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1. lntroduction

Probability of Anomaly
Expressions for Random
Waveform Registration

GEORGE L. BAIR
University of Kentucky

GORDON E. CARLSON
University of Missouri

The problem of one-dimensional waveform registration
arises often in practice in a variety of areas including corre-
lation guidance [1] -[4] , seismic processing [5] , and bio-
medical pattern recognition [6]. A general problem state-
ment involves the definition of a continuous-time reference
wavefonn, denoted s(u), which is modeled as a member of
the ensemble of waveforms of a stationary random process
and is available prior to the registration procedure. A
continuous-time observation waveform is denoted r(u) and
is modeled as a noisy translated version of s(u) with less
extent. If X denotes the relative translation between r(u)
and s(u) as measured from an arbitrary but fixed point, then
r(u) takes the form

r(u)=s(u+X)+n(u), O<u<U (1)

where U is the extent of r(u), and n(u) is noise which is
modeled as a random process which is uncorrelated with

Abstract the reference waveform. The situation is as shown in Fig. 1.

Registration by integral-square error correlation of one-dimensional

discrete-time waveforms which are treated as random processes with

specified autocorrelation functions is considered. An important

design parameter for this class of problems is the probability of

anomaly (a false dip in the correlation function) because it gives an

indication of system immunity to gross registration errors. Explicit

expressions for this parameter are not possible, so bounds and ap-

proximations must be derived. Two upper bounds and an approxi-

mation for the probability of anomaly are derived here. The use of

these expressions is illustrated by an example. The relative utility

of these performance indicators is shown for the example by com-

parison with actual values of the probability of anomaly obtained

by computer simulation.
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F ig. 1. Observation and reference waveforms.

The data and noise waveforms encountered in practice
are commonly modeled as random in nature because they
can best be described by probabilistic models. In addition,
it is often reasonable to assume that the signal waveform
is Gaussian and the noise waveform is zero-mean Gaussian
and that both waveforms are wide-sense stationary. The
statistical description of the signal and noise is then com-
plete when the autocorrelation functions are specified. For
the example included in this analysis these assumptions are

used along with the exponential form of the autocorrela-
tion function which, for a random process x(t), is given by

R(r) = E [x(t) x(t + r)] = a2 exp(- . I/c). (2)
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In this expression E [ ] is the expected value, a2 is the var-
iance, and c is the correlation length. This form is used to
describe both the signal and noise. (Correlation length is
that value of T for which the covariance has decreased in
value to 36.8 percent of the variance.) Also, the signal and
noise are assumed uncorrelated.

In practice, only discrete versions of the waveforms r(u)
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Fig. 2. Anomaly-free correlation function.

xo0 1 a

Fig. 3. Correlation function possessing anomaly.

Fig. 4. Definition of w(6) for use in evaluating PA(6).

and s(u) are usually available. This is due to the measure-
ment techniques, processing, and storage being inherently
digital. Thus the problem will be treated as digital in nature.
The reference and observation sequences are designated si(c)
and ri which denote the values of s(u + o) and r(u) at the
ith sampling instant with sampling period T. The number
of samples in the observation sequence is designated Nr.
Note that a = X when the reference and observation wave-
forms are aligned. The noise sequence is expressed in a
similar manner as ni. The signal and noise statistics are de-
scribed by the autocorrelation functions with arguments
normalized by the sampling period. These are denoted
Rs(k) and Rn(k), respectively, and are

R (k) = E(Si Si+k) = pskI (3)

and

Rn(k E(i-lk) = a7n Pn

where os' is the reference variance, a2 is the noise variance,
and ps and Pn are the reference and noise correlation co-
efficients. The correlation coefficient is related to the corre-
lation length by p = exp(- T/c).

The observation and reference waveforms are said to be
in registration when the actual value of offset X is known.
If this value is not known, then approximate registration
can be obtained by forming an estinate of the offset, de-
noted X. This is done by comparing the observation and
reference waveforms by some form of correlation and re-
sults in a continuous function of the offset, denoted c(a),
whose minimum or maximum value determines the offset
estimate X.

The integral-square error correlation is used in this analy-
sis and the resulting correlation function is given by

Nr

C(a) = 1 [S.(ot) - r.]2. (5)

The offset estimate is that value of oa for which the function
c(a) is a minimum, as illustrated in Fig. 2 where X0 is the
actual value of offset. This is a least squares estimate.

