97,300 research outputs found

    Graph-Based Decoding in the Presence of ISI

    Full text link
    We propose an approximation of maximum-likelihood detection in ISI channels based on linear programming or message passing. We convert the detection problem into a binary decoding problem, which can be easily combined with LDPC decoding. We show that, for a certain class of channels and in the absence of coding, the proposed technique provides the exact ML solution without an exponential complexity in the size of channel memory, while for some other channels, this method has a non-diminishing probability of failure as SNR increases. Some analysis is provided for the error events of the proposed technique under linear programming.Comment: 25 pages, 8 figures, Submitted to IEEE Transactions on Information Theor

    Approximate solutions of stochastic differential delay equations with Markovian switching

    Get PDF
    Our main aim is to develop the existence theory for the solutions to stochastic differential delay equations with Markovian switching (SDDEwMSs) and to establish the convergence theory for the Euler-Maruyama approximate solutions under the local Lipschitz condition. As an application, our results are used to discuss a stochastic delay population system with Markovian switching

    Numerically optimized Markovian coupling and mixing in one-dimensional maps

    Get PDF
    Algorithms are introduced that produce optimal Markovian couplings for large finite-state-space discrete-time Markov chains with sparse transition matrices; these algorithms are applied to some toy models motivated by fluid-dynamical mixing problems at high Peclét number. An alternative definition of the time-scale of a mixing process is suggested. Finally, these algorithms are applied to the problem of coupling diffusion processes in an acute-angled triangle, and some of the simplifications that occur in continuum coupling problems are discussed

    List and Unique Error-Erasure Decoding of Interleaved Gabidulin Codes with Interpolation Techniques

    Full text link
    A new interpolation-based decoding principle for interleaved Gabidulin codes is presented. The approach consists of two steps: First, a multi-variate linearized polynomial is constructed which interpolates the coefficients of the received word and second, the roots of this polynomial have to be found. Due to the specific structure of the interpolation polynomial, both steps (interpolation and root-finding) can be accomplished by solving a linear system of equations. This decoding principle can be applied as a list decoding algorithm (where the list size is not necessarily bounded polynomially) as well as an efficient probabilistic unique decoding algorithm. For the unique decoder, we show a connection to known unique decoding approaches and give an upper bound on the failure probability. Finally, we generalize our approach to incorporate not only errors, but also row and column erasures.Comment: accepted for Designs, Codes and Cryptography; presented in part at WCC 2013, Bergen, Norwa

    Robust Successive Compute-and-Forward over Multi-User Multi-Relay Networks

    Full text link
    This paper develops efficient Compute-and-forward (CMF) schemes in multi-user multi-relay networks. To solve the rank failure problem in CMF setups and to achieve full diversity of the network, we introduce two novel CMF methods, namely, extended CMF and successive CMF. The former, having low complexity, is based on recovering multiple equations at relays. The latter utilizes successive interference cancellation (SIC) to enhance the system performance compared to the state-of-the-art schemes. Both methods can be utilized in a network with different number of users, relays, and relay antennas, with negligible feedback channels or signaling overhead. We derive new concise formulations and explicit framework for the successive CMF method as well as an approach to reduce its computational complexity. Our theoretical analysis and computer simulations demonstrate the superior performance of our proposed CMF methods over the conventional schemes. Furthermore, based on our simulation results, the successive CMF method yields additional signal-to-noise ratio gains and shows considerable robustness against channel estimation error, compared to the extended CMF method.Comment: 44 pages, 10 figures, 1 table, accepted to be published in IEEE Trans. on Vehicular Tec

    Finding the Maximizers of the Information Divergence from an Exponential Family

    Full text link
    This paper investigates maximizers of the information divergence from an exponential family EE. It is shown that the rIrI-projection of a maximizer PP to EE is a convex combination of PP and a probability measure PP_- with disjoint support and the same value of the sufficient statistics AA. This observation can be used to transform the original problem of maximizing D(E)D(\cdot||E) over the set of all probability measures into the maximization of a function \Dbar over a convex subset of kerA\ker A. The global maximizers of both problems correspond to each other. Furthermore, finding all local maximizers of \Dbar yields all local maximizers of D(E)D(\cdot||E). This paper also proposes two algorithms to find the maximizers of \Dbar and applies them to two examples, where the maximizers of D(E)D(\cdot||E) were not known before.Comment: 25 page
    corecore