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Abstract

The automatic classification of hyperspectral data is made complex by several factors, such as the high cost

of true sample labeling coupled with the high number of spectral bands, as well as the spatial correlation of

the spectral signature. In this paper, a transductive collective classifier is proposed for dealing with all these

factors in hyperspectral image classification. The transductive inference paradigm allows us to reduce the

inference error for the given set of unlabeled data, as sparsely labeled pixels are learned by accounting for

both labeled and unlabeled information. The collective inference paradigm allows us to manage the spatial

correlation between spectral responses of neighboring pixels, as interacting pixels are labeled simultaneously.

In particular, the innovative contribution of this study includes: (1) the design of an application-specific co-

training schema to use both spectral information and spatial information, iteratively extracted at the object

(set of pixels) level via collective inference; (2) the formulation of a spatial-aware example selection schema

that accounts for the spatial correlation of predicted labels to augment training sets during iterative learning

and (3) the investigation of a diversity class criterion that allows us to speed-up co-training classification.

Experimental results validate the accuracy and efficiency of the proposed spectral-spatial, collective, co-

training strategy.

Keywords: Hyperspectral imagery classification, Transductive learning, Collective Inference, Co-training,

Spectral-spatial data

1. Introduction

Hyperspectral Image (HSI) collected by imaging spectrometers has captured increasingly rich spectral

information. Advances in hyperspectral imaging technology allow nowadays the simultaneous measurement

of hundreds of spectral bands for each image pixel. This high spectral resolution increases the possibility
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of more accurately discriminating materials of interest in the spectral domain. This benefits the theoret-

ical research on hyperspectral data classification in various real-world applications, such as environmental

mapping, crop analysis, plant and mineral exploration, as well as biological and chemical detection [43].

Hyperspectral data classification is the process used to produce thematic maps from remote sensed

images. A thematic map represents the Earth’s surface objects (e.g. soil, vegetation, roof, road, buildings).

Its construction implies that themes or categories, selected for the map, are distinguished in the remote

sensed image based on their surface reflectance in optic and Near InfraRed (NIR) wavelengths. Classification

involves clustering the pixels (imagery data examples) of an image into a set of known classes (themes) such

that pixels in the same class have similar properties. In this scenario, every pixel is expressed with a vector

model that represents the spectral signature as a vector of numeric features (namely spectral features). A

spectral feature represents the spectral reflectance at a specific band. Additionally, every pixel is associated

with a specific position of a uniform grid, which describes the spatial arrangement of the sensed scene.

Finally, it is assigned with a certain (possibly unknown) class label. From a methodological viewpoint, the

automatic classification of hyperspectral data is not a trivial task [16]. It is made complex by two factors:

(1) the high cost of true sample labeling coupled with the high number of spectral channels and (2) the

spatial correlation of pixels due to the arrangement of the topographic objects.

The human-supervised effort needed to collect only few labeled imagery pixels, properly distributed

among the classes, makes the definition of the proper training set for learning an imagery classifier still an

open challenge [14]. On the other hand, the low number of collected ground truth labels, compared to the

high number of spectral features, is not always sufficient for a reliable estimate of the classifier parameters.

In fact, if the number of samples (training set) is too low compared to the number of variates, overfitting

the training data may be a problem, i.e. we can learn a model that exactly fits the training data without

accounting for a wider generalization [10]. This behavior, which is known as Hughes’s phenomenon [23],

may cause a reduction in classification accuracy.

Recent studies have focused on the use of unlabeled samples, in order to overcome the problem of small

size labeled samples in high dimensionality data classification [48]. Two main approaches have been proposed:

the semi-supervised approach and the transductive approach [56]. Both settings jointly exploit labeled and

unlabeled samples [46]. The semi-supervised approach is a type of inductive learning, since it learns a general

hypothesis that can be used to make predictions on any possible example (also outside the unlabeled sampled

set considered during the learning phase). The transductive approach requires less - it is only interested in

reducing the inference error for the given set of unlabeled data, without trying to improve the overall quality

of the learned hypothesis. Therefore, as pointed out by Vapnik [57], the idea of transduction (labeling a

test set) appears inherently easier than (semi-supervised) induction (learning a general hypothesis) and it

is likely to become much more popular in the future. In the last few years, the machine learning scientific

community has shown a growing interest in the definition of a variety of semi-supervised and transductive
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classification algorithms (e.g. [17, 26, 27, 50, 56]). Following this mainstream of research, several semi-

supervised and transductive algorithms (e.g. [1, 6, 7, 20, 36, 58]) have been specifically defined to cope

with limited labeled data in hyperspectral image classification problems. They are application-specific

algorithms that, in addition to utilizing both labeled and unlabeled pixels for classification, account for the

spatial correlation of the pixels during the learning process.

The spatial correlation of the spectral signature refers to the relation (or dependence) between pixels,

due to their close locations. Intuitively, spatial correlation is a property of random features taking values,

at pairs of locations a certain distance apart, that are more similar (positive autocorrelation) or less similar

(negative autocorrelation) than expected for pairs of observations at randomly selected locations [30]. In

particular, positive spatial correlation occurs when the values of a given property are highly uniform among

objects in close proximity, i.e., in the same neighborhood. In the case of hyperspectral images of geographical

areas, spatial correlation exists in the positive form as there is a slowly progressive spatial variation in the

spectral signature [39]. This means that by picturing the spatial variation of the observed features in a

map, we may observe regions where the distribution of values is smoothly continuous, with some boundaries

possibly marked by sharp discontinuities. These discontinuities are due to the bounds of the topographic

objects. An emerging trend into hyperspectral analysis is to accommodate spatial correlation into the

classification process as, in this way, classification accuracy can be gained [43, 16].

Recent research in data mining has explored the use of collective inference to exploit data correlation

when learning predictive models. According to Jensen et al. [25], as well as Getoor and Taskar [19], collective

inference refers to the combined classification of a set of correlated instances. This means that, contrary to

traditional algorithms, which make predictions for data instances individually, regardless of the relationships

or correlations among instances, collective inference approaches predict the labels of related instances simul-

taneously, using similarities that appear among groups of correlated data. Recently, collective classification

has been investigated in combination with semi-supervised and transductive learning [60, 49, 37]. On the

other hand, various studies in hyperspectral imagery classification [16, 20] have initiated the investigation

of collective inference as a means to explicitly account for the spatial variation of the imagery data.

Co-training, originally introduced by Blum and Mitchell [4], is an important paradigm of both semi-

supervised and transductive learning [35, 9] that offers an unique opportunity to explicitly deal with the

spatial correlation of the spectral signature, by presumably reducing the labeling uncertainty that may exist

when only spectral information is used. It is usually applied to data sets whose features are separated

into two disjoint sets, which are regarded as two independent data profiles. At each iteration of the co-

training process, two learners are trained independently from the two profiles and are required to label

some unlabeled examples for each other to augment the training set. The iterative process continues until

it reaches some stopping criterion. The success of co-training lies in utilizing the unlabeled samples and

the information from the other profile. At present, the co-training strategy has already been considered
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to solve hyperspectral image classification issues [22, 61], due to the following twofold reasons: (1) co-

training can exploit the limited labeled data with a wealth of unlabeled data to improve the performance

and (2) besides the spectral features, to be used as a profile, we can generate another kind of discriminative

feature (especially spatial information) as an additional profile to help learning. This use of co-training

in hyperspectral image classification makes sense as we can suppose that spectral and spatial features are

conditionally independent (i.e. the spatial correlation on a group of neighbor pixels is not a function of their

spectral signatures). The still open problem of the co-training strategy is the selection of reliably predicted

labels for augmenting the training set. Several criteria have been defined for general co-training [11], as

well as for hyperspectral co-training [22, 61]. But, to the best of our knowledge, none exploits the spatial

correlation of the spectral signature as a way to describe the spatial correlation of the label.

Motivated by the interest in improving the accuracy of spatial information classification when learning

from few labeled data in a high dimensional spectral space, a new transductive algorithm, called S2CoTraC

(Spectral-Spatial Co-training for Transductive Hyperspectral Classification) is proposed in this paper. This

algorithm is synthesized by following the main stream of our recent research on collective inference and

transductive learning in hyperspectral image classification [20, 1]. It performs the iterative construction

of various spatial features over pixel objects (spatial neighborhoods) via a collective iterative convergence

algorithm, in order to deal with spatial information. It applies a transductive learning approach with a

co-training schema, in order to make accurate predictions of the unknown labels of a sparsely labeled image.

The novelty of this study, in particular with respect to our previous works [20, 1], includes the formulation

of an application-specific co-training schema to manage spectral and (collective-based) spatial information.

The effectiveness of the proposed algorithm is assessed via an empirical study on several hyperspectral data

sets corresponding to various contexts. This study contributes to proving that the proposed formulation of a

collective-based co-training classifier is more accurate than the collective turbo-code described in [20], as well

as the collective ensemble described in [1]. In addition, the presented algorithm outperforms the state-of-the-

art co-training classifiers, which are defined for hyperspectral classification [22, 61], but do not account for

collective inference to deal with spatial information. In general, our algorithm gains in accuracy compared to

various classifiers defined in the hyperspectral image analysis literature. Another novel contribution of this

study is the consideration of an example selection schema that accounts for the spatial correlation of imagery

labels, in order to select new training examples for the iterative learning process. This spatial-aware schema

advances our previous research [20, 1] that disregarded the spatial arrangement of the predicted labels by

basing the estimate of the reliability of a label on either the posterior probability of the label predicted with

a logistic classifier [20] or the diversity of the labels predicted by an ensemble [1]. Finally, in this study,

we start to pay attention to the efficiency issue and propose a diversity class criterion that can be used in

combination with co-training, in order to speed-up the learning process.
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The paper is organized as follows. The next section reports relevant related works. Section 3 introduces

basic concepts, while Section 4 illustrates the algorithm. Section 5 describes the data sets, the experimental

setup and reports the results. Finally, in Section 6 some conclusions are drawn and future work is outlined.

2. Related works

Over the last two decades, several supervised machine learning algorithms have been applied to hyper-

spectral image classification. Spectral information is processed, in order to train a classifier with the labeled

data samples. The quality of these pixelwise classification algorithms is strongly related to the quality and

number of training samples under the influence of Hughes’s phenomenon. In this context, Support Vector

Machines (SVMs) have been widely used to deal with Hughes’s phenomenon by addressing large feature

spaces and producing solutions from sparsely labeled data [38]. Recently, Multinomial Logistic Regression

(MLR) [31, 32] has been shown to provide an alternative approach to deal with ill-posed problems. In alter-

native, dimensionality reduction techniques have been adopted, in order to mitigate Hughes’s phenomenon

as the dimensionality of the multispectral data is high [51]. Finally, multiple classifier systems, e.g. classifier

ensembles, have proved successful in several hyperspectral image classification applications [8]. However,

these algorithms neither account for the unlabeled data nor account for the spatial correlation of data.

A new learning trend has recently emerged in hyperspectral imagery analysis. It exploits semi-supervised

or transductive learning and uses unlabeled data to increase the number of labeled samples, reduce the

impact of the overfitting and alleviate Hughes’s phenomenon. Several general-purpose algorithms have been

defined in the machine learning field, in order to classify using unlabeled data (e.g. generative algorithms

[17], transductive inference of Support Vector Machines [26, 50], spectral graph partitioning algorithms

[27] and self-labeling algrithms [56]). On the other hand, various application-specific, semi-supervised and

transductive algorithms have been formulated, in order to specifically classify hyperspectral data. For

example, Bruzzone et al. [6], as well as Maulik and Chakraborty [36] described a transductive SVM algorithm

for hyperspectral image classification. Ratle et al. [44] proposed a semi-supervised hyperspectral image

classification algorithm based on neural networks. The algorithm consists of adding a flexible embedding

regularizer to the loss function used for training neural networks. Although these algorithms incorporate

unlabeled samples in the training phase, they still neglect the spatial correlation of data.

