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A b s t r a c t

In this paper we describe an approach to high-level multisensor integration in the context of 
an autonomous mobile robot. Previous papers have described the development of the INRIA 
mobile robot subsystems:

1 . sen sor and actu ator  sy stem s

2. d ista n ce  and range analysis

3. featu re ex tra ctio n  and segm en ta tion

4. m otion  d e tec tio n

5. u n certa in ty  m an agem en t, and

6. 3 -D  en v iron m en t descrip tions.

We describe here an approach to:

• the sem an tic  analysis of the 3-D environment descriptions.
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both the metrological [5,6,60,65], where precise measurement is paramount, and topologi
cal [8,10,15,28,29,30,31,34,45,52,56,72,75,83], where adjacency relations are useful for path 
planning, etc. It is even possible to study primitive forms of learning in this context [67,75].

Broader studies are usually oriented towards particular applications (e.g., the nuclear 
industry [13,81], road following [19,20,61]) or towards well-defined, but limited goals (e.g., 
indoor [11,26] or outdoor [49,53] navigation).

Finally, the ’highest’ level involves the specification and representation of the knowl
edge appropriate to a given task [14,46,47,51,63] and its compilation into executable robot 
behavior (or programs) [22,40,50]. The literature is quite large on most of these subjects, 
and these references are intended as representative of the work in this area. It should be 
pointed out that most system designers use a central balckboard and some form of direct 
production system or a compiled version (i.e., a decision tree) to represent knowledge.

From this short summary, it can be seen that the scope of autonomous robot research 
is indeed vast, but the difficult problems found here axe yielding to the steady advance of 
technical and theoretical developments. In the remainder of this paper, we describe current 
work on the mobile autonomous robot at INRIA.

2 P r o b l e m  Defin i t i o n

We suppose that our mobile robot is wandering through an unknown indoor environment. 
The robot must:

• increm entally  build a 3-D  representation  o f  th e world (i.e., determine its 
motion and integrate distinct views into a coherent global view),

• account for uncerta in ty  in its  description  (i.e., explicitly represent, manipulate 
and combine uncertainty), and

• build a sem antic representation  o f  th e  world (i.e., discover useful geometric or 
functional relations and semantic entities).

In this paper we describe an approach to solving the third problem. (See [6] for details on 
efficient techniques for producing a local 3-D map from stereo vision and structure from 
motion as well as a method for combining several viewpoints into a single surface and volume 
representation of the environment and which accounts for uncertainty.)

The mobile robot must use the 3-D representation to locate simple generic objects, 
such as doors and windows, and eventually more complicated objects like chairs, desks, file 
cabinets, etc. The robot can then demonstrate “intelligent” behavior such as going to a 
window, finding a door, etc. The representation should contain semantic labels (floor, walls, 
ceiling) and object descriptions (desks, doors, windows, etc.).
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3 L o g i c a l  B e h a v i o r s

The proposed approach is straightforward and exploits our previous work on logical sensors, 
the Multisensor Knowledge System, and multiple semantic constraints. The World Model 
is defined in terms of a semantic network (e.g., see Figure 2). The nodes represent physical 
entities and the relations are (currently) geometric. “Behind” each node is a logical sensor 
which embodies a recognition strategy for that object. The relations are simply tabulated.

A goal for the robot is defined by adding a node representing the robot itself and 
relations are added as requirements (see Figure 3). This method permits the system to 
focus on objects of interest and to exploit any strong knowledge that is available for the 
task. The added relations are satisfied (usually) by the robot’s motion. Techniques for the 
satisfaction of the relations are called logical behaviors.

As an example, consider the world model in Figure 4 which represents a specific office at 
INRIA. The addition of the robot and the “Next.to” relation fires the “Findjdoor” logical 
sensor. This in turn causes the strategy for door finding to be invoked. Such a strategy 
may attempt shortcuts (quick image cues) or may cause a full 3-D representation to be built 
and analyzed. Logical behaviors are then the combined logical sensors and motion control 
required to satisfy the “Next.to” relation.

Note that it is in the context of such a strategy that high-level multisensor integration 
occurs in goal-directed behavior. We are currently implementing a testbed for experimen
tation.

3.1 R ob ot Behavior as R eal-tim e Program m ing

Robots must maintain a permanent interaction with the environment, and this is the essen
tial characteristic of reactive programs. Other examples include real-time process controllers, 
signal processing units and digital watches.

Figure 2: Semantic Net Defining World Model





We have selected the Esterel synchronous programming language[7] as the specification 
language for the reactive kernel of the robot’s behavior. A reactive system is organized in 
terms of three main components:

• reactive kernel: specified in Esterel and compiled into C or CommonLisp for exe
cution,

• in terface code: handles drivers and sensors, and

• process or data handling code: routine calculations.

