164 research outputs found

    TOWARDS GENERIC SYSTEM OBSERVATION MANAGEMENT

    Get PDF
    Едно от най-големите предизвикателства на информатиката е да създава правилно работещи компютърни системи. За да се гарантира коректността на една система, по време на дизайн могат де се прилагат формални методи за моделиране и валидация. Този подход е за съжаление труден и скъп за приложение при мнозинството компютърни системи. Алтернативният подход е да се наблюдава и анализира поведението на системата по време на изпълнение след нейното създаване. В този доклад представям научната си работа по въпроса за наблюдение на копютърните системи. Предлагам един общ поглед на три основни страни на проблема: как трябва да се наблюдават компютърните системи, как се използват наблюденията при недетерминистични системи и как се работи по отворен, гъвкав и възпроизводим начин с наблюдения.One of the biggest challenges in computer science is to produce correct computer systems. One way of ensuring system correction is to use formal techniques to validate the system during its design. This approach is compulsory for critical systems but difficult and expensive for most computer systems. The alternative consists in observing and analyzing systems' behavior during execution. In this thesis, I present my research on system observation. I describe my contributions on generic observation mechanisms, on the use of observations for debugging nondeterministic systems and on the definition of an open, flexible and reproducible management of observations.Un des plus grands défis de l'informatique est de produire des systèmes corrects. Une manière d'assurer la correction des systèmes est d'utiliser des méthodes formelles de modélisation et de validation.Obligatoire dans le domaine des systèmes critiques, cette approche est difficile et coûteuse à mettre en place dans la plupart des systèmes informatiques.L'alternative est de vérifier le comportement des systèmes déjà développés en observant et analysant leur comportement à l'exécution.Ce mémoire présente mes contributions autour de l'observation des systèmes. Il discute de la définition de mécanismes génériques d'observation, de l'exploitation des observations pour le débogage de systèmes non déterministes et de la gestion ouverte, flexible et reproductible d'observations

    Activity Report: Automatic Control 2009

    Get PDF

    System specification and performance analysis

    Get PDF

    Algorithms in computer-aided design of VLSI circuits.

    Get PDF
    With the increased complexity of Very Large Scale Integrated (VLSI) circuits,Computer Aided Design (CAD) plays an even more important role. Top-downdesign methodology and layout of VLSI are reviewed. Moreover, previouslypublished algorithms in CAD of VLSI design are outlined.In certain applications, Reed-Muller (RM) forms when implemented withAND/XOR or OR/XNOR logic have shown some attractive advantages overthe standard Boolean logic based on AND/OR logic. The RM forms implementedwith OR/XNOR logic, known as Dual Forms of Reed-Muller (DFRM),is the Dual form of traditional RM implemented with AND /XOR.Map folding and transformation techniques are presented for the conversionbetween standard Boolean and DFRM expansions of any polarity. Bidirectionalmulti-segment computer based conversion algorithms are also proposedfor large functions based on the concept of Boolean polarity for canonicalproduct-of-sums Boolean functions. Furthermore, another two tabular basedconversion algorithms, serial and parallel tabular techniques, are presented forthe conversion of large functions between standard Boolean and DFRM expansionsof any polarity. The algorithms were tested for examples of up to 25variables using the MCNC and IWLS'93 benchmarks.Any n-variable Boolean function can be expressed by a Fixed PolarityReed-Muller (FPRM) form. In order to have a compact Multi-level MPRM(MMPRM) expansion, a method called on-set table method is developed.The method derives MMPRM expansions directly from FPRM expansions.If searching all polarities of FPRM expansions, the MMPRM expansions withthe least number of literals can be obtained. As a result, it is possible to findthe best polarity expansion among 2n FPRM expansions instead of searching2n2n-1 MPRM expansions within reasonable time for large functions. Furthermore,it uses on-set coefficients only and hence reduces the usage of memorydramatically.Currently, XOR and XNOR gates can be implemented into Look-Up Tables(LUT) of Field Programmable Gate Arrays (FPGAs). However, FPGAplacement is categorised to be NP-complete. Efficient placement algorithmsare very important to CAD design tools. Two algorithms based on GeneticAlgorithm (GA) and GA with Simulated Annealing (SA) are presented for theplacement of symmetrical FPGA. Both of algorithms could achieve comparableresults to those obtained by Versatile Placement and Routing (VPR) toolsin terms of the number of routing channel tracks

    Compilation de systèmes temps réel

    Get PDF
    I introduce and advocate for the concept of Real-Time Systems Compilation. By analogy with classical compilation, real-time systems compilation consists in the fully automatic construction of running, correct-by-construction implementations from functional and non-functional specifications of embedded control systems. Like in a classical compiler, the whole process must be fast (thus enabling a trial-and-error design style) and produce reasonably efficient code. This requires the use of fast heuristics, and the use of fine-grain platform and application models. Unlike a classical compiler, a real-time systems compiler must take into account non-functional properties of a system and ensure the respect of non-functional requirements (in addition to functional correctness). I also present Lopht, a real-time systems compiler for statically-scheduled real-time systems we built by combining techniques and concepts from real-time scheduling, compilation, and synchronous languages

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors

    Aging-Aware Design Methods for Reliable Analog Integrated Circuits using Operating Point-Dependent Degradation

    Get PDF
    The focus of this thesis is on the development and implementation of aging-aware design methods, which are suitable to satisfy current needs of analog circuit design. Based on the well known \gm/\ID sizing methodology, an innovative tool-assisted aging-aware design approach is proposed, which is able to estimate shifts in circuit characteristics using mostly hand calculation schemes. The developed concept of an operating point-dependent degradation leads to the definition of an aging-aware sensitivity, which is compared to currently available degradation simulation flows and proves to be efficient in the estimation of circuit degradation. Using the aging-aware sensitivity, several analog circuits are investigated and optimized towards higher reliability. Finally, results are presented for numerous target specifications
    corecore