A wide plethora of spectral-spatial classifiers has recently been formulated in the hyperspectral imaging

literature. They are commonly considered as hybrid algorithms, which combine spectral pixel-based infor-

mation and object (neighborhood)-based spatial information. In particular, they learn the imagery classifier

by accounting for the spatial correlation of the spectral signature and/or the class label. For example,

several algorithms, based on Markov Random Fields, have proved quite successful in hyperspectral imaging

[32, 31, 55, 33]. They take into account the continuity (in a probabilistic sense) of neighboring labels. In
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other words, they exploit the likely fact that, in a hyperspectral image, two neighboring pixels may have

the same label as a consequence of the spatial correlation of the class labels. On the other hand, Plaza

et al. [43], Bovolo et al. [5], as well as Fauvel et al. [15] decided to account for the spatial correlation of

the pixel spectra. They represented each pixel with a linear combination of the spectra of its neighboring

pixels. This is done by defining several spectral-spatial kernels, which model the inter-pixel relations as the

mean of the pixel spectra from a pixel’s neighborhood system. Spatial information is directly included in

the training process as a new constraint for the optimization problem. Tarabalka et al. [54] investigated the

use of a watershed transformation, in order to determine a segmentation map of the image. They defined a

two-stepped classification process, according to which the pixelwise SVM classification is followed by major-

ity voting within the watershed regions. Shackelford and Davis [47] described a fuzzy pixel-based classifier

that accounts for both spectral and spatial information to discriminate between spectrally similar road and

building urban land cover classes. After pixel-based classification, they used a technique that utilizes both

spectral and spatial heterogeneity, in order to segment the image and facilitate further object-based classifi-

cation. Bernardini et al. [3] combined the results of automatic segmentation with the land cover information

derived from pixel classification by means of the Winner Takes All algorithm. These algorithms deal with

spatial correlation of data, but in the supervised setting.

Finally, there are studies which exploit hyperspectral spatial information in active learning, transductive

and/or semi-supervised learning algorithms. Li et al. [33] adopted the loopy belief propagation, in order

to estimate the posterior marginal distributions from the spectral and spatial information in the hyperspec-

tral data. They enlarged the training set with new samples obtained via an active learning strategy. This

strategy is based on the conditional marginals of the unlabeled samples, which encode the spatial informa-

tion embedded in the posterior probabilities. Camps-Valls [7] presented a semi-supervised graph-based

algorithm, designed to exploit both spectral and spatial information in the images through composite ker-

nels. Wang et al. [58] proposed a spectral-spatial label propagation for the semi-supervised classification

of hyperspectral imagery. Tan et al. [52] presented a semi-supervised support vector machine (SVM) with

a segmentation-based ensemble. The algorithm utilizes spatial information extracted by a segmentation

algorithm for unlabeled sample selection, while the classification is refined through a spectral-spatial feature

ensemble technique. Guccione et al. [20] described a semi-supervised algorithm that constructs collective

spatial features of the imagery data by computing the frequency of a class in the neighborhoods of a pixel.

It constructs neighborhoods with growing size. Both spectral and spatial features are considered, in order

to build, iteratively, two classifiers by running the MLR algorithm. The posterior probabilities of the two

classifiers are combined using an ensemble decision, in order to determine the joint class prediction and

decide the exit strategy from the iterative loop. Appice et al. [1] described a transductive algorithm

to integrate the spectral information and the label spatial correlation through an ensemble system. The

algorithm constructs two types of spatial profiles of the imagery data. One spatial profile is populated with
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collective spatial features that describe the frequency of a class in the neighborhoods of a pixel. The other

spatial profile is populated with collective spatial features that describe the morphology of a class in the

neighborhoods of a pixel. Spatial features are iteratively updated, as new classes can be computed by the

ensemble system during the iterative learning. The unlabeled examples which are equally classified by the

majority of classifiers in the ensemble are used to expand the labeled set. The idea of constructing various

spatial profiles of the imagery data was also discussed in [22], where Huang and He described a learning

schema to iteratively combine a spectral profile with two spatial profiles of data through a transductive

co-training system. In this study, collective inference is neglected, while the spatial profiles are extracted

through the calculation of the Gray Level Co-occurrence Matrices (GLCM) and the Markov Random Field

(MRF) of the spectral information, respectively. In each round of co-training, an unlabeled pixel is labeled

for a classifier if the other two classifiers agree on the labeling. More recently, Zhang et al. [61] investigated

the use of the spectral features and the 2-D Gabor features extracted from spectral domains as two distinct

profiles for a new transductive co-training system of SVMs. In this case, the co-training process rates the

classes according to the classification accuracy of the training data, and then adopts a different selection

criterion according to the rating of the class. In particular, a class receives a good rating if the majority of

the training data of this class are correctly predicted. Otherwise, it receives a poor rating. According to

this characterization, the confidence criterion is used to select samples of good classes, while the probability

pattern clustering is used to select samples of poor classes.

We note that the algorithms described in [20, 1, 22, 61] use few learning components (e.g. collective

inference, various spatial profiles and co-training) that are also considered in this study. In any case, there

are substantial differences that contribute to defining the novelty of this study (see Table 1). In particular,

these algorithms, with the exception of the algorithms described in [20] and [1], extract spatial information

based on the spectral information. So, they construct spatial features, which do not change during the

learning phase. On the other hand, the algorithms described in [20] and [1] use collective inference to

extract spatial information based on spectral-predicted labels. However, the algorithm described in [20]

prevents the possibility of constructing and managing various spatial (-collective) profiles of the imagery

data. In addition, both algorithms do not resort to the co-training paradigm, in order to deal with multiple

data profiles. Finally, none of these algorithms accounts for the spatial correlation of data, when determining

the reliability of predicted labels which can be selected, in order to augment the training set.

Table 1: A comparative analysis of the characteristics of the algorithms presented in this study, as well as in [20, 1, 22, 61].

S2CoTraC irmc[20] S2Tec[1] TriTraining[22] mcogpc[61]

learning schema co-training ensemble ensemble co-training co-training

spectral profile yes yes yes yes yes

spatial profiles 2 1 2 2 1

collective inference yes yes yes no no

example selection schema spatial aspatial aspatial aspatial aspatial
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3. Preliminary Concepts

(a) Neighborhood

(b) Frequency operator

(c) Erosion operator

(d) Dilation operator

Figure 1: Pixel neighborhoods and spatial features: 1(a) the neighborhood constructed for the pixel p with radius R= 2 and

a square shape; 1(b) the spatial features constructed for the pixel p over the neighborhood N (p,R = 2) with the frequency

operator; 1(c) the spatial features constructed for the pixel p over the neighborhood N (p,R = 2) with the erosion operator;

1(d) the spatial features constructed for the pixel p over the neighborhood N (p,R = 2) with the dilation operator.

Let D be a hyperspectral imagery data set. It is a set of pixels (examples). Each pixel is a region of around

a few square meters of the Earth’s surface and a function of the sensor spatial resolution. It is associated to

the spatial coordinates XY in the image, it is characterized by an m-dimensional vector of spectral features

S = S1, S2, . . . , Sm (descriptive space) and it can, in principle, be labeled according to an unknown target

function, whose range is a finite set of k distinct labels, i.e. C = {C1, C2, . . . , Ck}. As pixels are, in general,

equally-space distributed over a regular grid, a hyperspectral data set is represented as a matrix. Thus, the

spatial coordinate X is associated with the row index, while the spatial coordinate Y is associated with the

column index of the matrix. Every spectral feature Si is numeric and expresses how much the radiation

is reflected, on average, at the i-th band of the considered spectral profile, from the resolution cell of the

considered pixel. Every class Ci represents a distinct theme (i.e. type of Earth’s surface object). A spatial

neighborhood is a set of pixels q surrounding p in the imagery matrix. In the imagery analysis literature, spa-

tial neighborhoods frequently have a square shape [43, 20], although alternative shapes like a circle or a cross

can be also considered. Let R be a positive, integer-valued radius, the square-shaped spatial neighborhood

N (p,R) of pixel p (see Figure 1(a)) is defined as N (p,R) =

+R⋃

I=−R

+R⋃

J=−R

{q(x+ I, y + J)|q is a pixel of D}.

The construction of spatial neighborhoods, coupled with every pixel of a hyperspectral imagery data set,

define the actual spatial structure of the data set. By accounting for this spatial structure, spatial features

can be constructed, in order to synthesize the information on spatial variation of data over imagery pixels.

A vector of spatial features represents one spatial data profile for the image. In this study, we resort to

the theory of collective inference [25, 19] and construct spatial features that express the label of a pixel

depending on the labels of all the related neighbors of the pixel. The construction of these collective spatial

features can be done only after the unlabeled part of the image has been preliminarily classified.

In hyperspectral imaging, spatial features are, frequently, constructed through the application of the
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frequency-based operator [20] and/or the morphology-based (erosion, dilation, opening and closing) operators

[53]. Given a pixel p (with p ∈ D) and a square-shaped neighborhood N (p,R) (with radius R) coupled with

p, the frequency operator can construct k real-valued spatial features to describe p, one feature for each

class label Ci (with i = 1, . . . , k), so that: F (p,R,Ci) =
|{q∈N (p,R)|q=Ci}|

|N (p,R)| . The frequency operator allows

us to build features that describe the relative abundance of the class labels over the neighborhood around

every target pixel of the image. In this way, constructed features are able to quantify possible changes in

the distribution of labels (see Figure 1(b)). On the other hand, the morphological operators allow us to

construct 4 · k Boolean-valued spatio-relational features, four for each class label Ci (with i = 1, . . . , k)

and for each morphological operator (erosion, dilation, opening and closing). The morphological operators

are non-linear operations related to the shape of the objects in an image [2]. Let us consider the spatial

neighborhoods as structuring elements. For a given class label, the erosion is defined as E(p,R,Ci) =

true if ∀q ∈ N (p,R) label(q) = Ci; false otherwise. The dilation is defined as D(p,R,Ci) = true if ∃q ∈

N (p,R) label(q) = Ci; false otherwise. Intuitively, the erosion (see Figure 1(c)) erodes all the pixels that

cannot contain the structuring element; the dilation (see Figure 1(d)), instead, preserves pixels if at least

one of its neighbor is included in the structuring element [43]. By combining erosion and dilation, opening

and closing operators are defined. The opening is the erosion followed by the dilation with the specified

structuring elements. The idea of dilating the eroded image is to recover most structures of the original

image, i.e. structures that were not removed by the erosion and are bigger than the structuring element.

On the other hand, the closing is the dilation followed by the erosion. With opening or closing it is possible

to obtain objects of the image which are larger or smaller than the structuring element [16].

4. The algorithm

The algorithm S2CoTraC inputs the spectral signature and the spatial position of pixels of a sparsely

labeled image, performs a transductive classification process and outputs the completely labeled image. The

classification process is done by accounting for the initial spectral profile of pixels, as well as for various

spatial profiles, which are constructed through collective inferences. These profiles are used to learn multiple

classifiers via a co-training strategy. An ensemble consensus pattern of these multiple classifiers is, finally,

used to predict unknown labels. In the following, we first formulate the learning problem (Subsection 4.1),

then we describe the data profiles that we use in this study (Subsection 4.2), the algorithm that yields

the spectral-spatial co-training inference within imagery data (Subsection 4.3) and the example selection

criterion (Subsection 4.4). Finally, we analyze the time complexity of the algorithm (Subsection 4.5).

4.1. The transductive classification problem

Let D be a hyperspectral imagery data set whose pixels are sparsely labeled according to an unknown

target function C, while they are all described by the spectral feature vector model S (details in Section 3).
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The transductive classification problem inputs a labeled set L ⊂ D, by considering its information along

the descriptive space S and the target space C, as well as the projection of the unlabeled set U = D − L

on the descriptive space S. It outputs predictions of the class values of examples in the unlabeled set U ,

which are as accurate as possible. The learner receives full information (including labels) on L and partial

information (without labels) on U and is required to predict the class values only of the examples in U .

4.2. Imagery Data Profiles

The vector of spectral features is input as the hyperspectral imagery data set. It populates spectral

profile S. The vector of spatial features, constructed through the application of the frequency operator (see

Section 3), defines frequency-based spatial profile F. The vector of spatial features, constructed through the

application of the four morphological operators (see Section 3), defines morphology-based spatial profile M.

Frequency and morphological features are constructed through coupling imagery pixels with (square-shaped)

neighborhoods (details in Section 3). For each pixel, a set of neighborhoods with growing sides (R ∈ RSet)

is constructed to deal with the fact that the image reflectivity (and consequently its labeling) is, usually,

modeled as non-stationary in the spatial domain [24]. This idea of using a range of sizes follows the point

of view of [43, 20], which showed how a range of texture structuring element sizes must be used, in order to

capture as much as possible the shape and size of the spatial structures present in the image.

