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ABSTRACT
Whole Genome Sequence (WGS) data from bacterial species is used for a variety of
applications ranging from basic microbiological research, diagnostics, and
epidemiological surveillance. The availability of WGS data from hundreds of
thousands of individual isolates of individual microbial species poses a tremendous
opportunity for discovery and hypothesis-generating research into ecology and
evolution of these microorganisms. Flexibility, scalability, and user-friendliness of
existing pipelines for population-scale inquiry, however, limit applications of
systematic, population-scale approaches. Here, we present ProkEvo, an automated,
scalable, reproducible, and open-source framework for bacterial population
genomics analyses using WGS data. ProkEvo was specifically developed to achieve
the following goals: (1) Automation and scaling of complex combinations of
computational analyses for many thousands of bacterial genomes from inputs of raw
Illumina paired-end sequence reads; (2) Use of workflow management systems
(WMS) such as Pegasus WMS to ensure reproducibility, scalability, modularity,
fault-tolerance, and robust file management throughout the process; (3) Use of
high-performance and high-throughput computational platforms; (4) Generation of
hierarchical-based population structure analysis based on combinations of
multi-locus and Bayesian statistical approaches for classification for ecological and
epidemiological inquiries; (5) Association of antimicrobial resistance (AMR) genes,
putative virulence factors, and plasmids from curated databases with the
hierarchically-related genotypic classifications; and (6) Production of pan-genome
annotations and data compilation that can be utilized for downstream analysis such
as identification of population-specific genomic signatures. The scalability of
ProkEvo was measured with two datasets comprising significantly different numbers
of input genomes (one with ~2,400 genomes, and the second with ~23,000 genomes).
Depending on the dataset and the computational platform used, the running time
of ProkEvo varied from ~3-26 days. ProkEvo can be used with virtually any bacterial
species, and the Pegasus WMS uniquely facilitates addition or removal of programs
from the workflow or modification of options within them. To demonstrate
versatility of the ProkEvo platform, we performed a hierarchical-based population
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structure analyses from available genomes of three distinct pathogenic bacterial
species as individual case studies. The specific case studies illustrate how hierarchical
analyses of population structures, genotype frequencies, and distribution of specific
gene functions can be integrated into an analysis. Collectively, our study shows
that ProkEvo presents a practical viable option for scalable, automated analyses of
bacterial populations with direct applications for basic microbiology research, clinical
microbiological diagnostics, and epidemiological surveillance.

Subjects Bioinformatics, Computational Biology, Genomics, Microbiology, Molecular Biology
Keywords Bacteria, Population-genomics, Pan-genome, High-performance computing,
High-throughput computing, Scalability, Workflow-management system, Pipeline

INTRODUCTION
Due to the advances in Whole Genome Sequence (WGS) technology, its decreasing costs,
and the proliferation of publicly available tools and WGS-based datasets, the field of
bacterial genomics is evolving rapidly from comparative analysis of a few representative
strains of a given species, toward systematic, population-scale analyses of thousands of
genomes. These large-scale analyses can provide new insights into evolutionary and
ecological processes that alter the frequencies of different populations of pathogenic
bacterial species in the environment and their transmission patterns to humans (Quainoo
et al., 2017; Pallen &Wren, 2007; Sheppard, Guttman & Fitzgerald, 2018; Land et al., 2015).
Applications of WGS-based population genomics range from basic research, public
health, pathogen surveillance, clinical diagnostics, and ecological and evolutionary studies
of pathogenic and non-pathogenic species (Sheppard, Guttman & Fitzgerald, 2018; Joseph
& Read, 2010). Indeed, use of WGS by public health agencies is providing unprecedented
levels of resolution and accuracy for source-tracking and WGS data is becoming the
standard for epidemiological surveillance and outbreak detection (Zhou et al., 2018;
Alikhan et al., 2018; Dallman et al., 2015).

While major applications of WGS-based genotyping in public health are focused on
outbreak detection and source-tracking, the availability of large amounts of WGS data
from populations of pathogenic bacteria from public health and regulatory agencies, and
academic research creates tremendous opportunity for ecological and evolutionary inquiry
at unprecedented scales of genomic resolution. For example, systematically monitoring
the frequencies of specific variants of a pathogen, collected over time from the
environment, food animals, and food production environments, can identify significant
shifts in genotype frequencies that are driven by ecological events in the environment
and/or within food production systems (Yahara et al., 2017). Powered statistically by the
large number of genomes available from historical and ongoing surveillance, complex
trait analyses can be used to identify causal variants and/or gene acquisition/loss events
that are associated with changes in frequency of specific sub-populations (e.g., shifts from
low-high frequency of isolation). Because these variants or gene acquisition/loss are likely
to be causal, understanding their impact on gene function and pathways can illuminate
adaptation and ecological fitness traits that influence survival in the environment and/or
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transmission to humans (Croucher et al., 2014; Yahara et al., 2017). For example, candidate
causal variants or gene acquisition/loss events associated with distinct populations at
different scales of genotypic classification (e.g., serovars (Ingle et al., 2016; Yoshida et al.,
2016), or sub-populations (Sheppard, Jolley & Maiden, 2012)), can further be examined
in silico to predict unique functional characteristics and phenotypes of populations
(e.g., antimicrobial resistance (AMR)) (McDermott et al., 2016), virulence, and metabolic
attributes (Yahara et al., 2017; Laabei et al., 2014). Such predictions can further be
incorporated into hypothesis-testing empirical measurements of predicted phenotypes
in vitro.

To understand the relationship of genomic variation, evolutionary and ecological
processes, it is necessary to classify isolates of a given species genotypically at various levels
of resolution. WGS data provides the basis for such classifications and currently, there are
small number of automated pipelines available for analysis and genotypic classification
of bacterial genomes, including EnteroBase (Zhou et al., 2019), TORMES (Quijada et al.,
2019), Nullarbor (Seemann et al., 2020), ASA3P (Schwengers et al., 2020), Bactopia (Petit &
Read, 2020). These pipelines each have unique characteristics and were developed for
different purposes. They also differ in the programming language used, the size and type of
supported input data, the supported bioinformatics tools, and the computational
platform used. The pipelines do share some elements of genotypic classification at different
levels of resolution, but the classifications and scalability vary. Our work was motivated by
the need for a reproducible, automated, flexible, and portable, WGS-based population
genomics platform that can accommodate scalable, hierarchical-based genotypic
classifications and gene annotations for high-throughput, population-based inquiry.
To accommodate the complex combinations of multiple, sequential data processing steps
required for such a platform, which inevitably demands an amalgamation of various
software, we used a highly optimized Workflow Management System (WMS) (Koster &
Rahmann, 2012; Di Tommaso et al., 2017; Apache Airflow, 2015; Deelman et al., 2005), that
can efficiently manage massive numbers of computational operations in different types of
high-performance computing environments, including University or publicly available
clusters (HCC, 2008; Towns et al., 2014), clouds (Langmead & Nellore, 2018), or distributed
grids (Pordes et al., 2007; Sfiligoi et al., 2009).

In this paper, we describe ProkEvo–an automated and user-friendly platform for
population-based inquiry of bacterial species that is designed to provide hierarchical-based
genotypic classifications and association of accessory genomic content (e.g., AMR,
virulence genes, pan-genomic content) in a scalable platform. The ProkEvo platform
manages the large number of bioinformatics programs and their dependencies through the
Pegasus WMS and is portable to computing clusters, clouds, and distributed grids.
ProkEvo works with raw paired-end Illumina reads as input, and is composed of multiple
sequential steps for processing and analysis of data that is scalable from hundreds to many
thousands of genomes. For each input genome, these steps include trimming and quality
control, genome assembly, serovar prediction (in the case of Salmonella enterica),
hierarchical-based genotypic classification based on legacy multilocus-sequence typing
(MLST) using seven loci or core-genome MLST (cgMLST) using approximately 300 loci,
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and hierarchical variant classification based on Bayesian nested clustering analysis at
different scales of resolution. ProkEvo also associates content of AMR genes, putative
virulence genes, plasmids, and pan-genomic content with the hierarchical-based genotypic
classifications.

Here, we show the utility and adaptability of ProkEvo for basic metrics of population
genomics analysis on three different bacterial pathogens (Salmonella enterica,
Campylobacter jejuni and Staphylococcus aureus). We also demonstrate the scalability and
modularity of ProkEvo with datasets ranging from ~2,400 to ~23,000 genomes and further
illustrate the portability and performance of ProkEvo on two different computational
platforms, the University of Nebraska high-performance computing cluster (Crane) and
the Open Science Grid (OSG), a distributed, high-throughput computational platform.
Because of the multi-disciplinary environments required for implementation and
applications of ProkEvo, we also provide guidance for researchers on utilization of some of
the output files generated by ProkEvo to perform meaningful hierarchical-based
population analyses in a reproducible fashion using a combination of R and Python scripts.

MATERIALS & METHODS
Overview of ProkEvo
The ProkEvo pipeline is capable of processing raw, paired-end Illumina reads obtained
from tens of thousands of genomes present in the NCBI database utilizing
high-performance and high-throughput computational resources. The pipeline is
composed of two sub-pipelines: (1) The first sub-pipeline performs the standard data
processing steps of sequence trimming, de novo assembly, and quality control; (2) The
second sub-pipeline uses the assemblies that have passed the quality control and performs
specific population-based classifications (serotype prediction specifically for Salmonella,
genotype classification at different scales of resolution, analysis of core- and pan-genomic
content). Pegasus WMS manages and splits each sub-workflow into as many independent
tasks as possible to take advantage of many computational resources.

A text file of SRA identifications corresponding to raw Illumina reads available from the
Sequence Read Archive (SRA) database in NCBI (NCBI SRA) is used as an input to the
pipeline. The first step of the pipeline and the first sub-workflow is automated download
of genome data from NCBI SRA (Leinonen, Sugawara & Shumway, 2010). This is done
using the package parallel-fastq-dump (Valieris, 2020). The SRA files are downloaded
using the prefetch utility, and the downloaded files are converted into paired-end fastq
reads using the program parallel-fastq-dump. While the SRA Toolkit (Leinonen, Sugawara
& Shumway, 2010) provides the same functionality, this toolkit can be slow sometimes
and show intermittent timeout errors, especially when downloading many files.
parallel-fastq-dump is a wrapper for SRA Toolkit that speeds the process by dividing the
conversion to fastq files into multiple threads. Beside downloading raw Illumina reads
from NCBI, ProkEvo also supports usage of already locally downloaded fastq reads. In this
case, the absolute path to the reads should be specified in the replica catalog provided
by Pegasus. More details about this setup are available on the documentation page of
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ProkEvo (https://github.com/npavlovikj/ProkEvo/wiki/3.1.-Setup-on-high-performance-
computing-cluster#2-using-already-downloaded-raw-reads). After the raw paired-end
fastq files are generated, quality trimming and adapter clipping is performed using
Trimmomatic (Bolger, Lohse & Usadel, 2014). FastQC is used to check and verify the
quality of the trimmed reads (Andrews, 2010) and it is run independently for each
paired-end dataset with concatenation of all output files at the end for a summary.
The paired-end reads are assembled de novo into contigs using SPAdes (Bankevich et al.,
2012). These assemblies are generated using the default parameters. The quality of the
assemblies is evaluated using QUAST (Gurevich et al., 2013). The information obtained
from QUAST is used to discard assemblies with 0 or more than 300 contigs, or assemblies
with N50 value of less than 25,000. These cutoff values vary between species, and if needed,
they can be modified by the researcher before running ProkEvo. Examples of how this
can be done are provided in the documentation page of ProkEvo (https://github.com/
npavlovikj/ProkEvo/wiki/4.3.-Change-running-options-for-existing-tool-in-ProkEvo).
All the modifications should be done before running ProkEvo. QUAST-based filtering of
the assemblies concludes the first part or first sub-pipeline of the workflow. Each of
these steps is independent of the input data and each task is performed on one set of
paired-end reads using one computing core. This makes the analyses modular and suitable
for high-throughput resources with many available cores. Moreover, having many
independent tasks significantly reduces the memory and time requirements while
generating the same results as when the analyses are done sequentially. Thus, if a dataset
has paired-end reads from n different genomes and a computational platform has n
available cores (1:1 correspondence), ProkEvo will scale and utilize all these resources at
the same time.

The second sub-pipeline uses the assemblies which passed quality control to perform
specific population-based characterizations, including genotypic classifications, serovar
prediction (exclusively for Salmonella), gene-based annotations, and pan-genome outputs.
PlasmidFinder is used to identify plasmids in the assemblies (Carattoli et al., 2014).
PlasmidFinder comes with curated database of plasmid replicons to identify plasmids in
the WGS data (currently over-represented plasmids from the Enterobacteriaceae).
SISTR is used for Salmonella and produces serovar prediction and in silico molecular
typing by determination of core-genome multilocus-sequence typing (cgMLST) gene
alleles (~330 loci) (Yoshida et al., 2016). SISTR generates multiple output files. Of primary
interest for downstream analyses is the main SISTR output file named sistr_output.csv.
The filtered assemblies are annotated using Prokka (Seemann, 2014), which is based on a
curated set of core and HMM databases for the most common bacterial species. If needed,
one can customize and create their own annotation database. In addition to the other
files, Prokka produces annotation files in GFF3 format that are used with Roary (Page
et al., 2015) to identify the pan-genome and to generate core-genome alignments.
The core-genome alignment file produced is then used with fastbaps, an improved version
of the BAPS clustering method (Tonkin-Hill et al., 2019), to hierarchically cluster the
genomic sequences from the multiple sequence alignment in varying numbers of stratum
(i.e., levels of resolution). Multilocus-sequence typing is also performed on the assemblies
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using MLST (Seemann, 2020a). Here, the filtered genome assemblies from individual
bacterial isolates are categorized into specific variants based on allele combinations from
seven ubiquitous, house-keeping genes (Jolley & Maiden, 2010). In addition to these
analyses, the filtered assemblies are screened for AMR and virulence associated loci using
ABRicate (Seemann, 2020b). ABRicate comes with multiple comprehensive gene-based
mapping databases, and the ones used in ProkEvo are NCBI (Feldgarden et al., 2019),
CARD (Jia et al., 2016), ARG_ANNOT (Gupta et al., 2013), Resfinder (Zankari et al.,
2012), and VFDB (Chen et al., 2015). Prokka, SISTR, PlasmidFinder, MLST, and ABRicate
are independent of each other, and they are all run simultaneously in parallel. Moreover,
Prokka, SISTR, and PlasmidFinder perform their computations per filtered assembly,
while MLST and ABRicate use all filtered assemblies together. Running multiple
independent jobs simultaneously is one of the key factors to maximize computational
efficiency. With respect to Salmonella genomes, once the SISTR analyses finish for all
assemblies, the generated independent sistr_output.csv files are concatenated. This
aggregation of files can be done because the genome categorization to serovars and
cgMLST variants done by SISTR occurs completely independent for each genome. Each
tool executed in ProkEvo is run with specific options set as defaults. While the options used
in this paper fit the presented case studies, these options are easily adjustable and
configurable in the pipeline. Because we developed ProkEvo for studying a diverse array of
bacterial species, the pipeline was specifically designed to incorporate programs such as
SISTR for Salmonella enterica, where serovar classifications can be made accurately
based on the Kauffman-White scheme (Rowe & Hall, 1989). However, other serotype
prediction modules can be substituted for SISTR to accommodate user-specific needs.
Additionally, the MLST program can be directed to species-specific sets of genetic loci used
for classification, as shown with the Campylobacter jejuni and Staphylococcus aureus
datasets.

