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Context:When software evolves, opportunities for introducing faults appear. Therefore, it is important to test the evolved

program behaviors during each evolution cycle. However, while software evolves, its complexity is also evolving, introducing

challenges to the testing process. To deal with this issue, testing techniques should be adapted to target the efect of the

program changes instead of the entire program functionality. To this end, commit-aware mutation testing, a powerful testing

technique, has been proposed. Unfortunately, commit-aware mutation testing is challenging due to the complex program

semantics involved. Hence, it is pertinent to understand the characteristics, predictability, and potential of the technique.

Objective:We conduct an exploratory study to investigate the properties of commit-relevant mutants, i.e., the test elements

of commit-aware mutation testing, by proposing a general deinition and an experimental approach to identify them. We

thus, aim at investigating the prevalence, location, and comparative advantages of commit-aware mutation testing over time

(i.e., the program evolution). We also investigate the predictive power of several commit-related features in identifying and

selecting commit-relevant mutants to understand the essential properties for its best-efort application case.

Method: Our commit-relevant deinition relies on the notion of observational slicing, approximated by higher-order

mutation. Speciically, our approach utilizes the impact of mutants, efects of one mutant on another in capturing and analyzing

the implicit interactions between the changed and unchanged code parts. The study analyses millions of mutants (over 10

million), 288 commits, ive (5) diferent open-source software projects involving over 68,213 CPU days of computation and

sets a ground truth where we perform our analysis.

Results: Our analysis shows that commit-relevant mutants are located mainly outside of program commit change (81%),

suggesting a limitation in previous work. We also note that efective selection of commit-relevant mutants has the potential

of reducing the number of mutants by up to 93%. In addition, we demonstrate that commit relevant mutation testing is

signiicantly more efective and eicient than state-of-the-art baselines, i.e., random mutant selection and analysis of only

mutants within the program change. In our analysis of the predictive power of mutants and commit-related features (e.g.,

number of mutants within a change, mutant type, and commit size) in predicting commit-relevant mutants, we found that

most proxy features do not reliably predict commit-relevant mutants.

Conclusion: This empirical study highlights the properties of commit-relevant mutants and demonstrates the importance

of identifying and selecting commit-relevant mutants when testing evolving software systems.
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1 INTRODUCTION

Software systems evolve and are typically developed through program evolution cycles that involve frequent
code modiications [18]. Therefore, when software evolves, the program modiications need to be tested to avoid
introducing faults and ensure the expected program behavior. To test an evolving program, developers need to
perform regression testing, i.e., assessing the impact of the change on the program by generating additional test
cases targeting the change and its dependencies [49]. Typically, developers have to write or generate test cases
that exercise the changes, stress their dependencies, and check that the program changes behave as intended [4].
Mutation testing is an established software testing technique [37]. It is typically applied to reveal faults in a

program by modifying the program (aka injecting mutants) and generating tests to reveal the faults (i.e., kill the
mutants) in the modiied program. Mutation testing is an efective approach to improve the test suite’s strengths
by ensuring that it is adequate and diverse enough to kill all injected mutants. In the last decade, mutation
testing has focused on selecting or reducing the number of executed mutants to ensure that mutation testing is
feasible and scales in practice. To this end, researchers have proposed mutation testing with a speciic type of
mutants [34], mutant reduction by detecting equivalent mutants [10, 19] or by focusing on a particular category
of mutants such as subsuming mutants1 or hard-to-kill mutants [20, 25, 35].
Traditional mutation testing involves injecting mutants into the entire code base of the software. However,

mutation testing of evolving programs is challenging due to the scale of the required mutation analysis, the
complexity of the program, and the diiculty of determining the impact of the dependencies of the program changes.
The sub-ield of mutation testing addressing these issues by targeting the mutation testing program changes is
referred to as commit-aware mutation testing [29].
A few commit-aware mutation testing approaches have been proposed to tackle the challenges of mutation

testing of evolving software systems [9, 28, 29, 39]. These approaches suggest that mutation testing of evolving
systems should focus on the program changes rather than the entire program. Recent studies have also indicated
that commit-relevant mutants can be found on unchanged code due to unforeseen interactions between changed
and unchanged code [28, 29]. However, these studies do not provide scientiic insights into the nature and
properties of commit-relevant mutants and their utility over time. For instance, it is necessary to understand
the distribution and program location of commit-relevant mutants to efectively identify, select, or predict
commit-relevant mutants.

In this paper, we address this challenge by conducting an exploratory empirical study to investigate the prop-
erties of commit-relevant mutants. Speciically, we examined the distribution, location, prevalence, predictability,
and utility of commit-relevant mutants, as well as subsuming commit-relevant mutants2. To achieve this, we
propose an experimental approach for identifying commit-relevant mutants using the notion of observational
slicing [6], i.e., the relevance of an instruction to a program point of interest (such as a program state or variable(s))
can be determined by mutating instructions and observing their impact to the point of interest (changes on
the target program state or variable). Since we aim to identify mutants relevant to changed instructions, we
check the impact of mutants located on the changed code, as performed by observational slicing, on mutants
located on unchanged code. In essence, with this approach, we measure the impact of second-order mutants
on the irst-order ones [21, 22], which captures the existence of implicit interactions between the changed and
unchanged code parts.
Overall, our formulation of the commit-aware mutation testing addresses the limitations and challenges of

the state of the art [28, 29], in particular, making it more general and applicable for most evolving systems (see

1Subsuming mutants [17] or disjoint mutants [20] is a set of mutants that has no mutant that is killed by a proper subset of tests that kill

another mutant.
2Subsuming commit-relevant mutants is a set of commit-relevant mutants that has no commit-relevant mutant killed by a proper subset of

tests that kill another commit-relevant mutant
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Section 4.1). Using this approach, we elicit the properties of commit-relevant mutants and study the advantage of
commit-relevant mutant selection in comparison to random mutant selection or mutants located on program
changes.

To the best of our knowledge, this is the most extensive empirical study of commit-relevant mutants. Speciically,
our evaluation setup contains 10,071,875 mutants and 288 commits extracted from ive (5) mature open-source
software repositories. Our experiments took over 68,213 CPU days of computation. The main objective of this
work is to provide scientiic insights concerning the application of mutation analysis in testing evolving software
systems. The main indings of this paper are summarized as follows:

• Commit-relevant mutants are prevalent. In our evaluation, 30% of mutants are commit-relevant, on average.
Hence, by reducing the number of mutants (by around 70%) and concentrating merely on those representing
change-aware test requirements, considerable cost reductions can be achieved.
• Selecting subsuming commit-relevant mutants signiicantly reduces the number of mutants. Selection of
subsuming commit-relevant mutants reduces even further the number of mutants, by about 93%, on average.
• A large proportion of commit-relevant mutants are located outside of the program changes. The majority of
the commit-relevant mutants are located outside the changed methods (69%).
• Several evaluated commit or mutant related features can not reliably predict (subsuming) commit-relevant
mutants. For instance, (the number of) commit-relevant mutants cannot be reliably predicted by features
such as the commit size or mutant operator types.
• State of the art mutant selection approaches miss a large portion of commit-relevant mutants. As an example,
random mutant selection techniques miss approximately 45% of subsuming commit-relevant mutants when
analyzing the scope of 20 mutants.
• Commit-relevant mutation testing signiicantly reduces the test executions in comparison to the state of the
art mutant selection methods. Speciically, commit-relevant mutation testing reduces the number of test
executions by about 16 times compared to random mutant selection.

2 BACKGROUND

2.1 Mutation Testing

Mutation is a test adequacy criterion in which test requirements are characterized by mean of mutants obtained
by performing slight syntactic modiications to the original program (for instance, the relational expression
a > b can be mutated into a < b). Intuitively, these mutants aim at representing artiicially injected faults that
can be used to assess the efectiveness and thoroughness of a test suite in detecting these seeded faults. Then,
the tester starts by analyzing the mutants and proceeds to design test cases to kill them, i.e., to distinguish the
observable behavior between the mutant and the original program. Hence, the adequacy of a test suite concerning
the mutation criterion, called mutation score, is computed as the ratio of killed mutants over the total number of
mutants.

Notice that the number of mutants not necessarily represent the number of test cases required to cover all of
them since several mutants can be redundant. On the one hand, there may exist mutants that cannot be killed by
any test since they are functionally equivalent to the original program. On the other hand, one test may kill other
mutants at the same time. Thus, the efort put into analyzing and executing redundant mutants is wasted; hence
it is desirable to analyze only the mutants that add value.

2.2 Subsuming Mutants

Subsuming relations aims at inding the minimal set of mutants required to cover all (killable) mutants [3].
Intuitively, this set of mutants has minimal redundancies and represents a nearly optimal mutation testing process
with respect to cost [35, 36]. More formally, let us consider that�1,�2, and � be two mutants and a test suite,
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respectively. Consider also that �1 ⊆ � and �2 ⊆ � are the set of tests from � that kill mutants �1 and �2,
respectively, where�1 ≠ ∅ and�2 ≠ ∅ indicating that both�1 and�2 are killable mutants. We say that mutant�1

subsumes mutant�2, if and only if,�1 ⊆ �2. In case�1 = �2, we say that mutants�1 and�2 are indistinguishable.
The set of mutants that are both killable and subsumed only by indistinguishable mutants are called subsuming
mutants. For instance, assuming that�1 = {�1, �2} and�2 = {�1, �2, �3}, one can notice that every time we run a test
to kill mutant �1 (i.e., �1 or �2) we will also kill mutant �2. While the vice versa does not hold since if we kill
mutant�2 by �3, we will not kill mutant�1. In this case we say that�1 subsumes�2.
Several researchers have studied the impact and prevalence of subsuming mutants for traditional mutation

testing [2, 16, 35, 36]. For instance, Alipour et al. [2] demonstrated that subsuming mutants can reduce traditional
mutation testing efort by up to 80%. In particular, in their empirical study on mutation test reduction, found that
subsuming mutants can reduce the number of mutants requiring analysis by up to 80%. Their study demonstrated
the importance of subsuming mutants in traditional mutation testing, emphasizing that there is strong inter-
dependency among mutants. In their empirical evaluation of traditional mutation testing (involving four C projects
and thousands of mutants), the paper found that test case reduction based on a single mutant can reduce mutation
testing efort (in terms of the number of mutant test executions) by 33 to 80% [2]. Likewise, Guimarães et al. [16]
empirically demonstrated that identifying dynamic subsumption relations among mutants reduces traditional
mutation test execution time by 53%. Delamaro et al. [12] also demonstrated that identifying the inter-procedural
relation among mutants in two program units helps to identify interface mutants, i.e., the mutants that are relevant
for mutation testing during system integration. However, despite the evidence of the impact of subsuming
mutants on traditional mutation testing and integration testing, their impact on commit-aware mutation testing
remains unknown. Thus, in this paper, we study the prevalence and distribution of mutants relevant for a committed
change and the extent to which subsuming relations are maintained.

2.3 High-Order Mutants

Depending on the number of mutation operators we apply to the original program, we can categorize the obtained
mutants by the number of simple changes one has to introduce to form them. That is, irst-order mutants (FOM)
is obtained by making only one simple syntactic change to the original program. Second-order mutants (SOM)
are obtained by making two syntactic changes to the original program (or applying one mutation to irst-order
mutants). In the general case, higher-order mutants (HOM) [17] are produced after the successful application of
n mutations to the original program.

At the very beginning, using higher-order mutants in mutation testing was not considered viable because of the
Coupling Efect proposed by DeMillo et al. [13]. It stated that łTest data that distinguishes all programs difering
from a correct one by only simple errors is so sensitive that it also implicitly distinguishes more complex errorsž.
However, later on, Ofutt [33] deined irst-order mutants as simple faults while characterizing higher-order
mutants as complex artiicial defects.

In this study, we plan to use second-order mutants as the means for studying whether mutants located outside
the commit change interacts with the mutants located within the change. Then we use this information to
determine if mutants are relevant or not for given commit changes. Details are presented later in Section 3.