Only the integral-square error correlation method is used
in this analysis. lt is the optimal registration method (in

xo x 0+d

the maximum likelihood sense) with the assumptions that
the noise is a wide-sense stationary Gaussian random pro-
cess and that the reference waveform is known exactly prior
to the estimation procedure which were stated above and the
additional assumption that the noise samples are uncorre-
lated [7]. The assumption of uncorrelated noise samples is
used throughout this analysis for simplicity and because
uncorrelated noise samples often occur in practice. All of
the results can readily be generalized to the correlated noise
samples case. Note then that the integral-square error corre-
lation method is suboptimal and the optimal estimator is of
the integral-square error form but requires nonlinear weight-
ing of the observation sequence [7].

An anomaly occurs when there is a major dip in the
correlation function remote from the actual offset value
which results in a gross estimation error. This situation is
shown in Fig. 3 where X0 is the actual offset and X1 is the
location of the anomaly.

An important performance indicator for the problem
under investigation is the probability of occurrence of an
anomaly. This quantity is defined using Fig. 4 where the
auxiliary random variable

w(8) = c(Ä0) -c(XO + 6) (6)

is introduced. Note that the mean value of w(8) is less than
zero since c(Xo +8) is normally greater than c(X0). The
probability of anomaly at a distance 8 from the actual off-
set is given by

PA (6) =P[W(6) > O] . (7)

This expression is not the probability of a false match on a
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single trial but is specific to the offset Ä - Ä0. lt is none the
less useful in specifying relative system performance. This
quantity is analyzed in detail in the sections that follow.

11. Upper Bounds on the Probability of Anomaly

lt is not possible to derive an exact expression for the
probability of anomaly given by (7) except for the case of
very simple signal and noise assumptions (e.g., uncorrelated
signal samples and uncorrelated noise samples). This is be-
cause the exact probability distribution of the correlation
function is not known except for simple signal and noise
assumptions (e.g., for uncorrelated signal and noise samples
with Gaussian distributions the correlation function has a
chi-square distribution).

When the data and noise are Gaussian distributed, w(8)
is the weighted sum of chi-square random variables. This
distribution is not expressible in closed form, but can be ap-
proximated. An alternative to this is to bound or approxi-
mate PA (6) in terms of the moments of the random variable
w(6). Uppei bounds on PA (8) are useful because they pro-
vide an indication of the worst case system performance.
If the bounds can be shown to be reasonably tight, then
they can be used to provide a quantitative indication of sys-
tem performance. Approximations onP4 (6) are useful if
they can be shown to be reasonably accurate because they
can provide an absolute indicator of system performance
and provide insight into the relation of system performance
and system parameters.

Two upper bounds are considered here. The first of
these results from the application of the Chebyshev in-
equality. This bound is quite general since it is independent
of any assumption of probability distribution for the signal
and noise waveforms. The second upper bound results from
the application of the Chernoff bound. lt provides a better
bound than the first but is dependent on the assumption
of a Gaussian probability distribution for the signal and
noise.

A. Upper Bound onPA(S) from the Chebyshev Inequality

For an arbitrary random variable x with mean value wx
and variance ux the Chebyshev inequality is

P[I(X _X)1>e]_<a2/62, 6>O .

If the absolute value is removed to give

P[(x -p)>eI.a2,/2 e>0 ('

then a looser bound is obtained. For i,x <0, e can be set
equal to -ix to give the bound

P(x> 0) < a2 /112, 1 0< °. (10

A bound on PA (8) can be obtained using (10) and the
statistics of w(6) (denoted 1uw and a2 ) since pw <0. The
result is

pA (6) =P [W(6) >0O] <. u2 /p (11)

The expression derived here and given by (1 1) is used
often in a number of applications. lt is sometimes terrned
the output signal-to-noise ratio because of its form. The
statistics bt" and a2 are computed in Appendix 1 for the
case of a Gaussian distributed signal and noise.

B. Upper Bound on PA (8) from the Chernoff Bound

The general Chebyshev inequality can be stated as follows.
Let x be a random variable and g(x) be a non-negative func-
tion with a domain of the real numbers; then for E> 0

P[g(x) > ] < E [g(x)] /e. (12)

This inequality is proved and discussed in detail in [8].
The Chernoff bound results from using the Chebyshev

inequality with a particular function g(x) and a particular
term for e. Let g(x) = exp(sx) where s is an arbitrary real
number. Let e = exp(sA) where A is an arbitrary real num-
ber. Application of the Chebyshev inequality gives

P[exp(sx) > exp(sA)] < E[exp(sx)] /exp(sA). (13)

