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∗School of Information Systems, Singapore Management University
†Computer Science Department, The College of William and Mary
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Abstract—Links between issue reports and their corresponding
commits in version control systems are often missing. How-
ever, these links are important for measuring the quality of
a software system, predicting defects, and many other tasks.
Several approaches have been designed to solve this problem
by automatically linking bug reports to source code commits
via comparison of textual information in commit messages
and bug reports. Yet, the effectiveness of these techniques is
oftentimes suboptimal when commit messages are empty or
contain minimum information; this particular problem makes
the process of recovering traceability links between commits and
bug reports particularly challenging. In this work, we aim at
improving the effectiveness of existing bug linking techniques by
utilizing rich contextual information. We rely on a recently pro-
posed approach, namely ChangeScribe, which generates commit
messages containing rich contextual information by using code
summarization techniques. Our approach then extracts features
from these automatically generated commit messages and bug
reports, and inputs them into a classification technique that
creates a discriminative model used to predict if a link exists
between a commit message and a bug report. We compared our
approach, coined as RCLinker (Rich Context Linker), to MLink,
which is an existing state-of-the-art bug linking approach. Our
experiment results on bug reports from six software projects
show that RCLinker outperforms MLink in terms of F-measure
by 138.66%.

I. INTRODUCTION

In order to improve the quality of software systems, de-

velopers often allow users and testers submit issue reports in

issue tracking systems, such as JIRA or Bugzilla. Developers

would then work on these issue reports and commit corre-

sponding changes to version control systems, e.g., SVN or

Git. Unfortunately, many issue reports can not be linked to

their corresponding commits for many reasons [4], [3], [49].

However, these missing links are important because they can

be used to support a number of development and research

tasks. For example, these links can be used to find classes that

are most buggy ones by counting the number of bug reports

that are linked to them. Furthermore, these links can be used to

generate high quality defect data (i.e., the number of defects

that affect various classes in a project during its life-time),

which can, in turn, be used to build effective bug prediction

solutions [24], [7], [43], [28], [41], [63], [21].

Due to the importance of these links, a number of past

studies have proposed approaches to recover missing links

between bug reports and their corresponding commits in

version control systems. Wu et al. and Nguyen et al. propose

approaches named ReLink [60] and MLink [47] respectively.

These approaches enumerate a set of potential links and

remove the ones that do not satisfy some criteria defined

based on a set of thresholds. These thresholds are learned by

heuristically enumerating various values based on a training

and/or a validation dataset. A main operation in ReLink and

MLink is the computation of similarity between the textual

contents in commit messages and issue reports. Intuitively,

the more similar the textual contents are the more likely the

commit is to be linked to the issue report. Unfortunately,

many commit messages are empty or contain insufficient

information [39], [19]. This makes it hard for ReLink and

MLink to identify links between bug reports and commits.

In this paper, we propose a novel bug linking approach

that addresses major weaknesses of existing solutions. First,

we rely on rich contextual information for detecting links

between commits and bug reports. We do so by enriching

existing (oftentimes, very short or empty) commit messages

with automatically generated content. We make use of a

recently proposed technique, namely ChangeScribe [15], [36],

which analyzes code changes and generates commit messages

by combining several code summarization techniques. These

automatically generated commit messages capture rich con-

textual information including commits’ intent, summaries of

fine-grained and structural code changes, as well as impact

of committed code changes. Second, differently from past

approaches, we propose a new classification-based technique

to create a discriminative model that can predict if a link exists

between an issue report and a commit. However, it should

be noted that past approaches do not rely on classification

algorithms to establish the links. We coin our approach as

RCLinker, which stands for Rich Context Linker.

We evaluated our proposed approach on 385 bug reports

and 3,249 commits from six software projects: CLI, IO,

Collections, Math, Lang, and CSV. These bug reports were

extracted from the projects’ JIRA bug tracking systems. Our

decision toward using JIRA was mostly based on the fact

that Bissyande et al. found that bug reports extracted from

JIRA tended to be better linked as compared to other bug

tracking systems [5]. We perform ten-fold cross-validation by

omitting some of the links and use RCLinker to predict some

of the omitted links. We then compute precision, recall, and

F-measure of our proposed approach. Aside from evaluating

the effectiveness of our approach, we also compare RCLinker
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to MLink, the latest state-of-the-art approach for linking bug

reports to their corresponding commits.

Overall, our work provides the following contributions:

1) We are first to use rich contextual information that

captures intent behind the commits, fine-grained and

structural source code changes, impact of code changes,

and many more, for establishing links between issue

reports and commits;

2) We propose a classification-based approach which ex-

tracts 20 textual and metadata features from a training set

of links to build a discriminative model that can predict if

a link exists between an issue report and a commit. None

of the existing linking approaches is based on a classifier

to tackle this task;

3) We have performed experiments on bug reports from

six software systems. Our experiments demonstrate that

RCLinker outperforms existing state-of-the-art approach

MLink in terms of F-measure by 138.66%.

We organize the rest of the paper as follows. We briefly

discuss background materials used in our work in Section II.

Next, Section III mainly describes our proposed approach. We

evaluate the experimental results in Section IV. Section V

discusses the related work to our study. Finally, we conclude

the paper with some of the directions for the future work in

Section VI.

II. BACKGROUND

In this section, we first describe ChangeScribe, an approach

that can generate commit messages by analyzing code changes.

Next, we describe the classification algorithm that is used in

this paper, namely the random forest algorithm.

A. ChangeScribe

ChangeScribe [15], [36] is an approach for automatic

generation of commit messages, which combines code sum-

marization techniques [25], [45], stereotypes detection [16],

[17], [44], and impact analysis. ChangeScribe extracts and

analyzes the differences between two versions of the source

code, and also performs a commit characterization based on

the stereotype of methods modified, added and removed. The

result is a commit message that provides an overview of

the changes and classifies and describes in detail each of

the changes; the message describes the what and why of a

change using natural language. ChangeScribe also allows

controlling the length of the message by using an impact set-

based heuristic.