We note that both these spatial profiles account for the spatial correlation of labels collectively predicted,

but they synthesize different information. The frequency operator represents the class distribution for a

specific texture defined by the shape and the size of a given neighborhood. The morphological operators,

instead, yield Boolean information concerning the structure and the density of edges separating land cover

types present in the given neighborhood. In particular, morphological operators, computing, respectively,

the erosion and the dilation of a class label either destroy or enhance this kind of information. In short,

the relative frequency qualitatively describes the label structure making a sort of spatial average (low-pass

filtering), while the morphology qualitatively follows the edges (high-pass filtering). Hence, both profiles can

be considered in some way independent views of the data. On the other hand, spectral and spatial profiles

are conditionally independent too, as the spatial correlation on a group of neighbor pixels is not a function

of the particular spectral signature.

A final remark concerns the fact that, while spectral features do not change during learning, spatial

features, which are constructed through collective inference during transduction, can be updated every time

predicted labels are changed under the influence of the collective inference.

4.3. Co-training strategy

A top-level description of the spectral-spatial co-training strategy is reported in Algorithm 1. The

algorithm comprises an initialization phase, an iterative co-training phase and a labeling phase. Three
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Algorithm 1 Spectral-Spatial Co-Training

Require: D (imagery data pixels as they are split into L (labeled set) and U ( unlabeled set)), XY (spatial

coordinates of imagery pixels of D), S (vector of spectral features), radiusSet (set of radius values

used to construct pixel neighborhoods), minTransfer (minimum number of pixels transferred from the

labeled set to the unlabeled set)

Ensure: U : labeled U

1: {initialization phase}

2: LS ← LF ← LM ← L; US ← UF ← UM ← U ;

3: cS ← classifier(LS,S);

4: US ←label(cS,S,US);

5: NMap←neighborhood(D, XY, radiusSet);

6: varMap← localSpectralVariation(D,S, NMap);

7: F←frequencyFeatures(LS ∪ US,NMap); M←morphologicalFeatures(LS ∪ US,NMap);

8: cF ←classifier(LF,F) ; cM ←classifier(LM,M)

9: {co-training loop phase}

10: repeat

11: enSF ← ensemble(cS, cF ); enSM ← ensemble(cS, cM); enFM ← ensemble(cF, cM);

12: [LS,US]←classify(LS,US, enFM, {F,M}, varMap);

13: [LF,UF ]← classify(LF,UF, enSM, {S,M}, varMap);

14: [LM,UM ]← classify(LM,UM, enSF, {S,F}, varMap);

15: F←frequencyFeatures(LS ∪ US,NMap); M←morphologicalFeatures(LS ∪ US,NMap);

16: cS ←classifier(LS,F); cF ←classifier(LF,F); cM ←classifier(LM,M);

17: until ((U = ⊘) OR (number of pixels transferred from US to LS is less than minTransfer));

18: {assigning final labels to pixels of U}

19: for (p ∈ U) do

20: pLabel← majority(cS, cF, cM, p)); assign pLabel to p in U ;

21: end for

classifiers are learned through the initialization phase and the iterative co-training phase. These classifiers

are then adopted, in the labeling phase, in order to assign each originally unlabeled pixel of the hyperspectral

imagery data set to a consensually predicted label. The three classifiers are learned from the spectral profile

S (cS), the frequency-based spatial profile F (cF ) and the morphology-based spatial profile M (cM) of the

imagery data, respectively. In the initialization phase, these three classifiers are learned from the originally

labeled part of the input data. In the iterative co-training phase, every classifier is learned from the labeled

part of the imagery data, appropriately augmented with unlabeled pixels reliably predicted by an ensemble
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of the left-out classifiers. A description of the three phases is reported in the following.

Initialization phase. It consists of six steps (Alg. 1 lines 2-8).

1. Three labeled data sets LS, LF and LM , as well as three unlabeled data sets US, UF and UM

are created (Alg. 1, line 2). They represent labeled data set L and unlabeled data set U , as they

are spanned on spectral profile S (LS and US), spatial frequency-based profile F (LF and UF ) and

spatial morphology-based profile M (LM and UM), respectively. These data sets will be modified

during the co-training phase.

2. Spectral classifier cS is learned from labeled set LS. This classifier is used to determine initial labels

for imagery pixels in unlabeled set US (Alg. 1, lines 3-4).

3. The spatial neighborhood structure of imagery data set D is constructed (Alg. 1 line 5). For each

pixel of D, a set of square-shaped spatial neighborhoods is built and associated to the pixel. Each

neighborhood is constructed with a specified radius. The set of radius values (radiusSet) is a user-

defined parameter.

4. The local spatial variation of spectral signatures is calculated for every pixel of D (Alg. 1, line 6).

These values will define local reliability thresholds for the selection criterion of the co-training phase

(details in Section 4.4).

5. Spatial features are constructed (Alg. 1, line 7). For this phase, we consider the ground truths for

the pixels of the labeled part and labels predicted by the spectral classifier (cS) for the pixels of the

unlabeled part. Constructed spatial features populate both frequency-based profile F and morphology-

based profile M, according to the description reported in Section 4.2. These multiple perspectives

participate in learning through the co-training system.

6. Two spatial classifiers, cF and cM , are learned from LF and LM , respectively (Alg. 1, line 8).

Iterative phase. It is produced by the main loop and consists of three steps (Alg. 1, lines 10-17):

1. For each pair of classifiers, their ensemble system is constructed (Alg. 1, line 11) and used to augment

the labeled part of the left-out target classifier (Alg. 1, lines 12-14). This is done in accordance with

the co-training philosophy, although this philosophy is generalized here, in order to deal with multiple

classifiers. In particular, the reference ensemble composed of cF and cM is used to determine the

labels of US (Alg. 1, line 12). The reference ensemble composed of cS and cM is used to determine

the labels of UF (Alg. 1, line 13). The reference ensemble composed of cS and cF is used to determine

the labels of UM (Alg. 1, line 14). Each ensemble works as follows. For every pixel of the unlabeled

part of the target classifier, a label is predicted by performing the classification with each classifier in

the reference ensemble and choosing the label predicted with the highest posterior probability. The

optimal posterior probabilities are determined by using the Platt’s method [42]. Subsequently, the
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reliability of the labels consensually predicted by the reference ensemble is evaluated (see details in

Section 4.4). Finally, pixels associated with reliable labels are transferred from the unlabeled part to

the labeled part of the target classifier. A filtering criterion, called diversity class criterion (DCC), can

be applied, in order to “smartly” sample the reliable examples, which are actually transferred from the

unlabeled part to the labeled part of the target classifier. This criterion aims at reducing the size of the

labeled parts maintained for the considered profiles, in order to scale-up the computation time spent

learning new classifiers from the augmented labeled sets. By applying the diversity class criterion, a

pixel is actually transferred only if its label is reliably predicted by the reference ensemble and this

ensemble label is different from the original label predicted by the corresponding target classifier.1

2. The spatial features of both F and M are updated according to the new labels injected into LS (Alg.

1, line 15).

3. Classifiers cS, cF and cM are re-learned from augmented LS, LF and LM , respectively (Alg. 1, line

16).

This iterative inference stops (Alg. 1, line 17) when the unlabeled set of the spectral profile (US) is

empty or the number of pixels transferred from the unlabeled set of the spectral profile (US) to the labeled

set of the spectral profile (LS) is less than a certain threshold (MinTransfer). By default, this threshold

is equal to 10 pixels.2 The iterative inference procedure is guaranteed to converge as eventually one of

the stopping criteria will be satisfied. If each iteration transfers more than MinTransfer pixels from US

to LS (Alg. 1, line 12), then US = ⊘; and the first condition is satisfied. Otherwise, if the number of

pixels, transferred from US to LS , at the present iteration, is less than MinTransfer, the second stopping

condition is satisfied.

Labeling phase. It assigns each originally unlabeled pixel of the hyperspectral image to the class consensually

predicted by the majority of classifiers (spectral, as well as spatial) learned in the last iteration of the co-

training phase (Alg. 1, lines 19-21). Whenever, for a given pixel, three distinct labels are predicted by the

considered classifiers, the label predicted with the highest posterior probability is assigned to the pixel. The

optimal posterior probability of a predicted label is determined by using the Platt’s method [42].

4.4. Spatial example selection

An unlabeled pixel is selected for the augmentation of a training set based on the estimate of the reliability

of its predicted label. The reliability of a label is here estimated by measuring the local spatial variation of

1The trade-off between the efficiency and the accuracy of the classification due to the diversity class criterion will be

empirically investigated in Section 5.2.
2 The influence of MinTransfer = 10 on the accuracy of the classification will be empirically investigated in Section 5.3.
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(a) Reliability map (b) r((3, 2), Red) (c) r((6, 4), Red)

Figure 2: Reliability map for the ground truth labels: 2(b) reliability of the red label assigned to the pixel (3,2) (i.e.

r((3, 2), Red) = 1 − 0

8
over N ((3, 2), 1)), which falls in the internal part of the red colored region and 2(c) reliability of

the red label assigned to the pixel (6,4) (i.e. r((6, 4), Red) = 1− 5

8
over N ((6, 4), 1)), which falls on the boundary between the

red colored region, the blue colored region and the yellow region. The reliability is measured over neighborhoods constructed

with radius equal to 1.

the label itself. The lower the variation, the higher the reliability.3As a measure of the local spatial variation

of a label, we measure how common the label is over a neighborhood. For this calculation, we focus the

search over the smallest neighborhoods of every pixel, which were already used for the construction of the

spatial feature spaces. Formally, let p be a pixel of the unlabeled part, C be the label predicted for p,

N (p,Rmin) be the neighborhood of p constructed according to the theory reported in Section 3 and with

radius Rmin = min
R∈RadiusSet

R, the reliability r(p, C) is computed as follows:

r(p, C) = 1−
|{q ∈ N (p,Rmin), q 6= p|label(q) 6= C}|

|N (p,Rmin)| − 1
, (1)

where label(q) is either the label already assigned to q in the labeled part or the label predicted for q in the

unlabeled part. This reliability measure takes values in the range [0, 1]. 0 suggests an outlier classification,

while 1 suggests an inlier classification coherently with the property of positive spatial correlation.

In this study, we use a threshold-based strategy, in order to identify labels which are reliable enough

for the augmentation operation. A pixel whose predicted label reliability is greater than a threshold is

transferred from the unlabeled part to the labeled one. The selection of the threshold value is the real

challenge of this criterion. The main difficulty lies in the fact that the reliability measure of an inlier class

exhibits discontinuous values when calculated for pixels falling on the boundary between distinct regions

3The idea of a spatial criterion to estimate the reliability of a predicted class has been investigated in a few active learning

algorithms recently defined in the hyperspectral classification literature [40, 41]. In the active learning algorithms, predicted

class reliability is estimated, in order to select examples which are inappropriately predicted by the learned hypothesis. In this

study, the scope is different. In fact, we intend to select labels which are appropriately predicted by the learned hypotheses

and use them to augment the labeled sets managed through the co-training paradigm.
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(see Figure 2). Accordingly, the threshold should be locally estimated, rather then globally selected. To

estimate this local threshold, we take into account the fact that the label is expected to be a function of

the spectral signature. This is a common hypothesis that already motivates any step of supervised learning

performed with the use of the spectral feature space. Based upon this hypothesis, we can reasonably expect

that the local spatial variation of the labels is consistent with the local spatial variation of the spectra.

Therefore, we compute the local spatial dispersion of the spectra though the imagery data and use these

local estimates, in order to define local thresholds for the decision on the label reliability. Operatively, for

each pixel p of the imagery data, we compute the local spatial dispersion of the spectral signature at p

as disp(p,S) =

√
√
√
√

∑

q∈N (p,Rmin),q 6=p

d2(p, q,S)

|N (p,Rmin)|−1 , where d(p, q,S) is the Euclidean spectral distance computed

between p and q as both are spanned on features of the spectral space. Since spectral features may have

different ranges, they are all scaled between 0 and 1 for the computation of this local spatial variation

measure. Finally, the local reliability threshold at pixel p is determined as follows:

rThr(p) = (1− disp(p,S))|scaled, (2)

where the 1− disp(p,S) is scaled into [ min
p∈Ucurrent

r(p, label(p)) , max
p∈Ucurrent

r(p, label(p))].

