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A Machine Learning Approach to Differentiating Bacterial From Viral
Meningitis

Revett, K., Gorunescu F., Gorunescu M., & Ene M.

Abstract -- Clinical reports indicate that
differentiating bacterial from viral (aseptic)
meningitis is still a difficult issue, compounded
by factors such as age and time of presentation.
Clinicians routinely rely on the results from
blood and cerebrospinal fluid (CSF) to
discriminate bacterial from viral meningitis.
Tests such as the CSF Gram stain performed
prior to broad-spectrum antibiotic treatment yield
sensitivities between 60 and 92%. Sensitivity can
be increased by performing additional laboratory
testing, but the results are never completely
accurate and are not cost effective in many cases.
In this study, we wished to determine if a
machine learning approach, based on rough sets
and a probabilistic neural network could be used
to differentiate between viral and bacterial
meningitis. We analysed a clinical dataset
containing records for 581 cases of acute
bacterial or viral meningitis. The rough sets
approach was used to perform dimensionality
reduction in addition to classification.  The
results were validated using a probabilistic
neural network.  With an overall accuracy of
98%, these results indicate rough sets is a useful
approach to differentiating bacterial from viral
meningitis.
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1. INTRODUCTION

Meningitis is an infection of tissue that forms a
protective covering of the surface of the brain
(the meninges).  The primary cause is due to
either bacterial or viral infection.  The primary
symptoms of meningitis are: high fever, lethargy,
vomiting, upper respiratory symptoms, seizure,
and petechia [1].  Though not as common as it
once was, it is still a disease that can be fatal if
left untreated.  Meningitis is a disease with a
high mortality rate – which ranges from 10-30%,
despite advances in treatment estimates indicate
that 5-40% of the survivors suffer permanent
hearing deficiencies [2]. With the advent of
vaccines such as the Haemophilus influenzae
type b (introduced in 1990), the incidence has
declined, with a reduction of up to 94% in the
number of new cases of H. influenzae meningitis
(bacterial).   In 2000, the conjugate
pneumococcal vacine was introduced, which
further reduced the number of new cases
reported.  Yet despite these medical advances, in
the United States alone, there are on average
6,000 new cases of bacterial meningitis
diagnosed per annum, half of which affect
people under the age of 18 [3].  With regards to
viral meningitis (the major form of aseptic
meningitis) 36,000 hospitalisations and 175,000
hospital days occur annually in the United States
alone, yielding an estimated annual cost of
between $234 and $310 million [4].
  The clinical outcome for bacterial meningitis is
much graver than the aseptic (viral) form of the
disease.  When a patient is presented to an
emergency healthcare facility, the patient
receives a broad-spectrum antibiotic when
meningitis is suspected.  The next stage in the
diagnostic procedure entails bacterial cultures, a
CT scan and lumbar puncture if the CT scan s
negative. Generally, physicians rely on the
results of the bacterial culture (specifically the
Gram stain) to differentiate between bacterial
and viral meningitis.  In addition, other
parameters such as CSF  white blood cell
count(WBC), blood and CSF glucose levels,
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polymorhonuclear (PMN) cells, patient age,
month of the year (i.e. summer months are
termed the ‘entervirus season’), CSF protein, and
CSF leukocyte count among others  are
measured as clinically relevant to diagnosis.
Unfortunately, these measurements are not
always performed due to staff shortages, or are
performed after a delay after hospitalization
which may alter the values of these parameters to
such an extent that their values are no longer
indicative of the diagnosis – at least without
taking the time factor into account.
    Several attempts to produce statistical based
models have published [2,3,4] using multivariate
statistical and recursive partitioning models.
These results have proven successful in
producing accurate classification results – but are
highly dependent on the dataset available and are
laborious – in that the variables are analysed in a
univariate fashion and then combined into a
multi-variate model either directly through
logistic analysis or through recursive
partitioning.   In this paper, we have applied the
rough sets paradigm to the study of a rather large
but incomplete dataset of patients that were
diagnosed with either bacterial or aseptic (viral)
meningitis.  We propose that rough sets has the
capacity to generate multivariate models without
the need to analyse each variable in a univariate
fashion.  In addition, rough sets is able to
generate a set of decision rules which have a
very readable form that can be directly used by
clinicians.  Lastly, the classification accuracy of
rough sets on small biomedical datasets has been
demonstrated to be as accurate if not more so
than most ‘traditional’ methods [5,6].  In order to
validate the results we derived from our rough
sets analysis, we use a probabilistic neural
network (PNN).  PNN have the ability to
perform very fast classification and has been
used successfully on a number of small
biomedical datasets.  In the next section, we
present an overview of the PNN and rough sets
methodology, along with a brief description of
the dataset.  Next we present some of the key
results of this work, followed by a brief
discussion of the main conclusions that can be
dawn from this research.