Let s be positive (s > 0). Then the inequality exp(sx) >
exp(sA) is equivalent to the inequality x >A. This is be-
cause the exponential is monotonic. The expectation,
E[exp(sx)] , is the moment-generating function ofx which
will be denoted MX(s). Combining these results gives the
bound

P(x >A) < exp(-sA)M (s). (14)

Recall that s is an arbitrary positive real number. As s ap-
proaches zero, the bound in (14) becomes

P(x >A)<.exp(-sA)MX(s) s,0 = 1 (15)

and thus is not useful. Furthermore, for A <E (x), it can
be shown that the bound is always greater than 1 and so is
not useful. In this analysis, a bound for the probability of
x > 0 is desired. This is accomplished by setting,A to zero
and results in a bound which is

(16)

Thus a bound on PA (6) is derived using (16) and the moment-
9) generating function of w(6), denoted MW(s), to give

PA(6) = P[W(b) > 0] SMW(S), s >0. (17)

Note that E[w(6)] < 0, so a useful bound is obtained.
») Strictly speaking, the Chernoff bound is the least upper

bound resulting from (17). The value of s which gives this
bound can be found explicitly or by numerical evaluation.
An explicit expression for MW(s) for the case of a Gaussian
distributed signal and noise is derived in Appendix II.
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Fig. 5. Comparison of expressions forPA(b) with Nr = 40, ps = 0.50, Fig. 6. Comparison of expressions forPA(b) with Nr = 40, Ps = 0.50,
and signal-to-noise ratio = - 1 0 dB. and signal-to-noise ratio = - 0 dB.

Fig. 7. Comparison of expressions for PA(8) with Nr = 40, Ps = 0.90,
and signal-to-noise ratio = - 10 dB.

11 . An Approximate Expression for the Probability
of Anomaly

lt is possible to obtain an approximate expression for
PA (6) by assuming that the correlation function is Gaussian
distributed. This assumption is reasonable if each value of
c(o) is the sum of many identically distributed random
variables which are not highly correlated. This permits the
central limit theorem to be applied. Since c(a) is always
positive, this assumption is most valid when the mean
value of c(a) is sufficiently large with respect to its standard
deviation because then the portion of the lower tail of the
Gaussian distribution which extends below zero is negligible.
The approximate expression for PA (6) is useful as a quanti-
tative indicator of system performance provided its accuracy
can be established. The development of this approximation
follows.

The assumption of Gaussian statistics for c(a) means that
w(6) is also Gaussian. The technique then is to compute
the mean and variance of w(6) and then to compute PA (6)
by using a Gaussian distribution. The calculation of the
statistics .i, and u2 for the case of a Gaussian distributed
signal and noise is performed in Appendix 1. The approxi-
mate expression for PA (6) follows by computing P[w(6) >
0] and is

PAQ() = P[W(6) 0] e+ erf(bz/V2~) (18)

where

erf(a) = fi (tr_ 1
2

e dw.
0
(/1)

IV. Comparison of the Expressions for PA (6) and
Actual Values Derived by Computer Simulation

In this section the expressions for PA (6) are compared
with actual values derived by computer simulation for a

particular signal and noise assumption. These comparisons

1. 0

io-1-I

PA(6) 10-2

10
3

0.1

Actual
___ Chebyshev Bound
-.- Chernoff Bound

.Gaussian Approximation

1.0

5 /T

1 0. 0

give an indication of the utility of each of the performance
indicators.

The signals used here for illustration are Gaussian with ex-

ponential autocorrelation and the noise is Gaussian with un-

correlated samples. Plots ofPA (6) for pS = 0.50 and p5 = 0.90,
Nr = 40, and signal-to-noise ratios (defined by u,2/u2) of 10

dB and 0 dB are shown in Figs. 5 through 8. The plots are

shown as a function of normalized offset 6/T, where Tis the
sample interval. The results shown give an indication of the
utility of the various expressions for the probability of
anomaly. The actual values for the probability of anomaly
were obtained by computer simulation using 100 000
replications for each value of offset. Results for higher
values of signal-to-noise ratio are not shown because it is not
practical to determine values for PA(6) by computer simula-
tion. This is because the computation costs rise astronomi-
cally as PA(6) becomes small. For example, if PA (8) is in
the range of 10-6, then at least 100 million replications
are required to arrive at an accurate estimate. However, the
probability of anomaly is so small for these higher values of
signal-to-noise ratio that they are usually of no concem

anyway.