2.4 Testing Evolving Systems

Software systems evolve frequently, hence, it is pertinent to provide methods and tools to analyze the impact of
the program changes. Regression testing helps in this respect by re-running the test suite on the new version of
the code to ensure that the previously developed functionality behaves as expected. Software evolves for many
reasons (e.g., due to bug ixes, code refactoring or new features). Therefore it is important to understand how to
test the program change, if it is enough to test only the changed lines, as well as how many test requirements
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Fig. 1. Typical evolution of a sotware and its test suite showing three versions (�1 to �3) of a program (main) and and its test
suite (test). The green portions of the program (main) symbolize the program changes (e.g., a commit), and the explosions
symbolize the mutants injected into the program. In the test suite (test), �� symbolizes a test case � , and the green rectangles
represent changes in the test suite (i.e., addition and modification of tests). The test suite and source code evolve as the
program evolves through versions. As the size of the program increases, we can observe that the number of mutants increases
as well. This eventually leads to a substantial number of irrelevant mutants that result in waste of eforts. In the figure,
with red the mutants that are commit-relevant and with yellow the irrelevant ones. Focusing only on commit-relevant
mutants reduces the number of mutants requiring atention and leads to significant cost reductions. Additionally, the set of
commit-relevant mutants quantifies the extent to which practitioners have tested the program behaviors afected by the
change.

and test cases will need to be analyzed. Notably, developers are burdened with the challenge of testing evolving
systems, speciically, how to efectively analyse the diference in the program behaviors induced by their changes.
These are the main challenges of regression testing, and in this work, we aim to study these challenges via the
lens of mutation testing.

Generally, as the software evolves, the test suite also evolves. Concretely, as the program changes (e.g., due to
new features or bug ixes), new tests are added or old tests may be modiied to exercise those changes. Figure 1
illustrates the evolution of a program and its test suite during a typical software development process, showing
changes in four versions of the program (main) and the test suite (test). In this example, we illustrate that
analyzing all mutants is costly, as the number of mutants (both red and yellow in Figure 1) is independent of the
program changes (is actually depended on the size of the programs) and increases as the program size increases.
Hence, traditional mutation testing will be costly, since it uses more mutants than required. More importantly, by
doing so, developers will have to analyze mutants that are not relevant to what they actually committed. In this
work, we study how to address these challenges using commit-aware mutation testing.

A common approach to address these challenges is to leverage code coverage information, i.e., analyzing the
test coverage of a particular change, to decide if the change needs further test cases or not. However, previous
works [25? ] have shown that many severe integration issues arise from unforeseen interactions triggered between
introduced change and the rest of the software. Therefore, there is a need for change-aware test metrics to guide
efective regression testing and allow developers to quantify the extent to which they tested the error-prone
program behaviors afected by their changes. We plan to use mutation testing to address these interactions
by targeting suitable mutants that demonstrate an (implicit) interaction between the changed lines and the
unmodiied part of the program (i.e., the code outside the change). These mutants form the change-relevant
requirements and should be used to determine whether test suites are adequate and provide guidance in improving
the test suite.

ACM Trans. Softw. Eng. Methodol.
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Fig. 2. Example of relevant and not-relevant mutants. Let Sub-Figure: Mutant �1
�
is relevant as mutant �� impacts its

behavior. Center Sub-Figure: Mutant �2
�
is non-relevant as mutant �� does not impacts its behavior. Right Sub-Figure:

mutant�3
�
is not relevant since there is no behavioral diference for every possible�� .

3 COMMIT-AWARE MUTATION TESTING

3.1 Definition

Intuitively, commit-relevant mutants are those that are linked with (capture) changed program behaviour, by
the committed changes. These mutants are those that a) are killable and are located on the changed lines,
because they capture behaviour relevant to the committed changes, and b) those that are killable, are located on
unchanged lines and afect the changed, by the commit, program behaviour, because they capture the interaction
of the changed and unchanged code. This is approximated by a special form of observational slicing that uses
higher order mutants. The idea is that mutants, located on unmodiied code, that impact the behavior of mutants
located on modiied code, are commit-relevant because they interact/depend with the changed code. Consider
two irst-order mutants �� and �� , such that �� is located on changed code and �� is located within the
changed code. Then, the higher order mutant (��� ) is the one created by combining�� and�� . We say that
�� is commit-relevant if the higher order mutant (��� ) has a diferent program behaviour from the irst order
mutants�� and�� . That is,�� is commit-relevant if (��� !=�� ) and (��� !=�� ). Formally, the deinition
of commit-relevant mutant can be formed as:

Deinition 3.1 (Commit-relevant mutants). A mutant�� is relevant to a commit-change, if a) it is killable and
is located on the changed code, or b) there is a second order mutant ��� (formed by the mutant pair of �� ,
located outside the change, and�� , located on the change) that has diferent behaviour from the two irst-order
mutants�� and�� that it is composed of.

3.2 Motivating Examples

Simple Example. Figure 2 describes three simple scenarios illustrating commit-relevant mutants on a toy code
example. In the code snippet on the left, we observe the example function fun that takes two arguments (integer
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arrays of size 3). It starts by sorting the arrays’ elements, then makes computations, and returns an integer as a
result.
The green rectangle on line seven (7 ) represents the line that has been modiied in the code. Using Java

comments (symbols ł//ž) on line three (3) we represent mutant outside the change�� , and the mutant on the
change �� on line seven (7 ). Mutant �� changes the value of variable łRž to zero (0), while the mutant ��

changes the value of variable łLž to one (1).
Consider that our test suite is conirmed just by one test that invokes function funwith the following arguments:

z = {0, 3, 3} and k = {0, 2, 3}. The output of the corresponding input value is observed from the inside of an atomic
assertion as the input’s actual value. We can see that after comparing obtained values after running each mutant
in isolation, given the same test input, the mutant’s behavior is diferent. Following our deinition, this suggests
that�� is relevant to the modiication, since the actual execution value output (fun(z, k)) for mutant �� is 0,
which is diferent from mutant�� whereas fun(z, k) = 1, and��� fun(z, k) = -1.

The code snippet in the middle of the igure presents the scenario in which a mutant is not relevant to the
modiication. Precisely, let us consider the same mutant�� on the change on line 5.+ as before, but now mutant
�� located outside the change is on line 3. Mutant�� modiies the assignment statement into R = 0. Given the
same test input as before (i.e., z = {0, 3, 3} and k = {0, 2, 3}), and following the mutants execution behavior, we can
observe that mutants show no observable interaction. Therefore, mutant�� is not considered relevant for this
particular change.
The code snippet on the right side shows an additional example of a non-relevant mutant. However, in this

example, we observe two mutants that are unreachable from each other. These two mutants, for any test input,
do not show observable diferential interaction. Therefore, mutant�� is considered to be non-relevant to test
the corresponding change.

Real Example. Figure 3 presents an excerpt of a program from the Apache commons-io3 project, version
81210eb. The igure shows an evolution of the program in which the function read was modiied in line 142
(from
org.apache.commons.io.input.BoundedReader.java). The program change adds a constraints on the func-
tion’s return value, suggesting that it should return negative one (-1) in case the bufer does not contain any more
values, and otherwise it should return the index of the current iteration (i.e., i). Speciically, the previous version
of the program always returned i in line 142, but the modiied version either returns -1, when i is equals to 0, or
i otherwise.

Function read takes three parameters, namely, an array of chars cbuf, and two integers off and len. Intuitively,
function read aims at modifying a certain number of characters (len) of array cbuf, starting from the given
ofset position off. The function starts by reading a new character from a diferent bufer (see built-in read()

invocation in line 140), then it proceeds to update cbuf array with the new character, and inally it returns the
number of updated characters4 Notice that the read() invocation (line 140) returns the fed character as an integer
in the range between zero (0) to 65535 (0x00-0xff), or it returns negative one (-1) if the end of the bufer has
been reached.

As an example, consider a testing scenario that executes function read with the following inputs:
read([‘X’, ‘X’, ‘X’, ‘X’], 1, 2);

and the bufer accessed by the read() call in line 140 is as:
[‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘0’];

3https://github.com/apache/commons-io
4For more information about the implementation of this method, please refer to oicial implementation documentation page:[? ]
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Fig. 3. Method (read()) excerpted from the BoundedReader.java program in the Apache commons-io project (version
81210eb)

For this test case, both versions of the program, the previous one and the recently changed version, will return
the same output (i.e., len = 2). Moreover, both versions of the program will produce the same modiications into
array cbuf given as input, resulting in:

[‘X’, ‘0’, ‘1’, ‘X’]

This is an example of a test case that does not exercise the program changes, since the change (line 142) is never
executed for this test case. Hence, the test does not show any behavioral diference between the previous version
of the program and the current modiied version of it.

Table 1. Test output observation for Figure 3 showing the program behavior (outputs) of original program, the changed
program, and the first and second order mutants of the program. The test observations are performed using input
read([‘X’,‘X’,‘X’,‘X’], 1, 2) and an empty bufer ([]) fed to the built-in function read (in line 140)

Program Versions Program Changes Code line Test output Commit-Relevance

Pre-commit Old version 51f13c84 i 142 0 N/A

Post-commit New version 81210eb i == 0 ? -1 : i 142 -1 N/A

First-order mutant M1 == ⇒ != 142 0 Relevant

First-order mutant M2 len ⇒ 0 139 2 Non-Relevant

First-order mutant M3 i⇒ ++i 139 1 Relevant

First-order mutant M4 delete statement 140 2 Non-Relevant

Second-order mutant M12 == ⇒ != ∧ len ⇒ 0 142 ∧ 139 2 N/A

Second-order mutant M13 == ⇒ != ∧ i ⇒ ++i 142 ∧ 139 -1 N/A

Second-order mutant M14 == ⇒ != ∧ delete statement 142 ∧ 140 2 N/A

Commit-aware Mutation Testing. Now, consider that during the mutation testing analysis, four mutants (�1 to
�4) are injected into the functionread, as it is shown in Figure 3 via Java comments (ł//ž). Particularly, Mutant

ACM Trans. Softw. Eng. Methodol.



Mutation Testing in Evolving Systems: Studying the relevance of mutants to code evolution • 1:9

�1 is located on the modiied statement in line 142, i.e., it is a mutant withing the program change, and it replaces
the condition == (equal) with != (not equal). Mutant�2 is located on line 139 (outside the change) and replaces
the variable len with a constant value zero (0), mutating the condition of the for loop i < len to i < 0. Mutant
�3 is also injected on the same statement (line 139) but it uses an unary insertion (++i) to update variable �
within the condition check of the for loop, such that condition (i < len) is mutated to (++i < len). Finally,
Mutant�4 removes the statement located on line 140 (i.e., c = read()).
Then, by using our HOM-based approach, we can create higher-order mutants by pairing all four mutants.

Precisely, we pair the mutants located outside the change with the mutants on the commit-change (line 142), and
we obtain three higher-order mutants�12,�13, and�14. Table 1 illustrates the behavior (outputs) of function
read under its previous version, its current changed version, and all the mutants.
Consider now a diferent testing scenario in which the input bufer accessed by the built-in function read in

line 140 is empty (i.e., []). This testing scenario shows the behavioral diference between the previous version
and the modiied version of the program, since it executes the change (in line 142). We observe that, while the
execution of the previous version of the program returns zero (0), the modiied version returns negative one (-1).
Table 1 highlights the behavior (i.e., output) of each mutant. First, according to the traditional deinition

of commit-relevant mutants, �1 is a commit-relevant mutant, since it is located on the program change [9].
Additionally, according to our extension of the deinition of commit-aware mutation (see section 3), we compare
the output of the second-order mutants and their isolated irst-order mutants. We observe that the second-order
mutant �13 is also a commit relevant mutant. This is because the second order mutant (�3) has a diferent
behavior from the isolated irst-order mutants (i.e.,�13 !=�3, and�13 !=�1). Meanwhile, the other second-
order mutants, i.e.,�12 and�14 are not commit-relevant because they have similar behaviors as the isolated
irst-order mutants (i.e.,�12 ==�2, and�14 ==�4).

Commit-aware Criteria. Let us illustrate the importance of the strict constraint employed in our approach to
compare the behaviors of irst-order and second-order mutants (e.g., the need to ensure�13 !=�3 AND �13 !=
�1) using a counter-example. Speciically, we will discuss the rationale for this constraint and why considering a
less strict constraint does not suice (and mutants like, for instance, �2 are not commit-relevant, despite the
fact that �12 !=�1 but�12 ==�2). Let us consider the example program in Figure 3 and the output behavior
observed in Table 1. Even though �1 and �12 have diferent output, inspecting the behavior of �12 on the
program change using the provided test cases, we observe that the behavior of the second-order mutant�12 is
not diferent from that of�2. In fact,�2 does not execute the program change nor the mutant within the change.
Indeed there is no input that can force mutant�2 to execute the changed line (in line 142), since the for loop
condition will always evaluate to false. This implies that using a less strict constraint (e.g., an łORž operation) in
our check, will lead to such mis-identiication of commit-relevant mutants, implying that mutants that can never
lead to the execution of the program change (e.,g.,�2) can be mis-classiied as relevant to the program change.
Thus, it is important to ensure that the behavior of the second-order mutant and that of the isolated irst-order
mutants are indeed diferent.

