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Abstract. We develop a fully Bayesian framework for non-rigid reg-
istration of three-dimensional medical images, with a focus on uncer-
tainty quantification. Probabilistic registration of large images along
with calibrated uncertainty estimates is difficult for both computational
and modelling reasons. To address the computational issues, we explore
connections between the Markov chain Monte Carlo by backprop and
the variational inference by backprop frameworks in order to efficiently
draw thousands of samples from the posterior distribution. Regarding the
modelling issues, we carefully design a Bayesian model for registration
to overcome the existing barriers when using a dense, high-dimensional,
and diffeomorphic parameterisation of the transformation. This results
in improved calibration of uncertainty estimates.

1 Introduction

Image registration is the problem of aligning images into a common coordinate
system such that the discrete pixel locations carry the same semantic informa-
tion. It is a common pre-processing step for many applications, e.g. the statis-
tical analysis of imaging data and computer-aided diagnosis. Image registration
methods based on deep learning tend to incorporate task-specific knowledge from
large datasets [3], whereas traditional methods are more general purpose [11].
Many established models [9,14,11] are based on the iterative optimisation of an
energy function consisting of task-specific similarity and regularisation terms,
which leads to an estimated deformation field and has to be done independently
for every pair of images to be registered.

VoxelMorph [3,2,6,7] changed this paradigm by learning a function that maps
a pair of input images to a deformation field. This gave a speed-up of several
orders of magnitude while maintaining an accuracy comparable to established
methods. An overview of current learning-based methods for registration can
be found in [16]. With a few notable exceptions [6,7], Bayesian methods are
often shunned when designing novel medical image analysis algorithms because
of their perceived conceptual challenges and computational overhead. Yet in
order to fully explore the parameter space and to lessen the impact of ad-hoc
hyperparameter choices, it is desirable to adopt a Bayesian point of view.

Markov chain Monte Carlo (MCMC) methods have been used for asymptot-
ically exact sampling from the posterior distribution in rigid registration [13],
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and are popular for analysing non-rigid registration uncertainty in intra-subject
studies [20]. Recent research shows that the computational burden of MCMC
can be lessened by embedding it in a multilevel framework [21]. The problem
of uncertainty quantification has also been addressed using variational Bayesian
methods [22]. In [15] the authors compared the quality of uncertainty estimates
from an efficient and approximate variational Bayesian model and a reversible
jump MCMC model, which is asymptotically exact.

We use the stochastic gradient Markov chain Monte Carlo (SG-MCMC) algo-
rithm to establish an efficient posterior sampling algorithm for non-rigid image
registration. SG-MCMC is based on the idea of stochastic gradient descent in-
terpreted as a stochastic process with a stationary distribution centred on the
optimum and with a covariance structure that can be used to approximate the
posterior distribution [5,18]. The following is the summary of our main contri-
butions:

1. We propose an efficient SG-MCMC algorithm for three-dimensional diffeo-
morphic non-rigid image registration;

2. We propose a new regularisation loss, which allows to carry out inference of
the regularisation strength in a setting with a very high number of degrees
of freedom (d.f.);

3. We evaluate the performance of our model both qualitatively and quantita-
tively by analysing the output uncertainty estimates on inter-subject brain
MRI data.

To our knowledge, this is the first time that SG-MCMC has been used for
the task of image registration. The code is available in a public repository: https:
//github.com/dgrzech/ir-sgmcmc.

Related work. Bayesian parameter estimation for established registration
models was proposed in [27]. Bayesian frameworks have been used to character-
ize image intensities [10] and anatomic variability [26]. Kernel regression has also
been used to tackle multi-modal image registration with uncertainty [12,28]. We
believe that our work is the first that efficiently tackles Bayesian image registra-
tion and uncertainty estimation using a very high-dimensional parameterisation
of the transformation.

2 Registration model

We denote an image pair by D “ pF,Mq, where F : ΩF Ñ R is a fixed image
and M : ΩM Ñ R is a moving image. We assume that F can be generated
from M if deformed by a transformation ϕ : ΩF Ñ ΩM which is parameterised
by w. The goal of registration is to align the underlying domains ΩF and ΩM
using a mapping that roughly visually aligns the images F and Mpwq :“ M ˝

ϕ´1pwq and is physically plausible, i.e. find parameters w such that F »Mpwq.
We parameterise the transformation using the stationary velocity field (SVF)
formulation. The velocity field is integrated numerically through scaling-and-
squaring which results in a diffeomorphic transformation [1].

https://github.com/dgrzech/ir-sgmcmc
https://github.com/dgrzech/ir-sgmcmc
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Likelihood model. The likelihood model p pD | wq specifies the relationship
between the data and the transformation parameters through the choice of a
similarity metric. Due to its robustness to linear intensity transformations we
use a similarity metric based on local cross-correlation (LCC). However, because
LCC is not meaningful in a probabilistic context, we opt for the sum of voxel-
wise squared differences instead of the usual sum of the voxel-wise product of
intensities. Thus we can also enhance the likelihood model with extra features.

