9 research outputs found

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    Design for prognostics and security in field programmable gate arrays (FPGAs).

    Get PDF
    There is an evolutionary progression of Field Programmable Gate Arrays (FPGAs) toward more complex and high power density architectures such as Systems-on- Chip (SoC) and Adaptive Compute Acceleration Platforms (ACAP). Primarily, this is attributable to the continual transistor miniaturisation and more innovative and efficient IC manufacturing processes. Concurrently, degradation mechanism of Bias Temperature Instability (BTI) has become more pronounced with respect to its ageing impact. It could weaken the reliability of VLSI devices, FPGAs in particular due to their run-time reconfigurability. At the same time, vulnerability of FPGAs to device-level attacks in the increasing cyber and hardware threat environment is also quadrupling as the susceptible reliability realm opens door for the rogue elements to intervene. Insertion of highly stealthy and malicious circuitry, called hardware Trojans, in FPGAs is one of such malicious interventions. On the one hand where such attacks/interventions adversely affect the security ambit of these devices, they also undermine their reliability substantially. Hitherto, the security and reliability are treated as two separate entities impacting the FPGA health. This has resulted in fragmented solutions that do not reflect the true state of the FPGA operational and functional readiness, thereby making them even more prone to hardware attacks. The recent episodes of Spectre and Meltdown vulnerabilities are some of the key examples. This research addresses these concerns by adopting an integrated approach and investigating the FPGA security and reliability as two inter-dependent entities with an additional dimension of health estimation/ prognostics. The design and implementation of a small footprint frequency and threshold voltage-shift detection sensor, a novel hardware Trojan, and an online transistor dynamic scaling circuitry present a viable FPGA security scheme that helps build a strong microarchitectural level defence against unscrupulous hardware attacks. Augmented with an efficient Kernel-based learning technique for FPGA health estimation/prognostics, the optimal integrated solution proves to be more dependable and trustworthy than the prevalent disjointed approach.Samie, Mohammad (Associate)PhD in Transport System

    On Information-centric Resiliency and System-level Security in Constrained, Wireless Communication

    Get PDF
    The Internet of Things (IoT) interconnects many heterogeneous embedded devices either locally between each other, or globally with the Internet. These things are resource-constrained, e.g., powered by battery, and typically communicate via low-power and lossy wireless links. Communication needs to be secured and relies on crypto-operations that are often resource-intensive and in conflict with the device constraints. These challenging operational conditions on the cheapest hardware possible, the unreliable wireless transmission, and the need for protection against common threats of the inter-network, impose severe challenges to IoT networks. In this thesis, we advance the current state of the art in two dimensions. Part I assesses Information-centric networking (ICN) for the IoT, a network paradigm that promises enhanced reliability for data retrieval in constrained edge networks. ICN lacks a lower layer definition, which, however, is the key to enable device sleep cycles and exclusive wireless media access. This part of the thesis designs and evaluates an effective media access strategy for ICN to reduce the energy consumption and wireless interference on constrained IoT nodes. Part II examines the performance of hardware and software crypto-operations, executed on off-the-shelf IoT platforms. A novel system design enables the accessibility and auto-configuration of crypto-hardware through an operating system. One main focus is the generation of random numbers in the IoT. This part of the thesis further designs and evaluates Physical Unclonable Functions (PUFs) to provide novel randomness sources that generate highly unpredictable secrets, on low-cost devices that lack hardware-based security features. This thesis takes a practical view on the constrained IoT and is accompanied by real-world implementations and measurements. We contribute open source software, automation tools, a simulator, and reproducible measurement results from real IoT deployments using off-the-shelf hardware. The large-scale experiments in an open access testbed provide a direct starting point for future research

    Ensemble learning with discrete classifiers on small devices

    Get PDF
    Machine learning has become an integral part of everyday life ranging from applications in AI-powered search queries to (partial) autonomous driving. Many of the advances in machine learning and its application have been possible due to increases in computation power, i.e., by reducing manufacturing sizes while maintaining or even increasing energy consumption. However, 2-3 nm manufacturing is within reach, making further miniaturization increasingly difficult while thermal design power limits are simultaneously reached, rendering entire parts of the chip useless for certain computational loads. In this thesis, we investigate discrete classifier ensembles as a resource-efficient alternative that can be deployed to small devices that only require small amounts of energy. Discrete classifiers are classifiers that can be applied -- and oftentimes also trained -- without the need for costly floating-point operations. Hence, they are ideally suited for deployment to small devices with limited resources. The disadvantage of discrete classifiers is that their predictive performance often lacks behind their floating-point siblings. Here, the combination of multiple discrete classifiers into an ensemble can help to improve the predictive performance while still having a manageable resource consumption. This thesis studies discrete classifier ensembles from a theoretical point of view, an algorithmic point of view, and a practical point of view. In the theoretical investigation, the bias-variance decomposition and the double-descent phenomenon are examined. The bias-variance decomposition of the mean-squared error is re-visited and generalized to an arbitrary twice-differentiable loss function, which serves as a guiding tool throughout the thesis. Similarly, the double-descent phenomenon is -- for the first time -- studied comprehensively in the context of tree ensembles and specifically random forests. Contrary to established literature, the experiments in this thesis indicate that there is no double-descent in random forests. While the training of ensembles is well-studied in literature, the deployment to small devices is often neglected. Additionally, the training of ensembles on small devices has not been considered much so far. Hence, the algorithmic part of this thesis focuses on the deployment of discrete classifiers and the training of ensembles on small devices. First, a novel combination of ensemble pruning (i.e., removing classifiers from the ensemble) and ensemble refinement (i.e., re-training of classifiers in the ensemble) is presented, which uses a novel proximal gradient descent algorithm to minimize a combined loss function. The resulting algorithm removes unnecessary classifiers from an already trained ensemble while improving the performance of the remaining classifiers at the same time. Second, this algorithm is extended to the more challenging setting of online learning in which the algorithm receives training examples one by one. The resulting shrub ensembles algorithm allows the training of ensembles in an online fashion while maintaining a strictly bounded memory consumption. It outperforms existing state-of-the-art algorithms under resource constraints and offers competitive performance in the general case. Last, this thesis studies the deployment of decision tree ensembles to small devices by optimizing their memory layout. The key insight here is that decision trees have a probabilistic inference time because different observations can take different paths from the root to a leaf. By estimating the probability of visiting a particular node in the tree, one can place it favorably in the memory to maximize the caching behavior and, thus, increase its performance without changing the model. Last, several real-world applications of tree ensembles and Binarized Neural Networks are presented

