2,043 research outputs found

    90GHz and 150GHz observations of the Orion M42 region. A sub-millimeter to radio analysis

    Full text link
    We have used the new 90GHz MUSTANG camera on the Robert C. Byrd Green Bank Telescope (GBT) to map the bright Huygens region of the star-forming region M42 with a resolution of 9" and a sensitivity of 2.8mJy/beam. 90GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the HII region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMC1 molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150GHz GISMO camera taken on the IRAM telescope. This map has 15" resolution. By combining the MUSTANG data with 1.4, 8, and 21GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure (EM) averaged electron temperature of Te = 11376K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining ISO-LWS data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80" ISO-LWS beam toward OrionKL/BN, Td = 42K and Beta=1.3. We show that both Td and Beta decrease when going from the HII region and excited OMC1 interface to the denser UV shielded part of OMC1 (OrionKL/BN, Orion S). With a model consisting of only free-free and thermal dust emission we are able to fit data taken at frequencies from 1.5GHz to 854GHz.Comment: 18 pages, 8 figures, submitted to the Astrophysical Journa

    On simultaneous arithmetic progressions on elliptic curves

    Get PDF
    In this paper we study elliptic curves which have a number of points whose coordinates are in arithmetic progression. We first motivate this diophantine problem, prove some results, provide a number of interesting examples and, finally point out open questions which focus on the most interesting aspects of the problem for us.Comment: 22 page

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 346)

    Get PDF
    This bibliography lists 134 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    A Rapid Dynamical Monte Carlo Algorithm for Glassy Systems

    Full text link
    In this paper we present a dynamical Monte Carlo algorithm which is applicable to systems satisfying a clustering condition: during the dynamical evolution the system is mostly trapped in deep local minima (as happens in glasses, pinning problems etc.). We compare the algorithm to the usual Monte Carlo algorithm, using as an example the Bernasconi model. In this model, a straightforward implementation of the algorithm gives an improvement of several orders of magnitude in computational speed with respect to a recent, already very efficient, implementation of the algorithm of Bortz, Kalos and Lebowitz.Comment: RevTex 7 pages + 4 figures (uuencoded) appended; LPS preprin

    EVALUATING CHEMICAL DETERRENCE AT TWO SPATIAL SCALES: THE EFFECTIVENESS OF CHEMICAL DETERRENCE FOR SANDHILL CRANES IN CORNFIELDS

    Get PDF
    From 2006 through 2008, 9,10 anthraquinone (sold as Avitecâ„¢) was used as a deterrent on planted corn seed in Minnesota, Wisconsin, and Michigan. ICF conducted field trials in Wisconsin to determine efficacy of Avitecâ„¢ to repel sandhill cranes (Grus canadensis) from germinating corn. We assessed crane use at 2 levels: between and within habitats by crane population surveys to determine crane use of fields, and corn density surveys to assess possible damage within fields. In addition, corn seed samples were taken to assess amount of active ingredient on treated corn seeds in the ground. In 2008 the concentrations of Avitecâ„¢ on seed obtained from powder treatments (as compared to liquid treated) were generally lower. Where concentration of Avitecâ„¢ on the corn seeds was adequate (liquid or powder), it successfully deterred crane herbivory even though crane use of the fields remained high. Non-treated fields had higher damage as crane use increased, whereas treated fields had low or no damage, even with increased crane use. An effective deterrent is a win-win situation for both cranes and farmers. Its use protects a valuable crop while allowing cranes to access critical food items in cultivated fields, which also confers a benefit to the farmer (i.e., consumption of crop pests). Farmers can solve the problem more economically on their own without handling toxic seed treatments. Successful solutions such as this example are critical for advancing wildlife conservation on private lands

    ProkEvo: an automated, reproducible, and scalable framework for high-throughput bacterial population genomics analyses