Denote the fixed and the warped moving images, with intensities standard-
ised to zero mean and unit variance inside a neighbourhood of 3 voxels, as F and
Mpwq respectively. Following the example in [15], in order to make the model
more robust to high outlier values caused by acquisition artifacts and misalign-
ment over the course of registration, we adopt a Gaussian mixture model (GMM)
of intensity residuals. At voxel k, the corresponding intensity residual rk is as-
signed to the l-th component of the mixture, 1 ď l ď L, if the categorical variable
ck P t1, ¨ ¨ ¨ , Lu is equal to l. It then follows a normal distribution N p0, β´1

l q.
The component assignment ck follows a categorical distribution and takes value
l with probability ρl. In all experiments we use L “ 4 components.

We also use virtual decimation to account for the fact that voxel-wise residu-
als are not independent, preventing over-emphasis on the data term and allowing
to better calibrate uncertainty estimates [23]. The full expression of the image
similarity term is then given by:

Edata “ αˆ´
N
ÿ

i“1

log
L
ÿ

l“1

?
βl

?
2π
ρl exp

ˆ

´
βl
2
}F ´Mpwq}2

˙

(1)

where α is the scalar virtual decimation factor.

Transformation priors. In Bayesian models, the transformation parame-
ters are typically regularised with use of a multivariate normal prior ppw | λq “

|λLTL|
1
2 p2πq´

N
2 exp´

1
2λpLwq

TLw that ensures smoothness, where N is the num-
ber of voxels in the image, λ is a scalar parameter that controls the strength
of regularisation, and L is the matrix of a differential operator, here chosen to
penalise the magnitude of the first derivative of the velocity field. Note that
pLwqTLw “ }Lw}2.

The regularisation strength parameter λ can be either fixed [3] or learnt
from the data. The latter has been done successfully only in the context of
transformation parameterisations with a relatively low number of d.f., e.g. B-
splines [23] or a sparse learnable parameterisation [15]. In case of an SVF, where
the number of d.f. is orders of magnitude higher, the problem is even more
difficult. The baseline method that we use for comparison with our proposed
regularisation loss, which was described in [23], corresponds to an uninformative
gamma prior.

In order to infer the regularisation strength we specify a prior on the scalar
regularisation energy χ2 :“ }Lw}2. We use a log-normal prior on χ2 and derive
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a prior on the velocity field:

log ppχ2q 9 logχ2 ` log σχ2 `
plogχ2 ´ µχ2q2

2σ2
χ2

(2)

log ppwq 9 log ppχ2q ` p
ν

2
´ 1q ¨ logχ2 (3)

where ν “ N ¨ 3 is the number of d.f. Given semi-informative hyperpriors on
µχ2 and σ2

χ2 , which we discuss in the next section, we can estimate the right
regularisation strength from data. Overall, the regularisation term is given by
Ereg “ log ppχ2q ` log ppwq.

Hyperpriors. Parameters of the priors are treated as latent variables. We
set the likelihood model hyperpriors similarly to [15], with the parameters βl as-
signed independent log-normal priors Lognormalpβl | µβ0

, σ2
β0
q and the mixture

proportions ρ “ pρ1, ¨ ¨ ¨ , ρLq with an uninformative Dirichlet prior Dirpρ | κq,
where κ “ pκ1, ¨ ¨ ¨ , κLq. The problem of inferring regularisation strength is
difficult, so we use semi-informative priors for the transformation prior pa-
rameters. The exponential of the transformation prior parameter µχ2 follows
a gamma distribution Γ pexp

`

µχ2

˘

| aχ2
0
, bχ2

0
q and σ2

χ2 has a log-normal prior

Lognormalpσ2
χ2 | µχ2

0
, σ2
χ2
0
q.

