e context of an autonomous mobile robot. Previous papers have described the development of t h e INRIA mobile robot subsystems: 1. sensor and actuator systems 2. distance and range analysis 3. feature extraction and segmentation 4. motion detection 5. uncertainty management, and 6. 3 -D environment descriptions. We describe here an approach to: ? the semantic analysis of the 3-D environment descriptions

    Activity Report: Automatic Control 1985-1987

    Get PDF

    Robotics handbook. Version 1: For the interested party and professional

    Get PDF
    This publication covers several categories of information about robotics. The first section provides a brief overview of the field of Robotics. The next section provides a reasonably detailed look at the NASA Robotics program. The third section features a listing of companies and organization engaging in robotics or robotic-related activities; followed by a listing of associations involved in the field; followed by a listing of publications and periodicals which cover elements of robotics or related fields. The final section is an abbreviated abstract of referred journal material and other reference material relevant to the technology and science of robotics, including such allied fields as vision perception; three-space axis orientation and measurement systems and associated inertial reference technology and algorithms; and physical and mechanical science and technology related to robotics

    An annotated bibligraphy of multisensor integration

    Get PDF
    technical reportIn this paper we give an annotated bibliography of the multisensor integration literature

    An intelligent, free-flying robot

    Get PDF
    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base
    corecore