ChangeScribe uses change types from the change-set and

fine-grained changes to generate the two parts of the commit

message: general description and detailed description. The

general description characterizes the change-set with a general

overview of the commit, which includes the following: (i)

a phrase describing whether it is an initial commit, (ii) a

phrase describing commits intent, (iii) a phrase indicating class

renaming operations, (iv) a sentence listing new modules, and

(v) a sentence indicating whether the commit includes changes

to properties or internationalization files. Sentences (i) and

(iii)-(v) are generated with ChangeScribe specific templates

[15], and the commits intent in sentence (ii) is based on the

commit stereotypes proposed by Dragan et al. [17].

The second part of the message (i.e., detailed description)

characterizes the changes made to the Java files, and the

changes are organized according to packages. ChangeScribe
describes the class’ goal and its relationships with other

objects, for the case of new and removed files. Moreover,

if an existing file is modified, ChangeScribe describes

the changes for each inserted, modified and deleted code

snippet. ChangeScribe generates descriptive phrases for all

changes at class/method/statement level. For instance, for

added/removed classes, ChangeScribe describes the class

responsibility based on the approach by Hill et al. [25],

and for describing the class signatures ChangeScribe uses

the class stereotypes defined by Moreno et al. [44]. For

modified classes, ChangeScribe generates descriptions for

all the changes at statement level by using fine-grained

source code changes extracted with ChangeDistiller [20]

and fourteen templates aimed at describing structural changes

such as class/method renames, functionality addition/removal,

parameter type change, among others. For example, when a

new method is added, the following sentence is generated: Add
an additional functionality to <Object>. But, if the method

is removed, the resulting sentence is remove functionality
to <Object>. In addition, the descriptions include context

information such as method’s visibility or whether a method is

unused: remove an unused functionality from <Object>. For

each added, removed or modified type (i.e., class), a sentence

is added to describe the impact of the change in two ways:

(i) references to the type in the change set, and (ii) co-lateral

changes triggered when a method was added to or removed

from an existing class.

Because the detailed description of all the changes can lead

to long and superfluous messages, ChangeScribe controls

the length of the messages by using a heuristic, which is

based on impact analysis [15], [36]. In summary, the detailed

description lists only the most representative classes in the

change set, because representative classes contribute more to

the description of the change-set and are more related to the

rationale behind the commit. These classes are defined as the

ones with changes that have high impact on the change-set,

and the threshold for the impact is defined by the developer.

Figure 1 shows examples of commit messages generated

by ChangeScribe for commits of SpringSocial, Apache Solr,

JFreeChart and Retrofit from GitHub.

B. Random Forest

Random forest is an ensemble classification approach that

utilizes several weaker classifiers (i.e., classification algo-

rithms) to create a more powerful classifier. Each weaker

classifier is trained by a decision tree learning algorithm on

a sampled subset of training data. In RCLinker, we combine

random forest with an under-sampling strategy to construct

a prediction model for recovering missing links. We utilize
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This is a large modifier commit: this is a commit with
many methods and combines multiple roles. This commit
includes changes to internationalization, properties or
configuration files (pom.xml). This change set is mainly
composed of:
1. Changes to package retrofit.converter:
1.1. Add a Converter implementation for simple XML
converter. It allows to: Instantiate simple XML converter
with serializer; Process simple XML converter simple
XML converter from body; Convert simple XML converter
to body
Referenced by: SimpleXMLConverterTest class

This is a small modifier commit that does not change the
system significantly. This change set is mainly composed
of: 1. Changes to package org.jfree.chart:
1.1. Modifications to TestUtilities.java:
1.1.1. Add javadoc at serialised(Object) method
2. Changes to package org.jfree.chart.util:
2.1. ModiFIcations to LineUtilities.java:
2.1.1. Add a functionality to extend line
The added/removed methods triggered changes to Ring-
Plot class

This is a state update modifier commit: this change set
is composed only of mutator methods, and these methods
provide changes related to updates of an object’s state.
This change set is mainly composed of:
1. Changes to package org.apache.solr.common.cloud:
1.1. Modifications to ClusterState.java:
1.1.1. Remove an unused functionality to get shard

Initial commit. This is a degenerate modifier commit: this
change set is composed of empty, incidental, and abstract
methods. These methods indicate that a new feature is
planned. This commit includes changes to internation-
alization, properties or configuration files (.classpath,
.gitignore, .project, ... ). The commit includes these new
modules:
- facebook
- twitter [...]

a) Initial commit of Spring social
http://goo.gl/5Igx1s 

b) A commit of Apache Solr
http://goo.gl/IV6aWm

c) A commit of JFreeChart
http://goo.gl/StXeJS

d) A commit of RetroFit
http://goo.gl/mmbxzC

Fig. 1. Examples of Commit Messages Generated with ChangeScribe.

the implementation of random forest that is available in Weka

toolkit with default settings [22].

III. PROPOSED APPROACH

This section describes our proposed approach in detail. We

describe the overall framework in Section III-A. Section III-B

describes a list of features that we extract from ChangeScribe
generated and developer-written commit messages, and bug

reports. We describe our strategy to construct a discriminative

model to predict the existence of a link between a commit and

a bug report in Section III-C.

Fig. 2. Overall Framework

A. Overall Framework

Figure 2 shows the overall framework of our approach. The

figure depicts the two main phases in RCLinker: Training
Phase and Deployment Phase. The training phase takes as

input a predefined set of issue-commit links. An issue-commit

link is a pair of issue report and commit for which there

exists either a true link (i.e., the commit fixes the issue

report) or false link (i.e., the commit does not fix the issue

report) between them. Figure 3 shows a sample issue report

from CLI. In this work, we are especially interested with the

following fields available for bug reports in JIRA: report date,

last update date, reporter, priority, summary, description, and

a list of comments with the identifiers of the commenters.