3 Variational inference

To initialise the MCMC algorithm we use the result of variational inference (VI).
We assume that the approximate posterior distribution of the transformation pa-
rameters qw „ N pµw, Σwq is a multivariate normal distribution. Due to the di-
mensionality of the problem, computing the full covariance matrix is not possible,
so we model it as a sum of diagonal and low-rank parts Σw “ diagpσ2

wq`uwu
T
w,

with σ2
w and uw both of size N ¨3ˆ1. To carry out VI, we maximise the evidence

lower bound (ELBO), which can be written as:

Lpqq “ Eq rlog ppD | wqs ´DKLpq || pq “ ´xEdata ` Eregyq `Hpqq (4)

where DKLpq || pq is the Kullback-Leibler divergence between the approximate
posterior q and the prior p. This corresponds to the sum of similarity and reg-
ularisation terms, with an additional term equal to the entropy of the posterior
distribution H pqq. We use the reparameterisation trick with two samples per up-
date to backpropagate w.r.t. parameters of the approximate variational posterior
qw, i.e. µw, σ2

w, and uw.

In order to make optimisation less susceptible to undesired local minima we
take advantage of Sobolev gradients [19]. Samples from qw are convolved with a
Sobolev kernel. To lower the computational cost, we approximate the 3D kernel
by three separable 1D kernels [24].
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4 Stochastic gradient Markov chain Monte Carlo

We use stochastic gradient Langevin dynamics (SGLD) [4,25] to sample the
transformation parameters in an efficient way:

wk`1 Ð wk ` τσ
2
w∇ log qpwkq `

?
2τσwξk (5)

where τ is the step size, ∇ log qpwkq is an estimate of the gradient of the posterior
probability density function, and ξk is an independent draw from a multivariate
normal distribution with zero mean and an identity covariance matrix.

Given a sufficient number of steps SGLD puts no restrictions on how the
chain is initialised, but in order to lower the mixing time we set w0 Ð µw. In
the limit as τ Ñ 0 and k Ñ8, it allows for asymptotically exact sampling from
the posterior of the transformation parameters. The scheme suffers from similar
issues as Gibbs sampling used in [15], i.e. high autocorrelation and slow mixing
between modes. On the other hand, the term corresponding to the gradient
of the posterior probability density function allows for more efficient landscape
transversal. Moreover, simplicity of the formulation makes SGLD better suited
to a high-dimensional problem like image registration.

The value of τ is important here and should be smaller than the width of the
most constrained direction in the local energy landscape, which can be estimated
using Σw. We discard the first 2,000 samples output by the algorithm to allow
for the chain to reach the stationary distribution.

5 Experiments

The model was implemented in PyTorch. For all experiments we use three-
dimensional brain MRI scans from the UK Biobank dataset. Input images were
resampled to 963 voxels, with isotropic voxels of length 2.43 mm, and registered
with the affine component of drop2 [8]. Note that the model is not constrained
by memory, so it can be run on higher resolution images to produce output that
is more clinically relevant, while maintaining a high speed of sampling.

We use the Adam optimiser with a learning rate of 5ˆ 10´3 for VI and the
SGD optimiser with a learning rate of 1ˆ 10´1 for SG-MCMC. The hyperprior
parameters are set to µβo

“ 0, σ2
β0
“ 2.3, κ “ 0.5, aχ2

0
“ 0.5 ¨ ν, bχ2

0
“ 0.5 ¨ λ0,

µχ2
0
“ 2.8, and σ2

χ2
0
“ 5, where λ0 is the desired strength of equivalent L2

regularisation at initialisation. The model is particularly sensitive to the value of
the transformation prior parameters. We start with an identity transformation,
σw of half a voxel in each direction, and uw set to zero, and VI is run until the
loss value plateaus. We are unable to achieve convergence in the sense of the
magnitude of updates to Σw.

Regularisation strength. In the first experiment we show the benefits of
the proposed regularisation loss. We compare the output of VI when using a
fixed regularisation weight λ P t0.01, 0.1u, the baseline method for learnable
regularisation strength, and the novel regularisation loss. The result is shown
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in Figure 1. The output transformation is highly sensitive to the regularisation
weight and so is registration uncertainty, hence the need for a reliable method
to infer regularisation strength from data.

Fixed image F and dis-
placement corresp. µw

Warped moving image
Mpµwq

(a) λ “ 0.01 (b) λ “ 0.1 (c) Baseline (d) Ours

Fig. 1: Output when using a fixed regularisation weight, the baseline method for
learnable regularisation strength, and our regularisation loss. For the baseline,
the regularisation strength is so high that it prevents alignment of the images,
showing that the existing schemes for inferring regularisation strength from data
are inadequate in cases with a very large number of d.f. Middle slice of 3D images
in the axial plane.

