We propose an approximation of maximum-likelihood detection in ISI channels
based on linear programming or message passing. We convert the detection
problem into a binary decoding problem, which can be easily combined with LDPC
decoding. We show that, for a certain class of channels and in the absence of
coding, the proposed technique provides the exact ML solution without an
exponential complexity in the size of channel memory, while for some other
channels, this method has a non-diminishing probability of failure as SNR
increases. Some analysis is provided for the error events of the proposed
technique under linear programming.Comment: 25 pages, 8 figures, Submitted to IEEE Transactions on Information
Theor