The output of the training phase is a prediction model which

is able to discover missing issue-commit links. Next, in the

deployment phase, our approach takes as input the prediction

model constructed in the training phase and a set of unseen

link candidates. Using the prediction model, in the deployment

phase, our approach recovers missing true issue-commit links

from the set of input link candidates. The following paragraphs

describe details of the two phases.

a) Training Phase: The issue-commit links used for

training are created from a set of issues in an issue-tracking

system and a set of commits from a source code repository.

Each link comes with the following information:

1) Metadata and textual description (i.e., summary, descrip-

tion, and comments) of the corresponding issue.

2) Commit messages and source code of the previous and

updated revision of the corresponding commit.

3) A label which indicates whether there is an actual link

between the issue and the commit. If there is a link
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Report Date: 31/Jul/09 23:00
Last Update Date: 02/Mar/13 14:19
Reporter: Kristoff Kiefer
Priority: 3 (Major)
Summary: Standard help text will not show mandatory
arguments for first option
Description: The generated help text will not show
“<arg>” for the first argument added ...
Comments:
Commenter: Kristoff Kiefer
Content: Underlying cause is something in OptionBuilder
Commenter: Emmanuel Bourg
Content: Kristoff what version of Commons CLI did you
use? I tried your test case on the trunk and ...

Fig. 3. Issue Report CLI-186 of CLI.

between the issue and commit, the link is labeled as true
link. Otherwise, its label is false link.

In the training phase, there are three major steps. They

are Change Summarization, Feature Extraction, and Model
Learning. In the Change Summarization step, we apply

ChangeScribe [15], [36] to summarize source code changes

in each commit. The automatically generated message output

by ChangeScribe for each commit is then combined with

the developer-written message of the corresponding commit.

After this step, we perform Feature Extraction to retrieve

important characteristics from the training links. The extracted

characteristics are forwarded to the Model Learning step for

constructing a prediction model. The output of this phase is a

model that is capable of recovering missing true links from a

set of unseen link candidates in the deployment phase.

b) Deployment Phase: In the deployment phase, our

approach takes as input the prediction model constructed in the

training phase, and a set of unseen link candidates (i.e., which

are not part of the training set). Link candidates are created by

pairing unlinked commits with all issues in the issue tracking

system. These link candidates are then processed to recover

missing links. In this phase, we also execute ChangeScribe
in the Change Summarization process, and extract important

characteristics from each link candidate in the Features Ex-
traction process. The extracted characteristics (i.e., features)

are then input to the prediction model. Given a set of features

from a link candidate, the prediction model classifies whether

the link candidate is a true link or not. The output of our

approach during the deployment phase is a list of predicted

true links that are recovered from the input link candidates.

B. Feature Extraction

In this section, we describe details of features extracted from

issue-commit links and link candidates. In total, we have 20

features that are divided into two different types: text features

and metadata features. Table II describes the features using the

notations listed in Table I. The following paragraphs describe

these features in more details.

1) Text Features: Intuitively, if a commit and an issue

are linked together, their textual contents are likely to be

similar. Therefore, we extract text features by capturing textual

TABLE I
LIST OF NOTATIONS

Notation Description
Commit Notations

MSG Human-writen commit message
CSMSG Commit message generated by ChangeScribe
CDATE Commit date

Issue Notations
SUM Summary of an issue
DES Description of an issue
PRI Priority of an issue (PRI ∈ {1, 2, 3, 4, 5, 6})

NCOM Number of comments posted in an issue

COMi ith comment in an issue (1 ≤ i ≤ NCOM)
WS(D) Set of distinct words in document D

+ text concatenation operator
RDATE Report date of the issue
UDATE Last updated date of the issue

DATE(COMi) Created date of comment ith in an issue

TABLE II
LIST OF EXTRACTED FEATURES. NOTATIONS SHOWN IN TABLE I ARE

USED TO COMPUTE FEATURE VALUES.
Feature Description

Text Features
T1 cosine(SUM + DES +

∑
COMi,MSG + CSMSG)

T2
average of cosine(Ia,Cb)
(Ia ∈ {SUM,DES,COMi},Cb ∈ {MSG,CSMSG})

T3
max of cosine(Ia,Cb)
(Ia ∈ {SUM,DES,COMi},Cb ∈ {MSG,CSMSG})

T4 T2/T3

T5 T2/T1

T6 |WS(SUM+DES+
∑

COMi)∩WS(MSG+CSMSG)|
T7

|WS(SUM+DES+
∑

COMi)∩WS(MSG+CSMSG)|
|WS(SUM+DES+

∑
COMi)∪WS(MSG+CSMSG)|

T8
|WS(SUM+DES+

∑
COMi)∩WS(MSG+CSMSG)|

|WS(SUM+DES+
∑

COMi)|

T9
|WS(SUM+DES+

∑
COMi)∩WS(MSG+CSMSG)|

|WS(MSG+CSMSG)|
Metadata Features

M1
Number of changed files in the commit that are men-
tioned in the issue text

M2
M1

NCOM+PRI

M3
M3 = 1 if the issue reporter is also the committer.
Otherwise, M3 = 0.

M4
M4 = 1 if the committer posts comments in the issue.
Otherwise, M3 = 0.

M5
M5 = 1 if the commit date is between the report date and
the last updated date of the issue. Otherwise, M5 = 0.

M6 CDATE− RDATE
M7 UDATE− CDATE
M8 M6/M7

M9 min1...NCOM{
∣
∣CDATE− DATE(COMi)

∣
∣}

M10

∣
∣CDATE− DATE(COMNCOM)

∣
∣

M11

∣
∣CDATE− DATE(COMNCOM-1)

∣
∣

similarities (measured in different ways) between issue reports

and commits.