2. METHODS

2.1 ROUGH SETS

Our hepatic cancer diagnosis pre-

processing/classifier is based on the concept of

approximate reducts derived from the data-

mining paradigm of the theory of Rough Sets

[7],[8].  We divide the table into training and test

cases, employing N-fold cross validation.  The

data set is transformed into a decision table (DT)

from which rules are generated to provide an

automated classification capacity.  In generating

the decision table, each row consists of an

observation (also called an object) and each

column is an attribute, with the last one as the

decision for this object {d}.  Formally, a DT is a

pair A = (U, A∪{d}) where d � A is the decision
attribute, where U is a finite non-empty set of

objects called the universe and A is a finite non-

empty set of attributes such that a:U->Va is

called the value set of a. Rough sets seeks data

reduction through the concept of equivalence

classes (through the indiscernibiliy relation).  By

generating such classes, one can reduce the

number of attributes in the decision table by

selecting any member of the equivalence class as

a representation of the entire class.  This process

generates a series of reducts – which are

subsequently used in the classification process.

Finding the reducts is an NP-hard problem, but

fortunately there are good heuristics that can

compute a sufficient amount of approximate

reducts in reasonable time to be usable. In the

software system that we employ  an order based

genetic algorithm (o-GA) ([9]) is used to search

through the decision table for approximate

reducts which result in a series of ‘if..then..’

decision rules.  We then apply these decision

rules to the test data and measure specificity and

sensitivity of the resulting classifications.  In

addition, we examined in a systematic fashion,

which attributes were most informative in the

decision process – this can be determined by

examining the correlation, coverage, and support

of the attributes in the final set of decision rules.

This provides us with the entry point for using

the probabilistic neural network approach – as a

corroborative technique in his particular

experiment, which we describe in the next

section.

2.2 PROBABILISTIC NEURAL NETWORKS

The PNNs are basically classifiers. The general
classification problem is to determine the
category membership of a multivariate sample
data (i.e. a p-dimensional random vector x) into

one of q possible groups iΩ , i = 1, 2,…, q,
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based on a set of measurements. If we know the
probability density functions (p.d.f.) fi(x), usually
the Parzen-Cacoulos or Parzen like p.d.f.
classifiers:

2

/ 2 2
1

1 1
( ) exp

(2 ) 2

im
j

i p p
ji

x x
f x

mπ σ σ=

 −
 = ⋅ ⋅ −
 
 

∑ ,

(1)

the a priori probabilities hi = P( iΩ ) of

occurrence of patterns from categories iΩ  and

the loss (or cost) parameters li  associated with all

incorrect decisions given Ω  = iΩ , then,

according to the Bayesian decision rule, we

classify x into the category iΩ  if the inequality

li hi fi(x) > lj hj fj(x) holds true. The standard
training procedure for PNN requires a single pass
over all the training patterns, giving them the
advantage of being faster than the feed-forward
neural networks [10].

Basically, the architecture of PNN is limited to
three layers: the input/pattern layer, the
summation layer and the output layer. Each
input/pattern node forms a product of the input
pattern vector x with a weight vector Wi and then
perform a nonlinear operation, that is

2exp[ ( ) ( ) /(2 )]i iW x W xτ σ− − −  (assuming that

both x and Wi are normalized to unit length),
before outputting its activation level to the
summation node. Each summation node receives
the outputs from the input/pattern nodes
associated with a given class and simply sums
the inputs from the pattern units that correspond
to the category from which the training pattern

was selected, 2exp[ ( ) ( ) /(2 )]i ii W x W xτ σ− − −∑ .

The output nodes produce binary outputs by
using the inequality:

         2exp[ ( ) ( ) /(2 )]i ii W x W xτ σ− − −∑ >

         2exp[ ( ) ( ) /(2 )]j jj W x W x
τ σ− − −∑ ,   (2)

related to two different categories iΩ  and jΩ .

