6 research outputs found

    Termination of canonical context-sensitive rewriting and productivity of rewrite systems

    Full text link
    [EN] Termination of programs, i.e., the absence of infinite computations, ensures the existence of normal forms for all initial expressions, thus providing an essential ingredient for the definition of a normalization semantics for functional programs. In lazy functional languages, though, infinite data structures are often delivered as the outcome of computations. For instance, the list of all prime numbers can be returned as a neverending stream of numerical expressions or data structures. If such streams are allowed, requiring termination is hopeless. In this setting, the notion of productivity can be used to provide an account of computations with infinite data structures, as it "captures the idea of computability, of progress of infinite-list programs" (B.A. Sijtsma, On the Productivity of Recursive List Definitions, ACM Transactions on Programming Languages and Systems 11(4):633-649, 1989). However, in the realm of Term Rewriting Systems, which can be seen as (first-order, untyped, unconditional) functional programs, termination of Context-Sensitive Rewriting (CSR) has been showed equivalent to productivity of rewrite systems through appropriate transformations. In this way, tools for proving termination of CSR can be used to prove productivity. In term rewriting, CSR is the restriction of rewriting that arises when reductions are allowed on selected arguments of function symbols only. In this paper we show that well-known results about the computational power of CSR are useful to better understand the existing connections between productivity of rewrite systems and termination of CSR, and also to obtain more powerful techniques to prove productivity of rewrite systems.Partially supported by the EU (FEDER), Spanish MINECO TIN 2013-45732-C4-1-P, and GV PROMETEOII/2015/013.Lucas Alba, S. (2015). Termination of canonical context-sensitive rewriting and productivity of rewrite systems. Electronic Proceedings in Theoretical Computer Science. 200:18-31. https://doi.org/10.4204/EPTCS.200.2S183120

    Applications and extensions of context-sensitive rewriting

    Full text link
    [EN] Context-sensitive rewriting is a restriction of term rewriting which is obtained by imposing replacement restrictions on the arguments of function symbols. It has proven useful to analyze computational properties of programs written in sophisticated rewriting-based programming languages such asCafeOBJ, Haskell, Maude, OBJ*, etc. Also, a number of extensions(e.g., to conditional rewritingor constrained equational systems) and generalizations(e.g., controlled rewritingor forbidden patterns) of context-sensitive rewriting have been proposed. In this paper, we provide an overview of these applications and related issues. (C) 2021 Elsevier Inc. All rights reserved.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.Lucas Alba, S. (2021). Applications and extensions of context-sensitive rewriting. Journal of Logical and Algebraic Methods in Programming. 121:1-33. https://doi.org/10.1016/j.jlamp.2021.10068013312

    Rewriting Strategies and Strategic Rewrite Programs (Updated version)

    Get PDF
    This survey aims at providing unified definitions of strategies , strategic rewriting and strategic programs. It gives examples of main constructs and languages used to write strategies. It also explores some properties of strategic rewriting and operational semantics of strategic programs. Current research topics are identified

    Rewriting Strategies and Strategic Rewrite Programs

    Get PDF
    International audienceThis survey aims at providing unified definitions of strategies, strategic rewriting and strategic programs. It gives examples of main constructs and languages used to write strategies. It also explores some properties of strategic rewriting and operational semantics of strategic programs. Current research topics are identified

    Model checking strategy-controlled rewriting systems (extended version)

    Get PDF
    Strategies are widespread in Computer Science. In the domain of reduction and rewriting systems, strategies are studied as recipes to restrict and control reduction steps and rule applications, which are intimately local, in a derivation-global sense. This idea has been exploited by various tools and rewriting-based specification languages, where strategies are an additional specification layer. Systems so described need to be analyzed too. This article discusses model checking of systems controlled by strategies and presents a working strategy-aware LTL model checker for the Maude specification language, based on rewriting logic, and its strategy language. This extended version includes the proofs of the propositions in the conference paper, and a complete description of the small-step operational semantics used to define model checking for the Maude strategy language
    corecore