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Abstract - The concept of classifying the records of the information system has been due to Two Way Approach [ ie, lower and upper approximations 

] of Pawlak’s rough sets model. But the approximation does to take into consideration the degree of contribution of the basic categories. This 

deficiency was eliminated in early nineties by Ziarko who has proposed VPRS model and later on various efforts were made in defining a new 

Probabilistic Rough Set Model. In 2004, G.Ganesan et.al., have introduced the concept of classifying the records of the information system with 

fuzzy decision attributes using a threshold. Later, G. Ganesan extended this algorithm for any information system with intuitionistic fuzzy decision 

attributes. In this paper, we extended the work of G.Ganesan et.al., for the Probabilistic Rough Set Model to improve the efficiency of rough indices 

in the information system with intuitionistic fuzzy decision attributes. 
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1. INTRODUCTION  
 
In 1982, Z. Pawlak defined a mathematical model namely Rough Sets 

[6,7] which has applications in several areas, including the fields of 

knowledge acquisition and discovery, information retrieval etc. 

According to this theory, using either of the two ways of performing 

union of Basic categories, a given input or concept can be 

approximated. This limitation has been eliminated by Ziarko in 1993. 

Later this model has further been extended by Bing Zhou, YY Yao, 

Slezak and others. 

Later, in 2005, G. Ganesan et, al., discussed the importance of 
defining the threshold [3] in computing the rough fuzziness. In 2008, 
G.Ganesan et.al., introduced the concept of rough classification [4] in 
information systems using these threshold in any information systems 
with fuzzy decision attributes. The initial approach of Naïve Bayesian 
Rough Set Model [10] was discussed in [9] by Slezak. Recently, 
Yiyu Yao and Bing Zhou discussed the same approach. In this paper, 
we extended the work of G.Ganesan et. al., on rough indexing to the 
information systems with intuitionistic fuzzy [1] decision attributes 
and functions with Probabilistic Naïve Bayesian Rough Set Model. 
 
 
 

2. DECISION THEORETIC AND 
PROBABILISTIC ROUGH SETS 

 
Pawlak’s rough sets theory defines two way approximations [6,7] 
namely lower and upper approximations for a given input. For a 
given finite universe of discourse U and an equivalence relation E, 

we define the equivalence class of any xU to 
is a partition of the universe U.  
For  a  given  concept  C,  Pawlak  defined  the  lower 

 

approximation  as  apr E C  x U / x E  C and 
 

      

upper  approximation as 
 

  

E C  x U / x E C . 

  

 apr  
  

Some of the researchers quote this model using Three Way Approach 
namely positive, negative and boundary regions which are defined as 
follows: 
 
 

Positive Region: POS E C  x U / xE   C
 

Boundary: BNDE C  x U / x E C x EC 
 

Negative region: NEGE C x U / x E C  
 
Since Pawlak’s model is restrictive, several researchers focused on 
generalizing the approach towards parameterized rough set model, 
probabilistic rough set model, Variable Precision rough set model 
and generalized rough set model.  
In 1994, Pawlak and Skowron [8] defined rough membership 
function by considering degrees of overlap between equivalence 
classes and a concept C to be approximated and is viewed as the 
conditional probability of an object belongs to C given that the 

object is in [x] (for simplicity, we denote [x]E with [x]) 
 

which is given as Pr C     C x    
 

    

       

x 
    

 

  x       
  

Using the definition quoted above, in [10], the positive, boundary and 
negative regions are defined as follows: 
 
 

𝑃𝑂𝑆 𝐶 =  𝑥 ∈  𝑈
𝑃𝑟  𝐶  𝑥   = 1   

 

𝐵𝑁𝐷 𝐶 =  𝑥 ∈ 𝑈
0 < 𝑃𝑟  𝐶  𝑥   < 1   

 

𝑁𝐸𝐺 𝐶 =  𝑥 ∈ 𝑈
𝑃𝑟  𝐶  𝑥   = 0   

 
 
 
 
In 2009, Greco et.al [5] discussed the parameterized rough set model 
by generalizing the above said definitions. In this model, two 
thresholds namely α and β are used to define the probabilistic regions 
and the positive, boundary and negative regions are modified as 
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follows: 
 

𝑃𝑂𝑆 𝛼,𝛽   𝐶 =   𝑥 ∈ 𝑈
𝑃𝑟  𝐶  𝑥   ≥ 𝛼   

 

𝐵𝑁𝐷 𝛼,𝛽  𝐶 =  𝑥𝜖 𝑈
𝛽 < 𝑃𝑟  𝐶  𝑥    <  𝛼  

 