Final remarks concern the fact that the presented example selection schema resorts to spectral and label

information synthesized on a neighborhood object. From this point of view, this example selection procedure

contributes to characterizing this algorithm as a hybrid classification approach (i.e. a fusion of pixel-based

and object-based classification).4 Various studies in hyperspectral image analysis, in particular for urban

land cover classification (e.g. [47, 3]), have already claimed that hybrid approaches can gain classification

accuracy by dealing with spectrum discontinuity along theme boundaries. Therefore, based upon these

studies, we expect that this spatial example selection schema would contribute to gaining accuracy, in

particular along the boundaries, with respect to an aspatial schema (see Section 5.3.2 on “Example selection

criterion” for an empirical investigation of this aspect).

4.5. Learning complexity

For this analysis, we consider that: (1) NL denotes the number of labeled pixels (NL = |L|), while

NU denotes the number of unlabeled pixels (NU = |U|) of D, so that N = NL +NU ; (2) r is the number

of neighborhoods constructed for each pixel of D; (3) Rmax (Rmin) is the radius of the largest (smallest)

neighborhood, so that (2Rmax + 1)2 = 4R2
max + 4Rmax + 1 ((2Rmin + 1)2 = 4R2

min + 4Rmin + 1) is the

4The pixel-based classification is performed with spectral information, while the object-based classification is performed

with the neighborhood-based spatial information. However, differently from our previous work in [20, 1], where the spatial

information is synthesized for populating spatial profiles only, here it is also accounted for determining reliably predicted

examples, in order to reduce the number of pixels misclassified along the boundaries between various thematic objects.
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maximum (minimum) number of pixels grouped per neighborhood; (4) nIter is the number of iterations

performed in the co-training phase; (5) k is the number of class labels; (6) m is the number of spectral

features, kr is the number of frequency-profile features, 4kr is the number of morphology-profile features,

while M = max{m, 4kr}; (7) Λ(|Data|, |FeatureSpace|) denotes the cost of learning a supervised classifier5

from a training set Data, as it is spanned on a feature space FeatureSpace. Based on these premises, the

computational complexity of S2CoTraC is computed by summing up the cost of the initialization phase, the

co-training phase and the labeling phase.

Initialization phase. The time cost of creating a copy of both the labeled set and the unlabeled set for each

profile is 3N , that is, O(N). The time cost of constructing the neighborhood structure is (4R2
max+4Rmax+

1)N , that is, O(R2
maxN). The time cost of measuring the local spatial dispersion of spectral signatures is

m(4R2
min + 4Rmin)N , that is O(mR2

minN). The time cost of learning the spectral classifier from the initial

labeled set L is Λ(NL,m), while the time cost of learning the spatial frequency-profile classifier is Λ(NL, kr)

and the time cost of learning the spatial morphology-profile classifier is Λ(NL, 4kr). Hence, the total cost

of initializing the three classifiers is O(Λ(NL,M)). The time cost of constructing the spatial features by

using both the frequency operator and the morphological operators is 5kr(4R2
max + 4Rmax + 1)N , that is,

O(krR2
maxN). Therefore, the time complexity of the initialization phase is O(N + R2

maxN + mR2
minN +

Λ(NL,M) + krR2
maxN), that is, O(mR2

minN + Λ(NL,m) + (kr)R2
maxN), with kr > 1 .

Co-training phase. The co-training phase is performed by considering each pair of reference classifiers on one

side and the left-out target classifier on the other side of the co-training system. Co-training is iterated per

nIter number of times. The time cost of constructing the reference ensemble from a pair of selected classifiers

and using it to label pixels of the unlabeled part of the target classifier is 2NU , at worst. The time cost of

computing the local reliability of the predicted labels over the smallest neighborhoods is (4R2
min+4Rmin)N

U ,

at worst, while the time cost of transferring pixels from the unlabeled part to the labeled part is NU , at worst.

Therefore, the time complexity spent, in order to predict labels and move pixels from the labeled part to the

unlabeled part of a target classifier, is 2NU +(4R2
min+4Rmin)N

U +NU , that is O(R2
minN

U ), at worst. This

cost is multiplied by three, that is, the number of combinations of reference ensemble classifiers vs target

classifier to be evaluated. The time complexity of updating the spatial features is O(krR2
maxN), while the

time cost of updating spectral and spatial classifiers is O(Λ(NL,M)). Hence, the total cost of performing the

co-training phase is nIter(3R2
minN

U+krR2
maxN+Λ(NL,M) ), that is, O(nIter krR2

maxN+nIterΛ(NL,M))

by considering that Rmin < Rmax, N
U < N and kr > 3.

Labeling phase. The labeling phase uses an ensemble of the three classifiers learned in the last iteration of

the co-training phase, in order to classify initially unlabeled pixels of the imagery data. The time cost of

5This cost depends on the algorithm selected as the base classifier.
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this phase is 3NU , that is O(NU).

Total complexity. The total time cost of the algorithm is:

mR2
minN + Λ(NL,m) + (kr)R2

maxN
︸ ︷︷ ︸

inizialization

+nIter krR2
maxN + nIterΛ(NL,M)

︸ ︷︷ ︸

co−training

+ NU
︸︷︷︸

labeling

,

that is, O(mR2
minN + nIter(krR2

maxN + Λ(NL,M)))

5. Experimental evaluation and discussion

S2CoTraC, whose implementation is publicly available,6 is written in Java. It integrates the inductive

Support Vector Machine (SVM) 7 [13] algorithm as a base classifier of the transductive co-training system.

This choice is motivated by several studies reported in the literature (e.g. [43, 16]), which show that

inductive SVMs are applied to hyperspectral image classification with great success. In fact, they outperform

several other inductive classifiers. The empirical results are organized as follows. We start (Subsection 5.2)

by comparing the accuracy of the presented transductive algorithm to that of inductive and transductive

competitor hyperspectral classifiers. We proceed (see Subsection 5.3) by evaluating the sensitivity of the

accuracy of the presented algorithm along the parameter configuration. Then we analyze the accuracy

of various semi-supervised and transductive algorithms described in the machine learning literature (see

Subsection 5.4). Finally, we report a brief discussion of additional recent evaluation results reported in

the hyperspectral image classification literature (see Subsection 5.5). We perform this study, in order

to seek answers to the following questions: (1) Is the defined transductive schema more accurate than

the base inductive learner, the transductive approaches that do not use the collective inference, as well

as the transductive approaches that do not use the co-training paradigm (see the comparative analysis in

Section 5.2)? (2) How does the performance of the classification change by varying the number of performed

iterations (see Section 5.3)? (3) Is the classification robust enough to a change in the size of the initial

labeled set and the size of the spatial neighborhoods (see the sensitivity study in Section 5.3)? (4) How

do the individual components (spatial profiles, spatial selection schema) of the co-training schema affect its

overall accuracy (see the sensitivity study in Section 5.3)? (5) How does the schema’s accuracy compare to

the state-of-the-art general-purpose semi-supervised/transductive classifiers defined in the machine learning

literature (see the semi-supervised/transductive literature study in Section 5.4), as well as to the state-of-

the-art application-specific classifiers defined in the hyperspectral imaging literature (see the hyperspectral

literature study in Section 5.5)?

6http://www.di.uniba.it/~appice/software/S2COTRAC/
7We use the Java implementation of SVM included in the WEKA toolkit [59]
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5.1. Hyperspectral image data sets

Three real data sets, namely Indian Pines, Pavia University and Salinas Valley,8 are used for the compar-

ative analysis reported in this experimental study. These data sets are selected for the following reasons: (1)

They contain rich spectral information (100-200 bands) and a reasonable number of classes (9-16 classes).(2)

They correspond to different scenarios. (3) Ground truths are available for these data.9 Additionally, they

are still considered in the majority of recent, relevant works on hyperspectral image classification (e.g.

[33, 31, 32, 55, 20, 1, 34, 12, 21]). In particular, the Indian Pines data set is also used in the sensitivity

study, where we evaluate the performances of the presented algorithm along the parameter configuration.

This data set is selected as it is a very challenging image, due to the significant presence of mixed pixels in

all the available classes and also to the unbalanced number of available labeled pixels per class.

AVIRIS Indian Pines (10249 pixels) [29]. It was obtained by the Airborne Visible Infrared Imaging Spec-

trometer (AVIRIS) sensor over the Indian Pines region in Northwestern Indiana in 1992. The image contains

220 spectral bands, but 20 spectral bands have been removed due to the noise and water absorption phenom-

ena. The spatial resolution is of 20 m and the spatial size is of 145 × 145 pixels, which are classified into 16

mutually exclusive classes distributed as follows: Alfalfa (0.45%), Corn-notill (13.93%), Corn-mintill (8.10%),

Corn (2.31%), Grass/pasture (4.71%), Grass/tree (7.12%), Grass/pasture-mintill (0.27%), Hay-windrowed

(4.66%), Oat (0.20%), Soybean-notill (9.48%), Soybean-mintill (23.95%), Soybean-clean (5.79%), Wheat

(2.0%), Woods (12.34%), Buildings-Grass-Trees-Drives (3.77%) and Stone-Steel-Towers (0.91%). The map

of the class ground truth is shown in Figure 3(a). As reported in [43], this data set represents a very chal-

lenging land-cover classification scenario, in which the primary crops of the area (mainly corn and soybeans)

were very early in their growth cycle, with only about 5% of canopy cover. Discriminating among the crops

under these circumstances can be a very difficult task. This scenario is also made more complex by the

imbalanced number of available labeled pixels per class.

ROSIS Pavia University (42776 pixels) [18]. It was obtained by the Reflective Optics System Imaging

Spectrometer (ROSIS) sensor during a flight campaign over the Engineering School at the University of

Pavia in 2003. Water absorption bands were removed and the original 115 bands were reduced to 103

bands. It has a spatial resolution of 1.3 m. The image has a spatial size of 610 × 340 pixels, which are

classified into 9 classes distributed as follows: Asphalt (15.5%), Meadow (43.6%), Gravel (4.91%), Tree

(7.16%), Metal sheet (3.14%), Bare soil (11.76%), Bitumen (3.11%), Brick (8.61%) and Shadow (2.21%) .

The map of the class ground truth is shown in Figure 3(b).

8http://www.grss-ieee.org/community/technical-committees/data-fusion/
9Although the data acquisition can be a relatively easy process, the generation of a reliable ground truth is a very expensive

process.
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(a) Indian Pines (b) Pavia University

(c) Salinas Valley

Figure 3: Indian Pines, Pavia University and Salinas Valley: class ground truth (3(a)-3(c).

AVIRIS Salinas Valley (54129 pixels) [28]. It was collected by AVIRIS over Salinas Valley, Southern

California, in 1998. It has a spatial resolution of 3.7 m. The area contains a spatial size of 512 × 217 pixels

and 206 spectral bands. The 20 water absorption bands are discarded. Pixels are classified into 16 classes

distributed as follows: Broccoli green weeds 1 (3.71%), Broccoli green weeds 2 (6.88%), Fallow (3.65%),

Fallow rough plow (2.58%), Fallow smooth (4.95 %), Stubble (7.31%), Celery (6.61%), Grapes Untrained

(20.82%), Soil vineyard develop (11.46%), Corn senesced green weeds (6.06%), Lettuce romaine 4 weeks

(1.97%), Lettuce romaine 5 weeks (3.56%), Lettuce romaine 6 weeks (1.69%), Lettuce romaine 7 weeks

(1.98%), Vineyard untrained (3.34%) and Vineyard vertical trellis (13.43%). The map of the class ground

truth is shown in Figure 3(c).

To perform the empirical evaluation, these data sets are divided into labeled data sets and unlabeled data

sets. For each data set, we consider a subset of ground truths to populate the labeled set. The labeled pixels

are randomly selected from the available ground truth of the image, by using stratified random sampling

without replacement. In this way, for each class, the number of pixels randomly sampled for the labeled

set is proportional to the number of pixels labeled with the selected class in the ground truth map. The

remaining pixels are used as the unlabeled part of the learning process. In this study, various partitioning

trials between labeled and unlabeled sets are generated; the classification process is evaluated on these trials.

This setting is usual in hyperspectral image classification [43].

5.2. Comparative analysis

For this study, we consider Indian Pines, Pavia University and Salinas Valley.