The modularity of ProkEvo allows us to decompose the analyses into multiple tasks,
some of which can be run in parallel, and utilize a WMS. ProkEvo is dependent on many
well-developed bioinformatics tools and databases. A list of the exact versions of the
bioinformatics tools and databases used for reproducing the analyses in this paper is given
on Table S1. The setup and the installation of the needed tools, dependencies and
databases are not always trivial. To make this process easier, reduce the technical
complexity, and allow reproducibility, we provide two software distributions for ProkEvo.
The first distribution is a conda environment based on a yaml file that contains all software
dependencies and versions utilized (Anaconda, 2012), and the second one is a Docker
image that can be used with Singularity (Docker, 2013). Both distributions are supported
by the majority of computational platforms and integrate well with ProkEvo, and can be
easily modified to include other tools and steps. The software dependencies in the
conda yaml file and Docker image are pinned to their specific versions used for the
analyses in this paper in order to provide reproducibility. By default, when run, ProkEvo
creates conda environment with all needed tools and databases, so the researcher does not
need to do any separate setup for the dependencies. The code for ProkEvo, and both the
conda yaml file and the Docker image, are publicly available at our GitHub repository
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(https://github.com/npavlovikj/ProkEvo) and (https://github.com/npavlovikj/ProkEvo/
tree/master/distribution) respectively.

Features of ProkEvo
The provided distribution of ProkEvo is generalized to work for multiple population-based
applications and generate results with minimal effort for implementation. Because
researchers may need to modify, optimize, or expand ProkEvo for their own needs, we
have designed ProkEvo with capabilities for easy customization through the Pegasus
WMS. The default commands and settings of the bioinformatics tools used in ProkEvo are
documented on our documentation page (https://github.com/npavlovikj/ProkEvo/wiki/2.
1.-Bioinformatics-tools-and-commands-used). These settings or modifications to them
should be applied before submitting and running ProkEvo. ProkEvo supports various
advanced features, such as:

1. Adding new bioinformatics tool to ProkEvo (https://github.com/npavlovikj/ProkEvo/
wiki/4.1.-Add-new-bioinformatics-tool-to-ProkEvo)

2. Removing bioinformatics tool from ProkEvo (https://github.com/npavlovikj/ProkEvo/
wiki/4.2.-Remove-existing-bioinformatics-tool-from-ProkEvo)

3. Changing options for already existing tool in ProkEvo (https://github.com/npavlovikj/
ProkEvo/wiki/4.3.-Change-running-options-for-existing-tool-in-ProkEvo)

4. Running ProkEvo on Virtual Cloud Machine (https://github.com/npavlovikj/ProkEvo/
wiki/3.2.-Setup-on-virtual-cloud-machine)

Pegasus workflow management system
ProkEvo uses the Pegasus WMS, which is a framework that automatically translates
abstract, high-level workflow descriptions into concrete efficient scientific workflows that
can be executed on different computational platforms such as clusters, grids, and clouds.
The abstract workflow of Pegasus WMS contains information and description of all
executable files (transformation catalog) and logical names of the input files used by the
workflow (replica catalog). Complementing the abstract component is a concrete
workflow, which specifies the location of the data and the execution platform (Deelman
et al., 2005). The workflow is organized as a directed acyclic graph (DAG), where the nodes
are the tasks and the edges are the dependencies. Next, the workflow is submitted
using HTCondor (HTCondor, 1988). Pegasus WMS uses DAX (directed acyclic graph in
XML) files to describe an abstract workflow. These files can be generated using
programming languages such as Java, Perl, or Python. The high-level of abstraction of
Pegasus allows users to ignore low-level configurations required by the underlying
execution platforms. Pegasus WMS is an advanced system that supports data management
and task execution in automated, reliable, efficient, and scalable manner. This whole
process is monitored, and the workflow data is tracked and staged. The requested output
results are presented to the users, while all intermediate data can be removed or re-used.
In case of errors, jobs are automatically re-initiated. If the errors persist, a checkpoint file is
produced so the job can be resubmitted and resumed. Pegasus WMS supports sub-

Pavlovikj et al. (2021), PeerJ, DOI 10.7717/peerj.11376 7/50

https://github.com/npavlovikj/ProkEvo
https://github.com/npavlovikj/ProkEvo/tree/master/distribution
https://github.com/npavlovikj/ProkEvo/tree/master/distribution
https://github.com/npavlovikj/ProkEvo/wiki/2.1.-Bioinformatics-tools-and-commands-used
https://github.com/npavlovikj/ProkEvo/wiki/2.1.-Bioinformatics-tools-and-commands-used
https://github.com/npavlovikj/ProkEvo/wiki/4.1.-Add-new-bioinformatics-tool-to-ProkEvo
https://github.com/npavlovikj/ProkEvo/wiki/4.1.-Add-new-bioinformatics-tool-to-ProkEvo
https://github.com/npavlovikj/ProkEvo/wiki/4.2.-Remove-existing-bioinformatics-tool-from-ProkEvo
https://github.com/npavlovikj/ProkEvo/wiki/4.2.-Remove-existing-bioinformatics-tool-from-ProkEvo
https://github.com/npavlovikj/ProkEvo/wiki/4.3.-Change-running-options-for-existing-tool-in-ProkEvo
https://github.com/npavlovikj/ProkEvo/wiki/4.3.-Change-running-options-for-existing-tool-in-ProkEvo
https://github.com/npavlovikj/ProkEvo/wiki/3.2.-Setup-on-virtual-cloud-machine
https://github.com/npavlovikj/ProkEvo/wiki/3.2.-Setup-on-virtual-cloud-machine
http://dx.doi.org/10.7717/peerj.11376
https://peerj.com/


workflows, task clustering and defining memory and time resources per task. Pegasus
WMS also generates web dashboard for each workflow for better workflow monitoring,
debugging, and analyzing, which helps users to analyze workflows based on useful statistics
and metrics of the workflow performance, running time, and machines used.

ProkEvo uses Python to create the workflow description. Each step of the pipeline is a
computational job represented as a node in the DAG. Two nodes are connected with
an edge if the two jobs need to be run one after another. The input and output files are
defined in the DAG as well. All jobs that are not dependent on each other can be run
concurrently. Each job uses its own predefined script that executes the program
required by the job with the specified options. This script can be written in any
programming language. The specific versions of the bioinformatics tools and programs
required by ProkEvo can be distributed through conda environment with provided yaml
file (https://github.com/npavlovikj/ProkEvo/blob/master/distribution/prokevo.yml) or
Docker image (https://github.com/npavlovikj/ProkEvo/blob/master/distribution/
Dockerfile). The predefined scripts within this release of ProkEvo enable running without
further change or modification. With the modularity of Pegasus, each job requests its own
run time and memory resources. Exceeding the memory resources is a common
occurrence in any bioinformatics analysis and based on this assumption, when exceeding
the memory is a reason for a job failure, Pegasus retries the job with increased
requirements. Higher memory requirements may imply longer waiting times for resources,
and the Pegasus WMS uses high memory resources only when needed. ProkEvo is
developed in a way that supports execution on various high-performance and
high-throughput computational platforms. In the analyses for this paper, we use both the
University cluster and OSG, and working versions for both platforms are available in our
GitHub repository (https://github.com/npavlovikj/ProkEvo).

Computational execution platforms
Traditionally, data-intensive scientific workflows have been executed on high-performance
and high-throughput computational platforms. While high-performance platforms
provide resources for analyses that require significant numbers of cores, time, and
memory, high-throughput platforms are suitable for many small and short independent
tasks. The design of ProkEvo is suitable for different computational environments like
University and other publicly or privately available clusters and grids, and thus provides
flexibility in the computational platform. We have evaluated ProkEvo on two different
computational platforms—a University cluster and the distributed Open Science Grid.

University cluster (Crane), a high-performance computational platform
University and other public clusters are shared by diverse communities of users and
enforce fair-share scheduling and file and disk spaces quotas. These clusters are suitable for
various types of jobs, such as serial, parallel, GPU, and high memory specific jobs, thus
the high-performance. Crane (HCC, 2008) is one of the high-performance computing
clusters at the University of Nebraska Holland Computing Center (HCC). Crane is Linux
cluster, having 548 Intel Xeon nodes with RAM ranging from 64 GB to 1.5 TB, and it
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supports Slurm and HTCondor as job schedulers. In order to use Crane, users obtain an
HCC account associated with a University of Nebraska faculty or research group.
Importantly, most University and publicly available high-performance clusters are
administered in a manner similar to Crane and would be suitable for running ProkEvo.

Crane has support for Pegasus and HTCondor, and no further installation is needed in
order to run ProkEvo. Due to the limited resources and fair-share policy on Crane, tens
to hundreds of independent jobs can be run concurrently. We provide a version of
ProkEvo suitable for Crane with conda yaml file, which contains all required software and
its specific versions used in this paper (https://github.com/npavlovikj/ProkEvo/blob/
master/distribution/prokevo.yml). Crane has a shared file system where the data is
accessible across all computing nodes. Depending on the supported file system, Pegasus is
configured separately and handles the data staging and transfer accordingly. However,
users do not need advanced experience in high-performance computing to run ProkEvo on
Crane, or most other University or publicly available clusters. Users only need to
provide list of SRA identifications and run the submit script that distributes the jobs
automatically as given in our GitHub repository (https://github.com/npavlovikj/ProkEvo/
wiki/3.1.-Setup-on-high-performance-computing-cluster).

Open Science Grid (OSG), a distributed, high-throughput computa-
tional platform
The Open Science Grid (OSG) is a distributed, high-throughput computational platform
for large-scale scientific research (Pordes et al., 2007; Sfiligoi et al., 2009). OSG is a national
consortium of more than 100 academic institutions and laboratories that provide
storage and tens of thousands of resources to OSG users. These sites share their idle
resources via OSG for opportunistic usage. Because of its opportunistic approach, OSG as a
platform is ideal for running massive numbers of independent jobs that require less than
10 GB of RAM, less than 10 GB of storage, and less than 24 h running time. If these
conditions are fulfilled, in general, OSG can provide unlimited resources with the
possibility of having hundreds or even tens of thousands of jobs running at the same time.
The OSG resources are Linux-based, and due to the different sites involved, the hardware
specifications of the resources are different and vary. Access and use of OSG is free for
academic purposes and the user’s institution does not need to be part of OSG to use
this platform.

All steps from the population genomics analyses of ProkEvo fulfill the conditions for
OSG-friendly jobs and ProkEvo can efficiently utilize these distributed high-throughput
resources to run thousands of analyses concurrently when the resources are available.
OSG supports Pegasus and HTCondor, so no installation steps are required. We provide
version of ProkEvo suitable for OSG (https://github.com/npavlovikj/ProkEvo/tree/master/
OSG). This version uses the Docker image with all specific releases of the software
requirements via Singularity and supports non-shared file system (https://github.com/
npavlovikj/ProkEvo/blob/master/distribution/Dockerfile). In non-shared systems, the
resources do not share the data. The data are read and written from a staging location, all
of which is managed by the Pegasus WMS. In order to run ProkEvo on OSG, users only
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need to provide list of SRA identifications and run the submit script without any advanced
experience in high-throughput computing.

Population genomics analyses
The population-based analyses performed in this paper provide an initial guidance on how
to comprehensively utilize the following output files produced by ProkEvo for
hierarchical-based genotypic classifications. These classifications are based on: (1) MLST
output (.csv) (Seemann, 2020a); (2) SISTR output (.csv) (Yoshida et al., 2016); (3) BAPS
output (.csv) (Tonkin-Hill et al., 2019); (4) Roary generated core-genome alignment
(core_gene_alignment.aln) and accessory-genome (accessory_binary_genes.fa.newick)
files for both phylogenetic and dendogram/clustering analysis, respectively (Page et al.,
2015); and 5) ABRicate output (.csv) containing AMR genes using the Resfinder database
(Zankari et al., 2012). We use both R (version 4.0.3) and Python 3 (version 3.8.3)
Jupyter Notebooks (version 6.0.3) for all our initial guidance into combining some of the
outputs for population-based data analyses (https://github.com/npavlovikj/ProkEvo/tree/
master/jupyter_r_notebooks). The specific Python libraries used were pandas (version
1.0.2), numpy (version 1.18.1), matplotlib (version 3.2.1), seaborn (version 0.10.1).
The specific R libraries used were tidyverse (version 1.3.0), ggplot2 (version 3.3.2),
ggtree (version 2.2.4). The input data used for these analyses is available on Figshare
(https://figshare.com/projects/ProkEvo/78612).