𝑁𝐸𝐺 𝛼,𝛽  𝐶 =  𝑥𝜖 𝑈
𝑃𝑟  𝐶  𝑥   ≤ 𝛽   

 
 
These Probabilistic regions will lead three way decisions namely 
acceptance, deferment and rejection respectively for any object x in 
U. But, however, in several cases, it is easy to compute the 
probability of the existence of a category [x] for a given concept C 

using  𝑃𝑟  
 𝑥 

𝐶  =
  𝑥 ∩𝐶 

 𝐶 
 

 
Hence, by Baye’s Theorem, the Positive, Boundary and Negative 
Regions are given by 
 
 

𝑃𝑂𝑆 𝛼 ′ ,𝛽 ′  
𝐵  𝐶 =

 
 
 
 

 
 
 

𝑥𝜖 𝑈

𝑙𝑜𝑔
𝑃𝑟  

 𝑥 
𝐶  

𝑃𝑟  
 𝑥 

𝐶𝑐  

 

≥ 𝛼′

 
 
 
 

 
 
 

 

 
      

𝐵𝑁𝐷 𝛼 ′ ,𝛽 ′  
𝐵  𝐶 =

 
 
 
 

 
 
 

𝑥𝜖 𝑈

𝛽

′<𝑙𝑜𝑔
𝑃𝑟 

 𝑥 
𝐶  

𝑃𝑟  
 𝑥 

𝐶𝑐
   

    

<  𝛼′

 
 
 
 

 
 
 

 

 
 

      𝑁𝐸𝐺 𝛼 ′ ,𝛽 ′  
𝐵  𝐶 =

 
 
 

 
 

𝑥𝜖 𝑈 

𝑙𝑜𝑔
𝑃𝑟 

[𝑥]
𝐶       

𝑃𝑟 
[𝑥]

𝐶𝑐
  

 
≤ 𝛽′

 
 
 

 
 

 

 

where   ' log Pr(C
c
 )  log      

 

              

      Pr(C)      1  
 

and  ' log Pr(C
c
 )  log          

 

             

     Pr(C)    1        
  

Now, Now, we shall discuss the conventional approach on dealing 
the intuitionistic fuzzy sets to approximate under rough computing, 
which was discussed in [2] 

 
 
3. ANALYSIS OF INTUITIONISTIC FUZZY SET 

USING A THRESHOLD 

 
Consider a set D, called IFR-domain [2], satisfying the following 
properties:  

a) D  (0,1) 
        b) If  a  intuitionistic  fuzzy  concept  C  is                           

under computation, eliminate the values 

C
c
 (x) and C

c
(x)  xU  from the domain D, 

if they exist, where C  and C  represent the 
corresponding membership and non- 
membership grades respectively in the set C 

with the property that 0< C +  C <1.  
c)   After  the  computation  using C,  the values 
      removed in (b) may be included in D provided  
      C must not involve in further computation 


Consider the universe of discourse U={x1,x2,…,xn}. Let ,1,2,,  

1 and 2 be the thresholds assume one of the values from the domain 
D, where D is constructed using the intuitionistic fuzzy concepts A 
and B. 
For a given thresholds and with + <1 and a intuitionistic fuzzy set A, 
the Strong (,β)-Cut is given by A[, ] {x U / A ( x )   and 

A ( x)  } 
Further, in this paper, we use the concept of hedges [11] which were 
introduced by Zadeh [12] with a modification for including non 
membership grade. 
 
Hedges are commonly used in fuzzy logic to emphasize the grade of 
membership of any argument. Here, we use the hedge to both 
membership and non membership values.  
For example, for the linguistic variable ‘low’ with the membership 

function  and non membership , the hedges ‘very’ and ’very very’ 
emphasis the efficiency of the variable with the corresponding 

membership values 
2
 and 

4
 respectively and the non membership 

values 
1/2

 and 
1/4

 respectively. They are called concentration, 
whereas the hedges ‘slightly’ and ‘more slightly’ dilutes the 
efficiency of the linguistic variables with the corresponding 

membership values 
1/2

 and 
1/4

 and the non membership values 
2
 

and 
4
. They are called dilation. 

 
3.1. Rough Approximations on intuitionistic fuzzy sets using 

,    
Let  be any partition of U, say {B1,B2,…,Bt}. For the given 

intuitionistic fuzzy concept, the lower and upper approximations with 

respect to  can be defined as  

(,)C= (C[, ]) and 
(,)

C= (C[, ]) respectively. 