The key to obtain a good classification using
PNN is to optimally estimate the two parameters
of the Bayes decision rule, the misclassification
costs and the prior probabilities. In our practical
experiment we have estimate them heuristically.
Thus, as concerns the costs parameters, we have
considered them depending on the average
distances Di, inversely proportional, that is li =
1/Di. As concerns the prior probabilities, they
measure the membership probability in each

group and, thus, we have considered them equal
to each group size, that is hi = mi. As in our
previous work, we employed an evolutionary
technique based on the genetic algorithm to find
the smoothing parameters (cf [11] for
implementation details).  To avoid overfitting,
the data set was randomly partitioned into two
sets: the training set and the validation set. A
number of 458 persons (70%) of the initial group
were withheld from the initial group for the
smoothing factor adjustment (the training
process). Once optimal smoothing parameters

σ ’s for each decision category were obtained

using the training set, the trained PNN was
applied to the validation set (the remaining 241
persons).

2.3 DECISION TABLE DESCRIPTION

The dataset that was used in this study consisted
on 581 records with 21 attributes for each.
Unfortunately, many of the objects contains
missing values – yielding a ‘swiss cheese’ affect
to the dataset.  In all, there were a total of 110
objects that were complete.  The attributes
contained a mixture of continuous and discrete
data items and there were 2 decision classes:
bacterial or viral meningitis.  The data was
derived in a retrospective study from patients
that were hospitalised between January 1969 and
July 1980.   For a complete listing of the 21
attributes see reference [2] for details.

3. RESULTS

For the rough sets based approach, several steps
are required in order to classify the data.  The
first stage with this dataset was to use imputation
or not. We employ a conditioned mean/mode
imputation algorithm when imputation is used
throughout this study.  The dataset contained a
significant number of missing values – that were
randomly spread across attributes.  When
imputation was used, we obviously were able to
use the full complement of objects found in the
dataset – 581.   The next stage was to then
discretise those attributes that contained
continuous values.  This was performed using an
entropy/MDL algorithm.  Next, a partitioning of
the data into a test and training set was
performed – we tried various splits: 50/50,
60/40, 75/25 and 80/20 in this work.  We
performed 5-fold cross validation of the data, in
order to enhance the statistical validity of the
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Distribution of diagnosis (training 

dataset)

71%

29%

Diagnosis a0 Diagnosis a1

Distribution of diagnosis (testing 

dataset)

55%

45%

Diagnosis a0 Diagnosis a1

Figure 1. This figure displays the diagnosis distributions for the training and testing set used
For the PNN experiments.  Please note the diagnosis a0 represents viral and a1 represents bacterial
meningitis.

Figure 2a,b) Statistics of the attributes employed in the testing (a) and training (b) data
for the reduced rough sets and the PNN algorithms.

TRAINING

DATASET
Mean

Confidence
-95%

Confidence
+95%

Std.Dev.

Age 18.46 13.13 23.79 21.49

Bloodgl 129.07 117.41 140.74 47.07

Gl 59.86 53.03 66.69 27.56

Pr 147.55 80.57 214.52 270.29

Phys 54.40 45.52 63.27 35.82

Lymphs 53.00 35.07 70.92 72.32

TESTING

DATASET

Mean
Confidence

-95%
Confidence
+95%

Std.Dev.

Age 18.46 13.13 23.79 21.49

Bloodgl 129.07 117.41 140.74 47.07

Gl 59.86 53.03 66.69 27.56

Pr 147.55 80.57 214.52 270.29

Phys 54.40 45.52 63.27 35.82

Lymphs 53.00 35.07 70.92 72.32
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Figure 3) Statistical analysis of the attributes comparing between groups
using the standard student t test.

t-test for independent

samples
t-value df p F-ratio P

Age (training) vs. Age
(testing)

-0.59 114 0.55 1.17 0.53

Bloodgl (training) vs.
Bloodgl (testing)

-1.78 114 0.07 2.18 0.003

Gl (training) vs. Gl (testing) -0.10 114 0.91 1.84 0.02

Pr (training) vs. Pr (testing) 0.14 114 0.88 3.18 0.00

Phys (training) vs. Phys
(testing)

-0.24 114 0.80 1.14 0.59

Lymphs (training) vs.
Lymphs (testing)

0.99 114 0.32 3.74 0.00

results.  For the PNN approach, we used only
those objects and attributes that formed the
largest complete set.  This left us with 6 out of
the 21 attributes, and their names and statistical
values are displayed in Figures 2 and 3 above.  It
should be noted that these are the attributes that
are sited as most effective at differentiating
bacterial from viral meningitis [2,3].
   The key results from the rough sets approach
can be summarised by a confusion matrix, which
very concisely depicts the sensitivity, specificity,
positive predictive value and negative predictive
value along with the total classification accuracy.
In table 1 below, we depict the confusion
matrices for several experiments where we
employed data imputation.