A first general step in this type of analysis is opening all files in the preferred
environment (i.e., RStudio or JupyterHub), and merging them into a single data frame
based on the SRA (genome) identification. Next, we perform quality control (QC) of the
data, focusing on identifying and dealing with missing values, or cells of the data frame
containing erroneous characters such as hyphens (-) and interrogation marks (?). For that,
we demonstrate our approach for cleaning up the data prior to conducting exploratory
statistical analysis and generating all visualizations.

In the case of Salmonella datasets, an additional “checking/filtering” step was used
after the QC is complete. Since the program SISTR provides a serovar call based on
genotypic information, one can opt for keeping or excluding those genomes that do not
match the original serovar identification in the analysis. Both approaches are justifiable
with the latter one being more conservative, and it specifically assumes that the
discordance between data entered in NCBI and genotypic prediction done by SISTR is
accurate. However, it is important to remember that we initially expect that the dataset
belongs to a particular serovar because of the keywords we used to search the NCBI SRA
database, such as: "Salmonella Newport”, “Salmonella Typhimurium", or “Salmonella
Infantis”. Typically, the proportion of genomes that are classified differently by SISTR than
the designation associated with the file in SRA is ~<3% for any given Salmonella dataset
tested here. In our application, we chose a conservative approach and either filtered the
“miscalls” out of the data, or kept it as a separate group called “other serovars”. The latter
approach was done for specific analyses, such as phylogenetics, where the program of
choice used for data visualization requires all data points to be in place (e.g., ggtree version
2.2.4 in R version 4.0.3). This situation arises because the core-genome alignment used for
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the phylogeny is generated by Roary without considering the SISTR prediction for serovar
calls. If such consideration is relevant, the user can add a condition to the pipeline to
run Roary after considering SISTR results, but this situation only applies to Salmonella
genomes. However, we do note that stringent requirements for serotype classification
(i.e., filtering out “miscalls” based on SISTR predictions) could eliminate important
variants that may genotypically match known populations of the serovar, but which have
acquired mutations or recombination events at serotype-determining loci. Our suggestion
is that for any predictive analysis, one should either filter out, or classify the potential
miscalls, or at least measure its contribution and effects on data interpretation after
running SISTR.

To define hierarchical relationships of genotypic classifications at varying levels of
resolution, the ProkEvo pipeline combines multi-locus MLST-based variants at different
scales of resolution with Bayesian-based nested clustering analysis (BAPS), which classifies
genomes based on core-genomic structure (i.e., only shared content). The BAPS-based
approach to genomic classifications is callable, and allows the user to circumvent
computationally-intensive use of phylogeny, which is not scalable to thousands of core
genomes. Thus, evolutionary “familial” relationships across STs or thousands of
cgMLST variants can be inferred by their hierarchical relationships to BAPS-based
classifications. In this version of ProkEvo, we have implemented legacy MLST for ST calls
using seven loci, cgMLST that uses approximately 330 loci for MLST analysis in the case
of Salmonella, and a BAPS haplotype/sub-group classification using six layers of BAPS
(BAPS1 being the lowest level of resolution and BAPS6 being the highest—top-down
stratification). That is, BAPS1 represents the first level of resolution, within which
sub-groups or multiple haplotypes will be formed (nested approach). The more levels of
resolution used, the higher the degree of granularity (more sub-groups will be formed
within BAPS levels) achieved while stratifying a population. To explore the hierarchical
relationships of variants, one can simply examine the distribution of legacy STs among
genomes belonging to identical or distinct clusters based on classification at the lowest level
of BAPS resolution (BAPS1). Likewise, the genetic relationships of thousands of cgMLST
variants can also be assessed with respect to the BAPS-based and ST-linked genomic
architecture at different levels of BAPS resolution to infer evolutionary familial
relationships. For instance, a highly clonal population of a single cgMLST variant would be
expected to group into a single BAPS sub-group/haplotype at the lowest level of BAPS1
resolution, and remain confined to one or a small number of BAPS sub-groups at
increasing levels of BAPS-based resolution (i.e., BAPS5-BAPS6). In contrast, a diverse
population of cgMLST variants that are more distantly related (e.g., not highly clonally
related) will partition between multiple BAPS sub-groups at higher levels of resolution, say
BAPS5 or BAPS6. In practice, this analysis is important for examining the degrees of
population heterogeneity and diversification, which has implications for ecological and
epidemiological inference.

The above mentioned hierarchical approach was possible for the S. Newport dataset
of ~2,400 genomes (USA data), but the core-genome alignment step, generated by Roary
under our specific settings, was not scalable to the 10-fold larger dataset of S.
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Typhimurium (~23,000 genomes—worldwide data). This larger dataset was split into
twenty smaller datasets during the core-genome alignment step. Although random
partitioning of the subsets should yield the same classifications of dominant genomic
groups, the BAPS clustering will not necessarily assign the same genomic types in different
datasets to the same sub-group/haplotype numbers. Thus, aggregation of the BAPS data
from multiple, independently analyzed subsets requires user-based input. On the other
hand, sub-setting larger datasets is advantageous for downstream data science and
machine learning analyses, since they require a nested cross-validation approach for
feature selection and predictive analytics. Herein, we used a random sampling approach to
create subsets of the genomic data for the large number of S. Typhimurium genomes that
were input into Roary. Based on the number of genomes, we created 20 subsets, each
having 1,076-1,077 genomes. Obviously, downsampling is also possible provided one has a
priori definition of the population structure, and/or other sources of information such as
epidemiological data from outbreaks. Next, from the GFF files produced by Prokka, we
randomly selected and assigned genomes to each group using custom Bash scripts. Both
Roary and fastbaps were run per group, resulting in 20 independent runs with the
corresponding output files. To evaluate randomness of subset assignments, the distribution
of the major ST and cgMLST variants were assessed (https://github.com/npavlovikj/
ProkEvo/blob/master/jupyter_r_notebooks/salmonella_typhimurium_analysis.ipynb).
Subsequently, the population of S. Typhimurium was analyzed using its hierarchical
structure simply going from ST to cgMLST variants.

Complementary to this population structure analysis, we also measured distributions of
AMR genes within and between Salmonella serovars, including S. Infantis (~1,700
genomes—USA data). Within serovar, the relative frequencies of AMR genes were
estimated between major ST variants using the ABRicate outputs from the Resfinder
database for identification of putative AMR genes. We arbitrarily selected genes with
proportion higher than or equal to 25% for S. Newport, S. Infantis, and S. Typhimurium,
for visualizations, which were produced with ggplot2 in R (Wickham, 2011). The respective
scripts are provided in our repository (https://github.com/npavlovikj/ProkEvo/blob/
master/jupyter_r_notebooks/salmonella_abx.Rmd).

To demonstrate the versatility of ProkEvo across multiple species, we also conducted a
population-based analysis of C. jejuni and S. aureus datasets comprising isolates from the
USA, containing 21,919 and 11,990 genomes, respectively. For both datasets, we analyzed
the population structure using BAPS1 and STs. The same hierarchical population basis
described for Salmonella applies here, with BAPS1 coming first and STs next in terms of
population ranking. We used a random sample of ~1,000 genomes of each species to
demonstrate the distribution of BAPS1 and STs onto the phylogenetic structure.
Phylogenies were constructed using the core-genome alignment produced by Roary, and
by applying the FastTree program (Price, Dehal & Arkin, 2010) using the generalized
time-reversible (GTR) model of nucleotide evolution without removing genomic regions
putatively affected by recombination (https://github.com/npavlovikj/ProkEvo/blob/
master/jupyter_r_notebooks/campylobactera_jejuni_s_aureus.Rmd). Additionally, we
showed the distribution of STs within each bacterial species (only showed STs with
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proportion higher than 1%), and the relationship between the relative frequencies of
dominant STs and AMR genes. Genes with relative frequency below 25% were filtered out
of the data. All visualizations were generated with ggplot2 (version 3.3.2) in R (version
4.0.3), and the scripts are also provided in our repository. All procedures used from quality
control of the data all the way to tabular formatting and filtering were done with base
R and tidyverse (version 1.3.0).

Lastly, we compared two options for integrative phylogenetic and population structure
visualization using two software packages: ggtree version 2.2.4 using R version 4.0.3 vs.
an online platform named phandango version 1.3.0 (https://jameshadfield.github.io/
phandango/#/) (Hadfield et al., 2018). This analysis was done using both C. jejuni and
S. aureus datasets. For C. jejuni and S. aureus, we randomly (random sampling without
replacement) selected 1,044 and 1,193 genomes from the total population collected from
NCBI comprised of 21,919 and 11,990 genomes, respectively—all of which were initially
processed through ProkEvo, as described above. Phylogenetic trees were constructed for
both samples using FastTree. Hierarchical population structure analysis was done using
two layers of genotypic information: BAPS1 and ST classifications. Considering the
potential impact of sample size in phylogenetic visualization due to varying branch length,
we also generated phylogenies using randomly selected datasets of increasing size: 180,
360, 540, and 720 genomes for C. jejuni; and using 140, 350, 560, and 770 genomes for
S. aureus. These genomes, belonging to varying subsets of different sample sizes, were
selected upon classifying 18,845 of the 21,919 genomes of C. jejuni, and 11,597 of the
11,990 genomes of S. aureus, respectively, using the MLST approach with seven loci.
Of note, all sampling was done randomly without replacement, and evenly across major
STs (arbitrary cutoffs of 3% and 1% for including STs into major groups based on relative
frequencies for either C. jejuni or S. aureus, respectively); whereas, the remainder ones
were aggregated as “Other STs”. Herein, our strategy was to first examine the population
structure of each species using the ST genotyping to sample evenly across the most
dominant STs, in order to avoid bias while constructing the random data subsets.
Our choice to use ST instead of BAPS1 for a prior population structure assessment was due
to the first being stable across runs, while the latter may have varying sub-group
membership due to the randomness of its algorithm. This approach allowed us to
specifically test what impact the plotting program would have on visualizing the
phylogenetic topology and branching patterns. Of note, both programs required the
phylogenetic tree (.tree) and metadata (population structure—.csv) files as input.

RESULTS
Overview of ProkEvo
In Table 1, we provide a comparative analysis depicting some of the main similarities and
differences between ProkEvo and major pipelines that are publicly available for
comparative and population-based bacterial genomics analyses. The overall flow of tasks
performed in ProkEvo is illustrated in Fig. 1, including all specific bioinformatics tools
used for each task. A list of the exact versions of all the tools and databases used in ProkEvo
is shown on Table S1. The DAG shown in Fig. 2 represents the Pegasus WMS design of
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ProkEvo and it shows all independent input and output files, tasks, and the dependencies
among them. The modularity of ProkEvo allows every single task to be executed
independently on a single core. As seen on Fig. 2, there are approximately 10 tasks
executed per genome. When ProkEvo is used with whole bacterial populations of
thousands of genomes, the number of total tasks is immense.

To evaluate the capability of the Pegasus WMS to scale tasks independently on diverse
computational platforms, ProkEvo was run with two datasets of significantly different size
(~2,400 genomes [1X] vs. ~23,000 genomes [10X]) on two different computational
platforms—the University of Nebraska high-performance computing cluster (Crane) and
the Open Science Grid (OSG), a distributed, high-throughput cluster (Fig. 3). The ProkEvo
code available on our GitHub page supports both platforms and each platform has
unique structure and idiosyncratic advantages and disadvantages (Fig. 3). Each dataset was

Figure 1 Overall ProkEvo’s computational workflow. Top-down flow of tasks for the ProkEvo pipe-
line. The squares represent the steps, where the bioinformatics tool used for each step is shown in
brackets. The pipeline starts with downloading raw Illumina sequences from NCBI, after providing a list
of SRA identifications, and subsequently performing quality control. Next, de novo assembly is per-
formed on each genome using SPAdes and the low-quality contigs are removed. This concludes the first
part of the pipeline, the first sub-workflow. The second sub-workflow is composed of more specific
population-genomics analyses, such as genome annotation and pan-genome analyses (with Prokka and
Roary), isolate cgMLST classification and serotype predictions from genotypes in the case of Salmonella
(SISTR), ST classification using the MLST scheme, non-supervised heuristic Bayesian genotyping
approach using core-genome alignment (fastbaps), and identifications of genetic elements with ABRicate
and PlasmidFinder. Full-size DOI: 10.7717/peerj.11376/fig-1
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Figure 2 Pegasus workflow of ProkEvo. Pentagons represent the input and output files, the ovals
represent the tasks (jobs), and the arrows represent the dependency order among tasks. Pentagons are
colored in red for the input files used for the first and second sub-workflow, respectively. The yellow
pentagons and the green ovals represent the input and output files, and tasks (jobs) that are part of the
first sub-workflow. The pentagons colored in orange and the ovals colored in blue are the input and
output files, and tasks used in the second sub-workflow. While the first sub-workflow is more modular,
most of the tasks from the second sub-workflow are performed on all processed genomes together. Here,
the steps of the analyses for two genomes are shown, and those steps and tasks remain the same regardless
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run once on the two platforms and performance metrics were collected for the Pegasus
WMS workflow. Of note, there may be variation in the ProkEvo runtime from project to
project based on the availability of resources on each platform. As an HPC resource of
the Holland Computing Center, the Crane cluster is managed by fair-share scheduling,
while as an opportunistic HTC resource, the OSG resources may be dynamically
de-provisioned or having intermittent issues. These factors may impact the future
predictability of running time and performance of ProkEvo on both platforms. On average,
we had hundreds of jobs running at a time on Crane, and because of the similar type of
nodes available, the runtime should be similar for multiple runs of the same workflow.
On the other hand, the nodes on OSG are more diverse and the runtime and the number of
jobs for multiple runs can be significantly different (from few jobs running at the same
time to few tens of thousand).

