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A Breast Cancer Diagnosis System: A
Combined Approach Using Rough Sets and

Probabilistic Neural Networks

Kenneth Revett, Florin Gorunescu, Marina Gorunescu, Elia El-Darzi and Marius Ene

Abstract - In this paper, we present a medical decision
support system based on a hybrid approach utilising rough
sets and a probabilistic neural network. We utilised the
ability of rough sets to perform dimensionality reduction to
eliminate redundant attributes from a biomedical dataset.
We then utilised a probabilistic neural network to perform
supervised classification. Our results indicate that rough sets
was able to reduce the number of attributes in the dataset by
67% without sacrificing classification accuracy. Our
classification accuracy results yielded results on the order of
93%.

Keywords- breast cancer diagnosis, dimensionality
reduction, medical decision support systems,
Probabilistic Neural Networks, and rough sets

I. INTRODUCTION

B REAST cancer is the most common form of cancer in
women in the US and Europe. Diagnosis is generally

provided by a mammogram, with additional support
provided by cytological examination, and the experience
and opinion of the attending surgeon. In the case of a
positive diagnosis, in many cases a radical mastectomy is
to be performed. It is critical that the accuracy of the
diagnosis is 100% - or as close as humanly possible
because the treatment for the disease can be permanent and
drastic (i.e. radical mastectomy). Therefore, most medical
institutions will insist that their personnel err on the side of
caution - minimising the risk by maximising the specificity
of the diagnosis. Generally this results in a reduction in
sensitivity as many patients with symptoms falling on the
tails of the distribution will not be properly diagnosed.
Sensitivity reflects the level of false negatives, which must
be below acceptable levels - on the order of less than 1%
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is desirable. How this result is to be achieved is still
uncertain. In this paper, we study a well structured and
complete breast cancer dataset that has been used as a
bench mark test for various machine learning techniques
[1]. We are proposing a hybrid decision support system,
combining the reductionist approach of rough sets in
combination with a probabilistic neural network. Rough
sets have been used in various medical diagnostic systems
with a large degree of success [2,3]. One of the hallmark
features of rough sets is the ability to remove redundant
attributes [4]. With the dataset reduced to essential
attributes, we then apply a probabilistic neural network
(PNN) for the final classification task. The result of this
hybrid approach is an extremely accurate classifier (with
respect to sensitivity and specificity) that is also
computationally efficient . This paper is organised as
follows: in the next section we present a brief description
of the rough set and the PNN algorithms, followed by a
description of the dataset, then a results section followed
by a conclusion and future work.

II. ROUGH SETS

Our hepatic cancer diagnosis pre-processing/classifier is
based on the concept of approximate reducts derived from
the data-mining paradigm of the theory of Rough Sets
[4],[5]. We divide the table into training and test cases,
employing N-fold cross validation. The data set is
transformed into a decision table (DT) from which rules
are generated to provide an automated classification
capacity. In generating the decision table, each row
consists of an observation (also called an object) and each
column is an attribute, with the last one as the decision for
this object {d}. Formally, a DT is a pair A = (U, Au{d})
where d A is the decision attribute, where U is a finite
non-empty set of objects called the universe and A is a
finite non-empty set of attributes such that a:U->Va is
called the value set of a. Rough sets seeks data reduction
through the concept of equivalence classes (through the
indiscernibiliy relation). By generating such classes, one
can reduce the number of attributes in the decision table by
selecting any member of the equivalence class as a
representation of the entire class. This process generates a
series of reducts - which are subsequently used in the
classification process. Finding the reducts is an NP-hard
problem, but fortunately there are good heuristics that can
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compute a sufficient amount of approximate reducts in
reasonable time to be usable. In the software system that
we employ (developed by 1 of the authors) an order based
genetic algorithm (o-GA) ([6]) is used to search through
the decision table for approximate reducts which result in a
series of 'if..then..' decision rules. We then apply these
decision rules to the test data and measure specificity and
sensitivity of the resulting classifications. In addition, we
examined in a systematic fashion, which attributes were
most informative in the decision process - this can be
determined by examining the correlation, coverage, and
support of the attributes in the final set of decision rules.
This provides us with the entry point for using the
probabilistic neural network approach, which we describe
in the next section.