5.2.1. Experimental set-up

We compare S2CoTraC to the inductive SVM, to the Spatio-Spectral Transductive Ensemble Classifier

(S2Tec) [1], to the Iterative Relational Multinomial Classifier (irmc) [20], to the Spatio-Spectral TriTraining
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Classifier (TriTraining) [22],10 as well as to the Modified Co-Training With Gaussian Process Classifier

(mcogpc) [61] (see Table 1, Section 2). Our algorithm has been run without the diversity class criterion

(S2CoTraC), as well as with the diversity class criterion (S2CoTraC-DCC). S2CoTraC, S2Tec and irmc have

been run with the size of neighborhoods growing from 5 to 10 and 15. Remaining competitors have been

run with the optimal parameter setup suggested by the authors in the corresponding works.

For this study, S2CoTraC, inductive SVM, S2Tec, irmc and mcogpc have been evaluated by using 5%

of the ground truth as the labeled set of the transductive learning phase. Five random partitioning trials

between labeled and unlabeled sets have been generated; metrics have been averaged on these trials and

standard deviation has been computed. As the implementation of these algorithms has been made available

by the authors, they have been evaluated by using the same division between labeled samples and unlabeled

samples for each running trial. For TriTraining, we have considered the evaluation results reported in [22].

These results have been collected by using subsets of both Indian Pines and Pavia University. In particular,

in the experiment on Indian Pines, from the 16 different classes (see Figure 3(a)), 7 were discarded since the

authors judged that an insufficient number of training samples was available. The remaining 9 classes (Corn-

notill, Corn-mintill, Grass/pasture, Grass/tree, Hay-windrowed, Soybean-notill, Soybean-mintill, Soybean-

clean and Woods) have been used. In the experiment on Pavia University, from the 9 different classes (see

Figure 3(b)), 3 classes were discarded. The remaining 6 classes (Asphalt, Meadows, Gravel, Trees, Bricks

and Shadow) have been projected on the 200 × 200 pixel bottom scene of the ROSIS image for Pavia

University and used for the evaluation. For both these reduced data sets, accuracy of TriTraining has been

averaged on five trials generated for three settings using 2%, 5% and 10% of the ground truth.11

We evaluate the accuracy performances of the compared algorithms in terms of overall accuracy (OA),

average accuracy (AA) and Cohen’s kappa coefficient (κ) [45]. These metrics are defined in terms of elements

xij of the error matrix associated to the classified imagery pixels. Each element xij denotes the number of

imagery pixels with ground truth cj , which are labeled with class ci. C is the number of distinct classes in the

image. Let us consider x =
∑

h

xhh, (i.e. the number of pixels, which are correctly labeled - true positive),

xh+ =
∑

l

xhl, (i.e. the number of pixels which are labeled with class h - true positive+false positive of

class h), x+h =
∑

l

xlh (i.e. the number of pixels of class h - true positive + false negative of class h) and

N =
∑

i

∑

j

xij (i.e. the number of pixels). Then, OA = x
N

AA = 1
C

∑

h

xhh

Xh+
κ =

Nxi −
∑

i

xh+x+h

N2 −
∑

i xh+x+h

Metrics OA, AA and κ are selected as they are, usually, considered by the hyperspectral image classifi-

10A version of TriTraining with the construction of collective features is evaluated in the sensitivity study reported in Section

5.3 (see the results achieved with the learning schema Aspatial in Table 5).
11We note that results reported in [22] have been achieved by starting from labeled samples, generated with the same stratified

sampling strategy used here, but which may be different from those considered for evaluating S2CoTraC and S2CoTraC-DCC.
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Table 2: Overall Accuracy (OA), Average Accuracy (AA) and κ: S2CoTraC, S2CoTraC (DCC), SVM, S2Tec, irmc and

mcogpc. Accuracy metrics are collected on five trials produced by considering 5% of ground-truth data as the labeled set. The

mean (± standard deviation) of each metric is computed on the unlabeled set of these trials. The highest accuracy is in bold.

algorithm OA AA κ OA AA κ

Indian Pines Pavia University

S2CoTraC .964±.008 .905±.040 .959±.009 .994±.003 .987±.004 .992±.004

S2CoTraC-DCC .961± .009 .898±.033 .956± .010 .985 ±.009 .958± .008 .980±.012

SVM .739±.011 .626±.012 .700±.013 .931±.002 .912±.004 .909±.003

S2Tec .936±.011 .874±.031 .927±.012 .988±.009 .982±.003 .984±.001

irmc .873±.031 .821±.075 .856±.035 .867±.008 .837±.007 .814±.010

mcogpc .828±.007 .692±.027 .803±.008 .947±.003 .906±.009 .929±.004

Salinas Valley

S2CoTraC .994±.004 .997±.001 .994±.005

S2CoTraC-DCC .993± .004 .996±.001 .993± .0048

SVM .925±.002 .957±.002 .916±.003

S2Tec .970±.006 .984±.003 .967±.006

irmc .955±.018 .952±.016 .950±.020

mcogpc .957±.001 .976±.001 .952±.001

Table 3: Overall Accuracy (OA) and κ: S2CoTraC, S2CoTraC-DCC and TriTraining. Accuracy metrics are collected on

five trials produced by considering 2%, 5% and 10% of ground-truth data as the labeled set, as reported in [22]. The mean (±

standard deviation) of each metric is computed on the unlabeled set of these trials. The accuracy metrics of TriTraining are

reported in [22]. The Average Accuracy (AA) of TriTraining is not considered in this study, as it is not reported in [22].

imagery data %
S2CoTraC S2CoTraC-DCC TriTraining

OA κ OA κ OA κ

Indian Pines 2% .911±.027 .896±.031 .909±.023 .893±.027 .822 .812

9 classes 5% .974±.011 .970±.013 .972±.014 .967±.016 .887 .886

145 × 145 pixels 10% .984±.008 .981±.010 .985±.007 .981±.008 .931 .930

Pavia University 2% .970±.008 .953±.012 .967±.008 .948±.013 .948 .909

6 classes 5% .989±.006 .983±.010 .984±.008 .975±.013 .960 .937

200 × 200 pixels 10% .996 ±.006 .994±.001 .996±.0008 .993±.001 .968 .950

cation community, as well as by the machine learning community. For each accuracy metric (OA, AA and

κ), the higher the metric, the more accurate the classifier.

5.2.2. Results and discussion

The accuracy metrics for S2CoTraC, S2CoTraC-DCC, inductive SVM, S2CoTec, irmc and mcogpc are

reported in Table 2, while the metrics for S2CoTraC and TriTraining are reported in Table 3. We recall

that the metrics collected in Table 3 refer, respectively for the Indian Pine and Pavia University data sets, to

9 and 6 classes, contrary to 16 and 9 classes collected in Table 2. The simpler classification scenario should

lead to an increase of OA. As expected, the OA increases for Indian Pines (from .964±.008 to .974±.011 for

S2CoTraC and from .961±.009 to .972±.014 for 2CoTraC-DCC), but decreases for Pavia University (from

.994±.003 to .989±.006 for S2CoTraC and from .993±.004 to .984±.008 for S2CoTraC-DCC). However, the

difference of scene must be taken into account. The problems formulated with 16 and 9 classes for Indian
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Pines are both spanned across the entire scene (see 145× 145 pixels in Figure 3(a)). On the contrary, the

problem formulated with 6 classes for Pavia University is spanned across the 200×200 pixel bottom scene of

the ROSIS image of Pavia University (the ROSIS image covers 610× 340 pixels as reported in Figure 3(b)).

This means that there are pixels of the original Pavia University scene that may belong to the selected class

set, but are neglected as they are outside the selected scene. This makes unfair the comparison between

results produced for these two formulations of the Pavia University classification problem.

The analysis of the metrics collected in Tables 2 and 3 deserves several considerations.

Firstly, the construction of collective spatial features (S2CoTraC, S2CoTraC-DCC and S2TeC), which

change during iterative learning, gains accuracy with respect to the inductive SVM learner, that neglects

the spatial information, as well as to the transductive learners (mcogpc and TriTraining), that construct

spectral spatial features, which do not change during iterative learning. The accuracy metrics confirm the

intuition reported in [22], that classification accuracy can be improved by considering various spatial profiles

of the imagery data. In fact, the accuracy of the algorithms (S2CoTraC, S2CoTraC-DCCand S2TeC), which

integrates two different spatial profiles, is always better than the accuracy of their competitors (irmc and

mcogpc), which learn imagery data along a single spatial profile. The sensitivity of the accuracy of S2CoTraC

and S2CoTraC-DCC along the number of constructed spatial profiles is analyzed in Section 5.3.

Secondly, the co-training strategy described in this paper (S2CoTraC and S2CoTraC-DCC) generally

performs better than the ensemble strategy (S2Tec and irmc) and the co-training strategy (TriTraining

and mcogpc) described in the literature. We note that, by following the literature, the ensemble strategy

of the competitors is combined with the construction of collective spatial features, while the co-training

strategy of competitors is combined with the construction of spectral spatial features. Therefore, this

comparative analysis actually shows that the accuracy of the co-training strategy can be improved by the

use of collective inference and the co-training strategy outperforms the ensemble strategy when both use

collective inference. The co-training algorithms compared in this study adopt different example selection

criteria. The sensitivity of the accuracy of co-training with collective inference along the example selection

criterion (spatial vs aspatial) is analyzed in Section 5.3.

Finally, the spatial example selection criterion (S2CoTraC and S2CoTraC-DCC) described in this paper

generally performs better than the aspatial criteria described in the literature (S2Tec, irmc, mcogpc, Tri-

Training). On the other hand, the use of the diversity class criterion in combination with the spatial example

selection criterion slightly diminishes the classification accuracy (S2CoTraC-DCC is slightly less accurate

than S2CoTraC), although S2CoTraC-DCC is still more accurate than the competitors except for S2Tec in

Pavia University. As the diversity class criterion is introduced to speed-up the iterative learning process, we

also evaluate the performance of S2CoTraC, S2CoTraC-DCC and S2Tec12 in terms of a trade-off between

12They are the most accurate algorithms in this study. Their learning times can be safely compared as they are implemented
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Table 4: Learning time (in secs) and total number of pixels transferred from the unlabeled sets to the labeled sets during

the iterative process and used to learn the final classifiers: S2CoTraC, S2CoTraC-DCC and S2Tec. The number of transferred

pixels is reported per profile (F - frequency, M - morphology, S - spectral signature). The metrics are collected and averaged

on five trials produced by considering 5% of ground-truth data as the labeled set. The lowest metrics are in bold.

algorithm learning time pixels (F) pixels (M) pixels(S) learning time pixels (F) pixels (M) pixels(S)

Indian Pines Pavia University

S2CoTraC 18051.20 8589 8694 8689 186375.00 39977 40034 40036

S2CoTraC-DCC 3621.21 230 579 2795 42539.01 4851 5112 7870

S2Tec 28555.25 9729 9729 9729 186740.277 40627 40627 40627

Salinas Valley

S2CoTraC 204266.50 50632 50795 50817

S2CoTraC-DCC 70019.61 2347 4838 13220

S2Tec 231226.00 51423 51423 51423

accuracy and efficiency. Table 4 collects the learning time, as well as the number of examples transferred

from the unlabeled sets to the labeled sets per profile. We observe that S2CoTraC-DCC spends less time

than the competitors (S2CoTraC and S2CoTeC) to complete the iterative learning process. This depends

on the fact that S2CoTraC-DCC transfers a lower number of examples than S2CoTraC and S2TeC during

the iterative learning, so that it deals with smaller training sets to learn spectral and spatial classifiers. In

any case, the high accuracy achieved by S2CoTraC-DCC confirms that it is still able to sample examples

that are those that actually contribute to increasing the accuracy of the classifiers.

5.3. Sensitivity analysis

For this analysis, we consider the Indian Pines data set.

5.3.1. Experimental set-up

We perform a sensitivity analysis of the performance of the proposed algorithm along the size of the

initial labeled set, the size of the spatial neighborhoods, the example selection schema, the number of spatial

profiles, as well as the number of iterations. We analyze the accuracy (OA, AA and κ) of classification, the

number of examples transferred from the unlabeled sets to the the labeled sets per profile, the learning time

and the number of iterations performed to complete the task. As five partitioning trials between labeled and

unlabeled sets are generated for each data set, both the mean and the standard deviation of the considered

metrics are computed on these running trials.

