3,823 research outputs found

    Software tools for the cognitive development of autonomous robots

    Get PDF
    Robotic systems are evolving towards higher degrees of autonomy. This paper reviews the cognitive tools available nowadays for the fulfilment of abstract or long-term goals as well as for learning and modifying their behaviour.Peer ReviewedPostprint (author's final draft

    Knowledge-based machine vision systems for space station automation

    Get PDF
    Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed

    Robust Scene Estimation for Goal-directed Robotic Manipulation in Unstructured Environments

    Full text link
    To make autonomous robots "taskable" so that they function properly and interact fluently with human partners, they must be able to perceive and understand the semantic aspects of their environments. More specifically, they must know what objects exist and where they are in the unstructured human world. Progresses in robot perception, especially in deep learning, have greatly improved for detecting and localizing objects. However, it still remains a challenge for robots to perform a highly reliable scene estimation in unstructured environments that is determined by robustness, adaptability and scale. In this dissertation, we address the scene estimation problem under uncertainty, especially in unstructured environments. We enable robots to build a reliable object-oriented representation that describes objects present in the environment, as well as inter-object spatial relations. Specifically, we focus on addressing following challenges for reliable scene estimation: 1) robust perception under uncertainty results from noisy sensors, objects in clutter and perceptual aliasing, 2) adaptable perception in adverse conditions by combined deep learning and probabilistic generative methods, 3) scalable perception as the number of objects grows and the structure of objects becomes more complex (e.g. objects in dense clutter). Towards realizing robust perception, our objective is to ground raw sensor observations into scene states while dealing with uncertainty from sensor measurements and actuator control . Scene states are represented as scene graphs, where scene graphs denote parameterized axiomatic statements that assert relationships between objects and their poses. To deal with the uncertainty, we present a pure generative approach, Axiomatic Scene Estimation (AxScEs). AxScEs estimates a probabilistic distribution across plausible scene graph hypotheses describing the configuration of objects. By maintaining a diverse set of possible states, the proposed approach demonstrates the robustness to the local minimum in the scene graph state space and effectiveness for manipulation-quality perception based on edit distance on scene graphs. To scale up to more unstructured scenarios and be adaptable to adversarial scenarios, we present Sequential Scene Understanding and Manipulation (SUM), which estimates the scene as a collection of objects in cluttered environments. SUM is a two-stage method that leverages the accuracy and efficiency from convolutional neural networks (CNNs) with probabilistic inference methods. Despite the strength from CNNs, they are opaque in understanding how the decisions are made and fragile for generalizing beyond overfit training samples in adverse conditions (e.g., changes in illumination). The probabilistic generative method complements these weaknesses and provides an avenue for adaptable perception. To scale up to densely cluttered environments where objects are physically touching with severe occlusions, we present GeoFusion, which fuses noisy observations from multiple frames by exploring geometric consistency at object level. Geometric consistency characterizes geometric compatibility between objects and geometric similarity between observations and objects. It reasons about geometry at the object-level, offering a fast and reliable way to be robust to semantic perceptual aliasing. The proposed approach demonstrates greater robustness and accuracy than the state-of-the-art pose estimation approach.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163060/1/zsui_1.pd

