94,920 research outputs found

    Probability Of Anomaly Expressions For Random Waveform Registration

    Get PDF
    Registration by integral-square error correlation of one-dimensional Discrete Time waveforms which are treated as random processes with specified autocorrelation functions is considered. An important design parameter for this class of problems is the probability of anomaly (a false dip in the correlation function) because it gives an indication of system immunity to gross registration errors. Explicit expressions for this parameter are not possible, so bounds and approximations must be derived. Two upper bounds and an approximation for the probability of anomaly are derived here. The use of these expressions is illustrated by an example. The relative utility of these performance indicators is shown for the example by comparison with actual values of the probability of anomaly obtained by computer simulation. Copyright © 1977 by The Institute of Electrical and Electronics Engineers, Inc

    Predictive Duty Cycle Adaptation for Wireless Camera Networks

    Get PDF
    Wireless sensor networks (WSN) typically employ dynamic duty cycle schemes to efficiently handle different patterns of communication traffic in the network. However, existing duty cycling approaches are not suitable for event-driven WSN, in particular, camera-based networks designed to track humans and objects. A characteristic feature of such networks is the spatially-correlated bursty traffic that occurs in the vicinity of potentially highly mobile objects. In this paper, we propose a concept of indirect sensing in the MAC layer of a wireless camera network and an active duty cycle adaptation scheme based on Kalman filter that continuously predicts and updates the location of the object that triggers bursty communication traffic in the network. This prediction allows the camera nodes to alter their communication protocol parameters prior to the actual increase in the communication traffic. Our simulations demonstrate that our active adaptation strategy outperforms TMAC not only in terms of energy efficiency and communication latency, but also in terms of TIBPEA, a QoS metric for event-driven WSN

    Optimal Calibration of PET Crystal Position Maps Using Gaussian Mixture Models

    Get PDF
    A method is developed for estimating optimal PET gamma-ray detector crystal position maps, for arbitrary crystal configurations, based on a binomial distribution model for scintillation photon arrival. The approach is based on maximum likelihood estimation of Gaussian mixture model parameters using crystal position histogram data, with determination of the position map taken from the posterior probability boundaries between mixtures. This leads to minimum probability of error crystal identification under the assumed model

    Statistical Models of Reconstructed Phase Spaces for Signal Classification

    Get PDF
    This paper introduces a novel approach to the analysis and classification of time series signals using statistical models of reconstructed phase spaces. With sufficient dimension, such reconstructed phase spaces are, with probability one, guaranteed to be topologically equivalent to the state dynamics of the generating system, and, therefore, may contain information that is absent in analysis and classification methods rooted in linear assumptions. Parametric and nonparametric distributions are introduced as statistical representations over the multidimensional reconstructed phase space, with classification accomplished through methods such as Bayes maximum likelihood and artificial neural networks (ANNs). The technique is demonstrated on heart arrhythmia classification and speech recognition. This new approach is shown to be a viable and effective alternative to traditional signal classification approaches, particularly for signals with strong nonlinear characteristics

    Bayesian Confidence Limits For The Reliability Of Mixed Cascade And Parallel Independent Exponential Subsystems

    Get PDF
    This paper deals with the theoretical problem of deriving Bayesian confidence intervals for the reliability of a system consisting of both cascade and parallel subsystems where each subsystem is independent and has an exponential failure probability density function (pdf). This approach is applicable when test data are available for each individual subsystem and not for the entire system. The Mellin integral transform is used to analyze the system in a step-by-step procedure until the posterior pdf of the system reliability is obtained. The posterior cumulative distribution function is then obtained in the usual manner by integrating the pdf, which serves the dual purpose of yielding system reliability confidence limits while at the same time providing a check on the accuracy of the derived pdf. A computer program has been written in FORTRAN IV to evaluate the confidence limits. An example is presented which uses the computer program. Copyright © 1974 by The Institute of Electrical and Electronics Engineers, Inc

    Efficient Embedded Speech Recognition for Very Large Vocabulary Mandarin Car-Navigation Systems

    Get PDF
    Automatic speech recognition (ASR) for a very large vocabulary of isolated words is a difficult task on a resource-limited embedded device. This paper presents a novel fast decoding algorithm for a Mandarin speech recognition system which can simultaneously process hundreds of thousands of items and maintain high recognition accuracy. The proposed algorithm constructs a semi-tree search network based on Mandarin pronunciation rules, to avoid duplicate syllable matching and save redundant memory. Based on a two-stage fixed-width beam-search baseline system, the algorithm employs a variable beam-width pruning strategy and a frame-synchronous word-level pruning strategy to significantly reduce recognition time. This algorithm is aimed at an in-car navigation system in China and simulated on a standard PC workstation. The experimental results show that the proposed method reduces recognition time by nearly 6-fold and memory size nearly 2- fold compared to the baseline system, and causes less than 1% accuracy degradation for a 200,000 word recognition task

    Embedded intelligence for electrical network operation and control

    Get PDF
    Integrating multiple types of intelligent, mulitagent data analysis within a smart grid can pave the way for flexible, extensible, and robust solutions to power network management

    Time–Frequency Cepstral Features and Heteroscedastic Linear Discriminant Analysis for Language Recognition

    Get PDF
    The shifted delta cepstrum (SDC) is a widely used feature extraction for language recognition (LRE). With a high context width due to incorporation of multiple frames, SDC outperforms traditional delta and acceleration feature vectors. However, it also introduces correlation into the concatenated feature vector, which increases redundancy and may degrade the performance of backend classifiers. In this paper, we first propose a time-frequency cepstral (TFC) feature vector, which is obtained by performing a temporal discrete cosine transform (DCT) on the cepstrum matrix and selecting the transformed elements in a zigzag scan order. Beyond this, we increase discriminability through a heteroscedastic linear discriminant analysis (HLDA) on the full cepstrum matrix. By utilizing block diagonal matrix constraints, the large HLDA problem is then reduced to several smaller HLDA problems, creating a block diagonal HLDA (BDHLDA) algorithm which has much lower computational complexity. The BDHLDA method is finally extended to the GMM domain, using the simpler TFC features during re-estimation to provide significantly improved computation speed. Experiments on NIST 2003 and 2007 LRE evaluation corpora show that TFC is more effective than SDC, and that the GMM-based BDHLDA results in lower equal error rate (EER) and minimum average cost (Cavg) than either TFC or SDC approaches
    • …
    corecore