1,006 research outputs found

    Spectral–Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields

    Get PDF
    Hyperspectral remote sensing technology allows one to acquire a sequence of possibly hundreds of contiguous spectral images from ultraviolet to infrared. Conventional spectral classifiers treat hyperspectral images as a list of spectral measurements and do not consider spatial dependences, which leads to a dramatic decrease in classification accuracies. In this paper, a new automatic framework for the classification of hyperspectral images is proposed. The new method is based on combining hidden Markov random field segmentation with support vector machine (SVM) classifier. In order to preserve edges in the final classification map, a gradient step is taken into account. Experiments confirm that the new spectral and spatial classification approach is able to improve results significantly in terms of classification accuracies compared to the standard SVM method and also outperforms other studied methods.Ritrýnt tímaritPeer reviewe

    Hyperspectral data classification improved by minimum spanning forests

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Remote sensing technology has applications in various knowledge domains, such as agriculture, meteorology, land use, environmental monitoring, military surveillance, and mineral exploration. The increasing advances in image acquisition techniques have allowed the generation of large volumes of data at high spectral resolution with several spectral bands representing images collected simultaneously. We propose and evaluate a supervised classification method composed of three stages. Initially, hyperspectral values and entropy information are employed by support vector machines to produce an initial classification. Then, the K-nearest neighbor technique searches for pixels with high probability of being correctly classified. Finally, minimum spanning forests are applied to these pixels to reclassify the image taking spatial restrictions into consideration. Experiments on several hyperspectral images are conducted to show the effectiveness of the proposed method. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)Remote sensing technology has applications in various knowledge domains, such as agriculture, meteorology, land use, environmental monitoring, military surveillance, and mineral exploration. The increasing advances in image acquisition techniques have all102117FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)2011/22749-8307113/2012-

    Inference in supervised spectral classifiers for on-board hyperspectral imaging: An overview

    Get PDF
    Machine learning techniques are widely used for pixel-wise classification of hyperspectral images. These methods can achieve high accuracy, but most of them are computationally intensive models. This poses a problem for their implementation in low-power and embedded systems intended for on-board processing, in which energy consumption and model size are as important as accuracy. With a focus on embedded anci on-board systems (in which only the inference step is performed after an off-line training process), in this paper we provide a comprehensive overview of the inference properties of the most relevant techniques for hyperspectral image classification. For this purpose, we compare the size of the trained models and the operations required during the inference step (which are directly related to the hardware and energy requirements). Our goal is to search for appropriate trade-offs between on-board implementation (such as model size anci energy consumption) anci classification accuracy

    A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data

    Get PDF
    The automatic classification of hyperspectral data is made complex by several factors, such as the high cost of true sample labeling coupled with the high number of spectral bands, as well as the spatial correlation of the spectral signature. In this paper, a transductive collective classifier is proposed for dealing with all these factors in hyperspectral image classification. The transductive inference paradigm allows us to reduce the inference error for the given set of unlabeled data, as sparsely labeled pixels are learned by accounting for both labeled and unlabeled information. The collective inference paradigm allows us to manage the spatial correlation between spectral responses of neighboring pixels, as interacting pixels are labeled simultaneously. In particular, the innovative contribution of this study includes: (1) the design of an application-specific co-training schema to use both spectral information and spatial information, iteratively extracted at the object (set of pixels) level via collective inference; (2) the formulation of a spatial-aware example selection schema that accounts for the spatial correlation of predicted labels to augment training sets during iterative learning and (3) the investigation of a diversity class criterion that allows us to speed-up co-training classification. Experimental results validate the accuracy and efficiency of the proposed spectral-spatial, collective, co-training strategy
    corecore