Thus only larger values of PA (6) are considered here. If

BAIR/CARLSON: PROBABILITY OF ANOMALY EXPRESSIONS FOR RANDOM WAVEFORM REGISTRATION
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Fig. 8. Comparison of expressions forPA(6) with Nr = 40, Ps = 0.90,
and signal-to-noise ratio = 0 dB.

anomaly for small values of offset, and 3) the Chebyshev
bound is an unreliable performance indicator for the example.

These results reveal that it is possible to arrive at accurate
expressions for the probability of anomaly for a relatively
large class of problems. The improvement of the Chernoff
bound and the Gaussian approximation to the probability
of anomaly over the often used Chebyshev bound is signifi-
cant. No attempt was made to apply these results to a phy-
sical problem. But it is reasonable to assume that these
results are applicable to any physical problem that closely
satisfies the assumptions listed.

Also, the methods of analysis used here are applicable to
a large number of problems where a probability of the form
P(x >A) must be evaluated. In this case any of the three
methods of evaluation given here can be used. The relative
merit of the methods will depend on the specific problem.

there is interest in smaller probability of anomaly values,
then the results shown indicate when extrapolation may be
reasonable.

The plots reveal that the Chebyshev bound is a poor in-
dicator ofPA (8) in magnitude and variation with 8. Also,
this bound reaches a constant value for large 8 which is in-
sentitive to system performance and thus is not a good per-
formance indicator.

The Chernoff bound appears to be a good performance
indicator. lt is within an order of magnitude of the actual
value ofPA (6) for all values of 8 and exhibits the same var-
iation with b. However, the bound is useless for small values
of 8 since the bound is greater than ! and it is known that
PA (8) is always less than 2 since c(ÄO + 6) > c(Äo) on the
average.

The Gaussian approximation is a good performance in-
dicator for small 8, but diverges for increased 8. In fact, for
small 8 this indicator is nearly equal to the actual value of
PA (8). The divergence for larger values of 8 is probably due
to the fact that the actual distribution of w(8) differs from
a Gaussian distribution in its tail which is the primary con-
tributor to PA (8) for large 8.

V. Summary

Expressions for the probability of anomaly for the prob-
lem of one-dimensional waveform registration were ex-
amined in the previous sections. This involved the deriva-
tion of three expressions: 1) an upper bound derived from
the application of the Chebyshev inequality, 2) an upper
bound derived from the application of the Chernoff bound,
and 3) an approximation resulting from the assumption of
a Gaussian distribution for the correlation function.

These expressions were compared with actual perfor-
mance values derived by computer simulation for a practical
example. lt was shown that 1) the Chernoff bound pro-
vides a good indication of the probability of anomaly for
large values of offset, 2) the Gaussian approximation gives
an approximately correct value for the probability of

Appendix 1

Computation of .ui and aw

When the reference position for the correlation function
is defined to be the correct estimate point, then the expres-
sion for w(8) is

w(8) = c() - c(8)
Nr

-=i1 [S s(0)-
Nr

= Z n2
i=li l

Nr

ni]2 - 1 [si(8)ii

Nr

i1 [S,() - s,(0)-n]
Nr Nr

= 2 2: [s.(8) - s.(0)] n, - j=l [si()-i= 1 .=

(20)

- si(O) - n]2

(21)

(22)

-si(0)] 2. (23)

Define an auxiliary random variable fi as

f.= s.(8) - si(0).

Then w(8) is given by
Nr Nr Nr

w(6)= 2 f.n,- f.n. - 1 f.2.
i=1 Z Z i-1 1 1 i=l 1

The statistics offi are easily computed as

E(f) =0

R/i - /) = E(ffj) = E {[s.(5) - sZ(0)] [si(8)

(24)

(25)

(26)

s(0)]} (27)

= 2RS(i/-) -Rs(i -i- 6)-Rs(i- +)-

(28)

The statistics of w(8) follow readily and the derivations
are given below. For the mean value,

Nr Nr
/1 = E [w(8)] = E(2 : fJn.-1 1- 2) (29)
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Nr Nr

E(t' f)2 '- E(J;) (30)

= 2N [R(O) -R (8)1 * (31)

Computation of the variance begins by computing

Nr Nr Nr Nr

E[w2( = E[(2 ,1 1fn,i-1 f.2) (2 1 i=1 1

Nr Nr Nr Nr (32)
= Efz 2, f.2 4E( fgf"n-n) (33)

where noncontributing terms resulting from the zero-mean
assumption for the noise have been deleted. The expression
in (33) can be written in terms of the data and noise statis-
tics to give

Nr Nr
E[w2(8)] =gE a()A()E [W2£5 1 21? (8) -2R (0)12

Nr Nr

2[2R (i-j)-R (i-i-5)

- Rs(i -j+ 6)]2

Nr Nr

+41i4 1 [2sR(i- S(i )

E[W2 ()] = (4N~+ 8N )[Rs(8) - RS(0)] 2

+ 8N[R (0) - R (5)] u2

Nr
+4 (Nr -k)[2Rs(k) -Rs(k - 8)

- Rs(k + 6)]2. (37)

The simplification of the double sum in (36) to the single
sum in (37) follows because the argument in the sum is a
function only ofk = li - j1.