ProkEvo consists of two sub-workflows, with number of jobs varying from a few
thousands to a few hundreds of thousands, depending on the dataset. “pegasus-statistics”
generates summary metrics/statistics regarding the workflow performance, such as the
total number of jobs, total run time, number of jobs that failed and succeeded, task and
facility information, etc. The total distributed running time is the total running time of
ProkEvo from the start of the workflow to its completion. The total sequential running
time is the total running time if all steps in ProkEvo are executed one after another. In case
of retries, the running times of all re-attempted jobs are included in these statistics as
well. Beside the workflow runtime information, Table 2 also shows the maximum total
number of independent jobs ran on Crane and OSG within one day. Moreover, the total
count of succeeded jobs is shown for both computational platforms and datasets.

When run on Crane, ProkEvo with S. Newport (~2,400 genomes) completely finished
in 3 days and 15 h. If this workflow was run sequentially on Crane, its cumulative
running time would be 115 days and 18 h. On the other hand, ProkEvo with the
S. Newport dataset finished in 7 days and 4 h when OSG was used as a computational
platform. Similarly, if this workflow was run sequentially on OSG, its cumulative running
time would be 1 year and 69 days. The longer runtime for the workflow on Crane vs.
OSG is likely due to the variable resources of OSG and its different configurations and
hardware. The nature of OSG also means that jobs may be preempted if a resource owner
submits more jobs. In this case, the preempted job is retried, but that additional time is
added to the workflow wall time. While the maximum number of independent jobs ran on
Crane in one day is 2,377, this number is 8,606 when OSG was used. In general, HTC
resources such as OSG are advantageous when a high number of jobs and nodes can be run
and used simultaneously for workflows that can be completed efficiently, limiting

Figure 2 (continued)
of the number of genomes. The number of tasks significantly increases with the number of genomes used,
and because of the modularity of ProkEvo, each task is run on a single core which facilitates paralleli-
zation at large scale. Theoretically, if there are n cores available on the computational platform, ProkEvo
can utilize all of them and run the corresponding n independent tasks, simultaneously (1:1 correspon-
dence). Full-size DOI: 10.7717/peerj.11376/fig-2
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Table 1 Comparison of existing pipelines for bacterial population genomics analyses.

Feature ProkEvo TORMES Nullarbor ASA3P Bactopia

Sequence technology Illumina Illumina Illumina Illumina, PacBio,
ONT, hybrid

Illumina

Paired-end reads Yes Yes Yes Yes Yes

Single-end reads Yes* No No Yes Yes

Workflow Pegasus WMS***** Bash + R Perl + Bash Groovy Nextflow*****

Resume if stopped Yes No Yes No Yes

Scalability to run on
distributed and cloud
resources

Yes No No Yes Yes

Input setup Input file containing list of
SRA accessions or file
with absolute paths to
local FASTQ files

Input file with
metadata
information about
the input reads and
their location

Input “samples” file
with information
about the isolates and
their system location

All input files and
meta information
should be within a
dedicated directory

Input file
containing
sample name and
absolute paths to
input files

Bencharked on
different
computational
platforms

Yes (cluster, grid, cloud) Yes (laptop, computer) No (computer) Yes (laptop, cluster,
cloud)

No (cluster)

Capability of adding
new tools

Yes* No No No Yes*

Guidance for
performing
population-based
analyses

Yes (custom Jupyter
Notebook and R code)

No No No No

Analyses

Quality control Yes Yes Yes Yes Yes

Assembly Yes Yes Yes Yes Yes

Pan/core-genome Yes Yes Yes Yes Yes

Phylogeny No Yes Yes Yes** Yes

BAPS Clustering Yes No No No No

Comparative analyses Bult-in and separate Built-in Built-in Built-in separate

Reporting Text R Markdown HTML HTML5 Text

Software and databases

Auto installed Yes No No No Yes

Adjustable parameters
for individual
programs

Yes Yes Yes No Yes

Modifying parameters
for individual
programs before or
while the pipeline
runs

Before Before Before Before Before

Command-line
adjustable options

No Yes Yes No Yes

Github repository https://github.com/
npavlovikj/ProkEvo

https://github.com/
nmquijada/tormes

https://github.com/
tseemann/nullarbor

https://github.com/
oschwengers/asap

https://github.com/
bactopia/bactopia

(Continued)
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disruption from resource availability. The use of “all available resources” is often a
limitation for University clusters. The total number of successful jobs ran with ProkEvo for
the S. Newport dataset was 9,281 jobs on Crane and 16,624 jobs on OSG. Due to the
opportunistic nature of the OSG resources, a running job can be cancelled and retried
again, thus enabling the higher number of jobs reported by OSG. A similar pattern of
performance metrics was observed when ProkEvo was run with the larger S. Typhimurium
dataset (~23,000 genomes). When run on Crane, ProkEvo with S. Typhimurium
completely finished in 15 days and 22 h. If this workflow was run sequentially on Crane, its

Table 1 (continued)

Feature ProkEvo TORMES Nullarbor ASA3P Bactopia

Container available Yes No Yes Yes Yes

Package manager Conda YAML Conda YAML Bioconda and Brew Bioconda

Supports data
download from NCBI

Yes (Run accessions) No No No Yes (Experiment/
Assembly
accessions)

Supports locally stored
data

Yes Yes Yes Yes Yes

Test datasets***

Size of test dataset

� 2,392 S. Newport
genomes

� 2,870 S. Infantis
genomes

� 23,045 S. Typhimurium
genomes

� 21,919 C. jejuni
genomes

� 11,990 S. aureus
genomes

� 10 Salmonella spp.
genomes

� 18 Listeria genomes

� 6 Yersinia genomes

� 23 Salmonella
enterica subspecies
enterica Serovar
Bareilly genomes

� 4 L. monocytogenes
genomes

� 8 E. coli genomes

� 32
L. monocytogenes
genomes

� 128
L. monocytogenes
genomes

� 1024
L. Monocytogenes
genomes

� 1,664
Lactobacillus
genomes

Number of cores used
for testing

� ~100 CPUs—
cluster****

� ~25,000 CPUs—grid

� 32 CPUs—cloud

� 4 CPUs—computer

� 32 CPUs—laptop

� 1 CPU—computer � 32 CPUs—cloud

� 20 nodes with 40
CPUs—cluster

� 4 CPUs—laptop

� 96 CPUs—
cluster

Output multiple
directories under
project

Yes Yes Yes Yes Yes

Notes:
* Both ProkEvo and Bactopia are written using WMS which allows users to add more tools to the pipelines.
** The authors of ASA3P report that the phylogenetic tree did not finish for the dataset with 1,024 genomes due to lacking memory capacities.
*** The information about the test datasets and used resources for the various pipelines was found in their respective papers and GitHub pages.
**** Crane is Linux cluster, having 548 Intel Xeon nodes with 16 and 36 CPUs. Due to the fair-share policy and priority, we observed ~100 utilized CPUs at the time.
***** While Nextflow is more commonly used for bioinformatics applications, Pegasus WMS has the best overall performance for efficiently utilizing the computational

resources (Heller & Ghahramani, 2005).
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cumulative running time would be 2 years and 268 h. On the other hand, the ProkEvo run
for S. Typhimurium finished in 26 days and 6 h, when using OSG as a computational
platform. Similarly, if this workflow was run sequentially on OSG, its cumulative running
time would be 13 years and 50 days. The maximum number of independent jobs ran on
Crane and OSG is 12,382 and 25,540 respectively. The total number of successful jobs ran
with the S. Typhimurium dataset is 217,942 on Crane and 232,422 on OSG.

Figure 3 Computational experimental approach to test the performance of ProkEvo using two
different computational platforms with datasets of different size. To test how ProkEvo would per-
form with a small (1X) vs. moderately large (10X) datasets, in addition to using different computational
resources, we have designed the following experiment: (1) Selected two adequately sized datasets
including genomes from S. Newport (1X–from USA) and S. Typhimurium (10X–worldwide); (2) Used
two different types of computational platforms: Crane, the University of Nebraska high-performance
computing cluster, and the Open Science Grid, as a distributed high-throughput computing cluster; (3)
We then ran both datasets on the two platforms with ProkEvo, and collected the statistics for the per-
formance in order to provide a comparison between the two different computational platforms, as well as
possible guidance for future runs. Of note, the text in green and red correspond to advantages and
disadvantages of using each computational platform, respectively. Map data ©2020 Google, INEGI.

Full-size DOI: 10.7717/peerj.11376/fig-3

Table 2 Comparison of ProkEvo’s performance on Crane and OSG with two datasets with significant difference in size and number of
genomes.

Crane OSG Crane OSG

Number of genomes 2,392 23,045

Total distributed running time* 3 days 15 h 7 days 4 h 15 days 22 h 26 days 6 h

Total estimated sequential running time** 115 days 18 h 1 year 69 days 2 years 268 days 13 years 5 days

Maximum jobs ran in a day*** 2,377 8,608 12,382 25,540

Total number of jobs ran 9,281 16,624 217,942 232,422

Output data size 131 GB 1.2 TB

Notes:
* Total distributed running time is calculated when many independent tasks are executed simultaneously while each of them is utilizing a single core. This is the default
behavior of ProkEvo.

** Total estimated sequential running time is calculated when all steps from the pipeline are assumed to be run sequentially, on a single core.
*** The number of maximum jobs ran in a day depends on the type and length of the job, and is not linear, i.e., some tasks run faster than others which is directly

dependent of the type of job being done.
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The running times of the individual bioinformatics programs contribute to the total
running time of ProkEvo. Depending on the program and the job, the individual
running time per genome can vary from few minutes (for tasks such as downloading
data, quality trimming, filtering, BAPS clustering) to few hours (for tasks such as
de novo assembly and annotation). The output files from “pegasus-statistics” that
contain information about the average running time per job for the S. Newport and
S. Typhimurium datasets are available on Figshare (https://doi.org/10.6084/m9.figshare.
13640639). Regardless of the running time of the individual bioinformatics tools used in
the pipeline, one of the advantages of ProkEvo is its modularity and capability to
scale and run all independent programs at the same time when the computational
resources are available.

Although the workflow run time was better when Crane was used as a computational
platform, it should be pointed out that OSG is more efficient for datasets where there
are more jobs running simultaneously and, in our case, more genomes analyzed. As long as
resources are available and no preemption occurs, workflows running on OSG can expect
excellent performance. Notably, when run on OSG, ProkEvo utilized resources shared
by thirty-four different facilities. Failures and retries are expected to occur on OSG, and
their proportion may vary. From our experience, the number of failures and retries were
encountered in ~0.3–30% of the total number of jobs. The OSG support staff is highly
responsive to these issues, which can also be masked by a resilient and fault-tolerant
workflowmanagement systems like PegasusWMS. All the data, intermediate and final files
generated by ProkEvo are stored under the researcher’s allocated space on the file system
on Crane. Depending on the file system, it is possible that there are file count and disk
space quotas. When large ProkEvo workflows are run, users should be aware that quotas
on different clusters can be exceeded. On the other hand, due to the non-shared nature
of the file system of OSG, intermediate files are stored on different sites, and exceeding the
quotas is usually not an issue.

Both Crane and OSG are computational platforms that have different structure and
target different type of scientific computation. All analyses performed with ProkEvo fit
both platforms well. Thus, we provide an unambiguous comparison of both platforms and
show their advantages and drawbacks when large-scale workflows such as ProkEvo are
run.

Applications
To demonstrate various applications of ProkEvo to showing a hierarchical-based
population genomic analysis of different bacterial pathogens, we used publicly available
datasets from three phylogenetically distinct species of pathogens, including the zoonotic
pathogens Salmonella enterica and Campylobacter jejuni, and the human pathogen
Staphylococcus aureus, which causes different diseases based on inter-human transmission
or transmission through contaminated foods. While these datasets are likely to be inflated
with clinical isolates and undersampling from other environments (e.g., animal or
environmental), our analysis have the primary objective of emphasizing the utilities,
approaches, and applications that can result from formal hierarchical-based population
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data mining with ProkEvo, as opposed to formal research goals based on hypothesis-
testing. To achieve our objective, we present independent case studies with these
organisms that encapsulate some of the most generally useful approaches for studying
bacterial populations. Some keystone concepts regarding bacterial population genetics and
biology of each of these pathogens are described below. Notably, ProkEvo can be used with
essentially any bacterial species with a few limitations: (1) the MLST program only works if
the target bacterial species has an allelic profile present in the database, or is incorporated
by the user; and (2) SISTR is designed specifically for analysis of Salmonella, but the
program can be easily blocked out from the pipeline by the user.

Overview of the population structure and ecology for Salmonella
enterica, Campylobacter jejuni and Staphylococcus aureus
To understand utilities of ProkEvo and its intended purpose of providing
hierarchical-based genotypic classifications and associated genomic content variation (i.e.,
loci), it is important that users/researchers are familiar with relevant aspects of the biology
and the concept of population structure of target organisms (Fig. 4). In this report, we
focus on three different species of foodborne pathogens, Salmonella enterica,
Campylobacter jejuni, and Staphylococcus aureus, that are common worldwide (Abebe,
Gugsa & Ahmed, 2020) but are evolutionarily quite distinct from one another and have
very unique aspects of their population structures and biology.

The genus Salmonella is a member of the Phylum Proteobacteria and populations of
these organisms can be found as common inhabitants of the gastrointestinal tract in a wide
range of mammals, birds, reptiles, and insects, with these organisms often being
transmitted to humans through contaminated animal products, vegetables, fruits, and
processed foods (Ferrari et al., 2019). Salmonella comprises two primary species
(S. enterica and S. bongori), which are believed to have diverged from their last common
ancestor approximately 40 million years ago (Fookes et al., 2011). Worldwide, S. enterica is
the most frequently isolated species from human clinical cases and from most
environments. The S. enterica species comprise six genetically distinct sub-species, but the
vast majority (>90%) of known human cases are caused by populations descending from a
single sub-species, namely S. enterica subsp. enterica (lineage I). Even within S. enterica
lineage I, tremendous genetic and phenotypic diversity exists, and such diversity is
illuminated by the large number of sub-populations that are differentiated serologically
(referred to as “serovars”) by unique combinations of lipopolysaccharide molecules and
major protein components of their flagella on their cell surfaces (the Kauffman–White
scheme) (Rowe & Hall, 1989; Achtman et al., 2012). More than 2,500 serovars have been
defined in Salmonella enterica. Serovars represent relevant biological units for
epidemiological surveillance and tracking, because isolates belonging to the same serovar
show much less variation with respect to important traits such as range of host species,
survival in the environment, efficiency of transmission to humans, and virulence
characteristics, than isolates from different serovars (Alikhan et al., 2018; Achtman
et al., 2012).
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Further evidence of the biological relevance of serovars comes from multi-locus
genotyping and population genomics analysis across isolates from the Kaufmann–White-
based serovars. These studies show that the serovars are covariates with the MLST-based
population structure of S. enterica lineage I, with most serovars being found exclusively
within a unique multi-locus Sequence Type (ST) or a clonally-related group of STs
(ST clonal complexes). Consequently, the serotype of most isolates can be predicted
accurately from MLST-based STs (Achtman et al., 2012).