The programs produced are:

• determ inistic: produce identical output sequences for identical input sequences,

• concurrent: cooperate deterministically, and

• synchronous: each reaction is assumed to be instantaneous.

Interprocess communication is done by instantly broadcasting events, and statements in the 
language take time only if they say so explicitly; for example:

every  1000 MILLISECOND do em it SECOND end

In this example, a SECOND signal is sent every thousand milliseconds.
Thus, Esterel provides a high-level specification for temporal programs. Moreover, the 

finite state automata can be analyzed formally and give high performance in embedded 
applications. They help encapsulate the specification of sensing and behavior from imple
mentation details. This simplifies simulation, too.

Other advantages include the fact that synchrony is natural from the user’s viewpoint; 
e.g., the user of a watch perceives instant reaction to pushing a control button on the watch. 
Synchrony is also natural to the programmer. This reconciles concurrency and determin
ism, allows simpler and more rigorous programs and separates logic from implementation. 
Finally, such automata are easily implemented in standard programming languages. 

Details of the language are not given here; however, a brief summary is in order:

• variables: not shared; local to concurrent statements.

• signals: used to communicate with environment or between concurrent processes; 
carry staus (present or absent) and value (arbitrary type).

• sharing law: instantaneous broadcasting; within a reaction, all statements of a pro
gram see the same status and value for any signal.

•  statem ents: two types:

1. standard imperative style, and
2. temporal constructs (e.g., await event do).
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Figure 5: The Debugging System Organization

An extremely useful output from Esterel is a verbose description of the automaton. This 
can be used for debugging purposes. Esterel also produces a C program which implements 
the automaton.

Another useful output is a CommonLisp version of the automaton. This makes simu
lation straightforward, so long as reasonable functions can be written which simulate the 
world and the physical mechanisms of the robot. But these, too, can be specified in Esterel 
and then combined.

3.2 R obot Behavior D ebugging Environm ent

In developing Esterel specifications for robot behavior and sensor control, we are faced with 
the problem of integrating diverse kinds of knowledge and representations. In particular, 
debugging robot behaviors requires knowledge of the world model, the robot’s goals and 
states, as well as the behavior specification, and sensor data (intensity images, sonar data, 
3-D segments, etc.). Figure 5 shows the current implementation organization. We use 
POPLOG (an interactive environment which combines CommonLisp, Prolog and P o p ll)  
to support manipulation and display of prior knowledge, the robot world, and some sensor 
data, while other Suntool-based utilities support display of the trinocular stereo camera 
images, etc.

Figure 6 shows a representative collection of windows which provide:

•  POPLOG source code (window management, etc.)

•  Prolog source (semantic entity definition; e.g., walls, doors, etc.)

•  sensor data display (e.g., sonar range data, 3D segments)

•  Esterel generated automaton (e.g., COMBINE.debug)

Esterel permits state tracing during execution, and this combined with access to the robot’s 
sensory data permits rapid and accurate debugging. In Appendix A we give the details for



Figure 6: Collection of Windows for Debugging

8



. Figure 7: The INRIA Mobile Robot

the specification of a wandering robot which must avoid colliding with objects in the world. 
This specification has been compiled and loaded onto the robot and successfully executed.

4  I m p l e m e n t a t i o n

4.1 M obile R obot

Figure 7 shows the operational mobile robot at INRIA. It is similar to other mobile robots 
(e.g., like those at CMU or Hilare at LAAS). Figure 8 shows the geometry of the robot 
(length: 1.025m, width: .7m, and height: .44m) and the locations of the sonar sensors. The 
two rear wheels drive the robot.

The onboard processing consists of two M68000 series microprocessors on a VME bus; 
one controls the sonar sensors, and the other runs the real-time operating system, Albatro6. 
The two main wheels are controlled separately, and the system has an odometer.

A graphical interface has been developed which permits a model of the ground floor to 
be specified and for the robot to be instructed to move in that envimoment while avoiding 
obstacles. Figure 9 shows a session at the Rocquencourt location of INRIA. For full details, 
see [66].

4.2 B uild ing Environm ent D escriptions

Many papers have been published describing our methods for building robust environment 
descriptions[5,6,26,27]. Current capabilities include 3-camera stereo and robust multi-view 
fusion.
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Figure 8: The Geometry and Sensor Placement on the INRIA Mobile Robot

Figure 10 shows a typical office scene and Figure 11 shows a set of 3-D segments recon
structed from the analysis of such a scene. This 3-D description provides the basis for the 
development of logical sensors for object recognition and localization.