Subsumption Relation. Let us illustrate the subsumption relation of commit-relevant mutants. Consider the two
commit-relevant mutants in our example, i.e., mutant�3 that we have identiied as commit-relevant, and mutant
�1 located on the changed statement (commit-relevant by default). In our example (Figure 3), both mutants are
killed by the initial test input (in Table 1). Let us consider that the test suite has one additional test, in particular
the following test:

read([‘X’,‘X’,‘X’,‘X’], 1, 1)

Given this new test input, we observe that mutant�1 is killed by this test input (output zero (0)), but mutant�3
is not killed by the test (output one (1)). Following the deinition of mutant subsumption [3], we can observe that
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a test that distinguishes mutant�3, will also distinguish mutant�1, but mutant�1 can be distinguished by a
test that cannot distinguish mutant�3. In this situation, we say that�3 subsumes�1, making�3 a subsuming
commit-relevant mutant. This example illustrates a scenario where a subsuming commit-relevant mutants is
located outside the program change. The mutant residing outside the change subsumes a mutant residing on the
program change, which makes the test requirement of the mutant on the change redundant. We can satisfy both
mutants (�1 and�3) by writing test requirements to identify the subsuming commit-relevant mutant located
outside of the committed change (i.e.,�3), which is the commit-relevant mutant also identiied by our approach.

3.3 State of the Art

Let us provide background on the state of the art in commit-aware mutation testing. There are very few research
papers on commit-aware mutation testing. In particular, we highlight the papers on the formalization of the
concept as well as techniques for selecting commit-aware mutants.

• Formalization of Commit-aware Mutation Testing: Ma et al. [29] deines and formalizes the concept of
commit-aware mutation testing. The paper deines commit-relevant mutants as a set of mutants capturing
the interactions that afect the changed program behaviors. The paper further shows that there is only aweak
correlation between commit-relevant mutation scores and traditional mutation scores, thus, highlighting the
need for a commit-aware test assessment metric. In its evaluation, the authors demonstrate the strength of
commit-aware mutation in revealing commit-related faults by showing that traditional mutation has about
30% less chances of revealing commit-introducing faults, in comparison to commit-aware mutation testing.
In this work, we propose an alternative approach to identify commit-relevant mutants. In comparison to
[29], our approach removes the strict test contract assumption that requires test suites being executable
across program versions, i.e., there are no contract changes. In our setup, we address this concern by
employing only the post-commit version and the committed change for commit-aware mutation testing,
with no restriction on the evolution of the test suite (see Section 4.1).
• Dif-based Commit-aware Mutant Selection: Cachia et al. [9] proposed an incremental mutation testing
that limits the scope of mutant generation to strictly changed code regions since the last mutation run.
Similarly, Petrovic et al. [39] proposed a dif-based probabilistic mutant selection technique that focuses only
on the mutants located within the program changes. These approaches ignore the program dependencies
between the committed changes and the unmodiied code by design. Hence, in this work, we present
and employ an experimental approach that accounts for the dependencies between program changes and
unmodiied code when identifying commit-relevant mutants to demonstrate the extent to which using
mutant from modiied code can help. Our approach analyses the efect of second-order mutants, one within
the program change and the other in the unmodiied code, on the evolving program behavior.
• Machine Learning based Commit-aware Mutant Selection: Mudelta [28] presents a machine learning
and static analysis-based approach for predicting commit-relevant mutants. This paper illustrates the
importance of commit-aware mutation testing, particularly its ability to reduce mutation testing efort
and reveal commit-related faults. In comparison to random mutant selection, Mudelta reveals 45% more
commit-relevant mutants, and achieves 27% higher fault revealing ability in fault introducing commits. In
this work, we propose a complementary dynamic analysis approach for commit-aware mutation testing.
Speciically, we propose a new HOM-based observation slicing approach for commit-aware mutation
testing, that is applicable in the absence of static code features or (large) training data.
• Interface Mutation: Delamaro et al. [12] proposed an inter-procedural mutation analysis approach for
generating mutants that are relevant for integration testing, i.e., suitable for testing the interactions between
program units. In particular, since interface mutation aims at testing component integrations, it injects
mutants on the component contracts (interfaces) and pairs of them at the component call sites and related
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uses of the interface parameter inside the components bodies in order to capture potential interactions
between the caller and called components. This mechanism, of capturing dependences through pairs
of mutants, is somehow similar to our approach but more restrictive as it targets interfaces (call sites
and method parameter uses). In contrast commit-aware mutation testing aims at identifying relevant
dependencies between changed and unchanged code and not between components.

3.4 Design Requirements

Our commit-relevant mutation approach aims to fulill certain requirements to ensure we gather and study a vast
number of commits and commit-relevant mutants. These design requirements address some of the limitations
and challenges of state of the art [28, 29, 39]. In particular, we address the following:

• Location of Commit-relevant Mutants: In this work, we focus on identifying commit-relevant mutants
within and outside the program changes, i.e., within the commit-change as done in prior work [39], and
the unmodiied program code. In particular, we are interested in revealing behavioral interactions induced
by the program changes on the rest of the unmodiied program code. We achieve this by identifying the
commit-relevant mutants outside of the program changes. In particular, we employ second-order mutants;
we analyze the impact of second-order mutants on the behavior of the evolving program (see Section 3.5).
• Test Contract: Our experimental approach employs only the test suite from the post-commit program
version. In previous work [29], the experimental design requires the execution of test suites across the
pre-commit and post-commit versions of the program. Plus, it implies that the number of tests does not
increase or decreases across versions, i.e., the test contract is intact. Therefore, the approach observes
the delta between versions by comparing mutants test suites from pre- and post-change commit. This
assumption is impractical in several cases since the test suite also evolves as the program evolves, e.g., when
implementing new features or ixing bugs. In our work, we observed that this assumption is not common
in practice. In particular, in our study, the proportion of commits where the test contract is preserved is
less than 40%.
• Commit Patches and Hunks: In our approach for commit-aware mutation testing, we require the commit
patches and commit hunks for empirical evaluation and analysis. Indeed, commit properties are vital for
commit-aware mutation testing and commonly used by the state of the art techniques [28, 29]. In our work,
we employ commit properties (i.e., patches and commit hunks) for both commit-relevant mutant detection
and experimental analysis. Particularly, our approach requires the commit patches (i.e., the delta between
pre-commit and post-commit versions) to identify the interaction of the mutants within the change and the
mutants outside the change. We also employ commit hunks in our experimental analysis, to identify the
number of individual code-chunks structure present in a commit. Applying commit hunks in our analysis
sheds light on the relationship between altered statements in the commit hunk and the mutants residing
outside the commit hunk.
• Post-Commit Version: Our experimental approach requires the post-commit version of the program to be
compilable, executable, and testable. These requirements are vital for the dynamic analysis of our approach
and they only apply to the post-commit version of the program. In contrast, previous work [29] requires
two program versions (pre-commit and post-commit) and assumes a green test suite, no build failures and
no compilation errors for both program versions. In our evaluation setup, we ind that these conditions are
uncommon (less than 40% of the cases). To address this concern, we ensure our approach requires the
post-commit version of the program, without need for the pre-commit version. This allows collecting
signiicantly more commits for our study, and allows to evaluate a vast amount of commit-relevant mutants.
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• Test Oracle: In this work, we employ test assertions of system units as our test oracle. This is a ine-grained
test oracle used by unit tests. Here it is important to note that when we refer to assertions these are test
assertions, and not program assertions and are used for checking the observable behaviour of the program
units, as mandated by strong mutation. In practice, we use test assertions to deine the mutant behaviour
study the impact of mutants and changes on program behaviour.
• Number of Commits: Our empirical study characterized commit-relevant mutants and required a substan-
tial number of commits and commit-relevant mutants. Dues to the lexibility of our experimental approach,
in this study, we analyzed signiicantly (10x) more commits and mutants than previous work [29]. We
addressed the signiicant limitations and assumptions of prior work, which could prevent gathering a
suicient number of commits and commit-relevant mutants. For instance, as stated in the paper Ma et
al. [29], it is challenging to ind commits in open-source projects that do not break the test contract, i.e., keep
the test suite intact. This challenge further inhibits our goal of automatically studying the characteristics
of relevant mutants. Addressing the concerns above allows us to gather and study more commits than
previous studies.

Our experimental approach aims to target the requirements above to ensure that we gather many commits
and cover several realistic corner cases for evolving software systems. Overall, fulilling these requirements and
addressing these concerns enables us to collect signiicantly more commits and identify signiicantly more commit-
relevant mutants for our study. In particular, our study involved 10x more commits and 6x more commit-relevant
mutants than previous studies.

3.5 Approach Overview

Our study aims at investigating the existence and distribution of commit-relevant mutants in evolving software
systems. Speciically, we study the relationship between the lines of code changed in a commit hunk and the
mutants residing on program locations outside the commit hunk under consideration. Intuitively, we want to
study the interaction between two program locations, where one location is part of the commit hunk, and the
other is outside the change. We plan to employ high-order mutants (second-order to be more precise) and simulate
potential changes in a commit hunk and the mutants outside the commit hunk. This study aims at providing
scientiic evidence of the relationship and relevance of mutants (test requirements) outside commit hunks that
need to be taken into account when testing evolving systems.

To determine if a mutant is relevant for a commit hunk, we plan to observe whether the commit changes afect
mutants’ behavior. Intuitively, suppose a change in a location in the commit hunk (produced by a mutation) afects
the outcome of the mutant outside the commit. In that case, we have evidence that there exists an interaction
between these two locations, indicating that the mutant is relevant for the commit. The absence of interactions
indicates either the existence of equivalent mutants [21, 22] or the absence of dependence/relevance. To account
for the case of equivalent mutants and ensure the relevance of observations, we sample multiple mutants per
statement.
Mutants’ behavior is (partially) determined by observing their covering test set. Implying that if we want to

observe the interaction between mutants on diferent locations, the test set should make any diference in the
mutant’s behavior whether they are run in isolation or combined both. More precisely, if we can observe that the
behavior of two mutants�� and�� run in isolation difers from the behavior of the second-order mutant���

(obtained by combining both mutations�� and�� ), then we can conclude that mutants�� and�� inluence
each other. Consider a situation, where the test set {�0, �1} is able to observe that��� ’s behavior difers from��

and�� ’s behavior. For instance, test �0 passes on mutants�� and�� but fails on mutant��� . Thus, we can
conclude that locations in which mutations�� and�� were applied to interact with each other.
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Following a similar idea, consider generating one of the mutants outside the change (�� ) and the other one on
the change (�� ), and their combination makes a second-order mutant (��� ) suitable for observing if there exists
an interaction between them. To determine if mutant�� is relevant for the commit change, we can iterate this
process by exploring diferent high-order mutants��� by varying mutant on the change�� , with the aim at
inding one combination that evidence their interaction.

To compare mutants’ behaviors, irst, we need an intersection set of tests covering mutants�� ,�� , and��� .
Second, we proceed to run these tests to observe a diference between the mutants. Instead of considering only
passing and failing output as a standard unit level testing oracle, we instrument tests and contained assertions to
obtain and compare actual assertion values. For instance, an assertion like assertEquals(0, Z) can be violated
by a (potentially) ininite number of values for Z, all of them violating the assertion. Suppose after executing
mutants�� ,�� and��� , the value of Z is diferent. In that case, we can observe a diference in their execution,
allowing us to determine if there exists an interaction between these mutants, concluding that mutant �� is
relevant for the commit change. Section 4.6.3 describes the implementation details on how we instrument test
executions to obtain actual assertion values.

Figure 4 illustrates our approach to detect interactions betweenmutants by comparing their behavioral assertion
values. It depicts that after executing each irst-order mutant�� and�� in isolation (assertions that cover them),
we compare the output values with the value obtained after running second-order mutant��� . If running��

and�� in isolation difers from running��� , we determine that mutant�� is relevant for the commit change.