The hierarchical, clonal structure of the S. enterica lineage I population can be visualized
first by classifying genomes based on the serovar, and then increasing levels of resolution
based on variation in seven-locus MLST and 330-locus cgMLST. Populations sharing
alleles at the seven-loci MLST genotype are referred to as Sequence Types (STs), and
members of an ST along with highly related STs (e.g., STs sharing alleles with at least 5 of 7
loci) are considered “clonal complexes”. Genetically related variants at the cgMLST level
are embedded within a single ST or group of clonally-related STs (Alikhan et al., 2018).
In S. enterica, there are ~360 clonal complexes that are present across 50 of the most
common serovars (Alikhan et al., 2018).

Within a serotype and individual ST, there are hundreds-thousands of different
cgMLST variants. Although cgMLSTs derived from a single ST do share a common

Figure 4 Demonstration of the hierarchical population structure mapping onto a core-genome
phylogeny for Salmonella and non-Salmonella bacterial species, including specific clasifications.
(A) Salmonella hierarchical population structure follows a top-down ordering scheme: Serovars ->
BAPS1 (level 1) haplotypes/sub-groups -> STs -> cgMLST variants (Cheng et al., 2013). (B) Non-
hierarchical population structure includes only two layers of classification, including: BAPS1 (first), and
ST (second). (C) Hierarchical-based classification system with related definitions is shown here with their
respective references. Of note, prediction of serotypic information from genomic data, and cgMLST
variant calling are only done for Salmonella in ProkEvo. Those are outputs specifically generated by
SISTR which is specific for Salmonella. The user could either add another program that does it for other
species, or use their metadata file containing such information.

Full-size DOI: 10.7717/peerj.11376/fig-4
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ancestor, inferring the evolutionary relationships is computationally intensive and
phylogenetic inference of thousands of cgMLST variants across more than one ST is not
scalable computationally, particularly when it is necessary to account for horizontal gene
transfer (HGT) and recombination events across divergent variants. To overcome this
problem, phylogenetic relationships between multi-locus genotypic classifications can be
inferred by combining with scalable, nested-clustering approaches using heuristic
Bayesian-based computations such as BAPS, which determines genotypic relationships
based on compositional features of the core-genome at different scales of resolution. Thus,
evolutionary relationships of cgMLST variants within and between STs can be inferred
efficiently through hierarchical classification of the genomes at six BAPS levels (BAPS1
being the lowest level, and BAPS6 the highest level of resolution and population
fragmentation). BAPS1 through BAPS6 represent distinct levels, or stratum, of resolution
used to portioning a population. Within each stratum, sub-groups or haplotypes are
formed as discrete clusters that group core-genome sequences together, thereby generating
a table with numerical identification for those clusters. Preliminary analyses showed
that multiple STs can be part of the same sub-group within BAPS1, implying they have
shared a common ancestor, and this context allows for evolutionary inference of cgMLSTs
and their corresponding STs. Hierarchically combining Bayesian clustered-based
genotyping schemes at low levels of resolution with ST and cgMLSTs has been shown
previously in Salmonella (Connor et al., 2016), as well as other organisms such as
Enterococcus faecium (Moradigaravand et al., 2017). Consequently, our heuristic-based
approach uses the following hierarchical levels of population structure analysis for
Salmonella: (1) Serovar; (2) BAPS1; (3) STs; and (4) cgMLSTs (Fig. 4).

In our study, we used the Serovar/BAPS/MLST/cgMLST classifications of genomes
representing three serovars of S. enterica lineage I: S. Infantis, S. Newport, and
S. Typhimurium. These are among the top twenty-five most prevalent zoonotic serovars of
Salmonella according to the Center for Disease Control and Prevention (CDC, 2019b)
but have distinct population structures and ecologies. While all three serovars are known
for causing gastroenteritis in humans and have reservoirs in livestock, the bovine reservoir
appears to be the most common source for S. Infantis and S. Newport, whereas
S. Typhimurium has a generalist lifestyle and can be found in swine, poultry, bovine, etc.
(Ferrari et al., 2019).

Taxonomically related to Salmonella at the Phylum level (Proteobacteria) is the genus
Campylobacter, which includes two major species (C. jejuni and C. coli) that are
frequent causes of gastrointestinal diseases in humans (Sheppard & Maiden, 2015).
Campylobacter and Salmonella diverge taxonomically at the Class level (Campylobacter are
members of the Epsilon class of Proteobacteria while Salmonella belongs to the Gamma
Proteobacteria). Species of Campylobacter are also morphologically (helical cells) and
physiologically (microaerophilic) distinct from Salmonella. However, like Salmonella,
species of Campylobacter have reservoirs in food animals and often are associated with
zoonotic outbreaks of foodborne illness in developed countries (CDC, 2019a).

C. jejuni can also be classified serologically by combinations of lipopolysaccharide and
flagellar antigens, but far fewer serotypes are known for C. jejuni and serotyping is not
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commonly included in routine diagnostic procedures. A distinguishing feature of C. jejuni
population structure and evolutionary processes is its propensity for recombination and
high frequency of HGT, which are mediated by specialized systems present in these
organisms for uptake and recombination of extracellular DNA (Sheppard & Maiden,
2015). Consequently, C. jejuni is less clonal than any given serovar of S. enterica lineage I,
and it contains a variety of widespread STs, for which the diversification patterns appear to
be associated with host adaptation (Sheppard & Maiden, 2015; Griekspoor et al., 2013).
Nonetheless, the hierarchical-based population approaches implemented in ProkEvo
(which do not include serotype for this organism), are still able to associate STs with
BAPS1 haplotypes to infer evolutionary relationships despite the genomic heterogeneity
caused by higher levels of recombination (Fig. 4B).

While Salmonella and C. jejuni are divergent taxa within the Proteobacteria with
gram-negative cell wall structures, the species S. aureus has a Gram-positive cell wall
architecture and belongs to the phylum Firmicutes, which is evolutionarily very distant
from the Proteobacteria. Staphylococcus aureus can cause a diverse array of diseases in
humans including skin and invasive cutaneous infections, endocarditis, and toxic shock,
but this organism is also recognized as a foodborne pathogen that causes foodborne
intoxications (Tong et al., 2015). Foodborne gastroenteritis caused by this pathogen is
due to the production of one or more heat-stable enterotoxins that are secreted during
growth of the organism in contaminated foods (Fetsch & Johler, 2018). Humans are
considered the most important reservoir of this organism, where it can be found on human
skin, nasal cavities, and even the gastrointestinal tract, but the organism also colonizes
similar anatomical sites in livestock. From WGS data, Staphylococcus aureus populations
can be structured the same way as that of Salmonella and C. jejuni using BAPS1 and
STs. However, this pathogen is not as diverse as C. jejuni at the ST level, but instead has a
degree of clonality that is more comparable to those serovars within S. enterica lineage I.
Because the organisms are not routinely serotyped, ProkEvo hierarchically classifies S.
aureus genomes based on BAPS1 and MLST (Fig. 4B).

In this era of systems biology and multi-omics methodologies, it is becoming
increasingly desirable to go beyond simple application of WGS for source-tracking and
epidemiological investigation to understand dynamics of sub-populations of pathogenic
species and the evolutionary and ecological characteristics that drive population
disturbances. To study these dynamics and evolutionary/ecological processes, genotypic
classifications of isolates (e.g., serovar, BAPS, MLST, cgMLST genotypic classifications)
must be linked with important metadata (e.g., environmental/clinical source of the isolate,
geography, etc.) as well as phenotypic data (predicted or laboratory-determined) such as
resistance to antimicrobial agents, virulence characteristics, host adaptation,
environmental survival. The linked genotypic and phenotypic sets the stage for
quantitative genomics approaches to associate variation at specific genomic loci with
phenotypes that are driving evolutionary processes (selection) and ecological adaptation in
animal and food production environments or transmission/virulence attributes in humans
(Cury et al., 2018). Genes and pathways marked by these processes illuminate selective
pressures and better inform risk assessments as well as development of strategies to
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mitigate spread. Therefore, we designed the studies described below to provide a practical
example of how to link the distribution of important loci such as AMR to the population
structures of the three S. enterica lineage I serovars, C. jejuni and S. aureus (Bawn et al.,
2020; Mourkas et al., 2019; Holden et al., 2013).

Case study 1: S. Newport population structure analysis

The S. enterica serovar Newport ranks among the top 25 serovars considered as emerging
pathogens by the U.S. Centers for Disease Control and Prevention due to several recent
outbreaks of foodborne gastroenteritis in humans (Schneider et al., 2011). Unlike most
serovars of Salmonella enterica lineage I, where global populations of the serotype are
dominated by a single ST clonal complex, the S. Newport serovar has diversified into four
major STs (Fig. 5A). The genetic diversity detected in S. Newport isolates is somewhat
surprising given its relatively recent emergence as an important human pathogen, and
hence, low representation among isolates from the USA available in the NCBI SRA
database (total of 2,392 isolates). Nonetheless, this serovar provides a robust example for
analysis of a moderately complex population structure through ProkEvo. After the
pre-processing steps, assemblies of genomes from 2,365 isolates passed the filtering step
with a total data output of 131 GB produced by ProkEvo. After filtering for potentially
misclassified genomes using the output of SISTR, 2,317 genomes remained that were
annotated as S. Newport and predicted as S. Newport genotypically (Fig. S1 and Fig. S2).
Thus, SISTR-based serovar predictions suggest that 2.03% of the genomes were
misclassified as Newport. Using the genotypes assigned by the MLST, cgMLST, and
BAPS-based genomic composition programs implemented in ProkEvo, we next defined
the relative frequency of each genotype among 2,317 isolates (Figs. 5A–5H). This analysis
identified the expected structure with four dominant STs in the following descending
order: ST118, ST45, ST5, and ST132. The cgMLST distribution identified a total of 764
unique cgMLST variants, with the cgMLST genotype 1468400426 representing the most
frequent variant (Fig. 5B) that accounted for ~14% of all isolates, whereas the distribution
of the other cgMLST variants nearly ranging from 0.04% to 4.5%.

Circumventing the difficulties of scaling phylogenetic inference from thousands of
core-genome alignments, we next examined genetic relationships of cgMLST variants
using the scalable Bayesian-based clustering approach with BAPS to define sub-groups/
haplotypes based solely on the core-genome composition at different scales of resolution.
As expected, BAPS-based haplotypes at increasing levels of resolution (BAPS1–BAPS6)
increasingly fragmented the S. Newport into: 9 sub-groups for BAPS1, 32 sub-groups for
BAPS2, 83 sub-groups for BAPS3, 142 sub-groups for BAPS4, 233 sub-groups for BAPS5,
and 333 sub-groups for BAPS6 (Figs. 5C–5H). We next used a hierarchical analysis to
group the S. Newport cgMLST variants and their STs based on shared genomic content at
BAPS level 1 (BAPS1). At BAPS1 there are 9 total haplotypes or sub-groups. This analysis
showed that the dominant BAPS1 haplotype (BAPS1 sub-group 8) is shared by two of the
dominant STs, ST118 and ST5 (Fig. S1A). The shared BAPS haplotype implies that the
clonal complexes defined by these dominant STs are more related to each other than to
ST45 or ST132, which is consistent with the genetic relationships of these STs predicted by
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e-BURST (Alikhan et al., 2018). Of note, there was not a single dominant cgMLST within
any of BAPS1 sub-group 8 STs (ST118, ST5, or ST350) (Figs. S1B–S1D), but instead
relatively large numbers of cgMLST variants were partitioned among these STs with 307,
149, and 23 cgMLST variants descending from the ST118, ST5, and ST350 clonal
complexes, respectively. The association of a large number of cgMLST variants with ST118
suggests this population is rapidly diversifying, but it is important to note that the diversity
within ST118 may be inflated compared to other STs based on sample bias and size.

In contrast to the genetic relationships of ST118, ST5, and ST350 found among BAPS1
sub-group 8, we also found that ST45 belongs to a distinct BAPS1 haplotype (sub-group 1)
(Fig. S1E), with a total of 152 cgMLST variants. The ST45 complex also included a
high frequency cgMLST variant, cgMLST 1468400426, which is the most dominant one for
the entire S. Newport dataset (Fig. S1F). This predominance of cgMLST 1468400426
(within ST45 and across STs), could be due several reasons, including, but not limited to:
(1) sampling bias; (2) recent outbreaks; (3) founder effect; or (4) a true selective advantage.
Selection and founder effects often underlie the emergence of epidemiological clones

Figure 5 Salmonella Newport (USA) population stratification by genotype classification using two methods: allelic calls (ST and cgMLST) and
a heuristic Bayesian approach (BAPS). (A) ST distribution based on seven ubiquitous and genome-scattered loci using the MLST program, which is
based on the PubMLST typing schemes (plot excludes STs with relative frequency below 1%). (B) Core-genome MLST variant distribution based on
SISTR which uses ~330 ubiquitous loci (plot excludes STs with relative frequency below 1%). (C–H) BAPS levels 1-6 relative frequencies. For BAPS
levels 3-6, we have excluded sub-groups that were below 1% in relative frequency in order to facilitate visualization. Within each BAPS level (1
through 6), each number represents a distinct cluster, or sub-group, to which the isolates belong to. The initial number of genomes used as an input
was 2,392, while these analyses were run with 2,365 genomes that passed the post-assembly filtering steps.

