52,631 research outputs found

    A breast cancer diagnosis system: a combined approach using rough sets and probabilistic neural networks

    Get PDF
    In this paper, we present a medical decision support system based on a hybrid approach utilising rough sets and a probabilistic neural network. We utilised the ability of rough sets to perform dimensionality reduction to eliminate redundant attributes from a biomedical dataset. We then utilised a probabilistic neural network to perform supervised classification. Our results indicate that rough sets was able to reduce the number of attributes in the dataset by 67% without sacrificing classification accuracy. Our classification accuracy results yielded results on the order of 93%

    Parameter Selection and Uncertainty Measurement for Variable Precision Probabilistic Rough Set

    Get PDF
    In this paper, we consider the problem of parameter selection and uncertainty measurement for a variable precision probabilistic rough set. Firstly, within the framework of the variable precision probabilistic rough set model, the relative discernibility of a variable precision rough set in probabilistic approximation space is discussed, and the conditions that make precision parameters α discernible in a variable precision probabilistic rough set are put forward. Concurrently, we consider the lack of predictability of precision parameters in a variable precision probabilistic rough set, and we propose a systematic threshold selection method based on relative discernibility of sets, using the concept of relative discernibility in probabilistic approximation space. Furthermore, a numerical example is applied to test the validity of the proposed method in this paper. Secondly, we discuss the problem of uncertainty measurement for the variable precision probabilistic rough set. The concept of classical fuzzy entropy is introduced into probabilistic approximation space, and the uncertain information that comes from approximation space and the approximated objects is fully considered. Then, an axiomatic approach is established for uncertainty measurement in a variable precision probabilistic rough set, and several related interesting properties are also discussed. Thirdly, we study the attribute reduction for the variable precision probabilistic rough set. The definition of reduction and its characteristic theorems are given for the variable precision probabilistic rough set. The main contribution of this paper is twofold. One is to propose a method of parameter selection for a variable precision probabilistic rough set. Another is to present a new approach to measurement uncertainty and the method of attribute reduction for a variable precision probabilistic rough set

    A machine learning approach to differentiating bacterial from viral meningitis

    Get PDF
    Clinical reports indicate that differentiating bacterial from viral (aseptic) meningitis is still a difficult issue, compounded by factors such as age and time of presentation. Clinicians routinely rely on the results from blood and cerebrospinal fluid (CSF) to discriminate bacterial from viral meningitis. Tests such as the CSF Gram stain performed prior to broad-spectrum antibiotic treatment yield sensitivities between 60 and 92%. Sensitivity can be increased by performing additional laboratory testing, but the results are never completely accurate and are not cost effective in many cases. In this study, we wished to determine if a machine learning approach, based on rough sets and a probabilistic neural network could be used to differentiate between viral and bacterial meningitis. We analysed a clinical dataset containing records for 581 cases of acute bacterial or viral meningitis. The rough sets approach was used to perform dimensionality reduction in addition to classification. The results were validated using a probabilistic neural network. With an overall accuracy of 98%, these results indicate rough sets is a useful approach to differentiating bacterial from viral meningitis

    Probabilistic Rough indices in Information Systems under Intuitionistic Fuzziness

    Get PDF
    The concept of classifying the records of the information system has been due to Two Way Approach [ ie, lower and upper approximations ] of Pawlak’s rough sets model. But the approximation does to take into consideration the degree of contribution of the basic categories. This deficiency was eliminated in early nineties by Ziarko who has proposed VPRS model and later on various efforts were made in defining a new Probabilistic Rough Set Model.In 2004, G.Ganesan et.al., have introduced the concept of classifying the records of the information system with fuzzy decision attributes using a threshold. Later, G. Ganesan extended this algorithm for any information system with intuitionistic fuzzydecision attributes.In this paper, we extended the work of G.Ganesan et.al., for the Probabilistic Rough Set Model to improve the efficiency of rough indices in the information system with intuitionistic fuzzy decision attributes

    Denoising Diffusion Probabilistic Models for Generation of Realistic Fully-Annotated Microscopy Image Data Sets

    Full text link
    Recent advances in computer vision have led to significant progress in the generation of realistic image data, with denoising diffusion probabilistic models proving to be a particularly effective method. In this study, we demonstrate that diffusion models can effectively generate fully-annotated microscopy image data sets through an unsupervised and intuitive approach, using rough sketches of desired structures as the starting point. The proposed pipeline helps to reduce the reliance on manual annotations when training deep learning-based segmentation approaches and enables the segmentation of diverse datasets without the need for human annotations. This approach holds great promise in streamlining the data generation process and enabling a more efficient and scalable training of segmentation models, as we show in the example of different practical experiments involving various organisms and cell types.Comment: 9 pages, 2 figure
    • …
    corecore