 

 

4. NAÏVE BAYESIAN PROBABILISTIC ROUGH SETS 

MODEL FOR AN INUITIONISTIC FUZZY 

CONCEPT 
 
Since, in the above both sections, the same thresholds  and  are 
used, hereafter, we use (,) cuts on intuitionistic fuzzy sets.  
Hence, for a given intuitionistic fuzzy concept F with the thresholds δ 
and γ, the probabilistic positive, boundary and negative regions are 
respectively defined on the approximation space U/E as 
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𝑃𝑂𝑆 𝛿 ,𝛾  𝐹 =  

 
 
 
 
 

 
 
 
 

𝑥 ∈ 𝑈

𝑃𝑟

 

 
 𝐹[𝛿, 𝛾]

[𝑥] 

 

 
  

= 1

 
 
 
 
 

 
 
 
 

 

 

𝐵𝑁𝐷 𝛿 ,𝛾  𝐹 =

 
 
 
 
 

 
 
 
 

𝑥 ∈ 𝑈

0 < 𝑃𝑟

 

 
 𝐹[𝛿, 𝛾]

[𝑥] 

 

 
  

< 1

 
 
 
 
 

 
 
 
 

 

 

𝑁𝐸𝐺 𝛿 ,𝛾  𝐹 =

 
 
 
 
 

 
 
 
 

𝑥𝜖 𝑈

𝑃𝑟

 

 
 𝐹[𝛿, 𝛾]

[𝑥] 

 

 
  

= 0

 
 
 
 
 

 
 
 
 

 

 
For given parameters  and , the regions of the 

parameterized rough sets model are given by 
 
 

𝑃𝑂𝑆 𝛼 ,𝛽 ,𝛿 ,𝛾  𝐹 =  

 
 
 
 
 

 
 
 
 

𝑥𝜖 𝑈

𝑃𝑟

 

 
 𝐹[𝛿, 𝛾]

[𝑥] 

 

 
  

≥ 𝛼

 
 
 
 
 

 
 
 
 

 

 

𝐵𝑁𝐷 𝛼 ,𝛽 ,𝛿 ,𝛾 (𝐹)
= 𝑥𝜖𝑈

𝛽<𝑃𝑟 
𝐹 𝛿 ,𝛾 

 𝑥   
 <𝛼 

 

𝑁𝐸𝐺 𝛼 ,𝛽 ,𝛿 ,𝛾  𝐹 =

 
 
 
 
 

 
 
 
 

𝑥𝜖 𝑈

𝑃𝑟

 

 
 𝐹[𝛿, 𝛾]

[𝑥] 

 

 
  

≤ 𝛽

 
 
 
 
 

 
 
 
 

 

 
and the regions of Naïve Bayesian Rough Sets Model are 

given by 
 

𝑃𝑂𝑆 𝛼 ′ ,𝛽 ′ ,𝛿 ,𝛾 
𝐵  𝐹 =

 
 
 
 
 

 
 
 
 

𝑥 ∈ 𝑈

𝑙𝑜𝑔
𝑃𝑟 

 𝑥 
𝐹 𝛿 ,𝛾   

𝑃𝑟 
 𝑥 

 𝐹 𝛿 ,𝛾  𝐶 
 

 

≥ 𝛼′

 
 
 
 
 

 
 
 
 

  

𝐵𝑁𝐷 𝛼 ′ ,𝛽 ′ ,𝛿 ,𝛾 
𝐵  𝐹 =

 
 
 

 
 

𝑥 ∈ 𝑈

𝛽

′<𝑙𝑜𝑔
𝑃𝑟 

[𝑥]
𝐹[𝛿 ,𝛾]  

𝑃𝑟 
[𝑥]

 𝐹[𝛿 ,𝛾] 𝐶
  

 
< 𝛼′

 
 
 

 
 

 

 

𝑁𝐸𝐺 𝛼 ′ ,𝛽 ′ ,𝛿 ,𝛾 
𝐵  𝐹 =

 
 
 

 
 

𝑥 ∈ 𝑈

𝑙𝑜𝑔
𝑃𝑟 

[𝑥]
𝐹[𝛿 ,𝛾]  ≤𝛽 ′

𝑃𝑟 
[𝑥]

 𝐹[𝛿 ,𝛾] 𝐶
  

 

 
 
 

 
 

  

 
 

 
 

where  '  log  Pr(C
c
 )   log     

 

Pr(C) 
     

        1  

and  '  log 

  Pr(C 
c
 ) 

 log 

   

   
Pr(C) 1   

 
 

5. ROUGH INDICES 
 

Algorithm Naïve Bayesian_ rough index (x,A,,,,) 
//Algorithm returns Naïve Bayesian_rough index of x  
 
1. Let x_index be an integer initialized to 0   
2. Pick the equivalence class K containing x.  

3. If A(y)=0 and A(y)=1 for all yK   
x_index=-M goto 7 

4. If A(x)=1 and A(y)=0 for all yK   
x_index=M goto 7 

5. compute POS
B

(’,’, ,)(A), and NEG 
B

(’,’,,) (A)   
6. If x POS

B
(’,’,,)(A)   