Full-size DOI: 10.7717/peerj.11376/fig-5
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that cause significant increases in the numbers of outbreaks (Grad et al., 2012; Fraser,
Hanage & Spratt, 2005).

After identifying the dominant cgMLST variant 1468400426, we next examined the
degree of genotypic homogeneity (i.e., clonality) in this variant, and compared its genetic
relationship to all other cgMLSTs within BAPS1 and ST45 clonal complex (Figs.
S2A–S2E). We used BAPS-based groupings to estimate genetic relationships of the
cgMLSTs to one another. This was accomplished by comparing the frequency of cgMLSTs
within BAPS sub-groups at increasing levels of BAPS-based nested partitioning (increasing
resolution from level from 2 to 6). To visualize partitioning of the cgMLST variants,
genomes belonging to BAPS1 sub-group 1 and ST45 were first selected, and then each was
categorized into two groups: one group containing cgMLST 1468400426 (numbered 1),
and a second group contained all other cgMLSTs (numbered 0). This was done for each
genome at each successive level of BAPS2-BAPS6. If the dominant cgMLST 1468400426
is highly clonal, it will be present in one or only a few of the BAPS sub-groups at each
level of BAPS resolution. As shown in Figs. S2A–S2E, we found that indeed genomes
belonging to the dominant cgMLST 1468400426 variant were all found within a single
BAPS sub-group, even at the highest level of resolution (BAPS6). Notably, at each BAPS
level, there are other cgMLST variants that also co-mapped to the same BAPS sub-groups
as the dominant cgMLST 1468400426 (sub-group 1 at each level from BAPS2-6—
matching colors between the two stacked bar plots), and the frequency of these other
cgMLST variants that share BAPS with the dominant cgMLST 1468400426 is essentially
stable as the BAPS resolution increases. These shared BAPS sub-groupings by cgMLST
1468400426 and other co-major variants including cgMLST 2245200879, cgMLST
843553928, cgMLST 3650140337, cgMLST 4212442350 (in addition to another forty-five
minor cgMLST variants) at different levels, suggest a recent common ancestry, and
illustrate how a nested-clustering approach such as BAPS can be used to infer evolutionary
relationships in a scalable fashion.

While the above analysis defined population stratification within BAPS1 and ST45
clonal complex, further analysis of cgMLSTs among ST3045, ST3494, ST3783, and ST4493
showed that cgMLST 1468400426 is rarely found within ST3045 and ST4493; with only
one genome of this cgMLST found in each of these two STs. Such a pattern is consistent
with the BAPS-based relationships of ST3045, ST3494, ST3783, and ST4493, because
these STs all belong to the same BAPS1 sub-group 1 along with ST45. Collectively, this
hierarchical analysis of the genomic relatedness of ST and dominant cgMLST variants
provide a systematic way to understand population structure and evolutionary
relationships of cgMLST variants without the need for computationally intensive
phylogeny. All the steps of these analyses are publicly available in our Jupyter Notebook
(https://github.com/npavlovikj/ProkEvo/blob/master/jupyter_r_notebooks/salmonella_
newport_analysis.ipynb).

Case study 2: S. Typhimurium population-based analysis
S. Typhimurium is the most widespread serovar of S. enterica worldwide (Sun et al., 2020).
Its dominance is partially attributed to its inherent capacity to move across a variety of

Pavlovikj et al. (2021), PeerJ, DOI 10.7717/peerj.11376 27/50

http://dx.doi.org/10.7717/peerj.11376/supp-4
http://dx.doi.org/10.7717/peerj.11376/supp-4
http://dx.doi.org/10.7717/peerj.11376/supp-4
http://dx.doi.org/10.7717/peerj.11376/supp-4
http://dx.doi.org/10.7717/peerj.11376/supp-4
https://github.com/npavlovikj/ProkEvo/blob/master/jupyter_r_notebooks/salmonella_newport_analysis.ipynb
https://github.com/npavlovikj/ProkEvo/blob/master/jupyter_r_notebooks/salmonella_newport_analysis.ipynb
http://dx.doi.org/10.7717/peerj.11376
https://peerj.com/


animal reservoirs including poultry, bovine, swine, and plants, and ultimately its zoonotic
potential with propensity to cause gastroenteritis or non-Typhoidal Salmonellosis
(Crump et al., 2015; Ferrari et al., 2019). This serovar is phenotypically divided into
biphasic and monophasic sub-populations based on their expression of major flagellin
proteins, for which both of the major flagellin genes are expressed in biphasic sub-
populations; whereas, only one of the flagellin genes is expressed in monophasic
sub-populations (Sun et al., 2020). Monophasic S. Typhimurium is an emerging zoonotic
sub-population and isolates are often resistant to multiple drugs and heavy-metals (copper,
arsenic, and silver) (Sun et al., 2020; Branchu et al., 2019; Arai et al., 2019). Due to its
relevance as a major zoonotic pathogen and its frequent isolation from clinical and
environmental samples, S. Typhimurium genomes from a large number of isolates are
available (23,045 genomes of isolates from various continents). The large number of
genomes available from S. Typhimurium dataset is a good measure of the scalability of
ProkEvo, since it is an order of magnitude larger than S. Newport in the number of
genomes. The geographical location of isolates from which these genomes were obtained
cannot be determined uniformly from any single field of the associated metadata
deposited to NCBI SRA, thus we focus only on scalability, and relationships of ST clonal
complexes and cgMLST variants to one another. After the download and the
pre-processing steps, 21,534 assemblies passed the filtering step, yielding a total data
output from ProkEvo of 1.2 TB.

As with S. Newport, we also conducted an analysis of the population structure based on
MLST and cgMLST. However, the sheer size of the S. Typhimurium dataset made it
necessary to divide the 21,534 genomes into 20 different subsets, with genomes randomly
assigned to each subset, in order to accomplish the following computational tasks:
(1) pan-genome annotation and core-genome alignment with Roary; and (2) BAPS
clustering using core-genome alignment across subsets. Nonetheless, it is important to
reiterate that MLST, SISTR, and AMR genes identification using ABRicate are performed
on the entire data set, since those tasks are carried out independently from Roary within
ProkEvo. Because of the sub-setting of the S. Typhimurium dataset, the BAPS-based
inquiry of each individual subset precludes direct comparison of BAPS distributions from
each subset because of the varying numbering system of sub-groups. Therefore, BAPS1
level analysis is not presented in here.

After quality controlling and filtering the data, the dataset comprised 20,239 genomes of
S. Typhimurium biphasic and monophasic isolates. In order to present various ways of
conducting population-based analyses using ProkEvo, we use combinations of three pieces
of information: (1) whether or not the genome is classified as biphasic or monophasic
based on the SISTR algorithm (.csv); (2) the ST clonal complex calls using the legacy MLST
(.csv); and (3) the cgMLST variant classification based on SISTR (.csv) (Ferrari et al.,
2019). It is important to note that SISTR makes predictions of serotypes based solely on
genotypic information. In Salmonella that is possible, because of the high degree of linkage
disequilibrium between the clonal-frame (i.e., genome backbone) and loci that generate
the O and H antigens (Moradigaravand et al., 2017). In the S. Typhimurium dataset,
72.6%, 25%, 2.4% of the quality-controlled genomes were classified as Biphasic,
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Monophasic, or other serovars, respectively. From the Biphasic population, 78.4%, 9.62%,
5.35%, 2.09% of the isolates belonged to ST19, ST313, ST36, and ST34, respectively
(Fig. 6A). Whereas, for Monophasic, 93%, 5.79%, 0.094% of the isolates belonged to ST34,
ST19, and ST36, respectively (Fig. 6A). This partitioning matches the known clonality
of the S. TyphimuriumMonophasic populations and their association with the ST34 clonal
complex (Bawn et al., 2020). As for the Biphasic population, it is predominantly associated
with ST19 and likely contains the ancestor of the other ST clonal complexes. Most likely,
the ST19 dominance is a consequence of its dispersal and unique adaptive traits which
enabled its spread across a variety of animal and environmental reservoirs (Bawn et al.,
2020). The much lower frequency ST313 and ST36 are associated with non-Typhoidal
Salmonellosis and gastroenteritis in humans, and may be less adapted to environmental
dispersal (Bawn et al., 2020).

In terms of cgMLST genotypic distributions, Biphasic and Monophasic had 5,162 vs.
1,161 unique cgMLST variants, respectively. This is expected since the dataset for Biphasic
(~75% of the genomes) was larger than Monophasic (~25% of the genomes) and the
population is presumably “older” based on the recent emergence of Monophasic isolates.
The Biphasic population had much greater diversity, with many low-frequency cgMLST
variants, and no individual cgMLST variant clearly dominating the population. This
pattern is expected in a diversifying global population that has not recently experienced a
selective sweep. In contrast, the Monophasic population comprised 1,161 total cgMLST
genotypes, but two cgMLST variants (cgMLST 1652656062 and cgMLST 860079270)
comprised 32.33% and 19.62% respectively, of the total number of isolates (Fig. 6B). This
dramatic difference in frequency distribution of individual Monophasic cgMLST variants
could be a consequence of, but not limited to, the following factors: (1) oversampling

Figure 6 Inter-continental distribution of Salmonella Typhimurium STs and core-genome MLSTs.
(A–B) Relative frequencies of STs and core-genome MLSTs between Monophasic and Biphasic popu-
lations across multiple continents (STs and core-genome MLST variants with proportion below 1% were
excluded from the graph). The initial number of genomes used as an input was 23,045, while these
analyses were run with 21,534 genomes that passed the filtering steps. Raw sequences were downloaded
from NCBI SRA without filtering for USA isolates exclusively. Hence, the name “Inter-Continental”.
However, we cannot break the data down into continents, because the metadata was unreliable. Bars that
are not visible for a particular ST or cgMLST variant are either completely absent for that group, or
present in a miniscule relative frequency. Full-size DOI: 10.7717/peerj.11376/fig-6
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of recent outbreaks; and/or (2) recent population bottlenecks or founder effect. All the
steps for this analysis are shown in our Jupyter Notebook (https://github.com/npavlovikj/
ProkEvo/blob/master/jupyter_r_notebooks/salmonella_typhimurium_analysis.ipynb).

Case study 3: Distribution of known AMR loci across the population
structures of S. Infantis, S. Newport, and S. Typhimurium
In case study 3, we illustrate the use of ProkEvo to define the distributions of known AMR
conferring loci from the Resfinder database of ABRicate across populations of S. enterica
lineage I (S. Infantis, S. Newport, and S. Typhimurium described above). The goal of
this analysis was to show how relationships between the population structures and the
distribution of AMR loci can be identified. As described in the Methods section,
population-specific results are provided by ProkEvo with ABRicate for several databases
such as Resfinder, and the user may specify a database of interest, or may elect to use
the ProkEvo option of reporting the results comparatively. Our emphasis here on results
from the Resfinder database are driven largely by its broad applications to the fields of
ecology and genomic epidemiology (Perron et al., 2015; Cooper et al., 2020). Although
AMR phenotype predictions based on gene content alone do not have the same precision
as measuring AMR phenotypes in the laboratory, monitoring AMR gene frequencies in
specific populations of organisms does have the advantage of identifying potentially
significant population-scale events that are relevant to public health (e.g., changes in
frequencies or new combinations appearing within a population).

Results from the analysis with the Resfinder database identified 72 unique AMR loci in
genomes of S. Infantis, 125 unique AMR loci in S. Newport, and 408 unique AMR loci
in S. Typhimurium (Table S2). All 72 AMR genes in S. Infantis were confined solely to
ST32, which could be associated with the acquisition of mega-plasmids carrying distinct
combinations of AMR genes (Aviv et al., 2014; Franco et al., 2015). In contrast, large
numbers of AMR loci were found in three of the major clonal complexes of S. Newport,
with 57 AMR loci in ST118, 84 AMR loci in ST45 and 33 AMR loci in ST5. Similarly, large
numbers of AMR loci were found among each of the four most dominant ST clonal
complexes of S. Typhimirium; ST19 had the most with 301 AMR loci, ST34 had 249 AMR
loci, ST36 had 130 AMR loci, and ST313 had 112 AMR loci. Given that ST19 and ST34 are
the most frequent STs in the database for this serovar, it is not surprising that their
repertoire of genes would be higher than the others (Alikhan et al., 2018; Bawn et al., 2020).
Among the AMR genes identified from any of the three serovars, apparent orthologues of
genes known to confer resistance to a broad range of antibiotic classes were identified,
including tetracyclines (tet genes), sulfonamides (sul genes), macrolides (mdf genes),
florfenicol and chloramphenicol (florR and catA genes), trimethoprim (dfrA genes),
beta-lactamases (bla family of genes), and aminoglycosides including streptomycin and
spectinomycin (aph, ant, aadA, and aac genes) (McArthur et al., 2013).

Although significant numbers of AMR genes were found in many of the dominant STs
for each serovar, it should be noted that most of the AMR loci were sparsely distributed
among small numbers of isolates within an ST (Table S2). Therefore, we used a threshold
of presence of a given AMR gene in >=25% of the genomes of an individual ST clonal
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complex in order to define the predominant AMR patterns in each population.
As illustrated in Fig. 7, three major patterns were apparent. First, we note that the patterns
of predominant AMR genes were largely somewhat unique to each serovar (Fig. 7A).
Second, the largest numbers of predominant AMR genes were confined to individual STs
in S. Infantis (ST32) and S. Newport (ST45) and two of the four dominant STs (ST34 and
ST313) in S. Typhimurium (Figs. 7B–7D). This may reflect a higher degree of clonality
among these STs, but could also be an artefact of oversampling clinical isolates during
outbreaks without accounting for the overall environmental diversity. Finally, we note the
widespread distribution of the mdf(A)_1 and aac(6′)-Iaa_1 loci across all serovars and all
clonal complexes (Fig. 7A). Such a high degree of conservation suggests these elements
may have been acquired ancestrally, prior to diversification of these three serovars, as
opposed to recent independent acquisitions (Cohan, 2019). Also, it is important to
mention that we are not differentiating between genes present in chromosome vs.