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry

    Programming by Demonstration on Riemannian Manifolds

    Get PDF
    This thesis presents a Riemannian approach to Programming by Demonstration (PbD). It generalizes an existing PbD method from Euclidean manifolds to Riemannian manifolds. In this abstract, we review the objectives, methods and contributions of the presented approach. OBJECTIVES PbD aims at providing a user-friendly method for skill transfer between human and robot. It enables a user to teach a robot new tasks using few demonstrations. In order to surpass simple record-and-replay, methods for PbD need to \u2018understand\u2019 what to imitate; they need to extract the functional goals of a task from the demonstration data. This is typically achieved through the application of statisticalmethods. The variety of data encountered in robotics is large. Typical manipulation tasks involve position, orientation, stiffness, force and torque data. These data are not solely Euclidean. Instead, they originate from a variety of manifolds, curved spaces that are only locally Euclidean. Elementary operations, such as summation, are not defined on manifolds. Consequently, standard statistical methods are not well suited to analyze demonstration data that originate fromnon-Euclidean manifolds. In order to effectively extract what-to-imitate, methods for PbD should take into account the underlying geometry of the demonstration manifold; they should be geometry-aware. Successful task execution does not solely depend on the control of individual task variables. By controlling variables individually, a task might fail when one is perturbed and the others do not respond. Task execution also relies on couplings among task variables. These couplings describe functional relations which are often called synergies. In order to understand what-to-imitate, PbDmethods should be able to extract and encode synergies; they should be synergetic. In unstructured environments, it is unlikely that tasks are found in the same scenario twice. The circumstances under which a task is executed\u2014the task context\u2014are more likely to differ each time it is executed. Task context does not only vary during task execution, it also varies while learning and recognizing tasks. To be effective, a robot should be able to learn, recognize and synthesize skills in a variety of familiar and unfamiliar contexts; this can be achieved when its skill representation is context-adaptive. THE RIEMANNIAN APPROACH In this thesis, we present a skill representation that is geometry-aware, synergetic and context-adaptive. The presented method is probabilistic; it assumes that demonstrations are samples from an unknown probability distribution. This distribution is approximated using a Riemannian GaussianMixtureModel (GMM). Instead of using the \u2018standard\u2019 Euclidean Gaussian, we rely on the Riemannian Gaussian\u2014 a distribution akin the Gaussian, but defined on a Riemannian manifold. A Riev mannian manifold is a manifold\u2014a curved space which is locally Euclidean\u2014that provides a notion of distance. This notion is essential for statistical methods as such methods rely on a distance measure. Examples of Riemannian manifolds in robotics are: the Euclidean spacewhich is used for spatial data, forces or torques; the spherical manifolds, which can be used for orientation data defined as unit quaternions; and Symmetric Positive Definite (SPD) manifolds, which can be used to represent stiffness and manipulability. The Riemannian Gaussian is intrinsically geometry-aware. Its definition is based on the geometry of the manifold, and therefore takes into account the manifold curvature. In robotics, the manifold structure is often known beforehand. In the case of PbD, it follows from the structure of the demonstration data. Like the Gaussian distribution, the Riemannian Gaussian is defined by a mean and covariance. The covariance describes the variance and correlation among the state variables. These can be interpreted as local functional couplings among state variables: synergies. This makes the Riemannian Gaussian synergetic. Furthermore, information encoded in multiple Riemannian Gaussians can be fused using the Riemannian product of Gaussians. This feature allows us to construct a probabilistic context-adaptive task representation. CONTRIBUTIONS In particular, this thesis presents a generalization of existing methods of PbD, namely GMM-GMR and TP-GMM. This generalization involves the definition ofMaximum Likelihood Estimate (MLE), Gaussian conditioning and Gaussian product for the Riemannian Gaussian, and the definition of ExpectationMaximization (EM) and GaussianMixture Regression (GMR) for the Riemannian GMM. In this generalization, we contributed by proposing to use parallel transport for Gaussian conditioning. Furthermore, we presented a unified approach to solve the aforementioned operations using aGauss-Newton algorithm. We demonstrated how synergies, encoded in a Riemannian Gaussian, can be transformed into synergetic control policies using standard methods for LinearQuadratic Regulator (LQR). This is achieved by formulating the LQR problem in a (Euclidean) tangent space of the Riemannian manifold. Finally, we demonstrated how the contextadaptive Task-Parameterized Gaussian Mixture Model (TP-GMM) can be used for context inference\u2014the ability to extract context from demonstration data of known tasks. Our approach is the first attempt of context inference in the light of TP-GMM. Although effective, we showed that it requires further improvements in terms of speed and reliability. The efficacy of the Riemannian approach is demonstrated in a variety of scenarios. In shared control, the Riemannian Gaussian is used to represent control intentions of a human operator and an assistive system. Doing so, the properties of the Gaussian can be employed to mix their control intentions. This yields shared-control systems that continuously re-evaluate and assign control authority based on input confidence. The context-adaptive TP-GMMis demonstrated in a Pick & Place task with changing pick and place locations, a box-taping task with changing box sizes, and a trajectory tracking task typically found in industr

    Probabilistic movement primitives for coordination of multiple human–robot collaborative tasks

    Get PDF
    This paper proposes an interaction learning method for collaborative and assistive robots based on movement primitives. The method allows for both action recognition and human–robot movement coordination. It uses imitation learning to construct a mixture model of human–robot interaction primitives. This probabilistic model allows the assistive trajectory of the robot to be inferred from human observations. The method is scalable in relation to the number of tasks and can learn nonlinear correlations between the trajectories that describe the human–robot interaction. We evaluated the method experimentally with a lightweight robot arm in a variety of assistive scenarios, including the coordinated handover of a bottle to a human, and the collaborative assembly of a toolbox. Potential applications of the method are personal caregiver robots, control of intelligent prosthetic devices, and robot coworkers in factories
    • …
    corecore