5.3.2. Results and discussion

Size of original labeled sets. We vary the percentage of pixels which are labeled in the image between 3%,

5% (baseline) and 10%, while we run co-training by constructing neighborhoods with sizes growing from 5 to

in a Java environment that resorts to the same libraries to represent data, compute profiles and learn SVM classifiers.
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Table 5: Sensitivity study (Indian Pines): the accuracy metrics are collected from five trials; the average (± standard deviation)

of the measures is computed on these trials.

labeled % OA AA κ Selection OA AA κ

3% .955± .011 .872±.017 .949±.012 Aspatial [22] .952±.009 .888±.026 .945±.011

5% .961± .009 .898±.033 .956± .010 Spatial .964± .008 .905±.040 .959± .009

10% .980± .007 .927±.030 .977±.009 Spatial+DCC .961± .009 .898±.033 .956± .010

Neighborhood OA AA κ Learning/Profile schema OA AA κ

5 .942 ±.020 .887±.040 .934±.228 Self-SVM(S) .804 ±.010 .621 ±.034 .774 ±.011

5,10 .955± .022 .895±.041 .949±.025 SVM(S)+SVM(FM) .922 ±.015 .797 ±.036 .911±.017

5,10,15 .961± .009 .898±.033 .956± .010 S+FCo-Training .948±.009 .862±.034 .941±.011

5,10,15,20 .965± .013 .893±.960 .960±.015 S+MCo-Training .950±.009 .865±.036 .943±.010

5,10,15,20,25 .962±.012 .886±.037 .956±.014 S+F+MCo-Training .961± .009 .898±.033 .956± .010

10 and 15. We use both spectral, spatial-frequency and spatial-morphology profiles and apply the diversity

class criterion. The computed metrics are reported in Tables 5 (rows 2-4, columns 2-4) and 6 (rows 2-4)

The results show that the classification process gains in accuracy and efficiency by augmenting the number

of pixels in the originally labeled set. The learning process is accelerated since starting from a larger labeled

set allows the classification process to diminish the number of examples transferred from the unlabeled sets

to the labeled sets during the iterations.

Size of neighborhoods. We construct neighborhoods with sizes: 5, 5-10, 5-10-15 (baseline), 5-10-15-20 and 5-

10-15-20-25, while we run co-training with the initial labeled set sampled with the labeling percentage equal

to 5%. We use both spectral, spatial-frequency and spatial-morphology profiles and apply the diversity class

criterion. The computed metrics are reported in Tables 5 (rows 6-10, columns 2-4) and 6 (rows 6-10). The

results show that the classifier gains accuracy by augmenting the number of neighborhoods and enlarging

their size. In fact, in this way, we increase the chances of building spatial features that better fit the spatial

variation of classes, even when classes vary over space with different density and granularity.13 In any case,

the classification accuracy does not change greatly when the neighborhood size is greater than 15. The

learning process is completed in six iterations on average, independently of both the number and the size

of the neighborhoods used to construct the spatial features, while the learning time spent to complete the

task increases with the size of the neighborhoods.

Example selection criterion. We compare the performance of the spatial example selection criterion (Spa-

tial), the spatial example selection criterion combined with the diversity class criterion (Spatial+DCC) and

the aspatial example selection criterion described in [22] .14 We construct neighborhoods with size growing

13 Determining the optimal size and number of neighborhoods is an open issue whose investigation is out of the scope of this

paper.
14The Aspatial criterion considers a predicted label reliable for a target classifier if it is equally predicted by both classifiers

included in the reference ensemble.
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Table 6: Sensitivity study (Indian Pines): Total number of examples transferred from the unlabeled sets to the labeled sets

during the iterative process and used to learn the final classifiers, number of performed iterations and learning times (in secs).

The number of transferred examples is reported per profile (F - frequency, M - morphology, S - spectral signature). The metrics

are collected from five trials; the average (± standard deviation) of the measures is computed on these trials.

labeled % examples (F) examples (M) examples(S) nIter time

3% 390.6± 78.09 975.6±36.38 3459.20±190.38 6.2±.788 4332.554±564.244

5% 230.6± 78.11 579.2±92.63 2795.4±197.46 6.6±1.166 3621.21±1184.63

10% 62.4± 15.20 257.4±86.37 1946.8±49.02 5.6±.489 3278.83±365.74

labeled % examples (F) examples (M) examples(S) nIter time

5 229.4±86.56 1340.0±219.14 2678.2±205.55 5.8±.979 2420.12±414.10

5,10 197.0± 62.35 739.0±183.06 2770.0±181.47 5.8±.399 2581.65±410.09

5,10,15 230.6± 78.11 579.2±92.63 2795.4±197.46 6.6±1.166 3621.21±1184.63

5,10,15,20 .234.8± 105.87 478.2±95.31 2834.2±145.32 5.8 ±1.166 3911.88±1020.75

5,10,15,20,25 226.2±73.83 414.2±102.15 2853.4±196.07 6.4±1.199 6415.632 ±1808.412

labeled % examples (F) examples (M) examples(S) nIter time

Aspatial [22] 9669.6±43.45 9654.4±45.37 9694.6±17.16 6.6±.800 25257.99±1906.26

Spatial 8589.0± 65.64 8694.8±54.11 8689.4± 64.96 5.8±.748 18051.2± 297.75

Spatial+DCC 230.6± 78.11 579.2±92.63 2795.4±197.46 6.6±1.166 3621.21±1184.63

labeled % examples (F) examples (M) examples(S) nIter time

Self-SVM(S) 0.0 ±0.00 0.0 ±0.00 7466.0 ±587.27 9.8±.399 5519.05±1522.25

SVM(S)+SVM(FM) 0.0 ±0.00 0.0 ±0.00 0.0 ±0.00 .0±.0 236.17±4.67

S+FCo-Training 126.8±57.05 0.0±0.00 2806.4±232.81 6.2±.074 3510.24 ±458.83

S+MCo-Training 0.0±0.00 592.2±358.18 2723.2±236.96 7.2±1.59 4179.866±1222.77

S+F+MCo-Training 230.6± 78.11 579.2±92.63 2795.4±197.46 6.6±1.166 3621.21±1184.63

from 5 to 10 and 15, while we run co-training with the initial labeled set sampled with the labeling percent-

age equal to 5%. We use both spectral, spatial-frequency and spatial-morphology profiles of the imagery

data. The computed metrics are reported in Tables 5 (rows 2-4, columns 6-8) and 6 (rows 12-14) . The

results show that dealing with the spatial information in the selection schema improves the classification

accuracy and speeds-up the learning process, as a lower number of examples is moved from the unlabeled

sets to the labeled sets during the iterative learning process. The classification maps reported in Figures

4(a)-4(c) highlight that accounting for the spatial information, in order to select reliable labels, reduces the

number of pixels misclassified along the boundaries between various thematic objects (see Figure 4(c) vs

Figures 4(a)-4(b)) -This confirms our considerations reported in Section 4.4. We also note that the use of a

diversity class criterion scales-up the computation without greatly changing the classification map produced

(see Figure 4(a) vs Figure 4(b)).

Spectral and/or spatial profiles. We compare the performances of the following learning schemes: iterative

learning performed with the spectral profile only (Self-SVM(S)); two-stepped learning composed by one SVM

learned from the spectral profile followed by one SVM learned from the spatial (frequency and morphology)

profile (SVM(S)+SVM(FM)); iterative learning performed with the co-training strategy, one spectral profile

and one spatial profile (frequency (S+FCo-Training) or morphology (S+MCo-Training)); and iterative
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(a) Spatial selection (b) Spatial + DCC (c) Aspatial selection

Figure 4: Indian Pines: classification maps produced, while running S2CoTraC with 4(a) the spatial selection criterion (de-

scribed in Section 4.4), 4(b) the spatial selection criterion and the diversity class criterion (described in Section 4.3), and 4(c)

the aspatial selection criterion (described in [22]). A circle highlights every wrongly labeled region in Figure 4(c).

learning performed with the co-training strategy, one spectral profile and two spatial profiles (S+F+MCo-

Training). We note that S+F+MCo-Training corresponds to the learning schema of the algorithm proposed

in this study (baseline). We construct neighborhoods with size growing from 5 to 10 and 15, while we

consider the initial labeled set sampled with the labeling percentage equal to 5%. We use the spatial

example selection criterion and combine it with the class diversity criterion when the co-training strategy

is applied. The computed metrics are reported in Tables 5 (rows 6-10, columns 6-8) and 6 (rows 16-

20). The results show that the iterative learning performed along the spectral and spatial profiles is more

accurate than the iterative learning performed along the spectral profile only (S+F+MCo-Training, S+FCo-

Training and S+MCo-Training outperform Self-SVM(S)). This confirms the considerations reported in

[32, 31, 55, 33, 5, 15, 54, 7, 58, 20, 1], which inspire the emerging trend of considering spatial information, in

addition to spectral information in imagery data. We also observe that, interestingly, the iterative learning

converges faster when spatial profiles of the data are processed. The number of iterations, as well as

the number of transferred examples diminish when the classification is based on both spectral data and

collective spatial data. This means that accounting for spatial collective information actually contributes to

determining correct classes by avoiding a computation burden. At the same time, by focusing this analysis

on the number of spatial profiles, the results (rows 8-10, columns 6-8, Table 5; rows 18-20 Table 6) show

that the classification accuracy produced with one spectral profile and “two” spatial profiles (S+F+MCo-

Training) is higher than the classification accuracy produced with one spectral profile and one spatial profile

(S+FCo-Training and S+MCo-Training). This confirms the considerations reported in [22], which inspire

us to consider “various” (and possibly independent) spatial profiles of data. On the other hand, by analyzing

the contribution of the iterative learning performed in combination with the collective inference, the results

(rows 7-10, columns 6-8, Table 5; rows 17-20 Table 6) show that the use of iterative learning really improves

the classification accuracy. In fact, SVM(S)+SVM(FM) is outperformed by S+FCo-Training, S+MCo-

Training and S+ F+MCo-Training. This confirms the results of previous studies [25, 19] in collective

inference, which have assessed the effectiveness of iterative learning to account for the correlation of labels.
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(a) Accuracy (b) Time (c) Moved Pixels

Figure 5: Sensitivity study: the accuracy (Y axis, Figure 5(a)), the number of examples moved from the unlabeled set to the

labeled set per profile (Y axis, Figure 5(c)) and the learning time (in secs, Y axis, Figure 5(b)) are plotted along the the number

of performed iterations (X axis). S2CoTraC is run by considering the labeled sets generated by sampling 5% of ground-truth

pixels and by constructing the spatial features over the spatial neighborhoods with size growing from 5 to 10 and 15.

Number of Iterations. This analysis is performed by applying the co-training strategy, constructing neigh-

borhoods with size growing from 5 to 10 and 15, while considering the initial labeled set sampled with the

labeling percentage equal to 5%. We use the spatial example selection criterion and combine it with the

class diversity criterion. We analyze changes in the performance of the learning process along the number

of iterations. The accuracy metrics, the computation time (in secs) and the number of transferred examples

per profile are the plots in Figures 5(a)- 5(c). These plots show that accuracy is gained as new iterations are

performed. This is a further confirmation of the effectiveness of the iterative learning approach. In any case,

we can also observe that the highest increase of accuracy is obtained in the initial iterations of the learning

process, which are also those showing the highest number of transferred examples per profile. Consequently,

stopping the iterative learning when the number of transferred examples is less than 10 (MinTransfer)

saves a computation burden that would not change the classification accuracy greatly.