In Figure 2 we show the output of VI for two pairs of images which re-
quire different regularisation strengths. We choose a fixed image F , two moving
images M1 and M2, and two regularisation weights λ P t0.1, 0.4u. Use of our
regularisation loss, which at initialisation corresponds to λ “ 0.4, prevents over-
smoothing. Due to its characteristics, it is preferable to initialise its strength to
a higher value.

Uncertainty quantification. To evaluate registration uncertainty we cal-
culate the mean and the standard deviation of displacement using 50 samples
selected at random from the output of SG-MCMC. Figure 3 shows the result
for a pair of input images. In order to assess the results quantitatively, we use
subcortical structure segmentations. We calculate Dice scores (DSC) and mean
surface distances (MSD) between the fixed segmentation and the moving seg-
mentation warped with the mean transformation, and compare them to those
obtained using the 50 sample transformations. We report these metrics in Table 1
and Figure 3.

The statistics prove that the posterior samples output by SG-MCMC are
of high quality and varied. For a small number of structures (the left and right
accumbens and thalamus, and the right caudate) the metrics are minimally worse
for the mean transformation than before non-rigid registration. In case of the
thalamus this can be attributed to a sub-optimal regularisation strength. The
registration error for the accumbens and the caudate is likely caused by their
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Fixed image F and dis-
placement corresp. µw

M1 (a) λ “ 0.1 (b) λ “ 0.4 (c) Ours

Warped moving image
M1pµwq

Fixed image F and
displacement corresp. µw

M2 (d) λ “ 0.1 (e) λ “ 0.4 (f) Ours

Warped moving image
M2pµwq

Fig. 2: Output of VI for two pairs of images which require different regularisa-
tion strengths. At initialisation the strength of our loss corresponds to the fixed
regularisation weight λ “ 0.4. Middle slice of 3D images in the axial plane.

Table 1: DSC and MSD for a number of subcortical structures pre-registration
and after applying the mean transformation calculated from the output of SG-
MCMC.

DSC MSD (mm)

structure before mean SD before mean SD

brain stem 0.815 0.879 0.002 1.85 1.17 0.03
L/R accumbens 0.593/0.653 0.637/0.592 0.036/0.022 1.20/1.13 1.03/1.18 0.13/0.10
L/R amygdala 0.335/0.644 0.700/0.700 0.019/0.015 2.18/1.44 1.12/1.12 0.08/0.08
L/R caudate 0.705/0.813 0.743/0.790 0.011/0.008 1.37/1.44 1.21/0.99 0.05/0.06
L/R hippocampus 0.708/0.665 0.783/0.781 0.009/0.009 1.45/1.60 1.00/1.03 0.05/0.05
L/R pallidum 0.673/0.794 0.702/0.798 0.014/0.014 1.56/1.12 1.29/0.98 0.07/0.08
L/R putamen 0.772/0.812 0.835/0.856 0.007/0.006 1.30/1.02 0.92/0.78 0.05/0.05
L/R thalamus 0.896/0.920 0.881/0.901 0.005/0.004 0.90/0.67 0.92/0.86 0.04/0.05

tiny size. Thus the label distribution appears credible in the sense defined in [17].
The output is also consistent with previous findings on registration uncertainty,
e.g. higher uncertainty in homogenous regions [23].
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(a) Fixed image (b) Moving image (c) Mean (d) SD magnitude

Fig. 3: Output of SG-MCMC for a pair of input images, calculated using 50
samples.

6 Discussion

Modelling assumptions. The quality of uncertainty estimates is sensitive to
the initialisation of regularisation loss hyperparameters and the validity of model
assumptions. These include: 1. coinciding image intensities up to the expected
spatial noise offsets, 2. ignoring spatial correlations between residuals, and 3.
the spherical covariance structure of the approximate posterior in VI. The first
assumption is valid in case of mono-modal registration but the model can be
easily adapted to other settings by changing the data loss. In future work we
plan to the use a frequency-domain model to deal with the last assumption.

Implementation and computational efficiency. The experiments were
run on a system with an Intel i9-7900X CPU and a GeForce RTX 2080Ti GPU.
VI took approx. 5 min per image pair and SG-MCMC produced 5 samples per
second. Due to lack of data it is difficult to directly compare the runtime with
that of other Bayesian image registration methods, but it is an order of magni-
tude better than in other recent work [15], while also being three- rather than
two-dimensional.

7 Conclusion

In this paper we present an efficient Bayesian model for three-dimensional medi-
cal image registration. The newly proposed regularisation loss allows to tune the
regularisation strength using a parameterisation of transformation that involves
a very large number of d.f. Sampling from the posterior distribution via SG-
MCMC makes it possible to quantify registration uncertainty for high-resolution
images.
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