493 research outputs found

    A Probabilistic Approach To Non-Rigid Medical Image Registration

    Get PDF
    Non-rigid image registration is an important tool for analysing morphometric differences in subjects with Alzheimer's disease from structural magnetic resonance images of the brain. This thesis describes a novel probabilistic approach to non-rigid registration of medical images, and explores the benefits of its use in this area of neuroimaging. Many image registration approaches have been developed for neuroimaging. The vast majority suffer from two limitations: Firstly, the trade-off between image fidelity and regularisation requires selection. Secondly, only a point-estimate of the mapping between images is inferred, overlooking the presence of uncertainty in the estimation. This thesis introduces a novel probabilistic non-rigid registration model and inference scheme. This framework allows the inference of the parameters that control the level of regularisation, and data fidelity in a data-driven fashion. To allow greater flexibility, this model is extended to allow the level of data fidelity to vary across space. A benefit of this approach, is that the registration can adapt to anatomical variability and other image acquisition differences. A further advantage of the proposed registration framework is that it provides an estimate of the distribution of probable transformations. Additional novel contributions of this thesis include two proposals for exploiting the estimated registration uncertainty. The first of these estimates a local image smoothing filter, which is based on the registration uncertainty. The second approach incorporates the distribution of transformations into an ensemble learning scheme for statistical prediction. These techniques are integrated into standard frameworks for morphometric analysis, and are demonstrated to improve the ability to distinguish subjects with Alzheimer's disease from healthy controls

    Uncertainty quantification in non-rigid image registration via stochastic gradient Markov chain Monte Carlo

    Get PDF
    We develop a new Bayesian model for non-rigid registration of three-dimensional medical images, with a focus on uncertainty quantification. Probabilistic registration of large images with calibrated uncertainty estimates is difficult for both computational and modelling reasons. To address the computational issues, we explore connections between the Markov chain Monte Carlo by backpropagation and the variational inference by backpropagation frameworks, in order to efficiently draw samples from the posterior distribution of transformation parameters. To address the modelling issues, we formulate a Bayesian model for image registration that overcomes the existing barriers when using a dense, high-dimensional, and diffeomorphic transformation parametrisation. This results in improved calibration of uncertainty estimates. We compare the model in terms of both image registration accuracy and uncertainty quantification to VoxelMorph, a state-of-the-art image registration model based on deep learning

    Probabilistic non-linear registration with spatially adaptive regularisation

    Get PDF
    This paper introduces a novel method for inferring spatially varying regularisation in non-linear registration. This is achieved through full Bayesian inference on a probabilistic registration model, where the prior on the transformation parameters is parameterised as a weighted mixture of spatially localised components. Such an approach has the advantage of allowing the registration to be more flexibly driven by the data than a traditional globally defined regularisation penalty, such as bending energy. The proposed method adaptively determines the influence of the prior in a local region. The strength of the prior may be reduced in areas where the data better support deformations, or can enforce a stronger constraint in less informative areas. Consequently, the use of such a spatially adaptive prior may reduce unwanted impacts of regularisation on the inferred transformation. This is especially important for applications where the deformation field itself is of interest, such as tensor based morphometry. The proposed approach is demonstrated using synthetic images, and with application to tensor based morphometry analysis of subjects with Alzheimer’s disease and healthy controls. The results indicate that using the proposed spatially adaptive prior leads to sparser deformations, which provide better localisation of regional volume change. Additionally, the proposed regularisation model leads to more data driven and localised maps of registration uncertainty. This paper also demonstrates for the first time the use of Bayesian model comparison for selecting different types of regularisation

    Image registration via stochastic gradient markov chain monte carlo

    Get PDF
    We develop a fully Bayesian framework for non-rigid registration of three-dimensional medical images, with a focus on uncertainty quantification. Probabilistic registration of large images along with calibrated uncertainty estimates is difficult for both computational and modelling reasons. To address the computational issues, we explore connections between the Markov chain Monte Carlo by backprop and the variational inference by backprop frameworks in order to efficiently draw thousands of samples from the posterior distribution. Regarding the modelling issues, we carefully design a Bayesian model for registration to overcome the existing barriers when using a dense, high-dimensional, and diffeomorphic parameterisation of the transformation. This results in improved calibration of uncertainty estimates

    Probabilistic segmentation propagation from uncertainty in registration

    Get PDF
    In this paper we propose a novel approach for incorporating measures of spatial uncertainty which are derived from non-rigid registration, into propagated segmentation labels. In current approaches to segmentation via label propagation, a point-estimate of the registration parameters is used. However, this is limited by the registration accuracy achieved. In this work, we derive local measurements of the uncertainty of a non-rigid mapping from a probabilistic registration framework. This allows us to consider the set of probable locations for a segmentation label to hold. We demonstrate the use of this method on the propagation of accurately delineated cortical labels in inter-subject brain MRI using the NIREP dataset. We find that accounting for the spatial uncertainty of the mapping increases the sensitivity of correctly classifying anatomical labels

    MRI Super-Resolution using Multi-Channel Total Variation

    Get PDF
    This paper presents a generative model for super-resolution in routine clinical magnetic resonance images (MRI), of arbitrary orientation and contrast. The model recasts the recovery of high resolution images as an inverse problem, in which a forward model simulates the slice-select profile of the MR scanner. The paper introduces a prior based on multi-channel total variation for MRI super-resolution. Bias-variance trade-off is handled by estimating hyper-parameters from the low resolution input scans. The model was validated on a large database of brain images. The validation showed that the model can improve brain segmentation, that it can recover anatomical information between images of different MR contrasts, and that it generalises well to the large variability present in MR images of different subjects. The implementation is freely available at https://github.com/brudfors/spm_superre

    Generative Models for Preprocessing of Hospital Brain Scans

    Get PDF
    I will in this thesis present novel computational methods for processing routine clinical brain scans. Such scans were originally acquired for qualitative assessment by trained radiologists, and present a number of difficulties for computational models, such as those within common neuroimaging analysis software. The overarching objective of this work is to enable efficient and fully automated analysis of large neuroimaging datasets, of the type currently present in many hospitals worldwide. The methods presented are based on probabilistic, generative models of the observed imaging data, and therefore rely on informative priors and realistic forward models. The first part of the thesis will present a model for image quality improvement, whose key component is a novel prior for multimodal datasets. I will demonstrate its effectiveness for super-resolving thick-sliced clinical MR scans and for denoising CT images and MR-based, multi-parametric mapping acquisitions. I will then show how the same prior can be used for within-subject, intermodal image registration, for more robustly registering large numbers of clinical scans. The second part of the thesis focusses on improved, automatic segmentation and spatial normalisation of routine clinical brain scans. I propose two extensions to a widely used segmentation technique. First, a method for this model to handle missing data, which allows me to predict entirely missing modalities from one, or a few, MR contrasts. Second, a principled way of combining the strengths of probabilistic, generative models with the unprecedented discriminative capability of deep learning. By introducing a convolutional neural network as a Markov random field prior, I can model nonlinear class interactions and learn these using backpropagation. I show that this model is robust to sequence and scanner variability. Finally, I show examples of fitting a population-level, generative model to various neuroimaging data, which can model, e.g., CT scans with haemorrhagic lesions
    corecore