Begin 
 x_index=M  
while (x POS

B
(’,’, ,) 

 (A)) begin  
=dil() //dilation of  
=dil() //dilation of   
x_index=x_index+1 compute POS

B
(’,’, ,)(A)  

end  
end  
end 
else if x NEG

B
(’,’, ,)(A) begin  

x_index=-M  
while (x NEG

B
(’,’, ,)(A)) begin  

=con() //concentration of δ 
 =con() //Concentration of γ 
 x_index=x_index-1 



International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 8                                                                                                                                                                       2117 – 2121 



2120 

IJRITCC | August 2014, Available @ http://www.ijritcc.org                                                                 

 _______________________________________________________________________________________

compute NEG
B

(’,’, ,)(A) 
end 
end 
end 
else 
 

Let 1=; 2=; 1=;2= 𝑎2 + 𝑏2 = 𝑐2xLet 1=; 2=; 1=;2= 
while (x(POS

B
(’,’,1,1)(A)NEG

B
(’,’, 2,2)(A))) 

begin  
1=Con(1); 1=Con(1); 

2=dil(2); 2=dil(2); 
x_index=x_index+1 end  
if x POS

B
(’,’, 1,1)(A) x_index= - 

x_index 
end  
7. return x_index  

 
6. NAÏVE BAYESIAN INDEXING IN  INFORMATION 

SYSTEM WITH INTUITIONISTIC FUZZY DECISION 

ATTRIBUTES 

 
Consider an information system given by T=(U, A, C, D), where U 
is the universe of discourse, A is a set of primitive attributes, C and 
D are the subsets of A called condition and decision features 
respectively [C and D may not exist in a few of the information 
systems].  
Let C={a1,a2,…,an} and D= {d1,d2,…,ds} with the records 

U={x1,x2,…,xm}. For any index key ‘a’ in C, the  
indiscernibility relation is given by  xi  ak   x j  (read as xi is 

related to xj with respect to ak) if and only if ak(xi)=ak(xj). Clearly, 

this indiscernibility relation partitions the universe of discourse U. 

However, the procedure of selecting the appropriate minimal 

attributes [reducts] for effectiveness is not discussed in this paper. 
 For example, consider the decision table with             C={a,b,c,d} 

and D={E}. 
 

 a b c d E 

x1 1 0 2 1 1 

x2 1 0 2 0 1 

x3 1 2 0 0 2 

x4 1 2 2 1 0 

x5 2 1 0 0 2 

x6 2 1 1 0 2 

x7 2 1 2 1 1 

 
Let us consider the index key as ‘c’. As x1,x2,x4,x7 have the values 2; 
x3,x5 have the values 0 and x6 has the value 1. Hence, the partition on 
U with respect to c can be defined as {{x1,x2,x4,x7},{x3,x5},{x6}}. 
However, in real time systems we can find several information 
systems with fuzzy or intuitionistic fuzzy decision attributes. The 
Naïve Bayesian rough indices algorithm discussed earlier can be 
applied for any information system with intuitionistic fuzzy decision 
attributes. 

 

7. EXPERIMENTAL ANALYSIS  
 

Consider data table with C={a,b,c,d} and D={E} where E is of 
intuitionistic fuzzy natured. 

 

 a b c d E(xi) E(xi) 

x1 1 0 2 1 0.45 0.54 

x2 1 0 2 0 0.7 0.2 

x3 1 2 0 0 0.65 0.3 

x4 1 2 2 1 0.1 0.6 

x5 2 1 0 0 0.91 0.03 

x6 2 1 1 0 0.6 0.31 

x7 2 1 2 1 0.35 0.6 
       

 

 
On considering ‘c’ as the index key, the partition obtained is 

{{x1,x2,x4,x7},{x3,x5},{x6}}. Let =0.5 and =0.39. Here, 

E[,]={x2,x3,x5,x6}. 
Let ’=0.999 and ’=0. Choose the element x1.  

Here, x1POS(E) where POS represents the Positive region as 

quoted in the algorithm and hence, initially x_index will be assigned 

M. On applying the dilation on  and , we obtain =0.7071 and 

=0.1541, and hence E[,]={x5}. As x1POS(E), the algorithm 

returns the index of x1 to be M+1 

 

8. CONCLUSION  
 
In this paper, by using the concept of Naïve Bayesian rough sets the 

approach of indexing the records of the information system is dealt. 

These rough indices are useful to analyze and index a database when 

the intuitionistic fuzzy information about the entire key values is 

obtained. 
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