Fig. 4. A mutant�� is relevant to a commit-change, if any higher order mutant��� , shows diferent behavior from��

and�� executed in isolation

3.6 Algorithm

To perform an empirical study toward distinguishing relevant mutants, we generate the irst order mutants
located around and on the commit change (i.e.,�� and�� , respectively). The second-order mutants (i.e.,��� )
are a combination of the previous two. The mutant-assertion matrices were obtained by executing the mutants
against developer-written and automatically generated test pools. Note that test run status is pass/fall for Java
programs; therefore, to observe behavioral diferences produced by mutants, we need to focus on test assertions
and record assertion execution actual value output of each test on every mutant. Precisely, for every mutant
and every test assertion, a mutant-assertion matrix stores the assertion values obtained after running a mutant

ACM Trans. Softw. Eng. Methodol.



1:14 • Ojdanić, et al.

against a test. As noted, this study performs mutation analysis on commits from Java programs, using PiTest5 as
the Java mutation testing tool, and EvoSuite6 as the state of the art test case generation tool. Section 4.3 provides
further details regarding mutants test case generation and test assertions instrumentation.
After computing mutant-assertion matrices, we proceed to approximate which mutants are relevant to the

change, according to our Deinition 3.1 following the steps incorporated in Algorithm 1. The algorithm summarises
previously described process, where functions MutantsonChangeMutantOutput, aroundChangeMutantOutput,
highOrderMutantOutput return the output of a speciic test assertion execution per speciic mutant. Finally,
Algorithm 1 returns a set of relevant mutants for a particular commit change.

This algorithm has a worst-case polynomial time complexity of� (�4), due to the four nested for loops (� (�∗�∗
� ∗�)). For each of the three inputs fed to the algorithm (TestSuite,MutantsOnChange andMutantsAroundChange),
there is a linear-time complexity (� (�)). Additionally, there is a linear-time complexity (� (�)) for evaluating each
test assertion corresponding to the test cases. Overall, the performance of the algorithm depends on the number
of mutants in the change, the number of mutants injected in the modiied code, the size of the test suite and the
number of assertions in each test. Speciically, to derive higher-order mutants, we consider every pair of mutants
within and outside the change, we also execute all test cases corresponding to these mutants, and evaluate all
test assertions in each test case. This algorithm can be optimized by improving the number of evaluated tests,
assertions or pairs of mutants.

The complexity of this algorithm can be reduced to (� (���(�) ∗ �3) via a binary search on the pair of mutants
(outside the change) that exposes a behavioral diference. Likewise, the complexity can be reduced to cubic
complexity (� (�3)) by executing a constant number of test cases/assertions (� (1)). For instance, an improvement
is achievable by selecting and executing only the most relevant tests for the changes, e.g., from historical test
executions in the CI. A reduction is also achievable if only one test assertion is evaluated for each test case,
e.g., executing only the assertion that captures the interaction between the pair of mutants has a constant time
complexity (� (1)).

4 EXPERIMENTAL SETUP

4.1 Goals

The main goal of our study is to investigate the prevalence and characteristics of commit-relevant mutants in
evolving software systems in terms of their program location and relationship to commit hunks and mutant types.
We also study their efectiveness and eiciency in testing evolving systems in comparison to the state-of-the-art.
Speciically, our empirical goal is to achieve the following three main goals:

(1) study the properties of commit-relevant mutants, in terms of their prevalence, mutant types, location and
proportions, as well as the subsumption relation of commit-relevant mutants (RQ1, RQ2 and RQ4);

(2) examine the relationship between commit-relevant mutants and commit properties (e.g., commit size) (RQ3);
(3) investigate the beneit of commit-relevant mutation testing, in terms of their efectiveness and eiciency in

comparison to the baselines (RQ5 and RQ6).

Overall, our study aims at providing insights on the properties of commit-relevant mutants and at demonstrating
their importance and efectiveness in testing evolving systems.

4.2 Research uestions

As we aim at assessing the potential of mutation testing in evolving systems, we investigate the following research
questions (RQs).

5http://pitest.org/
6https://www.evosuite.org/
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Algorithm 1: Approximate Commit-relevant Mutants Set

Data: TestSuite, MutantsOnChange, MutantsAroundChange
Result: Relevant Mutants

1 ������������ ← ∅;

2 for � ∈ ��������������ℎ���� do

3 for � ∈ ����������ℎ���� do

4 for ���� ∈ ��������� do

5 for ��������� ∈ ���� do

6 ���� ← ���ℎ���������������� (���������,� );

7 ���� ← �������ℎ���������������� (���������, � );

8 ����� ← ℎ��ℎ����������������� (���������,� , � );

9 if ���� ≠ ����� ∧ ���� ≠ ����� then

10 ������������ ← ������������ ∪ {� };

11 jump to line 2 and take next mutant � ;

12 end

13 end

14 end

15 end

16 end

17 return ������������ ;

RQ1 Commit-Relevant Mutants: What is the prevalence of łcommit-relevant mutantsž among the whole
set of mutants?
RQ1.1 How are commit-relevant mutants distributed in the program?
RQ1.2 Are commit-relevant mutants located within or outside the developers’ committed changes?
RQ1.3 Is there any correlation between the number of commit-relevant mutants located within program

changes and the number of commit-relevant mutants outside the changes?
RQ2 Subsuming Commit-Relevant Mutants: What is the proportion of łsubsuming commit-relevant

mutantsž, i.e., the number of commit-relevant mutants that subsumes other commit-relevant mutants, such
that testing only these subsuming mutants is suicient to test all other commit-relevant mutants?

RQ3 Commit Size: Is there a relationship between the size of the commit (i.e., number of commit hunks)
and the number of (subsuming) commit-relevant mutants?

RQ4 Commit-Relevant Mutant Types:What is the distribution of mutant types in commit-relevant mu-
tants?

RQ5 Comparative Efectiveness: How efective are (subsuming) commit-relevant mutants, in comparison
to the baselines (i.e., random mutation and łcommit-only mutationž)?

RQ6 Test Executions: What is the performance of (subsuming) commit-relevant mutants in comparison to
the baselines, in terms of the number of required test executions?

RQ1 aims at improving our understanding of the locations, prevalence, and number of relevant mutants in
relation to committed changes. The answer to the question allows having a rough view of the relevant mutant’s
distribution within and outside committed code. Answering RQ2 will show the extent to which the relevant
mutant sets have redundancies. Previous work [36] has shown that redundant mutants inlate mutation scores
with the unfortunate efect of obscuring its utility. We, therefore, would like to validate whether relevant mutant
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sets also sufer from such inlation efects. RQs 3 and 4 analyze the relation between commit size and prevalence
of mutant types in relevant mutant sets to check whether there are levels/thresholds at which relevant mutants do
not yield much beneits. Finally, RQs 5 and 6 aim at quantifying the potential beneits of using relevant mutants
during project evolutions concerning cost and efectiveness.

4.3 Analysis Procedure

We focus our empirical study on commits of Java programs as selected subjects. To perform the mutation
analysis, we employ PiTest7 [11], one of the state-of-the-art Java mutation testing tools. We approximate the set
of commit-relevant mutants by following the algorithm introduced in Section 3. Besides the approximated set of
commit-relevant mutants located outside of commit-change, we also record and consider as commit-relevant all
those mutants residing on the location of commit-change (in our approach,�� mutants). This corresponds to
work done by [39], whereas the commit-relevant mutants set is made out of mutants located on the commit dif,
i.e., statements modiied or added by commit.
To make our approximation robust, we follow previous studies process steps [3, 25, 37]. Our approach uses

mutant-assertion matrices to identify mutants interactions that constitute, up to our knowledge, the irst study
conducted on test assertion level for Java programming language (bypassing standard tests passing/failing
mutation behavior for Java programs). Mutant-assertion matrices were computed by running large test pools
built by considering developer tests and adding automatically generated tests using EvoSuite8 [15], a state of the
art test case generation tool. From the computed mutant-assertion matrices, we obtain three sets of mutants:
mutants on a change, mutants relevant to a change and mutants not relevant to a change.

To answerRQ1we study the prevalence and location of commit-relevant mutants in every commit by analyzing
the average number of relevant/non-relevant mutants and their distribution. We address RQ2 by studying the
proportion of subsuming commit-relevant mutants among all commit-relevant mutants and all subsuming
mutants. This will estimate an extra possible reduction we can achieve if we focus only on subsuming mutants.
We consider traditional passing/failing test behavior to compute the set of subsuming mutants per subject (notice
that this information is also captured when mutant-assertion matrices were built).
To address RQ3 and RQ4, we perform a similar statistical analysis. Still, we study any correlation between

the number of commit-relevant mutants and the size of commit hunks, and the type of mutants. In RQ5 and
RQ6, we simulate a mutation testing scenario where the tester starts by picking a mutant for analysis for which
a test to kill it is developed. During this simulation, for each analyzed mutant, we randomly pick the test to kill it
from the pool and compute which other mutants are collaterally killed by the same test. The process proceeds by
picking a survived mutant until every mutant has been killed. We consider a mutant as equivalent if there is no
test in the pool that kills it.

This kind of simulation has been used in various related works to assess the efectiveness of mutation testing
techniques [3, 25, 29, 37]. We consider four diferent mutant selection techniques when answering RQ5 and RQ6.
Two of themwe use as baselines, where one consists of randomly selecting from the set of all mutants, and the other
one consists of selecting only the mutants on the change. Another selection technique consists of selecting from
the pool of commit-relevant mutants, while the last technique consists of selecting subsuming commit-relevant
mutants. We aim to obtain the best-efort evaluation by maximizing efectiveness and minimizing the efort. We
focus on the irst 20 mutants picked by a tester to test commit changes, while we measure efectiveness in terms of
the commit-relevant mutation score reached by the selected mutants that guide the testing process. Simultaneously,
we measure the computational efort in terms of the number of test executions required to accomplish the same
efect over the diferent baselines (diferent mutants pools). In this simulation, we are interested in the test

7http://pitest.org/
8https://www.evosuite.org/
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executions with the tests derived by the analysed mutants. The dependent variable is the test sets, while the
independent variable is the test executions. We iterate the process (killing all selected mutants) 100 times and
compute the relevant mutation score and computation efort.

4.4 Subject Programs and Commits

We focus our empirical study on commits of a set of well-known, well-tested, and matured Java open-source
projects taken from Apache Commons Proper repository9. The process of mining repositories, data analysis, and
collection, was performed as follows:

(1) Our study focuses on the following projects: commons-collections, commons-lang, commons-net,

commons-io, commons-csv. These projects difer in size while having the most extended history of
evolution. We extracted commits from the year 2005 to 2020. To extract commit patches and hunks in
our setup, we employ PyDriller10 (V1.15) to mine commits from the selected projects11. We applied
PyDriller to query the project’s information such as commits hash id, modiications date, modiied source
code, modiication operation, and hunks of the commits and quickly exported such information into a
JSON ile.

(2) We kept only commits that use JUnit4+12 as a framework to write repeatable tests since it is required by
EvoSuite [15], the test generation tool we use for automatically augmenting test suites.

(3) We iltered out those commits that do not compile, do not have a green test suite (i.e., some of the tests
are failing), or do not afect a program’s source code (i.e., commits that only change coniguration iles).
Some commits with failing tests are iltered out since PiTest requires a green test suite to perform mutation
testing analysis.

(4) Due to the signiicant execution time for commits containing several iles, we set a limit for 72h of execution
on a High-Performance Computer to generate and execute mutants per commit. Please note that the
test suites contain developer-written and automatically generated tests, where both are used to create
mutation matrices. All experiments were conducted on two nodes with 20 physical cores and 256GB of
RAM. Speciically on Intel Skylake Xeon Gold 2.6GHz processors, running on Linux Ubuntu OS across four
threads.

Overall, we generated 9,368,052 high-order mutants and 260,051 irst-order mutants, over 288 commits, that
required 68,213 CPUs days of execution. Table 2 summarises the details of the mined commits. Column ł#
Commitsž reports the number of commits mined per project, column ł# LOCž (Lines Of Code) indicates a subject
scope in terms of lines of code, łMaturity" reports on the date of irst commit, column ł# FOMž (First-Order
Mutant) indicates the total number of First Order Mutants generated for those commits, ł#Mutants on Changež
indicates the number of First Order Mutants generated on the changed lines, column ł#HOMž (High-Order
Mutant) indicates the total number of High Order Mutants generated, column ł# Dev. Testsž (Developer written
Tests) reports on the number of developer written test cases, and column ł# Evosuite Testsž reports on the number
of automatically generated tests.