Before computing values of text features, we perform text

preprocessing on the textual contents of issues (i.e., contents

in the summary and description fields, and comments in issue

reports) and commits (i.e., developer-written commit messages

and automatically generated messages by ChangeScribe). The

purpose of the preprocessing is to convert text to its normal-

ized form which maximizes the chance of matching relevant

issues and commits. We perform three text preprocessing

steps, which are text normalization, stop word removal, and
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stemming, described below:

1) Text Normalization: In this step, special symbols and

punctuation marks are deleted from the text. Then, the

text is separated into words. If a word follows Camel-

Casing, it is split into separate tokens. We include the

original word and its split tokens into the normalized

text. Including original words helps increase chances of

matching rare identifiers. For example, “bugLinking” is

split to “bug” and “linking”. Next, “bugLinking”, “bug”,

and “linking” are all included in the normalized text.

2) Stopword Removal: In information retrieval (IR), English

stopwords are often excluded from text documents as they

frequently appear in documents and are likely to be less

helpful in retrieving relevant documents. Similarly, in this

step, we also remove English stopwords from normalized

text. These stopwords are frequently used by developers,

and are unlikely to be helpful while recovering missing

links. We use the list of stopwords obtained from [46].

3) Stemming: In this step, we run the Porter Stemming

algorithm [51] to convert words to their root forms.

For example, “linked”, “linkage”, and “linking” are all

transformed to “link”.

After performing text preprocessing, we compute values of

features T1 to T9. Among the nine text features, T1 to T5 are

calculated based on cosine similarities. To find the values of

these features, we represent the corresponding textual contents

of an issue report and a commit as two document vectors

whose dimensions correspond to the number of words in their

contents. We assign a weight to each word by utilizing the

term frequency-inverse document frequency (tf-idf) weighting

scheme. The following is the tf-idf formula of a word w in a

document d of corpus D (i.e., a collection of documents):

tfidf(w, d,D) = f(w, d)× log
|D|

|{di ∈ D|w ∈ di| (1)

In Equation 1, f(w, d) is the number of times word w occurs

in document d, and w ∈ di denotes that the word w appears

in the document di. Using this formula, the cosine similarity

of two documents is calculated based on the cosine similarity

of their corresponding document vectors [40].

T1 captures the cosine similarity between the text in an

issue report (i.e., summary, description, and all comments) and

the text in a commit (i.e., developer-written commit message

and ChangeScribe’s message). If T1 is high, intuitively, the

corresponding issue and commit are likely to be linked with

each other. T2 and T3 are the average and maximum cosine

similarity between the various textual parts of an issue report

and a commit. Similar to T1, T2 and T3 are also good

indicators of textual relevance between an issue report and

a commit. T4 and T5 are normalized forms of T2 with respect

to T3 and T1, respectively.

Different from the first five text features, T6 to T9 are

computed based on the number of common words shared

between the textual contents of an issue report and a commit.

T6 captures the number of shared words between all text

in an issue report and a commit. T7 is the ratio of T6 to

the number of distinct words in the corresponding issue and

commit pair. Similarly, T8 and T9 are the ratio of T6 to

the number of distinct words in the corresponding issue and

commit respectively.

Overall, our textual features measure the likelihood of a link

between issues and commits based on their textual similarities.

2) Metadata Features: There are totally 11 metadata fea-

tures that we extract from issues and commits. Values of these

metadata features are computed based on metadata information

of issues, e.g., report date, last update date, priority, reporter

name, etc., and of commits, e.g., commit date, committer

name, list of changed files, etc.

In particular, M1 captures the relevance between an issue

and a commit based on the number of changed files modified

by the commit that are mentioned in the textual description of

an issue (i.e., in the summary, description, or comments). If

the value of M1 is high, it means more changed files of the

commit are being referred to in the issue report. Hence, higher

M1 is an indication of an existing link between an issue and

a commit. M2 is the ratio of M1 to the sum of the number

of comments and the priority value of an issue, where the

denominator of M2 reflects the importance level of an issue.

Next, M3 and M4 take into account the involvement of a

committer in handling an issue. If a commit is linked with an

issue, its committer likely submits at least one comment to the

issue. In many cases, the reporter of an issue is also assigned

to fix that issue.

Features M5 to M8 capture various relationships between

the time commits are made and their corresponding issues

are created or updated. Intuitively, in most cases, the date

a commit is made and the date its corresponding issue is

submitted or updated should be close to each other. M5 is

a boolean feature that indicates if the commit date is between

the issue report reporting date and its last update date. M6

and M7 are the time difference between the date a commit is

made against the date an issue report is submitted and the last

update date of an issue report, respectively. M8 is the ratio of

M6 to M7.

The last three metadata features, i.e., M9 to M11, are

computed based on the time difference between the date when

a commit is made and the date when a comment of an issue

report is posted. Usually, when a committer submits a fix

for an issue to the repository, he or she is likely to inform

other developers that the issue has been addressed by posting

a comment to that issue. Following this intuition, M9 captures

the minimum absolute time difference between the commit

date and the date when comments for an issue are posted.

Furthermore, unless an issue is not completely resolved, there

are likely to be no or only a few other comments (e.g., a thank

you comment) after the comment informing the fix. To capture

this intuition, for M10 and M11, we compute the absolute time

difference between the commit date and the date the last and

second last comment of an issue are posted, respectively.

Overall, our metadata features capture relationships between

metadata information in commits and issues that can be used

to predict missing links between them.
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C. Model Learning

Algorithm 1: Undersampling

Input: T: Set of training links

N: Number of selected nearest neighbors

I: Set of issues of links in T
C: Set of commits of links in T
NNI : Nearest neighbors of issues in I
NNC : Nearest neighbors of commits in C

Output: D: Undersampled set of training links

1 TrueLinks← extract true links from T
2 FalseLinks← extract false links from T
3 foreach tl ∈ TrueLinks do
4 curIssue← tl.issue
5 curCommit← tl.commit
6 nnIssCnt← 0
7 foreach issue ∈ NNI [curIssue] do
8 lc← link of issue and curCommit
9 if lc ∈ FalseLinks ∧ lc /∈ D then

10 include lc to D
11 nnIssCnt← nnIssCnt + 1
12 end
13 if nnIssCnt > N then
14 break
15 end
16 end
17 nnCmtCnt← 0
18 foreach commit ∈ NNC [curCommit] do
19 lc← link of curIssue and commit
20 if lc ∈ FalseLinks ∧ lc /∈ D then
21 include lc to D
22 nnCmtCnt← nnCmtCnt + 1
23 end
24 if nnCmtCnt > N then
25 break
26 end
27 end
28 end
29 Append TrueLinks to D
30 return D

Using the features extracted from the training links, we con-

struct a prediction model, which is capable of differentiating

true links from false links. In particular, we use the Random

Forest algorithm [6] as part of the Model Learning process in

RCLinker (Figure 2).

