8 research outputs found

    Causal-Consistent Replay Debugging for Message Passing Programs

    Get PDF
    Debugging of concurrent systems is a tedious and error-prone activity. A main issue is that there is no guarantee that a bug that appears in the original computation is replayed inside the debugger. This problem is usually tackled by so-called replay debugging, which allows the user to record a program execution and replay it inside the debugger. In this paper, we present a novel technique for replay debugging that we call controlled causal-consistent replay. Controlled causal-consistent replay allows the user to record a program execution and, in contrast to traditional replay debuggers, to reproduce a visible misbehavior inside the debugger including all and only its causes. In this way, the user is not distracted by the actions of other, unrelated processes

    A large-scale empirical exploration on refactoring activities in open source software projects

    Get PDF
    Refactoring is a well-established practice that aims at improving the internal structure of a software system without changing its external behavior. Existing literature provides evidence of how and why developers perform refactoring in practice. In this paper, we continue on this line of research by performing a large-scale empirical analysis of refactoring practices in 200 open source systems. Specifically, we analyze the change history of these systems at commit level to investigate: (i) whether developers perform refactoring operations and, if so, which are more diffused and (ii) when refactoring operations are applied, and (iii) which are the main developer-oriented factors leading to refactoring. Based on our results, future research can focus on enabling automatic support for less frequent refactorings and on recommending refactorings based on the developer's workload, project's maturity and developer's commitment to the project

    When and Why Your Code Starts to Smell Bad

    Full text link

    Predictive Monitoring against Pattern Regular Languages

    Full text link
    In this paper, we focus on the problem of dynamically analysing concurrent software against high-level temporal specifications. Existing techniques for runtime monitoring against such specifications are primarily designed for sequential software and remain inadequate in the presence of concurrency -- violations may be observed only in intricate thread interleavings, requiring many re-runs of the underlying software. Towards this, we study the problem of predictive runtime monitoring, inspired by the analogous problem of predictive data race detection studied extensively recently. The predictive runtime monitoring question asks, given an execution σ\sigma, if it can be soundly reordered to expose violations of a specification. In this paper, we focus on specifications that are given in regular languages. Our notion of reorderings is trace equivalence, where an execution is considered a reordering of another if it can be obtained from the latter by successively commuting adjacent independent actions. We first show that the problem of predictive admits a super-linear lower bound of O(nα)O(n^\alpha), where nn is the number of events in the execution, and α\alpha is a parameter describing the degree of commutativity. As a result, predictive runtime monitoring even in this setting is unlikely to be efficiently solvable. Towards this, we identify a sub-class of regular languages, called pattern languages (and their extension generalized pattern languages). Pattern languages can naturally express specific ordering of some number of (labelled) events, and have been inspired by popular empirical hypotheses, the `small bug depth' hypothesis. More importantly, we show that for pattern (and generalized pattern) languages, the predictive monitoring problem can be solved using a constant-space streaming linear-time algorithm

    Mutation Testing in Evolving Systems: Studying the relevance of mutants to code evolution

    Get PDF
    Context: When software evolves, opportunities for introducing faults appear. Therefore, it is important to test the evolved program behaviors during each evolution cycle. However, while software evolves, its complexity is also evolving, introducing challenges to the testing process. To deal with this issue, testing techniques should be adapted to target the effect of the program changes instead of the entire program functionality. To this end, commit-aware mutation testing, a powerful testing technique, has been proposed. Unfortunately, commit-aware mutation testing is challenging due to the complex program semantics involved. Hence, it is pertinent to understand the characteristics, predictability, and potential of the technique. Objective: We conduct an exploratory study to investigate the properties of commit-relevant mutants, i.e., the test elements of commit-aware mutation testing, by proposing a general definition and an experimental approach to identify them. We thus, aim at investigating the prevalence, location, and comparative advantages of commit-aware mutation testing over time (i.e., the program evolution). We also investigate the predictive power of several commit-related features in identifying and selecting commit-relevant mutants to understand the essential properties for its best-effort application case. Method: Our commit-relevant definition relies on the notion of observational slicing, approximated by higher-order mutation. Specifically, our approach utilizes the impact of mutants, effects of one mutant on another in capturing and analyzing the implicit interactions between the changed and unchanged code parts. The study analyses millions of mutants (over 10 million), 288 commits, five (5) different open-source software projects involving over 68,213 CPU days of computation and sets a ground truth where we perform our analysis. Results: Our analysis shows that commit-relevant mutants are located mainly outside of program commit change (81%), suggesting a limitation in previous work. We also note that effective selection of commit-relevant mutants has the potential of reducing the number of mutants by up to 93%. In addition, we demonstrate that commit relevant mutation testing is significantly more effective and efficient than state-of-the-art baselines, i.e., random mutant selection and analysis of only mutants within the program change. In our analysis of the predictive power of mutants and commit-related features (e.g., number of mutants within a change, mutant type, and commit size) in predicting commit-relevant mutants, we found that most proxy features do not reliably predict commit-relevant mutants. Conclusion: This empirical study highlights the properties of commit-relevant mutants and demonstrates the importance of identifying and selecting commit-relevant mutants when testing evolving software systems

    Deductive Synthesis and Repair

    Get PDF
    In this thesis, we explore techniques for the development of recursive functional programs over unbounded domains that are proved correct according to their high-level specifications. We present algorithms for automatically synthesizing executable code, starting from the speci- fication alone. We implement these algorithms in the Leon system. We augment relational specifications with a concise notation for symbolic tests, which are are helpful to characterize fragments of the functionsâ behavior. We build on our synthesis procedure to automatically repair invalid functions by generating alternative implementations. Our approach therefore formulates program repair in the framework of deductive synthesis and uses the existing program structure as a hint to guide synthesis. We rely on user-specified tests as well as automatically generated ones to localize the fault. This localization enables our procedure to repair functions that would otherwise be out of reach of our synthesizer, and ensures that most of the original behavior is preserved. We also investigate multiple ways of enabling Leon programs to interact with external, un- trusted code. For that purpose, we introduce a precise inter-procedural effect analysis for arbitrary Scala programs with mutable state, dynamic object allocation, and dynamic dispatch. We analyzed the Scala standard library containing 58000 methods and classified them into sev- eral categories according to their effects. Our analysis proves that over one half of all methods are pure, identifies a number of conditionally pure methods, and computes summary graphs and regular expressions describing the side effects of non-pure methods. We implement the synthesis and repair algorithms within the Leon system and deploy them as part of a novel interactive development environment available as a web interface. Our implementation is able to synthesize, within seconds, a number of useful recursive functions that manipulate unbounded numbers and data structures. Our repair procedure automatically locates various kinds of errors in recursive functions and fixes them by synthesizing alternative implementations
    corecore