    Get PDF
    Whole Genome Sequence (WGS) data from bacterial species is used for a variety of applications ranging from basic microbiological research, diagnostics, and epidemiological surveillance. The availability of WGS data from hundreds of thousands of individual isolates of individual microbial species poses a tremendous opportunity for discovery and hypothesis-generating research into ecology and evolution of these microorganisms. Flexibility, scalability, and user-friendliness of existing pipelines for population-scale inquiry, however, limit applications of systematic, population-scale approaches. Here, we present ProkEvo, an automated, scalable, reproducible, and open-source framework for bacterial population genomics analyses using WGS data. ProkEvo was specifically developed to achieve the following goals: (1) Automation and scaling of complex combinations of computational analyses for many thousands of bacterial genomes from inputs of raw Illumina paired-end sequence reads; (2) Use of workflow management systems (WMS) such as Pegasus WMS to ensure reproducibility, scalability, modularity, fault-tolerance, and robust file management throughout the process; (3) Use of high-performance and high-throughput computational platforms; (4) Generation of hierarchical-based population structure analysis based on combinations of multi-locus and Bayesian statistical approaches for classification for ecological and epidemiological inquiries; (5) Association of antimicrobial resistance (AMR) genes, putative virulence factors, and plasmids from curated databases with the hierarchically-related genotypic classifications; and (6) Production of pan-genome annotations and data compilation that can be utilized for downstream analysis such as identification of population-specific genomic signatures. The scalability of ProkEvo was measured with two datasets comprising significantly different numbers of input genomes (one with ~2,400 genomes, and the second with ~23,000 genomes). Depending on the dataset and the computational platform used, the running time of ProkEvo varied from ~3-26 days. ProkEvo can be used with virtually any bacterial species, and the Pegasus WMS uniquely facilitates addition or removal of programs from the workflow or modification of options within them. To demonstrate versatility of the ProkEvo platform, we performed a hierarchical-based population structure analyses from available genomes of three distinct pathogenic bacterial species as individual case studies. The specific case studies illustrate how hierarchical analyses of population structures, genotype frequencies, and distribution of specific gene functions can be integrated into an analysis. Collectively, our study shows that ProkEvo presents a practical viable option for scalable, automated analyses of bacterial populations with direct applications for basic microbiology research, clinical microbiological diagnostics, and epidemiological surveillance

    Tensionless structure of glassy phase

    Full text link
    We study a class of homogeneous finite-dimensional Ising models which were recently shown to exhibit glassy properties. Monte Carlo simulations of a particular three-dimensional model in this class show that the glassy phase obtained under slow cooling is dominated by large scale excitations whose energy ElE_l scales with their size ll as El∼lΘE_l\sim l^{\Theta} with Θ∼1.33(5)\Theta\sim 1.33(5). Simulations suggest that in another model of this class, namely the four-spin model, energy is concentrated mainly in linear defects making also in this case domain walls tensionless. Two-dimensinal variants of these models are trivial and energy of excitations scales with the exponent Θ=1.05(5)\Theta=1.05(5).Comment: 5 page

    Persistence in higher dimensions : a finite size scaling study

    Full text link
    We show that the persistence probability P(t,L)P(t,L), in a coarsening system of linear size LL at a time tt, has the finite size scaling form P(t,L)∼L−zθf(tLz)P(t,L)\sim L^{-z\theta}f(\frac{t}{L^{z}}) where θ\theta is the persistence exponent and zz is the coarsening exponent. The scaling function f(x)∼x−θf(x)\sim x^{-\theta} for x≪1x \ll 1 and is constant for large xx. The scaling form implies a fractal distribution of persistent sites with power-law spatial correlations. We study the scaling numerically for Glauber-Ising model at dimension d=1d = 1 to 4 and extend the study to the diffusion problem. Our finite size scaling ansatz is satisfied in all these cases providing a good estimate of the exponent θ\theta.Comment: 4 pages in RevTeX with 6 figures. To appear in Phys. Rev.
    • …
    corecore