A problem that makes effective learning of this model hard

is imbalanced training data [27]. Usually, there are fewer

true links than false links in the training links as an issue

is typically only linked to a few commits. For that reason,

we balance the set of training links by using undersampling.

Balancing data not only helps reducing the cost of learning

but also improves the performance of the prediction. In our

undersampling strategy, for each true link, we select a number

of false links whose issues and commits are nearest neighbors

TABLE III
DATASET: COLUMN “#FISSUES” INDICATES THE NUMBER OF FIXED

ISSUES OBTAINED FROM THE ISSUE TRACKING SYSTEMS. COLUMN

“#CHANGES” IS THE NUMBER OF COMMITS EXTRACTED FROM SOURCE

CODE REPOSITORIES. COLUMN “#LINKS” IS THE NUMBER OF TRUE

ISSUE-COMMIT LINKS INDICATED IN THE ISSUE TRACKING SYSTEM (I.E.,
JIRA).

Project #FIssues #Changes #Links Study
Period

CLI 56 410 70 2006–2013
Collections 63 617 102 2012–2013
CSV 49 766 75 2010–2014
IO 65 371 97 2009–2011
Lang 64 648 105 2011
Math 88 437 160 2010

Total 385 3249 609

to the true link in terms of their textual descriptions.

Our undersampling algorithm is shown in Algorithm 1. It

takes as input a set of training links T , the number of selected

nearest neighbors N , the sets of issues and commits of links

in T , as well as their lists of nearest neighbors. The output

of our algorithm is an undersampled set of training links

where the degree of imbalance is proportional to the value

of N . To construct the list of nearest neighbors of an issue

report, we sort the other issue reports in descending order of

the cosine similarities (c.f., Equation 1) between their textual

contents (i.e., summary, description, and comments). Similarly,

for each commit, we sort the other commits in descending

order of the cosine similarities between their textual contents

(i.e., developer-written message and ChangeScribe message)

to generate the list of its nearest neighbors.

In Algorithm 1, at line #3 we enumerate each link labeled

as a true link in the training data. Next, for each true link, lines

#4 to #5, we extract its issue report and commit. Lines #7 to

#16 select issues that are the nearest to the true link’s issue

(i.e., NNI [curIssue]). These issues are then paired with the true

link’s commit to create false links. These false links are then

included in the output set D if they are in the training data and

not part of D yet. We stop this process after we have added

N links to D. Lines #18 to #26 select false links by finding

commits that are the most similar to the commit of the true

link (i.e., NNC [curCommit]). These commits are paired with

the true link’s issue to create false links. These false links are

then included in the output set D if they are in the training

data and not part of D yet. We stop this process after we have

added an additional N links to D. Finally, line #28 merges

the set of true links to the output set D, and our algorithm

returns the undersampled set of links at line #30.

IV. EXPERIMENTAL EVALUATION

A. Dataset

In our experiments, we collected a large number of

issues and commits coming from several Apache soft-

ware projects. The projects included in our evaluation are

Commons CLI [9], Commons IO [12], Commons Collec-

tions [10], Commons Math [14], Commons Lang [13], Com-

mons CSV [11]. All these projects use JIRA1 as the issue

1https://issues.apache.org/jira
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tracking system. For each project, a study period was chosen

(see Table III), and all the issues and changes that had been

submitted and committed in that study period were included,

respectively. With the collected changes, we executed Change-
Scribe to generate commit messages summarizing all source

code changes. We also collected true links in JIRA. The

number of true links is shown in column “#Links” in Table III.

Noticeably, according to the table, the number of true links

accounts for a small percentage (i.e., less than 1%) over the

number of possible combinations between issues and commits

(i.e., link candidates). Table III also describes other detailed

information of our dataset.

B. Evaluation Metrics

To evaluate the performance of our approach, we computed

Precision, Recall, and F-measure. These metrics are widely

used in machine learning and data mining to assess the

effectiveness of classification algorithms. We estimated the

values of Precision, Recall, and F-measure based on four

statistics: True Positives (TP), False Positives (FP), True

Negatives (TN), False Negatives (FN). Their definitions are

as follows:

True Positives: Number of true issue-commit links that

are predicted correctly.

False Positives: Number of false issue-commit links that

are predicted incorrectly.

True Negatives: Number of false issue-commit links that

are predicted correctly.

False Negatives: Number of true issue-commit links that

are predicted incorrectly

We use the above statistics to estimate Precision, Recall, and

F-measure using the following formulas:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure =
2× Precision×Recall

Precision+Recall

Both Precision and Recall reflect the effectiveness of our

prediction model. According to the above formulas, Precision

is the ratio between the number of true positives over the

number of link candidates that are predicted as true links by

our model. On the other hand, Recall is the percentage of the

number of true positives over the total amount of true links.

Importantly, between Precision and Recall, there is usually

an inverse relation where higher Precision might come with

lower Recall, and vice versa. Thus, F-measure, which is the

harmonic mean of Precision and Recall, is used to combine

the two metrics into one single summary measure.