5  S u m m a r y  a n d  F u t u r e  W o r k

High-level multisensor integration must be investigated in the context of real-world prob
lems. We have described current work on an autonomous mobile vehicle under development 
at INRIA. We propose “logical behaviors” as an approach to robot goal representation and 
achievement.

We intend to continue development of algorithms, architectures and systems for mul
tisensor robotic systems. Moreover, we are currently investigating the simulation of such 
systems; this involves embedding the reactive kernel in a modeled robot world. Finally, as 
can be seen by the rough nature of the definitions of walls, doors, etc., we must develop 
a suitable formal model of the world in which the robot finds itself. We intend to exploit 
optimized refinements of conceptual clusters defined in first order predicate calculus.

A  W a n d e r i n g  R o b o t  E x a m p l e

In this appendix, a system is developed which combines several ESTEREL modules (ALARM, 
GET_MIN_DISTANCE, WANDER and COMBINE) with the on-board robot command rou
tines to generate random robot movement. The robot generates a random move every 10



Figure 9: Graphical Interface to the Mobile Robot



Figure 10: Typical Office Scene

Figure 11: 3-D Segments Recovered from Scene







input GET.SONAR(PING) ;

output NEAREST_OBJ(R_THETA);
function SONAR.TO.R.THETA(PING) : R.THETA;

every immediate GET.SONAR do
emit NEAREST.OBJ(SONAR.TO_R.THETA(?GET_SONAR)) 

end

'/, $Header: WANDER.strl.v 1.1 88/12/22 tch Locked $

’/, MODULE TO GENERATE RANDOM MOVES */,
y. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. */. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. •/. */. •/. •/. •/. •/. •/. •/. */. */. •/. •/.

module WANDER:

type MOVE;

constant OMEGA.MIN, OMEGA.MAX : integer;

input M0VE.TIME; 

output MOVE.CMD(MOVE);

function rand(integer, integer) : integer; 

function TURNS_TO_MOVE(integer, integer) : MOVE;

every MOVE.TIME do

var left.wheel.tums, right.wheel.turns : integer in

left.wheel.tums := rand (OMEGA.MIN, OMEGA.MAX); 
right.wheel.turns := rand(OMEGA_MIN, OMEGA.MAX); 

emit MOVE_CMD(TURNS_TO_MOVE(left_wheel_turns.right.wheel.turns)) 
end 

end

The finite state machine produced for COMBINE is:

Automaton COMBINE (Debug Format)
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1. Memory allocation

VO: boolean (boolean of signal S)

VI: boolean (boolean of signal MOVE.TIME)
V2: R.THETA (value of signal DISPLAY.ALARM)
V3: MOVE (value of signal MOVE.CMD)
V4: PING (value of signal GET.SONAR)
V5: R.THETA (value of signal NEAREST.OBJ)
V6: integer (variable left.wheel.turns)
V7: integer (variable right.wheel.turns)
V8: PING (value of sensor CURRENT.SONAR)
V9: boolean (boolean of sensor CURRENT.SONAR)

2. Actions

2.1 Present signal tests

Al: VO (signal S)
A2: VI (signal MOVE.TIME)

2.2 Output actions

A3: DISPLAY.ALARM (V2)
A4: MOVE.CMD (V3)

2.3 Assignments

A5: V4 :* (V9 ? V8 : (V9:=true,V8:=S_CURRENT_S0NAR())
A6: V2 := S0NAR_T0_R_THETA(V4)
A7: V5 := SONAR.T0_R_THETA(V4)
A8: V6 :- rand(OMEGA_MIN, OMEGA.MAX)
A9: V7 :- rand(OMEGA_MIN, OMEGA.MAX)
A10: V3 :- TURNS_T0_M0VE(V6, V7)

2.4 Conditions

All: LESS_THAN_DISTANCE_T0_DISTANCE(EXTRACT_R(V5), MIN.ALARM.DIST) 
A12: false

3. Automaton



State 0

goto 1

State 1

if A1 then 
A5;
if A2 then

A8;A9;A10;A7; 
if All then 

A6;A3;A4; 
goto 1 

end;
A4;
goto 1 

end;
A7;
if All then 

A6;A3; 
goto 1 

end; 
goto 1 

end; 
goto 1

Multiple processes can be added to the robot by using the add.process command in the 
Robuter C interface software. However, a send with APRO works better:

sprintf (cmd, "MOVE P RO'/,d,y,d P*'/,d \n" ,move.left.wheel.turns,
move.right_wheel_turns, 

move.period);
send(cmd);

The program must be loaded into the robot memory, and the go command issued to 
start it. The program then requests the user to enter a delay which corresponds to how 
long the program is to run (independently monitored). The robot then generates random 
moves (the number of turns for each wheel is independent) of not more than 20 centimeters 
a move every ten seconds and stops if an object is detected closer than two centimeters.
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