5.4. Semi-supervised and Transductive Literature

Several general-purpose semi-supervised and transductive classifiers have been proposed in the machine

learning literature. We consider the Fast Linear transductive SVM (SVMLin) [50],15 the Spectral Graph

Transducer (SGT) [27],16 and the self-labeled algorithms described in [56].17 The self-labeled algorithms

differ in various characteristics. In particular, the mechanism to enlarge the labeled set can be: incremental

(the most reliable examples are added step-by-step from the unlabeled set to the labeled set), batch (the

algorithm decides whether each unlabeled example meets the addition criterion before adding any of them

to the labeled set; it does not assign a definitive label to each unlabeled example and can reprioritize the

hypothesis learned from the labeled set) and amending (any example that meets the specific criterion is

added or removed from the labeled set). The classifier can be: single (one classifier is used to enlarge

15The implementation of SVMLin is available at http://vikas.sindhwani.org/svmlin.html.
16The of SGT is available at http://sgt.joachims.org/.
17The implementation of considered self-labeled algorithms is available at http://sci2s.ugr.es/SelfLabeled.
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the labeled set) or multiple (multiple classifiers are considered). Apart from the number of classifiers, the

learning can be: single (one learning algorithm is considered) or multiple (multiple learning algorithms are

used). Finally, by referring to the way the input feature space is taken into consideration, the learning

can be: single view (all features are considered at once) and multi-view (the feature set is split in two or

more redundant, conditionally-independent subsets). The self-labeled algorithms, considered for this study,

include: SelfTraining (single-view, single learning, single classifier, incremental); CoTraining, Rasco and

RelRasco (multi-view, single learning, multiple classifiers); DemocraticCo (single view, multiple learning,

multiple classifiers, incremental); CoBagging and TriTraining (single view, single learning, multiple classi-

fiers, incremental); ADECoForest, DETriTraining and CLCC (single view, single learning, multiple classi-

fiers, augmenting); CoForest (single view, single learning, multiple classifiers, batch); APSSC (single-view,

single learning, single classifier, batch); as well as SETRED and SNNRCE (single-view, single learning,

single classifier, augmenting). SelfTraining, CoTraining, Co-Bagging, TriTraining, DETriTraining, Rasco

and RelRasco are designed with SVM, k-NN, C4.5 or Naive Bayes as base classifiers. These self-labeled

algorithms are run with the configuration parameters reported in [56].

For all these competitors, we analyze the accuracy (OA, AA and κ) of classification performed on the five

partitioning trials between labeled and unlabeled sets generated for each data set. All algorithms have been

evaluated by using the same division between labeled samples and unlabeled samples for each running trial.

We evaluate the accuracy of all competitors described above in the classification of Indian Pines data set,

while we consider the outstanding competitors in the classification of Pavia University and Salinas Valley

too. The accuracy of these competitors is compared to that of S2CoTraC-DCC.18

For collected accuracy metrics reported in Table 7, we make the following considerations. The accuracy-

based ranking of all algorithms, that is performed by considering Indian Pines data set, reveals that the

outstanding competitors are TriTraining(SVM), Co-Training(SVM) and Co-Bagging(SVM). This ranking,

independently of the base learner, is consistent with the comparative analysis illustrated in [56]. In fact, this

previous analysis, performed for the self-labeled competitors with 55 standard classification data sets, showed

TriTraining(C45), Democratic-Co, Co-Bagging(C45) and Co-Training(SVM) as outstanding transductive

algorithms. These results confirm that the highest accuracy can be achieved when SVMs are applied as

base learners. This supports the considerations formulated by Plaza et al, [43], as well as Fauvel et al.

[16], which pointed out that inductive SVMs can be applied to hyperspectral image classification with great

success, by outperforming several other inductive classifiers. Finally, the comparative study highlights that

no general-purpose competitor outperforms the application-specific algorithm S2CoTraC-DCC. Based on

these results, we can conclude that the transductive process performed without accounting for the spatial

information is ineffective to deal with all the challenges of the hyperspectral scenario and motivates the

18S2CoTraC can be characterized as an incremental, multi-classifier, single learning and multi-view self-labeled algorithm.
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Table 7: Accuracy metrics (± standard deviation) of state-of-the-art semi-supervised and transductive classifiers defined in

machine learning literature. Metrics are collected on five trials produced by considering 5% of ground-truth data as the labeled

set. The top-three competitors which achieve the highest accuracy in Indian Pines have been underlined.

system OA AA κ system OA AA κ

Indian Pines

S
2
CoTraC-DCC .961± .009 .898±.033 .956± .010 SVMLin .605±.009 .517±.010 .553±.011

SGT .604±.012 .537±.024 .541±.018 ADECoForest .638 ± .007 .496 ± .010 .582 ± .007

APSSC .499 ± .013 .576 ± .014 .437 ± .013 CLCC .522 ± .011 .325 ± .021 .430 ± .016

CoBagging(SV M) .697±.018 .610±.008 .657±.020 CoBagging(NN) .594±.007 .510±.026 .537±.007

CoBagging(C45) .475±.011 .381±.005 .405±.012 CoBagging(NB) .446±.032 .366±.019 .379±.028

CoForest .674 ± .003 .546 ± .016 .624 ± .003 CoTraining(SV M) .708±.016 .625±.008 .670±.018

CoTraining(NN) .640±.010 .590±.013 .589±.011 CoTraining(NB) .507±.095 .446±.092 .447±.103

CoTraining(C45) .544±.016 .445±.032 .480±.017 DemocraticCo .544 ± .016 .446 ± .033 .480 ± .018

DETriTraining(SVM) .638 ± .015 .509 ± .006 .586 ± .015 DETriTraining(NN) .621 ± .012 .496 ± .017 .563 ± .014

DETriTraining(C45) .569 ± .009 .421 ± .013 .501 ± .010 DETriTraining(NB) .485 ± .023 .388 ± .013 .417 ± .024

Rasco(SVM) .351±.027 .268±.018 .245±.025 Rasco(NN) .187 ± .008 .121 ± .005 .073 ± .008

Rasco(C45) .205 ± .009 .129 ± .006 .093 ± .011 Rasco(NB) .215 ± .114 .203 ± .073 .153 ± .081

RelRasco(SVM) .367 ± .040 .268 ± .033 .263 ± .040 RelRasco(NN) .192 ± .008 .129 ± .009 .079 ± .008

RelRasco(C45) .202 ± .010 .127 ± .005 .090 ± .011 RelRasco(NB) .297 ± .131 .257 ± .064 .217 ± .096

SelfTraining(SVM) .662 ± .017 .639 ± .027 .618 ± .018 SelfTraining(NN) .659 ± .013 .622 ± .036 .610 ± .016

SelfTraining(C45) .535 ± .017 .433 ± .031 .470 ± .020 SelfTraining(NB) .443 ± .030 .375 ± .032 .373 ± .030

SETRED .656 ± .006 .581 ± .022 .602 ± .007 SNNRCE .658 ± .011 .597 ± .014 .608 ± .012

TriTraining(SV M) .709± .019 .628± .010 .671± .021 TriTraining(NN) .640 ± .010 .589 ± .015 .588 ± .011

TriTraining(C45) .572 ± .010 .456 ± .028 .510 ± .011 TriTraining(NB) .458 ± .040 .395 ± .018 .392 ± .036

Pavia University

S2CoTraC-DCC .985 ±.009 .958± .008 .980±.012 CoBagging(SVM) .906±.004 .882±.008 .876±.006

Co-Training(SVM) .908±.005 .882±.009 .878±.007 TriTraining(SVM) .908±.005 .884±.008 .878±.007

Salinas University

S2CoTraC-DCC .993± .004 .996±.001 .993± .0048 CoBagging(SVM) .916±.003 .950±.002 .907±.003

CoTraining(SVM) .914±.003 .950±.003 .905±.005 TriTraining(SVM) .916±.005 .949±.003 .906±.006

design of application-specific transductive algorithms in this scenario.

5.5. Hyperspectral Image Processing Literature

Several (transductive) spatio-spectral algorithms have been evaluated by considering Indian Pines, Pavia

University and/or Salinas Valley data sets. In this study, we consider the most recent (and competitive)

results [33, 31, 32, 55, 54, 20, 1] produced in in hyperspectral imaging analysis for these data scenarios.

The application-specific classifiers evaluated include: lorsalmll, that resorts to a multilevel logistic prior

that encodes the spatial information and uses active learning [31]; mpmlbp, that considers spectral and

spatial information, by using loopy belief propagation and active learning [33]; mlrsubmll, that integrates

spectral and spatial information in a multinomial logistic regression (MLR) algorithm and uses a multilevel

logistic Markov-Gibbs with a Markov random field prior to synthesize the spatial information [32]; svmmrf,

that firstly applies a probabilistic support vector machine spectral-based classification of the hyperspectral

image and then refines the classification obtained by using spatial contextual information through a Markov
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random field regularization [55]; a spatial-aware SVM that learns SVMs after extending the spectral feature

space with a spatial-aware morphological profile [43, 33];19 Watershed, that uses watershed segmentation,

in order to define information on spatial structures and perform spectral-based SVM classification, followed

by majority voting within the watershed regions [54, 33]; irmc, that implements two MLR classifiers, which

are fed with spectral features and spatial features, respectively, and work iteratively, so that every clas-

sifier exploits the decision of the other [20]; S2Tec that learns SVM classifiers and integrates the spectral

information and the label spatial correlation through an ensemble system.

For Indian Pines, results have been produced in the literature with 5% (irmc), 6% (svmmrf) and 10%

(lorsalmll, mpmlbp, mlrsubmll and SVMMRC) of the pixels labeled according to the available ground truths.

For Pavia University, the results have been produced in the literature with 5% (irmc) and 9% (spatial SVM,

lorsalmll, mpmlbp, mlrsubmll, SVMMRC and Watershed) of the pixels labeled according to the available

ground truths. For Salinas Valley, the results have been produced in the literature with 5% (irmc) of

the pixels labeled according to the available ground truths. In all these data sets, the remaining pixels

have been unlabeled according to the proper transductive setting. It is noteworthy that the accuracy

performance reported in [33, 31, 32, 55] is achieved by starting from labeled samples which are different

from those considered for this study. Thus the comparison in these cases is not properly safe. However,

the low standard deviation of the accuracy metrics computed for S2CoTraC on several trials supports the

theory that it would perform equally well if it were run with the labeled sets used in [33, 31, 32, 55].

Accuracy results are reported in Table 8. The accuracy metrics of all the competitors in this study are

collected with the percentage of the pixels labeled for the learning phase greater than or equal to 5%. In any

case, the accuracy of the competitors is, almost always, outperformed by the accuracy of S2CoTraC-DCC

run with only 5% of the pixels labeled. The only exceptions are observed when loraslmll, mpmlbp, mlrsubmll

and svmmrf are used to classify Indian Pines data. In any case, the best performance of these competitors is

achieved only in association to metric AA and differences in AA performance are smaller when S2CoTraC-

DCC is run with 10% of the pixels labeled. In fact, both OA and κ achieved by lorsalmll, mpmlbp and

mlrsubmll (with 10% of the pixels labeled), as well as by svmmrf (with the 6% of the pixels labeled) are

lower than OA and κ achieved by S2CoTraC-DCC (with both 5% and 10% of the pixels labeled). In general,

if we look at the class-by-class precision results (see Figure 6), we observe that the gain in the average

accuracy is due to the ability of these competitors to achieve higher accuracy than S2CoTraC-DCC, when

classifying the pixels belonging to the minority classes “Grass/pasture-mintill” (0.27% of imagery pixels)

and “Oat” (0.20% of imagery pixels). By considering that lorsalmll and mpmlbp operate with the active

learning strategy, while mlrsubmll and svmmrf apply the Markov random field theory, this analysis suggests

that extensions of the proposed algorithm may include either active learning or Markov random fields, in

19This profile includes opening and closing features, as well as spatial information like size, orientation and local contrast.
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Table 8: Accuracy metrics (± standard deviation) of state-of-the-art, spatio-spectral, hyperspectral classifiers.

algorithm ref label% OA AA κ

Indian Pines

S2CoTraC-DCC Table 2 5% .961±.009 .898±.033 .956±.010

S2CoTraC-DCC Table 5 10% .980±.007 .927±.030 .977±.009

lorsalmll [31, 33] 10% .927 .951 .916

mpmlbp [33] 10% .947 .962 .939

mlrsubmll [32] 10% .936 .939 .926

svmmrf [55] 6% .920 .958 .909

irmc Table 2,[20] 5% .873±.031 .821±.075 .856±.035

S2Tec Table 2,[1] 5% .936±.011 .874±.031 .927±.012

Pavia University

S2CoTraC-DCC Table 2 5% .985±.009 .958±.008 .980±.012

spatial SVM
[43]

9% .852 .907 .808
[33]

lorsalmll [31, 33] 9% .855 .925 .818

mpmlbp [33] 9% .857 .922 .820

mlrsubmll [32] 9% .941 .935 .922

svmmrf [55] 9% .976 .945 .959

Watershed
[54]

9% .854 .913 .813
[33]

irmc Table 2,[20] 5% .867±.008 .837±.007 .814±.010

S2Tec Table 2,[1] 5% .988±.009 .982±.003 .984±.001

Salinas Valley

S2CoTraC-DCC Table 2 5% .993±.004 .996±.001 .994±.005

irmc Table 2,[20] 5% .955±.018 .952±.016 .950±.020

S2Tec Table 2,[1] 5% .970±.006 .984±.003 .967±.006

Figure 6: Indian Pines dataset (10% of labeled data): class-by-class accuracy achieved by S2CoTraC-DCC, lorsalmll and

mpmlbp (as reported in [33]), mlrsubmll (as reported in [32]) and svmmrf (as reported in [55]).

order to improve the accuracy in the classification of minority classes. In any case, these competitors are

outperformed by (or perform similarly to) S2CoTraC-DCC when considering all the remaining classes.