    Exploitation dynamique des données de production pour améliorer les méthodes DFM dans l'industrie Microélectronique

    Get PDF
    La conception pour la fabrication ou DFM (Design for Manufacturing) est une méthode maintenant classique pour assurer lors de la conception des produits simultanément la faisabilité, la qualité et le rendement de la production. Dans l'industrie microélectronique, le Design Rule Manual (DRM) a bien fonctionné jusqu'à la technologie 250nm avec la prise en compte des variations systématiques dans les règles et/ou des modèles basés sur l'analyse des causes profondes, mais au-delà de cette technologie, des limites ont été atteintes en raison de l'incapacité à sasir les corrélations entre variations spatiales. D'autre part, l'évolution rapide des produits et des technologies contraint à une mise à jour dynamique des DRM en fonction des améliorations trouvées dans les fabs. Dans ce contexte les contributions de thèse sont (i) une définition interdisciplinaire des AMDEC et analyse de risques pour contribuer aux défis du DFM dynamique, (ii) un modèle MAM (mapping and alignment model) de localisation spatiale pour les données de tests, (iii) un référentiel de données basé sur une ontologie ROMMII (referential ontology Meta model for information integration) pour effectuer le mapping entre des données hétérogènes issues de sources variées et (iv) un modèle SPM (spatial positioning model) qui vise à intégrer les facteurs spatiaux dans les méthodes DFM de la microélectronique, pour effectuer une analyse précise et la modélisation des variations spatiales basées sur l'exploitation dynamique des données de fabrication avec des volumétries importantes.The DFM (design for manufacturing) methods are used during technology alignment and adoption processes in the semiconductor industry (SI) for manufacturability and yield assessments. These methods have worked well till 250nm technology for the transformation of systematic variations into rules and/or models based on the single-source data analyses, but beyond this technology they have turned into ineffective R&D efforts. The reason for this is our inability to capture newly emerging spatial variations. It has led an exponential increase in technology lead times and costs that must be addressed; hence, objectively in this thesis we are focused on identifying and removing causes associated with the DFM ineffectiveness. The fabless, foundry and traditional integrated device manufacturer (IDM) business models are first analyzed to see coherence against a recent shift in business objectives from time-to-market (T2M) and time-to-volume towards (T2V) towards ramp-up rate. The increasing technology lead times and costs are identified as a big challenge in achieving quick ramp-up rates; hence, an extended IDM (e-IDM) business model is proposed to support quick ramp-up rates which is based on improving the DFM ineffectiveness followed by its smooth integration. We have found (i) single-source analyses and (ii) inability to exploit huge manufacturing data volumes as core limiting factors (failure modes) towards DFM ineffectiveness during technology alignment and adoption efforts within an IDM. The causes for single-source root cause analysis are identified as the (i) varying metrology reference frames and (ii) test structures orientations that require wafer rotation prior to the measurements, resulting in varying metrology coordinates (die/site level mismatches). A generic coordinates mapping and alignment model (MAM) is proposed to remove these die/site level mismatches, however to accurately capture the emerging spatial variations, we have proposed a spatial positioning model (SPM) to perform multi-source parametric correlation based on the shortest distance between respective test structures used to measure the parameters. The (i) unstructured model evolution, (ii) ontology issues and (iii) missing links among production databases are found as causes towards our inability to exploit huge manufacturing data volumes. The ROMMII (referential ontology Meta model for information integration) framework is then proposed to remove these issues and enable the dynamic and efficient multi-source root cause analyses. An interdisciplinary failure mode effect analysis (i-FMEA) methodology is also proposed to find cyclic failure modes and causes across the business functions which require generic solutions rather than operational fixes for improvement. The proposed e-IDM, MAM, SPM, and ROMMII framework results in accurate analysis and modeling of emerging spatial variations based on dynamic exploitation of the huge manufacturing data volumes.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization
    corecore