The variance of w(8) can now be computed as

aw2E [w2 (8)] -E2[w(8) (38)

= 8Nr [R(0) - R (8)]2 + 8N [R (o) - R()]u2

Nr
+ 4 ., (Nr-k)[2R (k)-R (k-6)

- R.(k + 8)]2. (39)

Appendix 11

Derivation of Mw(s)

Recall that w(8) as a function of 6 is given by

(34)

= 4Nr2[R()-R (O)1 2 + 2N [2R (8) -2R (0)] 2

Nr Nr

i 12[2RS(i- j)-Rs(i- - 5)

-Rs(i- j+8)]2

Nr Nr
+4 T .z [2R?(i-j)-R (i-i-)i=1 j=I S S

-Rs(i-j + )] Rn(i-j). (35)
Let the noise samples be uncorrelated with variance u2.
Then the expression in (35) reduces to

E[W2(8)] = 4N2 [R (8) - R(0)] 2

+ 2N [2R (8) - 2R(0)] 2

+ 8Nr [R (O) - R (6)1u2
Nr Nr

+- Z 2 12RS(i -j)-R (i-j-5)

-Rs(i-j+8)J2. (36)
Lastly, the expression in (36) reduces to

Nr Nr
w(5) = i-, n2 - gz1 (f. - n.)2

1=i . 1= 1 1 1

Nr Nr
=- 1 f +2 1 f.n.

i=1 1 i= 1I I

(40)

(41)

where fi is the auxiliary random variable defined in Appen-
dix 1 as

(42)fi = S.(8) - si(0).

In vector notation, the relation in (41) is

w(6) = - fT (f-2n). (43)

Defime a new random vector Z as

zT = (fT nT) (44)

Then the covariance matrix of z is

_ "_

(45)

where Af and A" are the covariance matrices of f and n,
respectively. Since f and n are independent and Gaussian,
they are jointly Gaussian; therefore, the probability density
function of z is

BAIR/CARLSON: PROBABILITY OF ANOMALY EXPRESSIONS FOR RANDOM WAVEFORM REGISTRATION
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f(2)j=(2r) IAN-r/2 exp ( zTAlz).

Now w(6) can be written as a quadratic in terms of z as

w(6)=-zTyz (

where Y is a 2Nr X 2Nr matrix given by

yL J (
-_I O

Therefore an expression for Mw(s) results which is

M_(s) = f exp(- szT Yz)(21r) rIA I/2

*exp(- zTA-lz) dz.

(46) M (s)= (A-' + 2sY)-'1 /2/IA 1/2.
wZ ~~~~~~Z (52)

This expression can be further simplified to

(47) M (s)= MA-' +2sYlv'21 IA -/2. (53)

This follows because the determinant of an inverse is the
reciprocal of the determinant of the original matrix. The
expression in (53) can be further simplified by noting that

(48) the determinant of the product of two matrices is the prod-
uct of the determinants. Therefore,

Mw(s)) II+2sYA1 l-1/2 (54)

In terms of Af and An the expression in (54) is

(49)

This can be rewritten as
00 -N

M(s)=f2(i) IA <-1/2exp[_ zT(A-l +2sY)z] dz

(50)
= [ 1(A-1 + 2sY)-1 11/2/IA 1./2]

Z Z

(2 fr) (A;1 +2sY)y1r/2
* exp[_ izT(Al- + 2sY)z] dz. (5 l

Assume that the matrix (A'1 + 2sY)-1 is positive definite.
Then the term in the integral is a probability density func-
tion; so the integral is equal to 1. Therefore,

MW(s) = | I+2s

-A O_

(55)

This expression is readily calculable by a simple computer
program.

Note that the expression in (55) is valid only if the matrix
(Az ' + 2sY)-y is positive definite. This fact has not been
proved, but appears to be the case. lt has been verified
to an extent by computer evaluation ofM,(s) as given by
(55). In all cases examined, this function showed proper
variation with s over the range of values of interest.
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