6. Conclusion

In this paper, we describe a novel, hybrid, transductive hyperspectral image classification algorithm

to cope with a limited number of labeled pixels in the high dimensional spectral space. The algorithm

iteratively constructs various spatial features over spatial neighborhoods via a collective algorithm. It uses

a co-training system of spectral and spatial classifiers to determine the pixel labels and applies transductive
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learning to make accurate predictions. Spatial features model the continuity of neighboring labels. They

exploit the likely fact that two neighboring pixels may have the same label (label spatial correlation).

Collective inference, transductive learning and co-training have already been explored in the literature.

The novel contribution of this study is that it combines these three strategies in a single learning algorithm.

This algorithm, which represents one of the main contributions of this work, proves effective for the chal-

lenging problem of hyperspectral classification. The effectiveness of the proposed algorithm is assessed via

an empirical study on several hyperspectral data sets. This study contributes to proving that the proposed

formulation of a collective-based co-training classifier is more accurate than the collective-based turbo code,

as well as the ensemble described in our previous works [20, 1]. On the other hand, the presented algorithm is

more accurate than co-training classifiers [22, 61], which are already defined for hyperspectral classification,

but ignore collective inference to deal with spatial information. Finally, the described algorithm gains in

accuracy compared to various state-of-the-art classifiers defined in both the semi-supervised/transductive

learning literature and the hyperspectral image analysis literature.

Another novel contribution of this study is the consideration of an example selection schema that ac-

counts for the spatial correlation of imagery labels and spectral signatures, in order to select new training

examples for the iterative learning process. This advances our previous hybrid algorithms described in

[20, 1], which used the spatial correlation of the imagery labels during collective inference, but neglected the

spatial information during the example selection phase. The empirical investigation has proved that this

spatial selection schema contributes to improving the accuracy, to speeding-up the learning process and to

reducing the number of pixels misclassified along the boundaries between various thematic objects. A final

contribution of this study is the investigation of a diversity class criterion that, used in combination with

co-training, can speed-up the learning process.

We note that this study is relevant for the machine learning community, as it contributes to proving

that by combining transductive learning and collective classification it is possible to improve significantly

the accuracy of the classifier in comparison to a supervised/non collective setting. These improvements are

shown to be relevant in an applicative context (remote sensing) that has recently gained importance. This

study is also significant for the hyperspectral image classification community, as it describes an algorithm that

deals with spectral and spatial information by gaining accuracy with respect to state-of-the-art algorithms.

Some directions for further work are still to be explored. The selection of the initial labeled set is

still an open problem, which is unexplored in this study. The active learning can be explored, in order to

initially select and intelligently augment the labeled set during the iterative process. This can be done by

trying to improve the classification accuracy of sparsely populated classes. On the other hand, the Markov

random field theory can be investigated in the synthesis of the spatial information. Additionally, it would

be interesting to study ways to adaptively determine both the size and the shape of neighborhoods. Finally,

big data technologies may be investigated, in order to apply the presented solution to big imagery data.
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(eds.), Proc. of the 7th European Conference on Advances in Case-Based Reasoning, ECCBR 2004, vol. 3155 of Lecture

Notes in Computer Science, Springer, 2004, pp. 106–118.

[12] J. Chen, J. Xia, P. Du, J. Chanussot, Combining rotation forest and multiscale segmentation for the classification of

hyperspectral data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing PP (99) (2016)

1–14.

[13] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (3) (1995) 273–297.

[14] B. Demir, C. Persello, L. Bruzzone, Batch-mode active-learning methods for the interactive classification of remote sensing

images, IEEE Transactions on Geoscience and Remote Sensing 49 (3) (2011) 1014–1031.

[15] M. Fauvel, J. Chanussot, J. Benediktsson, A spatial-spectral kernel-based approach for the classification of remote-sensing

images, Pattern Recognition 45 (1) (2012) 381 – 392.

33



[16] M. Fauvel, Y. Tarabalka, J. Benediktsson, J. Chanussot, J. Tilton, Advances in spectral-spatial classification of hyper-

spectral images, Proc. of the IEEE 101 (3) (2013) 652–675.

[17] A. Fujino, N. Ueda, K. Saito, Semisupervised learning for a hybrid generative/discriminative classifier based on the

maximum entropy principle, IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (3) (2008) 424–437.

[18] P. Gamba, ROSIS Pavia University 2003 data set, 2003.

[19] L. Getoor, B. Taskar, Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning),

The MIT Press, 2007.

[20] P. Guccione, L. Mascolo, A. Appice, Iterative hyperspectral image classification using spectral-spatial relational features,

IEEE Transactions on Geoscience and Remote Sensing 53 (7) (2015) 3615–3627.

[21] R. Hang, Q. Liu, H. Song, Y. Sun, Matrix-based discriminant subspace ensemble for hyperspectral image spatial-spectral

feature fusion, IEEE Transactions on Geoscience and Remote Sensing 54 (2) (2016) 783–794.

[22] R. Huang, W. He, Using tri-training to exploit spectral and spatial information for hyperspectral data classification, in:

Proc. of the 2012 International Conference on Computer Vision in Remote Sensing, CVRS 2012, 2012, pp. 30–33.

[23] G. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Transactions on Information Theory 14 (1)

(1968) 55–63.

[24] E. H. Isaaks, M. R. Srivastava, An Introduction to Applied Geostatistics, Oxford University Press, USA, 1990.

[25] D. Jensen, J. Neville, B. Gallagher, Why collective inference improves relational classification, in: Proc. of the 10th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, ACM, 2004, pp. 593–598.

[26] T. Joachims, Transductive inference for text classification using support vector machines, in: I. Bratko, S. Dzeroski (eds.),

Proc. of the 16th International Conference on Machine Learning, (ICML 1999), Morgan Kaufmann, 1999, pp. 200–209.

[27] T. Joachims, Transductive learning via spectral graph partitioning, in: T. Fawcett, N. Mishra (eds.), Proc. of the 20th

International Conference on Machine Learning, ICML 2003, AAAI Press, 2003, pp. 290–297.

[28] L. Johnson, AVIRIS Hyperpsectral Radiance Data from: f981009t01r07, 1998.

[29] D. Landgrebe, AVIRIS NW Indiana’s Indian Pines 1992 data set, 1992.

[30] P. Legendre, Spatial autocorrelation: Trouble or new paradigm?, Ecology 74 (6) (1993) 1659–1673.

[31] J. Li, J. Bioucas-Dias, A. Plaza, Hyperspectral image segmentation using a new bayesian approach with active learning,

IEEE Transactions on Geoscience and Remote Sensing 49 (10) (2011) 3947–3960.

[32] J. Li, J. Bioucas-Dias, A. Plaza, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic

regression and markov random fields, IEEE Transactions on Geoscience and Remote Sensing 50 (3) (2012) 809–823.

[33] J. Li, J. Bioucas-Dias, A. Plaza, Spectral-spatial classification of hyperspectral data using loopy belief propagation and

active learning, IEEE Transactions on Geoscience and Remote Sensing 51 (2) (2013) 844–856.

[34] Q. Lv, X. Niu, Y. Dou, J. Xu, Y. Lei, Classification of hyperspectral remote sensing image using hierarchical local-

receptive-field-based extreme learning machine, IEEE Geoscience and Remote Sensing Letters 13 (3) (2016) 434–438.

[35] D. Malerba, M. Ceci, A. Appice, A relational approach to probabilistic classification in a transductive setting, Engineering

Applications of Artificial Intelligence 22 (1) (2009) 109–116.

[36] U. Maulik, D. Chakraborty, Learning with transductive SVM for semisupervised pixel classification of remote sensing

imagery, ISPRS Journal of Photogrammetry and Remote Sensing 77 (0) (2013) 66 – 78.

[37] L. McDowell, D. W. Aha, Semi-supervised collective classification via hybrid label regularization, in: Proc. of the 29th

International Conference on Machine Learning, ICML 2012, Omnipress, 2012.

[38] F. Melgani, L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines, IEEE

Transactions on Geoscience and Remote Sensing 42 (8) (2004) 1778–1790.

[39] L. Miao, Z. Shuying, B. Zhang, L. Shanshan, W. Changshan, A review of remote sensing image classification techniques:

the role of spatio-contextual information, European Journal of Remote Sensing 47 (2014) 389–411.

34



[40] E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, W. J. Emery, SVM active learning approach for image classification using

spatial information, IEEE Transactions on Geoscience and Remote Sensing 52 (4) (2014) 2217–2233.

[41] E. Pasolli, H. L. Yang, M. M. Crawford, Active-metric learning for classification of remotely sensed hyperspectral images,

IEEE Transactions on Geoscience and Remote Sensing 54 (4) (2016) 1925–1939.

[42] J. C. Platt, Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods, in:

Advances in Large Margin Classifiers, MIT Press, 1999, pp. 61–74.

[43] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel,

P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, G. Trianni, Recent advances in techniques for hyperspectral image

processing, Remote Sensing of Environment 113(1) (2009) 110 – 122.

[44] F. Ratle, G. Camps-Valls, J. Weston, Semisupervised neural networks for efficient hyperspectral image classification, IEEE

Transactions on Geoscience and Remote Sensing 48 (5) (2010) 2271–2282.

[45] J. A. Richards, Remote Sensing Digital Image Analysis: An Introduction, 2nd ed., Springer-Verlag New York, Inc., 1993.

[46] M. Seeger, Learning with labeled and unlabeled data, Tech. rep. (2001).

[47] A. K. Shackelford, C. H. Davis, A combined fuzzy pixel-based and object-based approach for classification of high-resolution

multispectral data over urban areas, IEEE Transactions on Geoscience and Remote Sensing 41 (10) (2003) 2354–2363.

[48] B. Shahshahani, D. Landgrebe, The effect of unlabeled samples in reducing the small sample size problem and mitigating

the hughes phenomenon, IEEE Transactions on Geoscience and Remote Sensing 32 (5) (1994) 1087–1095.

[49] X. Shi, Y. Li, P. Yu, Collective prediction with latent graphs, in: Proceedings of the 20th ACM International Conference

on Information and Knowledge Management, CIKM 2011, ACM, 2011, pp. 1127–1136.

[50] V. Sindhwani, S. S. Keerthi, Large scale semi-supervised linear SVMs, in: E. N. Efthimiadis, S. T. Dumais, D. Hawking,

K. Järvelin (eds.), Proc. of the 29th Annual International Conference on Research and Development in Information

Retrieval, SIGIR 2006, ACM, 2006, pp. 477–484.

[51] S. D. Stearns, B. E. Wilson, J. R. Peterson, Dimensionality reduction by optimal band selection for pixel classification of

hyperspectral imagery, in: Proc. of SPIE Applications of Digital Image Processing, vol. 2028, 1993, pp. 118–127.

[52] K. Tan, E. Li, Q. Du, P. Du, An efficient semi-supervised classification approach for hyperspectral imagery, ISPRS Journal

of Photogrammetry and Remote Sensing 97 (0) (2014) 36 – 45.

[53] K. Tan, E. Li, Q. Du, P. Du, Hyperspectral image classification using band selection and morphological profiles, IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (1) (2014) 40–48.

[54] Y. Tarabalka, J. Chanussot, J. Benediktsson, Segmentation and classification of hyperspectral images using watershed

transformation, Pattern Recognition 43 (7) (2010) 2367 – 2379.

[55] Y. Tarabalka, M. Fauvel, J. Chanussot, J. Benediktsson, SVM- and MRF-based method for accurate classification of

hyperspectral images, IEEE Geoscience and Remote Sensing Letters 7 (4) (2010) 736–740.
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