Figure 7 Antibiotic-associated resistance genes distribution between and within three serovars of
S. enterica lineage I. (A) Proportion of genomes containing antibiotic-associated resistance genes
within each serovar. (B–D) Proportion of antibiotic-associated resistance genes within major vs. other
STs for S. Infantis, S. Newport, and S. Typhimurium, respectively. For the plots, (B–D), the population
was initially aggregated based on the dominant STs vs. the others, prior to calculating the relative fre-
quency of genomes containing each antibiotic-resistance gene. Only proportions equal to or greater than
25% (post-hoc threshold) are shown. For S. Infantis and S. Newport, only USA data were used; whereas,
for S. Typhimurium we did not filter based on geography in order to have a larger dataset to test Pro-
kEvo’s computational performance. Datasets were not filtered for any other epidemiological factor.
The total number of genomes used for this analysis was 1,684, 2,365, 21,509 for S. Infantis, S. Newport,
and S. Typhimurium, respectively, after filtering out all missing or erroneous values. Also, there were 18
and 1,666 genomes for “Other STs” and ST32 within the S. Infantis data, respectively. For S. Newport,
there were 393, 800, 643, and 529 genomes of the following groups: Other STs, ST118, ST45, and ST5,
respectively. Lastly, for S. Typhimurium, there were 1,430, 12,477, 1,493, 5,274, and 835 genomes for
either Other STs, ST19, ST313, ST34, or ST36, respectively.

Full-size DOI: 10.7717/peerj.11376/fig-7
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plasmids. Plasmids are more promiscuous and facilitate HGT between closely related, or
divergent populations (Achtman & Zhou, 2014).

Case study 4: Population structures and distribution of AMR genes in

C. jejuni and S. aureus
To further illustrate the versatility of ProkEvo across diverse microbial species, we
examined the relationships of population structure and AMR gene distributions in two
additional bacterial pathogens, Campylobacter jejuni and Staphylococcus aureus, which
belong to very distantly related Phyla. In addition to its distinct morphology (helical) and
physiology (microaerophilic) C. jejuni has a unique population structure (Fig. 8A) which
features 23 major ST complexes whose evolutionary relationships are confounded the
high frequency of gene acquisition and recombination (Sheppard & Maiden, 2015;
Griekspoor et al., 2013; Berthenet et al., 2019; Sheppard et al., 2013).

Staphyloccus aureus is a Gram-Positive organism that belongs to the Phylum Firmicutes
and is evolutionarily very distantly related to the Proteobacteria. Its population structure
is highly clonal, and three STs (STs 8, 5, and 105) comprise more than 80% of the
population of the species represented in the database (Fig. 8B). ST8 is associated with
community-acquired infections in the form of either methicillin susceptible or resistant
strains (MSSA or MRSA) (Glaser et al., 2016). ST5 can also cause skin infections and is
often found as MRSA (Baines et al., 2016). ST105 appears to be closely related to ST5, and

Figure 8 Relationship between the core-genome phylogeny and population structure of C. jejuni and
S. aureus. (A–B) Population structure using BAPS1 and ST for genotypic classifications were overlaid
onto the core-genome phylogeny (circle in black) of both C. jejuni and S. aureus, respectively. BAPS1 was
used as the first layer of classification to demonstrate how each sub-group/cluster can be comprised of
multiple STs. For instance, STs that cluster together, and belong to the same BAPS1 sub-group, are more
likely to have shared a most recent common ancestor. This represents a hierarchical population-based
analysis going from BAPS1 to STs. For this analysis and visualization, we have used a random sample
composed of 1,044 and 1,193 genomes for C. jejuni and S. aureus, respectively.

Full-size DOI: 10.7717/peerj.11376/fig-8
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isolates from both ST5 and ST105 can carry the SCCmec element II encoding
broad-spectrum β-lactam resistance (Challagundla et al., 2018).

To define hierarchical relationships of major STs of these species, we used the
BAPS1/ST classifications produced by ProkEvo. In addition to the bar charts previously
demonstrated for the Salmonella datasets, we developed an integrative approach to
visualize the frequencies and inter-relationships of STs and BAPS-based variants
(Figs. 8A–8B), where each genome is depicted as a member of a circular phylogeny (central
ring), and their coloration in concentric rings depicts their associated BAPS variants
(innermost ring) and ST variants (outermost ring) for each genome. In this approach,
position of each isolate on the ring is determined by phylogeny and groupings of the
BAPS1/STs can be viewed in relationship to the inferred phylogeny. As shown in Fig. 8A,
this visualization illustrates how genomes from individual ST complexes of C. jejuni are
found within a single BAPS1 genotype. For example, the ST45 clonal complex is found
exclusively within the BAPS1 sub-group 16, ST48 is confined within the BAPS1 sub-group
13, ST353 is found within the BAPS1 sub-group 19, and ST982 is found within the
BAPS1 sub-group 14. Similarly, visualization of the relationships between BAPS1
sub-groups and the most frequent STs in S. aureus (Fig. 8B) illustrated the high degree of
clonality in its population structure. The dominant ST5 and ST105 were found exclusively
within the BAPS1 sub-group 5, ST398 was restricted to the BAPS1 sub-group 1, and
the ST609 complex was found within the BAPS1 sub-group 6. Thus, despite the differences
in population structure between species, the combination of Bayesian clustering (BAPS)
and multi-locus genotyping in ProkEvo still enables detection and visualization of
broad evolutionary relationships of the STs to one another, which might not be possible
when attempting to scaling phylogenetic-based analysis.

Using the framework of hierarchical BAPS1-ST relationships, we next used ProkEvo
outputs from ABRicate with the Resfinder database to examine distributions of AMR
genes among the STs in these diverse organisms. For this analysis, we focused on STs
representing >1% of the total number of genomes for both C. jejuni and S. aureus
(Figs. 9A–9B). The ProkEvo-mediated search of the Resfinder database from C. jejuni
genomes identified 256 unique AMR elements in C. jejuni and 164 AMR loci for S. aureus.
Within C. jejuni, the top 8 most frequent STs had the following total number of AMR loci:
ST353 (29), ST45 (30), ST982 (20), ST48 (24), ST50 (31), ST8 (20), ST806 (19), and
ST459 (15). Thus, there was relatively even distribution of AMR loci among the most
dominant STs. In contrast, the number of AMR loci in S. aureus was essentially a function
of the frequency of the STs. The most frequent S. aureus STs in the database (ST8, ST5, and
ST105) contained the largest number of AMR loci (ST8 had 88 AMR loci, ST5 had 85
AMR loci, and ST105 had 52 AMR loci). In contrast, the lower frequency STs had fewer
(ST398 had 39 AMR loci, ST609 had 20 AMR loci, and ST45 had 24 AMR loci). The link
to the intermediate files used to obtain this information can be found in Table S2.

As was the case with distributions of AMR loci in Salmonella enterica, most of the AMR
loci detected in C. jejuni and S. aureus were sparsely distributed across isolates belonging
to an individual ST. Therefore, we focused on AMR loci in >=25% of the isolates
within an ST. As shown in Figs. 9C–9D, despite the fact that C. jejuni had a greater number
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of total AMR-associated genes, S. aureus had a greater number of prominent AMR loci
meeting the >25% threshold, which might be associated with a higher proportion of
clinical isolates in each dataset. The diversity of prominent AMR loci in S. aureus was also
quite noticeable, with each of the major STs having a distinct combination of AMR loci.

With respect to C. jejuni, there was widespread co-occurrence of tet(O)_1 and
blaOXA-193_1, which confer resistance to tetracyclines and beta-lactamases, respectively,
across the five most frequent STs (Fig. 9C). One potential explanation for this pattern
would be an ancestral acquisition of both genetic elements, and subsequent loss of one or
both genes during divergence of the ST48, ST353, and ST459 clonal complexes (Bobay &
Ochman, 2018). In contrast, the cfr(C)_1 and aph(3′)-III_ loci appear uniquely in the
C. jejuni ST806 clonal complex, suggesting these genes are relatively recent acquisitions
within the clonal complex. The cfr gene is of great interest because it has a pleiotropic
phenotype associated with resistance to a variety of AMR classes, such as: phenicol,
lincosamide, oxazolidinone, pleuromutilin, streptogramin A, and other macrolides
(Atkinson et al., 2013). Given those findings, we broadened the scope of the analysis by
examining how the entire accessory genome distribution, and not just a fraction of it such
as AMR genes, associated with the population structure using BAPS1 and ST clonal

Figure 9 ST-based population structure and distribution of antibiotic-associated resistance genes for
two major foodborne pathogens. (A–B) Proportion of the most dominant STs within C. jejuni and
S. aureus populations (only proportions >1% are shown). (C–D) Proportion of genomes containing
antibiotic-resistance genes within ST populations for C. jejuni and S. aureus (only proportions >25% are
shown). Both datasets only included genomes from USA and were not filtered for any other epide-
miological factor. The total number of genomes entered in this analysis was 18,845 and 11,597, for
C. jejuni and S. aureus, respectively, after filtering out all missing or erroneous values. For C. jejuni, there
were 886, 1,041, 940, 932, 1,108, 577, 651, and 940 genomes of the following groups: ST8, ST45, ST48,
ST50, ST353, ST459, ST806, and ST982, respectively. Lastly, for S. aureus, there were 4,518, 3,801, 1,334,
276, 211, and 141 genomes for either ST8, ST5, ST105, ST398, ST609, or ST45, respectively.

Full-size DOI: 10.7717/peerj.11376/fig-9
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complexes mapping onto it. To accomplish that, we used a random subset of 1,044 C.
jejuni genomes—the same sample used to produce Fig. 8A. Roary, within ProkEvo,
generates a dendrogram that is derived from a binary matrix of gene presence and absence
from accessory genes only (accessory_binary_genes.fa.newick). We use this .newick file in
addition to a .csv file containing the BAPS1 and ST clonal complexes information to
produce the final plot with phandango. Our expectation was that if ST complexes are
highly clonal (i.e., high degree of linkage disequilibrium between loci), their
accessory-genome based distribution would be quite comparable, if not identical, to that of
when plotted using the core-genome phylogeny, which contains the clonal-frame. Also, if
BAPS1 sub-groups have recently shared a common ancestor, one would expect that more
related sub-groups would cluster near each other in this analysis. In general, the data
depicted in Fig. S3 indicate that related clonal complexes are more likely to share accessory
loci, which could be explained by vertical transmission and/or HGT. One exception was
ST459, which instead of only forming a discrete cohesive cluster based on the accessory
loci distribution, appears to contain two sub-populations within it.

In the case of S. aureus, the largest number of prominent AMR genes were found in ST5
and ST105 (Fig. 9D), both of which belong to the same BAPS1 sub-group 5 genomic type,
and are thus more closely related to each other than the other dominant STs (Fig. 8B).
ST8 and ST609 also carry significant numbers of prominent AMR loci and these STs
also share evolutionary history, since they both belong to BAPS1 sub-group 6 genomic
type (Fig. 8B). In contrast, ST398 and ST45 contain the fewest AMR loci and each belongs
to a distinct BAPS1 sub-group (ST398 is a member of BAPS1 sub-group 1 while ST45
is a member of BAPS1 sub-group 4—Fig. 8B). Similarly, to the accessory-genome based
analysis performed for C. jejuni, we applied the same approach for a sample of 1,193
genomes of S. aureus (those present in Fig. 8B). Given that S. aureus is more clonal
than C. jejuni, our data supports the hypothesis of a high degree of linkage between the
clonal-frame and accessory genome, reflected by the discrete clusters formed by the
conjunction of BAPS1 and ST clonal complexes (Fig. S4).

One limitation we have identified while plotting core-genome phylogenies combined
with population structure data of both C. jejuni and S. aureus, was to achieve a high degree
of resolution to visualize branching patterns. The black centered circle depicted in
Figs. 8A–8B represents a core-genome phylogeny generated with FastTree. As it can be
seen, branching patterns are not recognizable while using ggtree to plot with our
configurations. Although we have attempted to change parameters, the branch length
remained unchanged. Therefore, we tested whether we could improve visualizations by
doing two things: (1) downsampling the data using smaller sample sizes of randomly
selected genomes evenly distributed across major STs (i.e., accounting for population
structure); and (2) by comparing how ggtree vs. phandango would enhance our plotting
capabilities. In brief, we have found that downsampling using our approach did not
improve ggtree phylogenetic plotting resolution. However, phandango enhanced
phylogenetic visualization regardless of the sample size (Figs. S5–S14). Of note, ggtree has
important advantages such as automation and high degree of control over figure aesthetics.
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We suggest users to examine these as well as other related programs to accomplish
this task.

DISCUSSION
The continuous increase in the volume of WGS data from bacterial species is driving the
field of bacterial genomics away from simple comparative and functional genomics
towards population-scale inquiry. This shift requires approaches rooted in data science to
process, analyze, and mine WGS data at scales that have not before been achieved. Indeed,
the vast number of genomes currently available is already driving development of tools,
pipelines, and approaches for analysis of population dynamics, phylogeography, and
epidemiological patterns at whole genome-scales of resolution. When scalable tools for
population-based inquiry at genomic resolution are combined with appropriate sampling
of environments and robust metadata, these unique approaches will collectively provide
entirely new ways to understand fundamental ecology of important microorganisms,
environmental factors that drive ecological adaptation, and the evolutionary mechanisms
through which such adaptations are mediated (Sheppard, Guttman & Fitzgerald, 2018;
Joseph & Read, 2010; Alikhan et al., 2018; Yahara et al., 2017; Power, Parkhill &
de Oliveira, 2016).