C. Experimental Settings

Ten-fold cross-validation is a standard way of estimating

the accuracy of a prediction engine in data mining [23]. Its

purpose is to evaluate how the result of a prediction engine

generalizes to an independent test data. In our experiments,

we also conducted ten-fold cross-validation on the set of

issue-commit links to assess the performance of our proposed

approach. Our experiments are performed on a Intel Xeon E5-

2667 server with 189 GB RAM running Linux 2.6 OS.

Furthermore, we observed that most of issue-commit links

labeled by JIRA or other issue tracking systems were explicit

links (i.e., issue IDs were mentioned in commit messages,

or revision IDs were mentioned in issues). In such cases of

explicit links, it was trivial to determine true links between

issues and commits. For that reason, we excluded issue IDs

from commit messages, and vice versa, to ensure that all

the links were implicit in the deployment phase. In our

experiments, we set the number of nearest neighbors N used

for the undersampling process to 5. With this setting, the

number of true links accounts for approximately 9% of the

undersampled training data.

D. Research Questions

a) RQ1: How effective is our proposed approach in
recovering missing traceability links between issues and com-
mitted changes? In this research question, we evaluate the

performance of RCLinker using the dataset, metrics, and set-

tings described earlier. We set the number of selected nearest

neighbors to N = 5.

b) RQ2: How effective is our approach as compared to
other state-of-the-art approaches for detecting issue-commit
links? There are several approaches for recovering missing

issue–commit links where MLink [47] is one of the state-of-

the-art techniques. In this research question, we compare our

approach to MLink. Similarly to RQ1, we also perform ten-fold

cross-validation on our proposed approach as well as MLink.

Finally, we evaluate the two approaches based on the metrics.

c) RQ3: What is the impact of varying the number of
nearest neighbors N on the performance of RCLinker? In this

research question, we investigate the performance of approach

when varying the number of selected nearest neighbors N
in the Algorithm 1 used in Model Learning process (see

Section III-C). By default, we set N = 5 where the number

of true links accounts for approximately 9% of the training

data. When the value of N increases, there are more negative

instances (i.e., false links) included in the training data, and

vice versa. To understand the impact of N , we considered the

values of N ∈ {1, 5, 10, 15, 20} and compared the changes in

the resulting metrics.

d) RQ4: Which of the extracted features best discrimi-
nate true links from the other ones? In this research question,

we examine which of the proposed features (see Table II) are

most helpful in differentiating true links from the other ones.

To do that, we rank the extracted features based on their Fisher

scores. In machine learning, Fisher score is a standard mea-

surement to estimate how discriminative the features are [18].

In software engineering, several studies also employ Fisher

scores to evaluate the importance of features [56], [33], [34],
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TABLE IV
RCLINKER: PRECISIONS, RECALLS, AND F-MEASURES

Project Precision Recall F-measure
CLI 45.71% 91.43% 60.95%
Collections 43.32% 92.16% 58.93%
CSV 39.05% 88.00% 54.10%
IO 58.74% 86.60% 70.00%
Lang 57.89% 94.29% 71.74%
Math 60.73% 83.13% 70.18%

Average 50.91% 89.27% 64.32%

[35]. Fisher score of a feature is calculated as follow:

FS(j) =

∑#class
class=1(x̄

(class)
j − x̄j)

2

∑#class
class=1(

1
nclass−1

∑nclass

i=1 (x
(class)
i,j − x̄

(class)
j )2)

(2)

In Equation 2, FS(j) is the Fisher score of the jth feature,

nclass is the number of data points (i.e., number of links)

with label class (i.e., true link or false link), x̄j is the

average value of the jth feature over all data points (i.e.,

links), x̄
(class)
j is the average value of the jth feature over

all data instances with label class. According to the formula,

if a feature has a Fisher score of zero, that feature is not

discriminative enough to distinguish true links from the other

ones. On the other hand, a feature is very discriminative if

its Fisher score is considerably larger than zero. The more

discriminative a feature is, the more important it is. In this

research question, for each project, we calculate and rank the

features based on their Fisher scores.

E. Experimental Results

1) RQ1 – Effectiveness of Our Approach: In this RQ,

we inspect the performance of our approach on different

projects in the dataset. Table IV shows the Precision, Recall,

and F-measure of our approach. According to the table, our

approach achieves an average Precision, Recall, and F-measure

of 50.91%, 89.27%, and 64.32%, respectively. Among the six

projects, Lang obtains the best F-measure (i.e., 72.90%), and

CSV is the one that has the lowest F-measure (i.e., 41.91%).

Noticeably, our approach has higher Recall as compared to

Precision for all the projects. On average, our approach’s

Recall (i.e., 89.27%) is higher than its Precision (i.e., 50.91%).

We believe recall is more important than precision since

finding true links is important, and not too many links are

generated, and thus developers can quickly inspect the gener-

ated candidate links to remove the false positives.

2) RQ2 – Our Approach vs. the Baseline: In this RQ, we

perform ten-fold cross-validation to compare the performance

of MLink [47] with our approach. In particular, MLink takes

as input a set of issue reports, a set of commits, and four

parameters θp, θn, θt, and θa. Thus, we perform the Hill-

Climbing algorithm for tuning θp, θn, θt, and θa for MLink
(following the description in [47]) in each fold. MLink uses

explicit links mentioned in the commit logs to train a set

of thresholds to infer missing links. In each fold of our

experiment, we inject explicit links into the commit logs

based on the training data. To do that, we labeled commit

messages with issue IDs whose pair forms a training true

TABLE V
MLINK: PRECISIONS, RECALLS, AND F-MEASURES

Project Precision Recall F-measure
CLI 78.57% 31.43% 44.90%
Collections 68.42% 25.49% 37.14%
CSV 30.00% 4.00% 7.06%
IO 34.48% 10.31% 15.87%
Lang 58.06% 17.14% 26.47%
Math 68.89% 19.38% 30.24%

Average 56.40% 17.96% 26.95%

link. Using the tuned parameters, we used MLink to recover

missing links. Table V presents the Precision, Recall, and F-

measure of MLink on recovering missing links in our dataset.