4.5 Metrics and Measurements

Statistical Analysis: To answer our research questions, we performed several statistical analyses to evaluate
correlations among several variables. For instance, in RQ1, we analyzed whether the number of commit-relevant

9https://commons.apache.org
10https://pydriller.readthedocs.io/en/latest/intro.html
11PyDriller is an open-source Python framework that helps developers mine software repositories and extract information given the GIT

URL of the repository of interest.
12https://junit.org/junit4/
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Table 2. Details of Subjects Programs and Studied Commits

Commons Projects # LOC # Maturity # Commits # FOM # Mutants on Change # HOM # Dev. Tests # EvoSuite Tests

collections 74,170 14/04/2001 45 27,417 2,026 1,192,188 4,797 1,285

io 29,193 25/01/2002 30 24,970 1,115 668,448 914 286

text 22,933 11/11/2014 46 47,847 4,155 2,073,829 1,084 322

csv 4,844 25/01/2002 101 66,862 3,577 1,968,137 6,144 2,833

lang 85,709 19/07/2002 66 102,072 3,891 3,885,341 7,574 959

Total 216,489 N/A 288 269,168 14,764 9,787,943 20,513 5,685

ł# LOCž - Lines Of Code, ł# FOMž - First Order Mutants, ł# HOMž - Higher Order Mutants, ł# Dev. Testsž - Developer written Tests

mutants correlates with the number of mutants residing on a change and whether the number of subsuming
commit-relevant mutants correlates with the number of subsuming mutants.
In this study, we employ two correlation metrics, namely Kendall rank coeicient (�) (Tau-a), and Spearman’s

rank correlation coeicient (� - (rho)) , with the level of statistical signiicance set-up to � − ����� 0.05. The
Kendall rank coeicient (�), measures the similarity in the ordering of studied scores, while Spearman’s � (rho)
measures how well the relationship between two variables can be described using a monotonic function [32]. The
correlation metrics calculate values between -1 to 1, where a value close to 1 or -1 indicates strong correlation,
while a value close to zero indicates no correlation at all. Additionally, to facilitate comprehension of our igures,
we employed coeicient of determination (R2 trendline) as a statistical measure that describes the proportion of
the variance in the dependent variable that is predictable from the independent variable(s).

Mutation-speciic Measures:We also employed mutation-speciic metrics such as the commit-relevant mutation
score and subsuming commit-relevant mutation score, to measure the efectiveness and eiciency of the selected
mutants that guide the testing process. We measure how the test suite efectiveness progresses when we analyze
mutants from the diferent mutant sets (e.g., all mutants, relevant mutants, subsuming relevant, etc.). Similarly,
we measure eiciency by counting the number of test executions involved (to identify which mutants are killed
by the test suites) when test suite progresses.

4.6 Implementation Details

Our commit-relevant mutant identiication approach is implemented in approximately 5 KLOC of Python
code, 600 LOC in Shell scripts and 3 KLOC of Java. It employs several external tools and libraries including
Evosuite, git-diff and PitTest. We have also implemented additional infrastructure on PitTest to ensure
analysis of evolving software and extract assertion information. In the following, we describe each of these
tools. For replication and future use, our implementation is publicly available here: https://mutationtesting-

user.github.io/evolve-mutation.github.io/

4.6.1 EvoSuite (V1.1.0). To obtain a rich test suite for our study, we collected developer-written tests and
automatically generated tests. For our mutation testing analysis, we augment developers’ test suites with test
cases automatically generated with EvoSuite [15]. EvoSuite is an evolutionary testing tool that generates unit
tests for Java software. In our analysis, we run EvoSuite against all several coverage criteria (e.g., line, branch,
mutation, method, etc.); we also executed EvoSuite with default conigurations, especially concerning running
time.
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4.6.2 PiTest (V1.5.1) and git-diff. PiTest does not have built-in functionality to satisfy the requirements
of our experiment. Therefore, we extended the framework for High Order Mutants [27] on top of PiTest that
takes as an input the gitdiff output13. Based on the statement diference between the versions, the framework
extends the mutants generation functionality by generating, i.e., mapping, mutants on the change, with the
mutants around the change. Thus, creating second-order mutants for that particular commit ile. Our framework
is conigured to generate the extended set of mutants available in PiTest, introduced by Laurent et al. [26]. Kintis
et al. [23] has also shown that this extended set of mutants is more powerful than the mutant sets produced by
other mutation testing tools.

4.6.3 PiTest Assert. PiTest (V1.5.1) creates killing matrices and identiies whether a mutant is killed or not,
based on test case oracle prediction (test fails or passes). These matrices were not suitable for our experimental
procedure. Therefore, we built a framework on top of PiTest to extract additional information concerning each
test case assertions (from tests that cover mutants). Our framework performs bytecode instrumentation of each
test executed on a speciic mutant, using ASM14 as an all-purpose Java bytecode manipulation and analysis
framework. By instrumenting each test case assertion, we can obtain execution information. More precisely,
each assertion has a unique test name where it locates, assertion function name, assertion line number, and
assertion actual execution value. If an assertion triggers an exception, we keep track of the stack-trace execution.
However, for this study’s purpose, we disregard the assertions that trigger the exception from our relevant
mutants calculation (please refer to Algorithm 1) since we only aim at actual mutants’ observable behavioral
output. Hence, the mutant-assertion matrix is a weighted matrix. For each (mutant, test-assertion) pair, the
value corresponds to the actual assertion value obtained by running the test on the mutant, or the exception
stack trace if an assertion throws an exception. Concretely, we employ the JUnit415 testing framework which
contains a public class (called Assert) that provides a set of assertion methods to specify test conditions. Typically,
these methods (e.g., Assert.assertEquals(expected value, actual value)) directly evaluate the assertion’s
conditions, then returns the inal assertion’s output (e.g., conditions not satisied, pass, or fail). To obtain the
value of parameters within the assert statement, in our framework, we use PiTest Assert to instrument each
assertion method. Such that we serialize the provided input values in the assert statement before they propagate to
conditional checks, i.e., before the conditional check is reached in org.junit.Assert16 and the output values are fed
to org.hamcrest.Matcher17 for evaluation. Speciically, we serialize both the expected and actual values after they
propagate as input parameters of the assert statement. This allows to assess the input parameters of the assert
statement (e.g., an expression or a method call (assertEqual(foo(), bar()))) for concrete values. Hence, in our
setup, we compare the output values of both the expected and actual values present in each assertion. However,
our experimental framework does not directly account for the potential dependencies within assertions and test
cases, we address this concern in the threats to validity (see section 7). Our test assertion framework is built on
top of PiTest and is publicly available. 18

4.7 Research Protocol

Figure 5 highlights our experimental protocol which proceeds as follows: For each project (e.g., commons-
collections) and each mined commit (e.g., hash: 03543e5f9, we irst augment the developers’ test suite with automat-
ically generated tests using EvoSuite [15]. Next, we obtain the commit changes (a.k.a hunks) of the commit using

13https://git-scm.com/docs/git-dif
14https://asm.ow2.io/
15https://junit.org/junit4/
16https://junit.org/junit4/javadoc/4.13/org/junit/Assert.html
17http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/Matchers.html
18https://github.com/Ojda22/pitest/tree/pit-SOM-RM-AssertCache
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Fig. 5. Research Protocol

the git-diff tool, in order to identify the changed and unchanged program statements. We then generate both
irst-order and second-order mutants for the program, using PiTest Assert as our extension of PiTest Mutation
Testing tool [11]. After mutant generation, we execute every mutant to obtain the mutant-assertion matrices, which
provides information about test assertion type, position and value. Finally, we execute our relevant mutant
detection algorithm 1 to identify commit-relevant mutants.
Our result analysis proceeds after computing mutant-assertion matrices and identifying commit-relevant

mutants. We then perform the data gathering and analysis required to answer every research question (RQs). In
particular, we compute subsuming mutant relations necessary to answer RQ2, and perform the mutation testing
simulation needed to answer RQ5 and RQ6.

5 EXPERIMENTAL RESULTS

5.1 RQ1: Commit Relevant Mutants

We start by studying the proportion of commit-relevant mutants that afect the commit changes out of all mutants
by using the pipeline just introduced in Section 3. Thus, in this RQ, we consider as commit-relevant mutants
all mutants identiied by our approach, including the set of killable mutants residing on modiied statements.
We distinguish commit-relevant mutants in the categories of those located on changed and unchanged code to
demonstrate and estimate the potential reduction in terms of the number of mutants requiring analysis and the
number of test executions required to cover them if the tester focuses testing only on commit-relevant mutants
instead of the whole set mutants, or on the mutant set consisting of all mutants residing on the modiication.

Additionally, we evaluate the properties of commit-relevant mutants that can inform their selection among all
mutants. Thus, we examine the location of commit-relevant mutants, whether they are mostly located within the
commit or outside the committed changes. We also assess whether there is a correlation between the number of
identiied commit-relevant mutants and the number of commit-relevant mutants within the committed change
to determine if the number of mutants within a commit can serve as a proxy to determine the number of
commit-relevant mutants.

5.1.1 RQ1.1:What is the proportion of commit-relevant mutants out of all mutants? Table 3 and Figure 6 illustrate
the distribution of commit-relevant mutants among all mutants. In our evaluation, we found that only about one in
three (≈30%) mutants are commit-relevant, on average. In particular, we observed that only about 225 mutants are
relevant to a commit out of 833 mutants, on average. This implies that an efective commit-aware mutation testing

ACM Trans. Softw. Eng. Methodol.
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Table 3. Details of the Prevalence of Commit-relevant Mutants.

Project # Commits (C) # C. All R. M. # C. No R. M. # Relevant # Not Relevant Ratio Reduction Ratio

commons-collections 45 2 4 6,833 18,558 32,31% 67,69%

commons-io 30 0 3 6,052 17,803 28,70% 71,30%

commons-text 46 1 4 8,810 34,882 27,10% 72,90%

commons-csv 101 4 0 27,441 35,844 47,39% 53,61%

commons-lang 66 1 2 15,724 82,457 19,22% 80,78%

Total 288 8 13 64,860 189,544 N/A N/A

Average 58 N/A N/A 225 658 29,58% 70,42%

ł# C. All R. M.ž - Number of Commits with all relevant mutants, ł# C. No R. M.ž - Number of Commits with no relevant mutants
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Fig. 6. Distribution of mutants across all commits showing the proportion of non-relevant mutants (in blue) as well as
commit-relevant mutants within commited changes (in red) and outside commited changes (in green)

technique can reduce signiicant mutation testing efort, both computational when executing mutants and manual
when analysing mutants. In addition, we found some (21) outliers in our analysis of commit-aware mutants, see
columns ł# C. All R. M.ž (Number of Commits with all Relevant Mutants) and ł# C. No R. M.ž (Number of Commits
with No Relevant Mutants): In particular, we found that only 2.8% of commits (8) had 100% commit-relevant
mutants, this portrays the importance of mutant selection for evolving software systems. On the other hand, our
evaluation results show that in 4.5% of the commits (13) we found no commit-relevant mutants outside the change;
this suggests that it is pertinent to develop commit-aware mutation testing techniques that discern relevant from
non-relevant mutants. Overall, these indings demonstrate the importance of developing commit-aware test
selection for evolving software systems, in particular, in selecting relevant mutants to reduce testing efort.
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18.56%

81.44%

Within Outside

Ratio of commit-relevant mutants located within a change

Fig. 7. Proportion of commit-relevant mutants within
the commit (18.56%) and outside the commit (81.44%)

30.05%

69.95%

Within Outside

Ratio of commit-relevant mutants located within changed 
methods

Fig. 8. Proportion of commit-relevant mutants within
the change method (30.05%) and the outside changed
methods (69.95%)

One in three (approximately 30%) mutants are commit-relevant; hence, selecting commit-aware mutants can
signiicantly reduce mutation testing cost.

5.1.2 RQ1.2: Where are commit-relevant mutants located in the program, i.e., how many commit-relevant mutants

are within or outside the commited changes? In our evaluation, most (81%) commit-relevant mutants are outside of
developers’ committed changes (see Figure 7). Making only about one in ive (19%) commit-relevant mutants being
within the committed changes of developers. For instance, a developer that tests all commit-relevant mutants
within the changed method will test only 30% of commit-relevant mutants, and miss almost 70% of commit-relevant
mutants (see Figure 8). This result suggests that to test the impact of developer changes on the program efectively,
it is important to not only test within the committed changes. It is also highly pertinent to test the interaction of
committed changes with the rest of the unmodiied program.

