3,797 research outputs found

    Quasi optimal sagittal gait of a biped robot with a new structure of knee joint

    Get PDF
    The design of humanoid robots has been a tricky challenge for several years. Due to the kinematic complexity of human joints, their movements are notoriously difficult to be reproduced by a mechanism. The human knees allow movements including rolling and sliding, and therefore the design of new bioinspired knees is of utmost importance for the reproduction of anthropomorphic walking in the sagittal plane. In this article, the kinematic characteristics of knees were analyzed and a mechanical solution for reproducing them is proposed. The geometrical, kinematic and dynamic models are built together with an impact model for a biped robot with the new knee kinematic. The walking gait is studied as a problem of parametric optimization under constraints. The trajectories of walking are approximated by mathematical functions for a gait composed of single support phases with impacts. Energy criteria allow comparing the robot provided with the new rolling knee mechanism and a robot equipped with revolute knee joints. The results of the optimizations show that the rolling knee brings a decrease of the sthenic criterion. The comparisons of torques are also observed to show the difference of energy distribution between the actuators. For the same actuator selection, these results prove that the robot with rolling knees can walk longer than the robot with revolute joint knees.ANR R2A

    Predetermination of Currents and Field in Short-Circuit Voltage Operation for an Axial-Flux Permanent Magnet Machine

    Get PDF
    Risk of irreversible magnet demagnetization during short-circuit fault is analyzed in case of an axial-flux dual-rotor machine, using a three-dimensional finite-element method (3D-FEM). In order to validate the numerical model, calculated waveforms of the currents are compared with experimental results for short-circuit at low speeds. Then currents and magnetic flux density inside the magnets are computed for short-circuit at higher speeds in order to predetermine the maximum admissible speed for the machine

    The parametric propagation in underwater acoustics : experimental results

    Get PDF
    In underwater acoustics, detection of buried objects in sediments (cables, mines, . . . ) is a complex problem. Indeed, in order to ensure sufficient penetration depth in marine sediments, low frequencies have to be used, implying a low resolution. A solution proposed to solve this problem is the parametric emission based on the nonlinear properties of seawater. This method can generate a low frequency wave from two directional high frequencies beams. The aim of this work is to present experimental results of a parametric propagation. Experiments have been carried out in a water tank in various configurations. These experimental measurements are then compared with simulation results obtained with a numerical model based on a fractional-step method presented at the Underwater Acoustic Measurements conference in 2011

    A priori error indicator in the transformation method for problems with geometric uncertainties

    Get PDF
    Version éditeur de cette publication à l'adresse suivante : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6514655To solve stochastic problems with geometric uncertainties, one can transform the original problem in a domain with stochastic boundaries and interfaces to a problem defined in a deterministic domain with uncertainties in the material behavior. The latter problem is then discretized. There exist infinitely many random mappings that lead to identical results in the continuous domain but not in the discretized domain. In this paper, an a priori error indicator is proposed for electromagnetic problems with scalar and vector potential formulations. This leads to criteria for selecting random mappings that reduce the numerical error. In an illustrative numerical example, the proposed a priori error indicator is compared with an a posteriori estimator for both potential formulationsThis work is supported by the program MEDEE funded by the Nord Pas de Calais council and the European Community and supported in part by the National Science Foundation under Grant No. 1216927

    Some Incipient Techniques For Improving Efficiency in Computational Mechanics

    Get PDF
    This contribution presents a review of different techniques available for alleviating simulation cost in computational mechanics. The first one is based on a separated representation of the unknown fields; the second one uses a model reduction based on the Karhunen-Loève decomposition within an adaptive scheme, and the last one is a mixed technique specially adapted for reducing models involving local singularities. These techniques can be applied in a large variety of models

    Numerical modeling of underwater parametric propagation to detect buried objects

    Get PDF
    In underwater acoustics, detection of buried objects in sediments (cables, mines,…) is a complex problem. One reason is that acoustic attenuation in these sediments increases with frequency. To ensure sufficient penetration depth in marine sediments, low frequencies have to be used, implying a low resolution. A solution proposed to solve this problem is the parametric emission based on the nonlinear properties of the propagation medium. This method can generate a low frequency wave from two directional high frequencies beams. The parametric propagation is simulated in seawater and marine sediments. The model developed is based on the fractional-step numerical method introduced by Christopher and Parker [1]. In this method, the normal particle velocity is calculated plane by plane from the surface of the transducer to a specified distance. The effects of nonlinearity, attenuation and diffraction are calculated independently for each spatial step. Moreover, to reduce the number of spatial steps, a second order operator splitting scheme is used. The diffraction computation is based on a method of angular spectrum in the frequency domain where the field across a source plane is described by a spatial frequency distribution. To improve code stability, the effects of nonlinearity and attenuation are calculated and associated in shorter propagation substeps. At the interface between water and marine sediments, the transmission conditions are applied. Several tests have been carried out in different configurations (changing the primary frequencies, the parametric frequency, the source geometry, the inclination of the source with the interface, the focal distance,…). The 3D velocity field is calculated in each case, thereby allowing to know the directivity of the source, the velocity amplitude in sediments and the performance

    Human factors consideration in the interaction process with virtual environment

    Get PDF
    Newrequirements are needed by industry for computer aided design (CAD) data. Some techniques of CAD data management and the computer power unit capabilities enable an extraction of a virtual mock-up for an interactive use. CAD data may also be distributed and shared by different designers in various parts of the world (in the same company and with subcontractors). The use of digital mock-up is not limited to the mechanical design of the product but is dedicated to a maximum number of trades in industry. One of the main issues is to enable the evaluation of the product without any physical representation of the product but based on its virtual representation. In that objective, most of main actors in industry domain use virtual reality technologies. These technologies consist basically in enabling the designer to perceive the product in design process. This perception has to be rendered to guarantee that the evaluation process is done as in a real condition. The perception is the fruit of alchemy between the user and the VR technologies. Thus, in the experiment design, the whole system human-VR technology has to be considered

    Forging process control: Influence of key parameters variation on product specifications deviations

    Get PDF
    Process control in forging industry is essential to ensure a better quality of the product with a lower cost at the end of the manufacturing process. To control the process, a number of key parameters must be monitored to prevent product or forging plan deviations. This paper will illustrate how a variation in a process parameter can create product specifications deviations and how key parameters influence product final state. The illustration work is done on a part obtained via hot forging. An analysis is made on product parameters such as geometry, by varying the key process parameter values previously determined from a created methodology. This later is represented as a decision support system that connects product specifications (geometry, absence of defects…) or other forging specifications (tool wear, involved energy...) to the process parameters

    Benefits of Waveform Relaxation Method and Output Space Mapping for the Optimization of Multirate Systems

    Get PDF
    We present an optimization problem that requires to model a multirate system, composed of subsystems with different time constants. We use waveform relaxation method in order to simulate such a system. But computation time can be penalizing in an optimization context. Thus we apply output space mapping which uses several models of the system to accelerate optimization. Waveform relaxation method is one of the models used in output space mapping
    corecore