According to the table, MLink achieves an average Precision,

Recall, and F-measure of 56.40%, 17.96%, 26.95%. Among

the projects, CLI has the highest F-measure (i.e., 44.90%),

and CSV has the lowest F-measure (i.e., 7.06%). Comparing

to Table IV, even though MLink has higher average Precision

(i.e., 56.40% vs. 50.91%), RCLinker still outperforms MLink
in terms of average Recall and F-measure by 397.05% and

138.66% respectively. Furthermore, F-measure of RCLinker is

higher than MLink on all the projects. F-measure is a standard

metric that is often used to evaluate if an increase in recall

(precision) outweighs a reduction in precision (recall).

3) RQ3 – Varying Amount of Training Data: In this re-

search question, we varied the value of N in Algorithm 1, and

inspected the impact of N on the effectiveness of RCLinker.

Table VI indicates the average Precision, Recall, and F-

measure when varying N ∈ {1, 5, 10, 15, 20, 25}. According

to the table, RCLinker significantly loses its effectiveness

when N = 1 as compared to the other values of N . At

N = 1, RCLinker achieves a high Recall of 92.34%, but

it loses its effectiveness due to low Precision (i.e., 19.70%).

This is because the amount of false links in undersampled

training data is not sufficiently enough for the prediction

model to distinguish between false links and true links. As

the result, the rate of false positives (FP) increases as the

prediction model misinterprets many false link instances as

true link instances. For that reason, our F-measure when

N = 1 is as low as 31.76%. Next, for ∈ {5, 10, 15, 20, 25}, the

Precision of RCLinker is improved, and ranges from 50.91%

and 73.73%. As Precision increases, Recall of our approach

slightly decreases, but still maintains high rate (which ranges

from 84.50% to 89.27%). Overall, the value of N has sub-

stantial effect on the effectiveness of our approach where

large values of N help improving RCLinker’s effectiveness.

However, larger values of N increases the runtime cost of

RCLinker. The average execution time of RCLinker across the

six projects increases steadily, between 2.42 to 5.26 seconds,

as we increase N from 1 to 25.

4) RQ4 – Important Features: In this research question,

we sort features in descending order of their Fisher scores.

Table VII presents top-10 features that have the highest Fisher

scores in each project. From the table, T3 is the most discrim-

inative feature in all the projects. T3 is a text feature that

captures the maximum cosine similarity between the various

textual parts of an issue report (i.e., summary, description,
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TABLE VI
VARYING NUMBER OF NEAREST NEIGHBORS N : AVERAGE PRECISIONS,

RECALLS, AND F-MEASURES

N Precision Recall F-measure
1 19.70% 92.34% 31.76%
5 50.91% 89.27% 64.32%

10 61.95% 87.04% 72.12%
15 66.23% 85.96% 74.62%
20 72.87% 85.30% 78.41%
25 73.73% 84.50% 78.68%

TABLE VII
TOP-10 IMPORTANT FEATURES

CLI Collections CSV IO Lang Math
1 T3 T3 T3 T3 T3 T3

2 M5 T2 T2 T1 T1 T2

3 T1 T1 T1 T2 T2 T1

4 T2 T5 T5 T7 M5 T5

5 T5 T8 T7 T8 T7 T7

6 T7 T7 T8 T6 T5 T4

7 T4 T4 M5 M1 T9 T8

8 T8 M5 M8 T5 T4 M5

9 T9 M10 T4 T4 T8 T6

10 M9 T9 T6 T9 M1 M1

and comments) and a commit (i.e., commit message and

ChangeScribe message). In addition to T3, T1 and T2 are

also important as they are in the top-3 features of at least

five out of the six projects. T1, T2, and T3 capture the cosine

similarities between issue reports and commits (but in different

ways). Among M1 to M11 (i.e., metadata features), M5 are in

the top-10 important features of five out of the six projects.

M5 is a boolean feature that captures if the commit date is

between the report date and last updated date of an issue

report. Noticeably, text features account for at least 80% of

the important features in each project. This indicates that text

features are more discriminative than metadata features.

F. Threats to Validity

There are a number of threats that might affect the validity

of our study. These are broadly classified into internal, external

and construct validity threats. Threats to internal validity relate

to experimenter’s errors. We inspected our implementation

many times, however, there might still be hidden errors that

we were not aware of. Threats to external validity relate to the

generalizability of our findings. In the experiments, we only

used six Apache projects with 385 issue reports and 3,249

commits. Furthermore, all of the projects are relying on SVN

as the version control system and JIRA as an issue tracking

system. All these projects are written in Java programming

language. In the future, we are planning on minimizing this

threat by experimenting on more projects written in various

programming languages. We also plan to conduct experiments

on more issue reports and commits. Threats to construct valid-
ity relate to the suitability of our evaluation metrics. We used

standard metrics to evaluate the performance of our approach.

Precision, recall and F-measure metrics are well known [23]

and have been used in many software engineering studies [60],

[47]. Thus, we believe that we sufficiently minimized threats

to construct validity in our study.

V. RELATED WORK

In this section, we highlight research studies that are closely

related to our work. These are studies in recovering missing

links and application classification algorithm for software

engineering tasks. The following two subsections present and

discuss these two main lines of research.

A. Recovering Missing Links

Several studies proposed approaches for recovering missing

links between issue reports and their corresponding commits.

The latest studies include the following:

1) Wu et al. proposed ReLink [60], which recovers missing

links by generating a set of candidate links and filtering

them based on three criteria: textual similarity between

commit messages and issue reports, time duration be-

tween issue report submission and code change commit,

and mapping between committers and bug report com-

menters. ReLink learns several thresholds based on a

training set of true links that are explicitly marked by

developers. To learn these thresholds, ReLink enumerates

a set of threshold values and selects values that work best

for the training data.