Most (81% of) commit-relevant mutants are located outside of the commit, and
only a few (19% of) commit-relevant mutants are within the commit.
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5.1.3 RQ1.3: Is there a correlation between the number of commit-relevant mutants and the number of mutants

within the change? Our evaluation results show that there is a weak trend between the number of commit-relevant
mutants and the number of mutants within the commit. Our statistical correlation analysis shows that there is a
weak correlation between both variables. In particular, we found a Spearman and Kendall correlation coeicients
of 0.212 and 0.141, respectively. Indeed, both the Spearman and Kendall correlation coeicients are statistically
signiicant (with p-values 0.0006 and 0.0007, respectively). Figures 9, 10 and 11 summarize the results of the
diferent studied correlations. These correlation results suggest that there is a weak relationship between the
number of mutants within a change and the number of commit-relevant mutants, but no robust and predictable
pattern or trend between both variables. This implies that the number of mutants within the commit can not reliably
predict the number of commit-relevant mutants (in unmodiied code regions), and vice versa.

There is a statistically signiicant weak positive correlation between the number of commit-relevant mutants and
the number of mutants within the change (Spearman and Kendall correlation coeicients of 0.212 and 0.141,

respectively).

5.2 RQ2: Subsuming Commit Relevant Mutants

In this section, we investigate the prevalence of subsuming commit-relevant mutants among commit-relevant
mutants. Estimating the proportion of subsuming commit-relevant mutants is important to demonstrate the
further reduction (in number of mutants to analyse and test executions) achieved by łselecting" or łoptimizingž for
efectively identifying subsuming commit-relevant mutants, in comparison to commit-relevant mutants, subsuming
mutants and all mutants. The two subsumption relations (i.e., one for the commit-relevant mutants and the other
one for all mutants) are computed by following the deinition introduced in Section 2.2.

Additionally, we examine the correlation between the number of subsuming commit-relevant mutants and the
number of commit-relevant mutants within a change and subsuming mutants; this is important to determine if
these variables are related can predict or serve as a proxy for determining subsuming commit-relevant mutants.

Fig. 12. Venn diagram showing the proportion of
łcommit-relevant mutantsž (29.58% in orange)) and łsub-
suming commit-relevant mutantsž (6.13% in purple)
among all mutants (in pink).

50604 1367
14345

95180

1683604

Subsuming Mutants

Subsuming Relevant Mutants

Mutants On Change

Fig. 13. Venn diagram showing the number and intersec-
tions among łcommit-relevant mutants within commit
changesž (in blue),łsubsuming commit-relevant mutantsž
(in orange) and łsubsuming mutantsž (in pink).

What is the proportion of łsubsuming commit-relevant mutantsž among commit-relevant mutants, such that a
test suite that distinguishes a(ll) subsuming commit-relevant mutant(s) covers (all) other commit-relevant mutants?

ACM Trans. Softw. Eng. Methodol.



1:24 • Ojdanić, et al.

Figure 12 illustrates the proportion of subsuming commit-relevant mutants and their intersection with commit-
relevant mutants as well as all mutants. In our evaluation, we found that łsubsuming commit-relevant mutantsž
are signiicantly smaller than commit-relevant mutants and all mutants. About one in 20 mutants is a subsuming
commit-relevant mutant, and about one in ive (5) commit-relevant mutants is a subsuming commit-relevant
mutant. Speciically, łsubsuming commit-relevant mutantsž represent 20.72% and 6.13% of all commit-relevant
mutants and all mutants, respectively. This suggests it is worthwhile to identify and select subsuming relevant
mutants from all (commit-relevant) mutants. Invariably, generating only subsuming commit-relevant mutants
reduces the number of mutants to analyze by 79% and 93% compared to generating commit-relevant mutants and
all mutants, respectively. This result implies that developing automated mutation testing methods that efectively
identify, select or generate subsuming commit-relevant mutants can signiicantly reduce mutation testing cost.

Selecting łsubsuming commit-relevant mutantsž can reduce the number of mutants to be considered by about 79%
and 93% in comparison to commit-relevant mutants and all mutants, respectively.

What is the proportion of łsubsuming commit-relevant mutantsž among łsubsuming mutantsž and łcommit-
relevant mutants within a changež? Figure 13 illustrates the intersections between all three types of mutants.
Notably, most (92.98% ś 18,117 out of 19,484) subsuming commit-relevant mutants are subsuming mutants as
well, and they represent 26.42% of all subsuming mutants (68,553). This implies that searching for subsuming
commit-relevant mutants among subsuming mutants (instead of all mutants) is beneicial in reducing the search
scope.
We also observed that all subsuming commit-relevant mutants within committed changes are subsuming

mutants. Meanwhile, about one in ive (19.36% ś 3,772 out of 19,484) subsuming commit-relevant mutants are
within the developers’ committed changes; they represent 28.38% (3,772 out of 13,290) of all mutants within the
change. This suggests that less than one in three mutants within the change are subsuming commit-relevant
mutants. Hence, it is important to search for subsuming commit-relevant mutants outside of the committed
changes since most subsuming commit-relevant mutants (81%, 15,772) are outside the committed changes.

Most (92.98% of) subsuming commit-relevant mutants are subsuming mutants, while a few (19.36% of) subsuming
commit-relevant mutants are located within committed changes.

Is there a correlation between the number of subsuming commit-relevant mutants and the number of mutants
within a change? Our correlation analysis shows that there is a weak positive correlation between the number of
commit-relevant mutants within a change and the number of subsuming commit-relevant mutants (see Figure 14).
Both Spearman and Kendall correlation coeicients report a weak positive correlation, with correlation coeicients
0.222 and 0.148, respectively, (see Figure 14). In particular, the correlation coeicients are statistically signiicant
with p-values less than 0.05, speciically, 0.0003 and 0.0004 for Spearman and Kendall coeicients, respectively.
This result suggests that the number of mutants within a change can not strongly predict the number of subsuming
commit-relevant mutants; hence, it is important to identify all commit-relevant mutants that interact with the
committed changes, and not only test the change itself.

The number of mutants within a change can not reliably predict the number of subsuming commit-relevant
mutants since there is only a weak positive correlation between both variables.

What is the relationship between the number of subsuming commit-relevant mutants and the number of subsuming
mutants? Figure 15 illustrates the distribution and correlation between the number of subsuming mutants and the
number of subsuming commit-relevant mutants. In this igure, the trending line shows that there is a moderate
positive correlation between both variables. Indeed, both Spearman and Kendall correlation coeicients reports a
moderate positive relationship between both variables, with correlation coeicients 0.476 and 0.368, respectively,
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(see Figure 15). The correlation coeicients also show that the positive relationship is statistically signiicant
(p-value < 0.05). As expected, we observed that the proportion of subsuming relevant mutants per commit
increases (trendline �2=0.881) as the proportion of commit-relevant mutants increases (see Figure 16). Overall,
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this result implies that these variables can serve as a proxy to each other, hence predicting one variable could
help identify the other. In particular, this implies that selecting subsuming mutants signiicantly increases the
chances of selecting subsuming commit-relevant mutants.

There is a moderate positive relationship between the number of subsuming commit-relevant mutants and the
number of subsuming mutants, such that one can predict the other and vice versa.

5.3 RQ3: Commit Size

In this section, we investigate if there is a relationship between the number of (subsuming) commit-relevant
mutants and the size of the commit, measured in terms of the number of commit hunks.
In particular, we pose the following question: Is there a relationship between the number of commit hunks and

the number of (subsuming) commit-relevant mutants?
Figure 17 illustrates the relationship between the number of commit-relevant mutants and the number of

commit hunks. For commit-relevant mutants, we found that the number of commit-relevant mutants (moderately)
increases (trendline �2=0.125) as the number of commit-hunks increases. This implies that there is positive direct
relationship between the size of the commit and the number of commit-relevant mutants. However, Figure 18
shows that the number of subsuming commit-relevant mutants (moderately) decreases (trendline �2=0.023) as the
number of commit-hunks increases. These results suggest that there is an indirect relationship between the size
of the commit and the number of subsuming commit-relevant mutants. The size of the commit does not directly
predict the number of subsuming commit-relevant mutants. Indeed, the number of subsuming commit-relevant
mutants decreases as the average size of the commit increases. Overall, this result demonstrates the efectiveness
and importance of subsuming commit-relevant mutants in reducing testing efort, even for large commit changes.

The number of łcommit-relevant mutantsž increases as the size of the commit increases; however, the number of
łsubsuming commit-relevant mutantsž decreases as the size of the commit increases.
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5.4 RQ4: Commit-relevant Mutant Types

Let us investigate the prevalence of mutant types among (subsuming) commit-relevant mutants, using 25 distinct
mutant group types from Pitest [11]. This is important to determine whether the generation, selection or
identiication of commit-relevant mutants can be improved by focusing on speciic mutant types.
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Fig. 19. Prevalence of Commit-relevant Mutant Types
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Fig. 21. Ratio of Commit-relevant Mutants over All Mu-
tants per Mutant Type
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Fig. 22. Ratio of Subsuming Commit-relevant Mutants
over All Mutants per Mutant Type

What is the prevalence of mutant types among (subsuming) commit-relevant mutants? Figure 19 illustrates the
prevalence of mutant types among commit-relevant mutants. Our evaluation results show that some mutant types
are highly prevalent, such as Unary Operator Insertion Mutators (UOIMutators), Relational Operator Replacement
Mutator (RORMutators) and Constant Replacement Mutator (CRCRMutators). On one hand, UOIMutators inject a
unary operator (increment or decrement) on a variable, this may afect the values of local variables, arrays, ields,
and parameters [11], while RORMutators replace a relational operator with another one, e.g., ł<ž with ł>ž or
ł<=ž with ł<ž. On the other hand, CRCRMutators mutates inline constants. For further detauls about the mutant
types, the table of constants and other mutation operators can be found in the oicial PiTest documentation19.
Speciically, 50.77% of the commit-relevant mutants are of one of these three mutant types. This is mainly related
to the fact these three mutation operators produced the majority (54.5%) of the mutants considered in our study.
Precisely, Figure 21 shows that the distribution of commit-relevant mutants is clearly uniform per mutant type.
That is, in general, between 20% and 30% of the mutants for each type result to be commit-relevant. This indicates
that mutants type does not increase or reduce the chances for mutants of being commit-relevant. The outliers
of Figure 21, corresponding to mutant types Bitwise Operator Mutator (OBBNMutators) and Invert Negatives
Mutator (InvertNegsMutat), are because of the low number of mutants for these types: 13 out of 81 (16%) mutants
are commit-relevant in the case of OBBNMutatorsmutant type, while 3 out of 5 (60%) mutants are commit-relevant
for InvertNegsMutat mutant type. In particular, OBBNMutators mutates (i.e., reverses) bitwise łANDž (&) and
łORž (|) operators, while InvertNegsMutat operators inverts the negation of integers and loating-point numbers.

Similarly, Figures 20 and 22 show that the ratio of subsuming commit-relevant mutants per mutant type follows
a uniform distribution as well. Typically, between 5-7% of the mutants per mutant type turn to be subsuming

19http://pitest.org/quickstart/mutators/
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Table 4. Comparative Efectiveness of selecting and killing (subsuming) commit-relevant mutants in comparison to łall
mutantsž and łmutants within a changež by observing RMS (Relevant Mutation Score) and RMS* (Subsuming Relevant
Mutation Score)

RMS RMS*

Selection Strategy/Interval 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Random 46.67 70.59 82.42 88.10 91.95 95.26 95.74 96.85 97.50 98.05 11.11 35.00 54.17 66.13 75.00 81.25 85.71 88.24 90.89 92.76
Within a change 46.48 59.52 65.91 67.48 68.42 69.47 69.96 70.18 70.40 71.09 11.95 25.00 28.95 32.31 33.33 33.67 34.38 34.88 35.23 35.29
Commit-Relevant 75.00 95.05 100 100 100 100 100 100 100 100 40.74 83.72 100 100 100 100 100 100 100 100

Subsuming Commit-Relevant 80.00 98.51 100 100 100 100 100 100 100 100 65.75 95.35 100 100 100 100 100 100 100 100

(a) Relevant Mutants Progression (b) Subsuming Relevant Mutants Progression

Fig. 23. Comparative Efectiveness of selecting and killing (subsuming) commit-relevant mutants in comparison to łrandom
mutantsž and łmutants within a changež

commit-relevant. The outlier of Figure 22 corresponds to InvertNegsMutat mutant type, where none of the 3
commit-relevant mutants identiied for this mutant type are subsuming (because of mutants of a diferent mutant
type subsume them).