Scalability of phylogeny and hierarchical-based population classifications remain as
key bottlenecks that limits population-based inquiry at genomic resolution. Automation
and parallelization of complex pipelines for implementation on different types of
computational platforms (e.g., clusters and grids) can help overcome the scalability
bottleneck. ProkEvo fills this gap by allowing researchers to scale and automate the
analyses from hundreds to many thousands of genomes without the need to write
individual scripts to run programs and move data input/output from program to program.
Indeed, such approaches become difficult to reproduce across laboratories. ProkEvo
takes advantage of a set of well-developed bioinformatics tools and a robust workflow
management system that enables execution on different high-performance and
high-throughput computational platforms. Thus, ProkEvo produces scalable and highly
reproducible workflows. We acknowledge that full automation of workflows in ProkEvo
has trade-offs, because users may rely on such systems without understanding how the
underlying assumptions and tuning of important parameters in the individual programs
ultimately affect their studies. On the other hand, a large number of microbiology
laboratories can immediately benefit from the automation and scalability of ProkEvo to
generate a variety of novel hypotheses. Moreover, implementation of ProkEvo in these
research environments will ultimately become a major force to drive development of more
systematic approaches to study designs for large-scale genomic studies and ongoing
surveillance, including the sampling collection of WGS from isolates, as well as the
collection and curation of critical metadata.

ProkEvo is modular, and each genome is analyzed independently when computing
resources are available. In theory, if a dataset has n genomes and a computational platform
has n available cores, ProkEvo can easily scale linearly and utilize all resources at the same
time on execution platforms such as clusters and grids. ProkEvo only needs a list of
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NCBI SRA (genome) identifications as an input, and the Pegasus submit script. ProkEvo
also works with genomes that are already locally available. The computational resources
used for the steps in ProkEvo are specified per tool and are not fixed. This is an important
feature of ProkEvo that allows efficient allocation of resources and requires high resources
only when needed. While the scripts for executing the tools in ProkEvo are written to
consider common errors, such as low-quality input data or exceptions, failures due to rare
cases are still possible. In such instances, only a failed job is retried, with the possibility
of terminating only the failed job upon repeated failure. Failure of individual jobs does not
affect the continuity of the pipeline; instead, the remaining independent jobs continue
running. This feature is extremely useful when analyzing large datasets, and bypasses the
problem of very small fractions of the tens of thousands of genomes having faulty reads
that would otherwise disrupt the entire workflow across all jobs.

Most of the enabling capability of ProkEvo relies upon automation and management of
the massive workflows through Pegasus WMS. The scalability, ability to handle large sets
of data with complex input/output dependencies, resource management, flexibility to
add and remove programs, and portability to different computational platforms are just a
few of the advantages that drove selection of Pegasus as the WMS for ProkEvo. Although
we used ProkEvo in this report to efficiently process and analyze a moderately large
dataset of >20,000 genomes from Salmonella Typhimurium, future testing needs to be
done to evaluate and improve ProkEvo’s performance with hundreds of thousands of
genomes. Additionally, its portability to cloud environments such as the Amazon Web
Service needs to be evaluated.

Despite the efficiency of the Pegasus WMS, one of the central programs of ProkEvo
(Roary) creates a bottleneck in generating core-genome alignments. While this limitation
might be particular to our settings and datasets, this step is important since it precedes
population structure analysis using fastbaps or downstream phylogeny, and it can run
indefinitely when the number of genomes is large. Our workaround here was to randomly
divide the dataset into subsets of up to 2,000 genomes, which allows ProkEvo to perform
all jobs efficiently. However, this approach has consequences because: (1) fastbaps uses
Bayesian BAPS computations which may confound direct data aggregation afterwards;
(2) the user will have to generate multiple phylogenetic trees; and (3) pan-genome
annotation may vary across subsets and there may be inconsistent gene calls/
classifications, particularly with respect to hypothetical proteins. We are examining other
scalable computational approaches for phylogenetic inference such as downsampling
based on population structure and metadata, in addition to utilizing kmer-based
construction of distance matrices using raw reads directly (Ondov et al., 2016).
An advantage of ProkEvo is that the Pegasus WMS can easily accommodate addition of
novel programs/algorithms to the platform without disrupting any pre-established tasks.
Hence, new solutions or alternative steps or programs can easily be incorporated into
ProkEvo. Nonetheless, ProkEvo is expected to scale quite efficiently to many thousands of
genomes to complete the following tasks, beginning with raw sequences: (1) MLST and
SISTR classifications; (2) AMR, virulence, and plasmid mapping; and (3) Genome
annotation with Prokka.
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Pegasus WMS has been used for development of small and large-scale processing and
computational pipelines for a variety of projects and applications across multiple
disciplines, including LIGO gravitational wave detection analysis (Usman et al., 2016), the
structural protein-ligand interactome (SPLINTER) project (Quick et al., 2015), the
Soybean Knowledge Base (SOyKB) pipeline (Liu et al., 2016), and the Montage project for
science-grade mosaics of the sky (Berriman et al., 2004). While Pegasus is a versatile WMS,
other WMS such as Nextflow (Di Tommaso et al., 2017) and Snakemake (Koster &
Rahmann, 2012) are more commonly used for bioinformatics applications. However,
compared to the other WMS, Pegasus has the best overall performance for efficiently
utilizing the computational resources (Larsonneur et al., 2018). Moreover, Pegasus WMS
provides a unique robust support of multiple computational platforms, varying from
publicly available clusters to distributed cloud and grid infrastructures (Mitchell et al., 2019).

To the best of our knowledge, use of an advanced WMS such as the Pegasus WMS is a
very unique feature of ProkEvo that is not found in other complex pipelines for large-scale
analysis bacterial genomes such as EnteroBase (Zhou et al., 2019), TORMES (Quijada
et al., 2019), Nullarbor (Seemann et al., 2020), and ASA3P (Schwengers et al., 2020).
EnteroBase is an online resource for identifying and visualizing bacterial species-specific
genotypes by utilizing a high-performance cluster at the University of Warwick. TORMES
is a whole bacterial genome sequence analysis pipeline that works with raw Illumina
paired-end reads, and is written in Bash. Nullarbor is a Perl pipeline for performing
analyses and generating web reports from sequenced genomes of bacterial isolates for
public health microbiology laboratories. ASA3P is an automated and scalable assembly
annotation and analyses pipeline for bacterial genomes written in Groovy. Bactopia is one
of the most comprehensive pipelines available for analysis of bacterial genomes using
Nextflow workflow manager (Petit & Read, 2020). Some of the main similarities and
differences between the aforementioned pipelines are shown on Table 1. Because
EnteroBase is a service where researchers upload data and get the desired outputs without
any control over the tools and the parameters used, we omitted EnteroBase in the
comparison in Table 1. While all of the remaining pipelines provide very similar types of
analyses, the diversity of the analyses and the tools incorporated depends on the end-goal
of the research group developing the pipeline. Both ProkEvo and Bactopia are written
using WMS which allows users to add more tools to the pipelines. The documentations for
Pegasus and Nextflow provide examples of how to do this. Adding new tools to TORMES,
Nullarbor and ASA3P is feasible, but not as easily manageable due to the way these
pipelines are written (e.g., having one file with code for the whole pipeline that requires
advanced programming knowledge). To the best of our knowledge, all the modifications
of the programs and parameters used in all of these pipelines need to be done before
running the pipeline itself. Nextflow, the WMS used for Bactopia, generates many
intermediate files that can exceed the available storage quotas on the standard
computational platforms. Pegasus, the WMS used for ProkEvo, supports clean-up of the
intermediate files as the respective task finishes, which minimizes the possibility of
exceeding the storage resources. Both ProkEvo and Bactopia install all the dependencies
and databases as part of the pipeline. On the other hand, TORMES, Nullarbor and ASA3P
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require additional steps to set the necessary environments with the required tools and
databases. ProkEvo and Bactopia support data download from NCBI, while the remaining
pipelines do not. With ProkEvo we provide a set of custom Jupyter Notebook and
R codes used for extracting meaningful information from the produced ProkEvo output.
ProkEvo and ASA3P are tested on multiple platforms, such as high-performance and
high-throughput clusters and cloud. Nullarbor and Bactopia do not provide benchmarking
on different computational platforms, while TORMES has been tested on a laptop and
computer. Based on the information provided in the respective papers and GitHub
repositories, to the best of our knowledge, ProkEvo is the only available pipeline that was
successfully tested on datasets from ~2,400 to ~23,000 genomes each. The datasets used for
testing TORMES and Nullarbor are in the range of 6–23 genomes, while ASA3P and
Bactopia were tested with 1,024 and 1,664 genomes respectively. Being able to perform
genomics analyses on populations scalable to the 20-fold larger datasets than the ones
presented with the other pipelines is a tremendous advantage of ProkEvo extremely
important for researchers working in the field of population genomics. In addition to this,
ProkEvo is also distinct in its ability to: (1) process each genome independently and utilize
as many computational resources as possible; (2) efficiently utilize distributed,
high-throughput computational platforms, such as OSG, with tens of thousands of
available cores; (3) set memory and run time resources per bioinformatics tool and job and
increment these values on retry; (4) combine classifications of each genome based on
multi-locus genotypes (at ST and cgMLST scales) with the scalable approach of classifying
genomic types based on Bayesian haplotype clustering using a nested-approach.

As illustrated in all four case studies, our approach of combining hierarchical
combinations of genotypic classifications with relevant loci such as AMR genes, or even the
entire accessory genome, can produce novel insights. In these case studies, we
demonstrated how the combination of multi-locus approaches and Bayesian haplotype
clustering analysis can illuminate evolutionary relationships with scalable methods.
Our studies also identified combinations of AMR genes that are widely dispersed across
dominant STs as well as AMR genes with population-specific patterns of distribution.
Integrating population genomics (allele and clone frequencies) outputs from ProkEvo with
complex trait analyses can begin to identify putative casual variants that are driving
evolution and ecological characteristics (Azarian, Huang & Hanage, 2020).
Population-based selective sweeps (i.e., purged genomic variation at the whole genome
level) can be driven by acquisition of a single locus capable of providing novel
physiological or virulence trait (Cohan, 2019), as exemplified by acquisition of novel loci in
clonal complexes ST21 and ST45 of C. jejuni which reduce oxygen sensitivity and enhance
survival and spread across the poultry food chain (Yahara et al., 2017). However, complex
traits such as ecological fitness can also arise from contributions of allelic variation at
multiple loci (Sheppard, Guttman & Fitzgerald, 2018; Yue & Schifferli, 2014). Of course,
this is not a one-way street as such variation in bacterial pathogens is also met with
variation in host loci that contributes to susceptibility, for instance (Wang et al., 2018).
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It is important to note that our case studies drew upon the large numbers of genomes
already available in the NCBI SRA databases, and we have been careful to draw only
general features as an example of such analysis, because of the inherent bias in broad
species or serovar-specific datasets. The most common bias in WGS representations of
pathogenic species results from overrepresentation of clinical samples in general in
addition to the potential oversampling large numbers of isolates from outbreaks and
epidemiological variants. Such representation does provide important temporal
approaches for detecting frequency changes in dominant variants, which even at high
levels of resolution are indicative of significant changes in transmission patterns. However,
to truly understand the ecology of these populations, and how their ecological
characteristics in livestock and the environment relate to transmission and virulence will
require systematic sampling and accurate estimates of ST or cgMLST variant frequencies
from those environments for robust comparison to those found in clinical samples.
Epidemiological variants (i.e., cgMLST) making all the way to human clinical cases are by
definition “successful”. However, the cgMLST distribution, and pattern of dominance,
could have arisen by random chance or founder effect, and subsequently be maintained by
the influence of habitats that facilitate the survival and spread of a given variants (Fraser,
Hanage & Spratt, 2005). Importantly, the ProkEvo platform should facilitate systematic
collaboration and coupling of hierarchical-based genotypic analysis from ongoing
surveillance studies and regulatory testing in animal and food production environments in
order to generate actionable information.

In addition to bias in sample types, our analyses were also limited by the availability of
standardized formats for associating metadata with WGS data in the SRA. Even the most
basic type of information such as isolation date is not uniformly available or is not
consistently entered into the same fields, which is required for automation. Ongoing efforts
from consortia led by NIST and other agencies are making progress, but significant
barriers to data sharing across regulatory, industry, and academic sectors still exist (Sane &
Edelstein, 2015). However, we believe the opportunity for developing entirely new
approaches to mitigation and control of pathogenic bacteria that will result from
fundamental understanding of their ecology and evolution across entire food production
systems will ultimately outweigh the risks of making such data and metadata publicly
available. Indeed, experimental designs that incorporate systematic sampling and
standardized metadata can then be coupled with modern statistical tools such as machine
learning and pattern searching algorithms (Wheeler, Gardner & Barquist, 2018; Schrider &
Kern, 2018; Lupolova, Lycett & Gally, 2019) that can be easily implemented in ProkEvo.
Such approaches will enable communities of microbiologists, epidemiologists, and
bacterial geneticists across the academic, regulatory, and industrial sectors to truly exploit
the massive amount of emerging WGS data.

CONCLUSIONS
In this paper we describe the ProkEvo platform, which is: (1) An automated, user-
friendly, reproducible, and open-source platform for bacterial population genomics
analyses that uses the Pegasus Workflow Management System; (2) A platform that can
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scale the analysis from at least a few to tens of thousands of bacterial genomes using
high-performance and high-throughput computational resources; (3) An easily modifiable
and expandable platform that can accommodate additional steps, custom scripts and
software, user databases, and species-specific data; (4) A modular platform that can run
many thousands of analyses concurrently, if the resources are available; (5) A platform for
which the memory and run time allocations are specified per job, and automatically
increases its memory in the next retry; and (6) A pipeline that is distributed with conda
environment and Docker image for all bioinformatics tools and databases needed to
perform population genomics analyses in a reproducible fashion. Our case studies
illustrate how to perform an initial, yet uniquely relevant for ecological and
epidemiological inquiries, hierarchical-based population analyses using ProkEvo output
files with reproducible Jupyter Notebooks and R scripts. Results from our case studies are
clear illustrations of the types of population-based data mining that can be made from
large-scale, WGS-based datasets using ProkEvo.
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