2) Bissyande et al. proposed a simple information retrieval

model based on vector space modeling to recommend

missing links and showed that its performance is not too

far away from that one of ReLink [5]. They are also the

first to show that JIRA dataset is suitable for evaluating

bug linking techniques since the ground truth answers

are typically well maintained by developers. Also, JIRA

provides an easier mechanism (as compared to Bugzilla)

to link commits and bug reports.

3) Nguyen et al. proposed MLink which is a multi-layered

approach for recovering missing links between issue

reports and commits [47]. MLink generates a set of candi-

date links and filters them based on a set of criteria includ-

ing textual similarity between commits and code changes

with bug reports, similarity between changed source code

and code fragments in bug reports, and time constraint

that a relevant commit must be made in-between bug

report open and close time. MLink also learns several

thresholds by enumerating a set of threshold values

and selecting those that work best for a training data.

Differently from ReLink, MLink analyzes code changes

in addition to commit logs, however it ignores mapping

between committers and bug report comments, and time

duration between bug report submission and code change

commit. MLink has been shown to outperform ReLink.

Among the bug report linking techniques, MLink is the

state-of-the-art approach since it has been shown to outperform

ReLink. We have shown that our approach RCLinker is able

to outperform MLink by a substantial margin. Our work is

different from these existing approaches in the following

ways. First, we use ChangeScribe to generate rich contextual

information for code changes. ChangeScribe is able to extract

rich information including code elements that are not changed
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by a commit but are affected by it. Second, we make use

of machine learning, in particular a classification algorithm

with our undersampling strategy, to predict the existence of

links between a commit and an issue report. None of the past

approaches leverages the power of a classification algorithm.

Third, features used by our approach to characterize true and

false links capture additional dimensions that are not captured

by the criteria used by ReLink and those used by MLink.

Indeed, our features capture criteria that are considered by

ReLink but ignored by MLink and vice versa, as well as

additional criteria.

In addition to ReLink and MLink, there are also other

research studies on recovering missing links. Cleland-Huang

et al. proposed two approaches that link regulatory codes to

product specific requirements [8]. The first approach computes

the probability of a word to relate to a regulation and use

these probabilities to compute the probability of a requirement

document to be linked to a regulation. The second approach

uses a web mining approach to link requirement document

to regulation. There also a number of techniques that infer

missing links between duplicated bug reports [52], [59], [26],

[55], [54], [58], [48], [1]. These approaches typically compare

textual similarities between bug reports to recommend a list of

bug reports that are very similar to each other. Different from

these past studies, we focus on a different problem, namely the

linking of bug reports to their corresponding commits. One of

the latest approaches by Alipour et al. compares bug reports

based on their contextual similarities measured by comparing

each bug report to a list of contextual words (e.g., words

related to efficiency, functionality, maintainability, etc.) [1]. In

this work, we also use contextual information, however this

information is inferred using code summarization techniques.

B. Application of Classification Algorithm in Software Engi-
neering Tasks

There have been many research studies that apply classi-

fication techniques to automate various software engineering

tasks. We present some of these studies.

Classification techniques have been applied to predict im-

portant information of issues opened in bug tracking systems.

Menzies and Marcus, Lamkafi et al., and Tian et al. made

use of various classification algorithms to predict the values

of the severity fields of bug reports [42], [31], [32], [57].

Lamkafi et al. predicted coarse-grained bug severity labels,

while Menzies and Marcus and Tian et al. predicted fine-

grained severity labels. Tian et al. built a statistical model

that considers multiple factors to predict the priority of bug

reports [61]. Different from severity, which is assigned based

on a user perspective, priority is assigned based on the

developer perspective. Tian et al. considered different familes

of features including temporal, textual, author, related-report,

severity, and product features to predict the priority of bug

reports. Antoniol et al. introduced a framework to predict

whether an issue is a feature request or a bug report [2]. Ko

and Myers investigate and compare linguistic characteristics

of issue report summaries and descriptions to differentiate

between bug reports and feature requests [29]. Kochhar et
al. extended Antoniol et al. work by predicting fine-grained

issue reclassifications [30]. In their work, an issue can be

classified as a bug, a request for improvement, documentation,

refactoring task, etc. Zhang et al. proposed a classification-

based technique that can estimate if the time needed to resolve

a bug report will be short or long [62].
A number of classification techniques have been used to

predict modules that are likely to contain bugs and vulnerabili-

ties. Lu et al. proposed approaches that utilize semi-supervised

learning and active learning with dimensionality reduction

to predict defect prone modules [38], [37]. Panichella et al.
predicted defect prone software entities by leveraging defect

data from another project [50]. Scandariato et al. proposed

a vulnerability prediction model learned from text features

extracted from source code files to predict which components

of a software application are more likely to contain security

vulnerabilities [53].

VI. CONCLUSION AND FUTURE WORK

Links between issue reports and their corresponding com-

mits are often missing. However, these links are important for

software maintenance tasks including assessing the reliability

of a particular part of a software system or predicting future

defective software components (e.g., classes, files, etc.). To

deal with this issue, a number of past approaches have been

proposed to link bug reports to their corresponding commits,

however, their performance still has significant room for

improvement. In this work, we propose a new bug linking

approach RCLinker that leverages rich contextual information

that are generated by ChangeScribe and a text classification

solution that creates a discriminative model based on 20

different features to differentiate between true and false links.

We have compared RCLinker against MLink, which is the

latest state-of-the-art bug linking approach. Our experiments

on bug reports from six projects demonstrate that RCLinker
outperforms MLink in terms of F-measure by 138.66%.

In the future, we are planning on improving the effectiveness

of RCLinker even further. We will experiment with various

classification algorithms and investigate their effectiveness.

We will also investigate additional features that can be more

effective than the current set of features. We are also planning

on further minimizing the threats to external validity by exper-

imenting with more bug reports from more software projects.

We also plan to perform additional experiments (e.g., wrapper

subset evaluation) to gain more insight into the features by

investigating if we can use a reduced set of features to obtain

similar effectiveness.
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