The distribution of (subsuming) commit-relevant mutants per mutant type is uniform. Typically, between 20-30%
(5-7%) of the mutants per mutant type are (subsuming) commit-relevant.

5.5 RQ5: Efectiveness of Commit-relevant Mutants Selection

This section simulates a mutation testing scenario where the tester selects a mutant for analysis for which a test
to kill it is developed. Note that a test case that is designed to kill a mutant may collaterally kill other mutants.
Consequently, opening a space to examine the efectiveness of the test suites developed when guided by diferent
mutant selection strategies. Accordingly, this study compares the following mutant selection strategies: łrandom
mutants selection,ž łmutants within a change,ž and (subsuming) commit-relevant mutants. We measure their
efectiveness in terms of the Relevant Mutation Score (RMS) and Minimal-Relevant Mutation Score (RMS*), which
intuitively measures the number of (subsuming) commit-relevant mutants killed by the diferent test suites.
Speciically, we investigate the extent to which selecting and killing each aforementioned mutant types improves
the test suite quality, in terms of the number of (subsuming) commit-relevant mutants killed by the test suite.
Then we pose the question: How many (subsuming) commit-relevant mutants are killed if a developer or test
generator selects and kills random mutants or only mutants within a change?
Table 4 and Figure 23 demonstrates how the efectiveness of the developed test suites progresses when we

analyze up to 20 mutants from the diferent mutant pools. We observed that when the same number of mutants are
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selected from the diferent pools, better efectiveness is reached by test suites developed for killing (subsuming)
commit-relevant mutants.
For instance, a test suite designed to kill six (6) selected (subsuming) commit-relevant mutants will achieve

100% of RMS and RMS*. However, a test suite designed to kill six randomly selected mutants will achieve 82.42%
RMS and 54.17% RMS*, while a test suite that kills six mutants within a change will achieve 65.91% RMS and
28.95% RMS*, respectively. More precisely, even after selecting 20 mutants, neither random selection from all
mutants nor within a change selection achieved 100% of RMS and RMS*. This result demonstrates the signiicant
advantage achieved by selecting (subsuming) commit-relevant mutants.

Moreover, we observed that random selection from all mutants is up to 1.6 times more efective than selecting
mutants within a change. For instance, selecting 20 random mutants achieves 98.05% RMS and 92.76% RMS*,
while selecting 20 mutants within a change only achieves 71.09% RMS and 35.29% RMS*. This result demonstrates
the importance of selecting mutants outside developers’ committed changes.

Selecting and killing (subsuming) commit-relevant mutants led to more efective test suites. They signiicantly
reduced the number of mutants requiring analysis compared to random mutant selection and selecting mutants

within a change.

5.6 RQ6: Test Executions

In this section, we study the eiciency of the diferent mutant sets in terms of the number of test executions
required to run the tests resulting from the analysis of 2-20 mutants. We thus, approximate the computational
demands involved when using all mutants, relevant mutants, (subsuming) relevant mutants and mutants located
within commit changes.

Figure 24 illustrates the number of test executions required by the test suites derived by the analysis of 2-20
mutants. We found that the analysis of commit-relevant mutants signiicantly reduces the number of required
test executions by 4.28 times on average over diferent intervals of analysed mutants (and 16 times when using
subsuming commit-relevant mutants) in comparison to test execution required when analysing all mutants. For
instance, users will need to perform 601 test executions when deriving tests based on the analysis of 2 mutants,
from the set of all mutants, compared to 185 or 52 test executions needed by the use of commit-relevant mutants
or subsuming commit relevant mutants, respectively.

The diference increases with the number of analysed mutants. Thus, for the 2 analysed mutants, the diference
in test execution is 2.8 times. For 4 mutants, 3.65, and 6 mutants, the diference in test execution is 4 times
comparing all mutants and the commit-relevant mutants. We can also observe an increase in the diference
between test executions needed by the use of subsuming commit relevant mutants and all mutants over diferent
intervals. This diference is 11.55 times, 14.68 and 16 for analysed 2,4 and 6 mutants, respectively. Overall, we can
compare test execution needed by using commit-relevant and subsuming commit-relevant mutants and observe
a 4 times diference on average, with no considerable diferences between intervals.

Selecting subsuming commit-relevant mutants reduces test execution cost (i.e., the number of test executions,) by
up to 16 times compared to all mutants.

6 DISCUSSION

6.1 Summary of Findings

Commit-relevant mutation testing allows developers to identify and select the mutants necessary for testing the
program changes to avoid regression bugs and newly introduced failures. This paper presents an empirical study
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Fig. 24. Eficiency, number of test executions required when deriving test suite sizes (in the range [2, 20]).

that examines the prevalence and characteristics of commit-relevant mutants and provides scientiic insights
concerning the mutation testing of evolving software systems. Our main empirical indings include the following:

(1) Commit-relevant mutants, at unit level, are highly prevalent (30%) and most commit-relevant mutants
(81%) are located outside of program commit changes. Hence, it is important to conduct mutation analysis of
evolving systems to determine the inluence of the program changes on the rest of the unmodiied code.

(2) Adequate selection of (subsuming) commit-relevant mutants signiicantly reduces the number of mutants
involved (approximately 93%); thus, there is a huge beneit to developing efective and practical techniques
for the selection of (subsuming) commit-relevant mutants in evolving systems.

(3) Predicting (subsuming) commit-relevant mutants is not a trivial task. In our evaluation, we studied several
candidate proxy variables that do not reliably predict commit-relevant mutants, including the number of
mutants within a change, mutant type, and commit size. Hence, we encourage the development of statistical
or machine learning approaches and program analysis techniques to predict or identify commit-relevant
mutants automatically.

(4) Selecting commit relevant mutants is signiicantly more efective and eicient than random mutant selection
and the analysis of only mutants within the program change. Commit-relevant mutation testing can reduce
testing efort (i.e., number of test executions) by up to 16 times, and by half, compared to random mutant
selection and mutants within a change, respectively.

Firstly, our evaluation results show that most commit-relevant mutants are located outside of the commit
changes due to the interaction of changes with the unmodiied program code. In our evaluation, commit-relevant
mutants that capture evolving software behavior are located all around the program changes. Besides, we observe
that efective selection of commit-relevant mutants signiicantly reduces the number of mutants requiring analysis.
Thus, we encourage researchers to investigate automated methods for identifying and selecting commit-relevant
mutants, for instance, using statistical analysis or program analysis.
In addition, we observed that commit-relevant mutant prediction and selection is a challenging task. For

example, many proxy variables could not reliably predict commit-relevant mutants in our analysis (RQ2 to RQ4).
To buttress this, we further conducted a correlation analysis of the features of commit-relevant and non-relevant
mutants using control and data low features selected from Chekam et al. [10]. The goal is to determine if mutants’
features previously used for other prediction tasks, for instance, for selecting fault revealing mutants [10], can
also distinguish commit-relevant mutants. Figure 25 presents our indings using a heat map, where each map
coordinate represents Spearman correlation coeicient calculated between two features on the coordinates. These
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features characterize relevant and not relevant mutants, labeled with suix "R" or "N", respectively. Notably, we
observe that there are no strong positive or negative correlations among these features. This implies that these
features can not directly help in distinguishing between commit-relevant and non-relevant mutants. However, we
can observe two cases of a medium positive correlation between the same class features, in particular, CfgDepth
and NumInDataD between both classes show correlation.20 This phenomenon is expected since there will be
more data-dependent expressions as the depth of a mutant in the control low graph increases.
Furthermore, we found that commit-relevant mutant selection considerably improves the efectiveness and

eiciency of testing evolving systems, especially in comparison to the random mutant selection, and using the
mutants within the program changes (RQ5 and RQ6). Overall, these empirical indings shed more light on the
challenge of mutation testing of evolving systems and provide directions for future research into the selection
and prediction of commit-relevant mutants.

6.2 Implications, Guidelines and Use-Cases

The main insight of our study is the need to pay attention to the efective identiication, selection or prioritization of
commit-relevant mutants. This is particularly important to reduce the developers’ efort required for mutation-
based regression testing in continuous integration system. Random mutant selection or selecting mutants within
the change is not efective for identifying commit relevant mutants, since only one in three mutants are commit-
relevant, and only one in ive commit-relevant mutants are located within the commit (see RQ1). Notably, an
efective commit-aware mutant selection method can signiicantly reduce the number of mutants involved. In
particular, efective selection of commit-relevant mutants signiicantly reduced the number of mutants requiring
analysis and the number of test executions compared to random mutant selection and selecting mutants within a
change (see RQ5 and RQ6, respectively). We have also shown that commit-relevant mutants are located both within
and outside program changes. Precisely, we demonstrate that beyond the committed changes, other program
locations are also important for commit-aware mutation testing. Hence, it is important to identify the relevant
program locations for commit-aware mutant injection. To achieve this, we encourage the use of program analysis
techniques (e.g., slicing) that determines the program dependencies between changes and the rest of the program,
such that mutant injection is focused on selecting such dependencies to efectively reduces the search space
and cost for mutation testing. It is also pertinent to note that the subsumption relation of mutants can help in
considerably reducing the efort during commit-aware mutation testing. Indeed, it is important to identify and
prioritize (subsuming) mutants during mutation testing of evolving systems. Identifying those mutants allows
developers to augment their test suite to include new tests that exercise the program change and its dependencies.
Besides this use case, the commit-relevant mutants are important for efectively testing for regression bugs, i.e., if
program changes (or commits) introduce new failures or break previous features.

To achieve the aforementioned goals, i.e., automate the identiication and selection of commit-relevant mutants
to aid developers, we turn to the research community to develop and investigate the techniques required for
efective commit-aware mutation testing. We note that neither the size of the commit nor the type of the mutant
reliably predicts (subsuming) commit-aware mutants. Even though the number of commit-relevant mutants
increases as the size of commit increases, the number of subsuming commit-relevant mutants decreases as the size
of the commit increases (see RQ3). Additionally, we observed that the distribution of (subsuming) commit-relevant
mutants per mutant type is uniform (see RQ4). Thus, the takeaway of this study is the need to develop: a) novel
techniques for selecting, prioritizing and predicting commit-relevant mutants; and b) commit-aware test metrics
to determine the adequacy of commit-aware mutation testing. Although the problem of selecting/identifying
relevant mutants is active for traditional mutation testing, this is hardly well-studied for commit-aware mutation

20CfgDepth means the depth of a mutant in the control low graph, i.e., the number of basic blocks to follow to reach the mutant, and

NumOutDataD refers to the number of mutants on expressions on which a mutant� is data-dependent.
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Fig. 25. Correlation between features of relevant and non-relevant mutants labeled with sufixes łR" and łN", respectively.
The features examined include the following: CfgDepth - Depth of a mutant in Control Flow Graph, i.e., the number of basic

blocks to follow in order to reach the mutant ; NumOutDataD - Number of mutants on expressions data-dependent on a mutant

expression; NumInDataD - Number of mutants on expressions on which a mutant� is data-dependent ; NumOutCtrlD - Number

of mutants on expressions control-dependent on a mutant ; and NumInCtrlD - Number of mutants on expressions on which� is

control-dependent.

testing. This is an important problem since several studies [28, 29] (including this study) have demonstrated that
traditional (random) mutation testing is signiicantly costly for evolving software.

This paper has further illustrated that dynamic approaches (like observation slicing) can complement static or
machine learning based approaches in efectively identifying commit-relevant mutants. We have also observed
that commit-relevant mutants cannot be predicted using only the committed changes or program dependence
properties. This implies that the current state-of-the-art is not generally applicable for commit-aware mutation
testing in practice. Thus, for more efective approaches, we believe researchers need to consolidate the knowledge
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from several sources, including the commit diference, mutant properties, the semantic behavior of mutants,
and the semantic divergence produced by the change. To this end, we encourage further investigation of the
efectiveness of such techniques for commit-aware mutation testing, and the development of newer program
analysis based approached (e.g., symbolic execution or search-based techniques) for identifying commit-aware
mutants.

Finally, previous research [28] has shown that commit-aware mutation testing requires diferent test metrics
from traditional mutation testing. Thus, we encourage researchers to deine new test metrics targeting the
changes and their dependencies, and investigate their efectiveness for commit-aware mutation testing. Overall,
we expect that addressing these challenges will reduce the performance gap between the state-of-the-art in
traditional mutation testing and commit-aware mutation testing.