Table 1. Confusion matrices of 3 rough sets
based classifications using the reduced dataset
(no imputation, 110 objects).  The overall
classification accuracy is displayed in the lower
right hand corner of each subtable.

50/50 Bacterial Viral

Bacterial 24 4 0.857

Viral 4 14 0.778

0.857 0.778 0.826

75/25

Bacterial 16 3 0.84

Viral 0 10 1.0

1.0 0.769 0.896

80/20

Bacterial 13 1 0.929

Viral 0 9 1.0

1.0 0.90 0.857

The results depicted in table 1 are of course
representative of a large number of experiments
that were performed (for cross validation
purposes).   It was interesting to note that as the
size of the training set increased, the accuracy
rose as well.  This was a consistent trend
throughout the experiments performed and is
probably a reflection of the lack of data and/or
consistency within the data.  In order to
investigate this observation more fully, we next
evaluated the rule set that was generated (we use
an order preserving genetic algorithm according
to [9]) to sample through the reducts. First, one
can examine the number of rules that are
generated, their average length and the coverage.
In these experiments, the number rules was fairly
small – on the order  of 50-400, depending on
whether or not the full dataset was employed
(with imputation) or the reduced dataset (i.e.
complete objects – 110).  It was found that with
the full dataset – with imputation and hence the
full complement of 21 attributes, the rule set
tended to be quiet short – on the order of 40-60
rules.  On the other hand, the completed dataset –
without imputation (the attributes used are
displayed in Figure 2) yielded a much larger
number of rules – on the order of 500.  In
addition, the rule set for the smaller decision
table (110 objects) had on average a higher
cardinality and slightly less coverage than the
imputed dataset (average 4 attributes versus 2).
We therefore decided to corroborate the results
from the rough sets approach using a PNN.  The
classification results from the PNN gave an
accuracy of 86.3% using the reduced attributes
set – with no missing items.  This result was
quite consistent with our results – when using the
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same ration of training and testing as was
employed in the rough sets experiments (see
Figure1 above).  We therefore concluded that the
results generated from the rough sets experiment
were validated not only internally using 5-fold
cross validation, but also with an independent
classification technique, the probabilistic neural
network.
   We next display a sample of the rule sets that
were generated.  This is one of the key features
of the rough sets algorithm – the end result is a
series of easily understood rules in conjunctive
normal form.  These rules can form the basis of
an inference engine for an expert system – but at
the very least lend themselves to direct
comprehension by a person trained in the domain
of the dataset.

Table 2.  Sample rule set generated using rough
sets from the same data presented in Table 1.

Lymphs([*, 26)) AND Gl([*, 150)) AND
Bloodgl ([80.1,*)) => abm(0)
Lymphs([*, 26)) AND Bloodgl([*, 26)) =>
abm(0)

Lymphs ([26, *)) AND Gl([150.1, 260)) AND
reds2([*, 13)) => abm(1)
Age([*, 4)) => abm(1)

Age([*,4)) AND Gl([150.1, 260)) => abm(1)

4. DISCUSSSION

The results presented in this paper demonstrate
that rough sets is a very useful tool for the
analysis of complex datasets.  Even though the
particular dataset employed in this study was
fairly small (581 objects in total), the complexity
of biomedical datasets, with all of its inherent
noise and variability renders them generally
resistant to full and complete analysis.  In this
paper, we were able to generate a classifier that
has very high accuracy, reproducibility, and
understandability.  The accuracy generated by
indicates that the system generates proper
classification results on par with state-of-the art
medical diagnostics.  The reproducibility was
evident from the cross-validation results, which
indicated that the classification accuracy was
robust under the given sample set.  The rule set
produced is in the form of a conjunctive normal
form – with the attributes in question and their
values stated explicitly within the rule set.  The
accuracy of the results were corroborated using

an independent classifier – the PNN.  Although
the rough sets results were slightly better than
the PNN algorithm.  Independent corroboration
is very useful and provides support to the results.
  Although the results are quite promising,
further work in this area is required in order to
ensure that these results are broadly applicable in
this domain – that we have a more substantial
and complete dataset with which to work with.
In this way, the resulting classifier can be
enhanced and made more effective as an
adjunctive diagnostic tool for various forms of
meningitis.
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