7 THREATS TO VALIDITY

Our empirical study and indings may be limited by the following validity threats.

External Validity: This refers to the generalizability of our indings. We have empirically evaluated the charac-
teristics of commit-relevant mutants on a small set of open-source Java programs, test cases, and mutants. Hence,
there is a threat that our experimental protocol and indings do not generalize to other mutants, programs, or
programming languages. Additionally, there is the threat that our indings do not generalize to other Java projects,
since our subject programs are all from the Apache Commons project and may share similar characteristics
in terms of architecture, implementation, coding style and contributors. We have mitigated these threats by
conducting our experiments on ive (5) matured Java programs with a varying number of tests and a considerably
large number of mutants. In our experiments, we had 288 commits and 10,071,872 mutants with 25 diferent
groups of mutant types. In addition, our subject programs have 216,489 KLOC and 17 years of maturity, on average.
Hence, we are conident that our empirical indings hold for the tested (Java) projects, programs, commits, and
mutants. Furthermore, we encourage other researchers to replicate this study using other (Java) programs,
projects and mutation tools. In our experiments we used Pitest [11] to perform our analysis. However, it is likely
that the use of a diferent mutation tool may impact our indings, since it may contain diferent operators than
Pitest. While this is possible, recent empirical evidence [23] has shown that Pitest has one of the most complete
sets of mutation operators that subsumes the operators of the most popular mutation testing tools in almost all
cases. Nevertheless, we are conident on our results since Pitest includes a large sample of mutants the general
results are unlikely to change with diferent types of simple mutations.

Internal Validity: This threat refers to the incorrectness of our implementation and analysis, especially if we
have correctly implemented/deployed our experimental tools (e.g., Evosuite, Pitest and Pitest assert), performed
our experiment as described and accounted for randomness in our experiments. We mitigate the threat of
incorrectness by (manually) testing our implementation, tools, and experimental protocol on few programs and
commits to ensure our setup works as expected. Speciically, we performed manual testing by examining ive (5)
representative Apache programs containing about 500 LoC per commit on average. While we inspected in total
about 20 commits with over 30 LoC in patch sizes, on average. We also address the threat of randomness in our
experiments by repeating our experiments 100 times to mitigate any random or stochastic efects.

Construct Validity: This refers to the incompleteness of our experimental approach, in terms of identifying
all commit-relevant mutants. Despite the soundness of our approach, it only provides an approximation of
commit-relevant mutants, such that the set of identiied commit-relevant mutants is only a subset of the total
number of all commit-relevant mutants. This is due to the inite set of test cases and mutants employed in our
experiments. We have mitigated this threat by ensuring we have a reasonably large set of mutants and test cases
for our experiments. For instance, following the standards set up by previous studies [3, 25, 37], we augmented
developers’ written tests by automatically generating additional tests (using EvoSuite), to expand the observable
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input space for commit-relevant mutants. Our experimental indings are also threatened by the potential noise
introduced by equivalent mutants. First, notice that commit-relevant mutants come either from lines within the
change or outside the change. On the one hand, considering our algorithm 1 for identifying commit-relevant
mutants outside the change, you can notice that in case that mutant� is equivalent, then condition ���� ≠ �����

in Line 9 will evaluate to false, since mutants � and �� will be equivalent as well, then mutant � will not be
considered as commit-relevant. On the other hand, our approach selects by default all the mutants within the
change as commit-relevant, so there is a potential threat in selecting some equivalent mutant, even though
mutants within the change are a small fraction concerning the total number of mutants. To mitigate this threat,
we employ standard methods in mutation testing to reduce the probability of generating equivalent mutants, for
instance, by applying Pitest to ensure no common language frameworks are mutated.

Furthermore, our experimental approach is limited by our measure of mutant execution efort (i.e., eiciency),
as well as the granularity of our test assertion checks. Firstly, in our experiments, we have estimated the eiciency
of commit-aware mutation testing using the number of mutant test executions. This measure is limited because
it assumes that all tests have similar execution time (on average). Thus, there is a threat that our measure of
eiciency may not be representative of actual execution time, especially if some mutants/tests have a longer
execution time than others. Though, we argue that number of mutant test executions generalizes better than
execution or CPU time because it is independent of the infrastructure, level of parallelization and test execution
optimizations used. Consider the case of a test execution optimization that avoids issues caused by ininite loops.
This optimization will result in signiicantly diferent execution times than if not employing them. Similarly,
parallelization impacts the requested execution time if diferent strategies are used. Therefore, execution time
measurements can be more accurate than the number of mutant executions that we use only if one uses the same
infrastructure, parallelization, and mutant test execution optimizations. In our case, we ran our experiments in
our University HPC21 with a heavy parallelization scheme. Therefore, we feel that its test execution results are
hard to generalize to other environments. We also note, that there are many test execution optimizations [37, 47]
that are not implemented yet by the existing mutation testing tools, fact that may reduce the generalization of
our results.

To determine the interactions betweenmutants, we employ a coarse-grained assertion check in our experiments.
Speciically, our assertion checks are at the assert parameter level. As an example, given a irst-order mutant
and a second-order mutant, we directly check the equality of the parameter values (i.e., the expected and actual
outcomes) for both mutants. This raises the threat of missing more ine-grained assertion properties, especially
the efect of dependencies within assertions and test cases. Our approach may mask such dependencies, e.g., if
there is a dependency between the expected and actual value within the assertion. Indeed, this assertion check
may limit the number of observed commit-relevant mutants, as a more ine-grained approach (e.g. one that
accounts for such dependencies) may reveal more commit-aware mutants. In the future, we plan to investigate the
efect of assertion granularity on (commit-aware) mutation testing. Finally, we also encourage other researchers
to investigate the efect of these issues (i.e., assertion granularity and test execution efort) on the performance of
commit-aware mutation testing.

8 RELATED WORK

In this section, we discuss closely related work in the areas of change impact analysis, regression testing, test
augmentation, and commit-aware mutation testing.

Program slicing: A related line of work regards the formulation of dynamic or observation-based slicing [6ś8].
These techniques aim at identifying relevant program statements and not mutants. Though, they could be used in
identifying relevant mutant locations, in which every located mutant could be declared as relevant. For instance,

21https://hpc.uni.lu/
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Guimarães et al. [16] proposed the use of dynamic program slicing to determine the subsumption relations among
mutants, in order to detect redundant mutants and reduce the number of tested mutants. In their evaluation, the
authors demonstrate that using dynamic subsumption relation among mutants reduces mutation testing time
by about 53%, on average. Similarly, Delamaro et al. [12] proposed interface mutation to reduce the mutation
testing efort required during system integration. The goal of the paper is to apply interface mutants as a test
adequacy criterion for system integration testing. The paper demonstrates that inter-procedural program slicing
is applicable for mutation analysis, particularly for integration testing. Their approach leverages the data low
dependencies between two system units to determine the set of mutants that are relevant for the integration
of both units. This is because many non-killable or irrelevant mutants located in dependent statements will be
considered as relevant. This is evident from the previously reported results of Binkley et al. [7, 8] that showing
simple changed slices occupying 35-70% of the entire programs.

Change-Impact Analysis: It is important to analyze and test the impact of program changes on evolving software
systems. To this end, researchers have proposed several automated methods to assess the impact of program
changes on the quality of the software, e.g., in terms of correctness and program failures. For instance, researchers
have employed program analysis techniques (such as program slicing) to identify relevant coverage-based test
requirements, speciically, by analyzing the impact of all control and data dependencies afected by the changed
code to determine all tests that are afected by the change [5, 41]. Unlike these works, in this paper, we focus
on performing change impact using commit-aware mutation testing, in particular, we empirically evaluate the
properties, distribution and prevalence of (subsuming) commit-relevant mutants.

Regression Testing: The ield of regression testing investigates how to automatically generate test cases for
evolving software systems to avoid regression bugs. Researchers have proposed several approaches in this ield for
decades [49]. The closest work to ours is in the area of regression mutation testing [51] and predictive mutation
testing [30, 50]. The goal of regression mutation testing is to identify change-afected mutants (i.e., mutants on
execution trace afected by changes), and incrementally calculate mutation score. Meanwhile, predictive mutation
testing seeks to estimate the mutation score without mutant execution using machine learning classiication
models trained on diferent static features [30]. These approaches are focused on speeding up test execution
and mutation score computation while testing evolving software systems. In contrast, in this paper, we focus on
identifying the test requirements (mutants) relevant to the program changes. i.e., the mutants that need to be
analyzed and tested by the engineer, and we provide a more reined and precise mutation testing score, specially
adapted for commit-relevant mutants.

Test Augmentation: This line of research aims to automatically generate additional test cases to improve the
(fault revealing) quality of existing test suites. This is particularly important when a software system changes
(often); hence, it is vital to generate new tests that exercise the program changes. Researchers have proposed
several test augmentation approaches to trigger program output diferences [40], increase coverage [48] and
increase mutation score [45, 46]. Some test augmentation approaches have been developed to address code
coverage problems using propagation-based techniques [4, 42ś44]. Other approaches employ symbolic execution
for test augmentation by generating tests that exercise the semantic diferences between program versions
by incrementally searching the program path space from the changed locations and onwards, this includes
approaches such as diferential symbolic execution [38], KATCH [31] and Shadow symbolic execution [24]. These
techniques rely on dependency analysis and symbolic execution to decide whether changes can propagate to a
user-deined distance by following the predeined propagation conditions. Hence they are considerably complex
and computationally expensive, for instance, because they are limited by the state explosion problem of symbolic
execution. These papers are complementary to our work since the aim is to generate additional tests to improve
existing test suites. However, our work is focused on test augmentation to exercise code changes, albeit using
mutation testing.

ACM Trans. Softw. Eng. Methodol.
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Commit-Aware Mutation Testing: The goal of commit-aware mutation testing is to select mutants that exercise
program changes in evolving software systems. The problem of commit-relevant test requirements has not
been studied in depth by the mutation testing literature [37]. The closest work to ours in this area includes the
formalization of commit-aware mutation testing [29], dif-based commit-aware mutant selection (i.e., mutants
within program changes only) [39], and a machine learning-based mutant selection method [28]. Petrovic et
al. [39] presents a dif-based probabilistic mutation testing approach that is focused on selecting mutants within
committed program changes only. Unlike this paper, this approach ignores the dependencies between program
changes and the unmodiied code. Mudelta [28] presents a machine learning-based approach for selecting
commit-relevant mutants. Ma et al. [29] deines commit-relevant mutants and evaluates their relationship with
traditional mutation test criteria, emphasizing the importance of commit-aware mutation testing. Unlike these
works, we conducted an in-depth empirical study to understand the characteristics of commit-relevant mutants to
shed more light on their properties and provide scientiic insights for future research in commit-aware mutation
testing. In particular, in comparison to Ma et al. [29], our work impose more generalizable and easy to fulill
requirements on the programs and test contracts. For instance, Ma et al. [29], determines commit-aware mutants
by comparing mutants test suites from both pre- and post-commits, under the assumption that the test contract
is intact and remains the same across both program versions. However, this critical requirement considerably
limits the application and adoption of the approach of Ma et al. [29] in practice. Our empirical study observed
that test contracts frequently change across versions in evolving software systems (>60%).

9 CONCLUSION

We presented an empirical evaluation of the characteristics of commit-relevant mutants. In particular, we have
studied the prevalence, location, efectiveness, and eiciency of commit-relevant mutants. We have also examined
the comparative advantage of commit-relevant mutants compared to two baseline methods, i.e., random mutant
selection and selecting mutants within program changes. Notably, we found that commit-relevant mutants
are highly prevalent (30%), and primarily located outside of program changes (81%). In addition, we observed
that efective selection of commit-relevant mutants afords a signiicant testing advantage. Speciically, it has
the potential of signiicantly reducing the cost of mutation, and it is signiicantly more efective and eicient
than random mutant selection and analysis of only mutants within the program change. We also investigate
the predictability of commit-relevant mutants by considering typical proxy variables (such as the number of
mutants within a change, mutant type, and commit size) that may correlate with commit-relevant mutants.
However, our empirical indings show that these candidate proxy features do not reliably predict commit-relevant
mutants, indicating that more research is required to develop tools that successfully detect this kind of mutants.
For replication, scrutiny and future research, we publicly provide our artifacts, data and experimental results:
https://mutationtesting-user.github.io/evolve-mutation.github.io/
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