III. PROBABILISTIC NEURAL NETWORKS

The PNNs are basically classifiers. The general
classification problem is to determine the category
membership of a multivariate sample data (i.e. a p-
dimensional random vector x) into one of q possible
groups Qi, i = 1, 2,..., q, based on a set of measurements.
If we know the probability density functions (p.d.f.) fi(x),
usually the Parzen-Cacoulos or Parzen like p.d.f.
classifiers:

f (x) = 12 p -Lexp(2T),P MjP j=
2 ]12r,

the a priori probabilities hi = P(Qj) of occurrence of
patterns from categories Qi and the loss (or cost)
parameters li associated with all incorrect decisions given
Q = Qi, then, according to the Bayesian decision rule,
we classify x into the category Qi if the inequality
li hi f(x) > Ij hj fj(x) holds true. The standard training
procedure for PNN requires a single pass over all the
training patterns, giving them the advantage of being faster
than the feed-forward neural networks [7].

Basically, the architecture of PNN is limited to three
layers: the inputlpattern layer, the summation layer and
the output layer. Each input/pattern node forms a product
of the input pattern vector x with a weight vector Wi and
then perform a nonlinear operation, that is
exp[-(Wi - x)T (Wi - x) /(292)] (assuming that both x and
Wi are normalized to unit length), before outputting its
activation level to the summation node. Each summation
node receives the outputs from the input/pattern nodes
associated with a given class and simply sums the inputs
from the pattern units that correspond to the category from
which the training pattern was selected,
Yi exp[-(Wi - x)T(Wi - x) 1(292)] . The output nodes
produce binary outputs by using the inequality:

Yi exp[-(Wi - x)r (Wi - x) /(2o 2)] >

E j exp[-(Wj -x) (Wj -x) 1(2o- 2)] , (2)

related to two different categories Qi and Qi . The key to

obtain a good classification using PNN is to optimally
estimate the two parameters of the Bayes decision rule, the
misclassification costs and the prior probabilities. In our
practical experiment we have estimate them heuristically.
Thus, as concerns the costs parameters, we have
considered them depending on the average distances Di,
inversely proportional, that is 1i = IlDi. As concerns the
prior probabilities, they measure the membership
probability in each group and, thus, we have considered
them equal to each group size, that is hi = mi. As in our
previous work, we employed an evolutionary technique
based on the genetic algorithm to find the smoothing
parameters (cf [8] for implementation details). To avoid
overfitting, the data set was randomly partitioned into two
sets: the training set and the validation set. A number of
458 persons (70%) of the initial group were withheld from
the initial group for the smoothing factor adjustment (the
training process). Once optimal smoothing parameters uf 's
for each decision category were obtained using the training
set, the trained PNN was applied to the validation set (the
remaining 241 persons).

IV. DECISION TABLE DESCRIPTION

We utilised the Wisconsin Breast cancer dataset which
contains nine numeric discrete attributes for a set of 699
patients, (16 missing values) [1]. The attribute labels and
their corresponding value ranges are listed in Table 1
below. For the missing values, we employed conditioned
median imputation for the rough sets algorithm. For the
PNN algorithm, we proceeded in two ways: i) we omitted
entries in the table with missing values (yielding 683
entries) or used the conditioned median imputation from
the rough sets algorithm, yielding a complete table with all
699 entries. There were 458 benign cases (65.6%) and 241
malignant cases (34.4%). We divide the table into training
and test cases, using a 50/50 split respectively. employing
10-fold cross validation (350 training/349 testing). We
partitioned the dataset randomly with replacement 10
times, each time selecting out 50% for training and 50%
for testing purposes. The first goal of this work entailed
reducing the size of the data by eliminating any non-
informative attributes. We determined the Pearson
correlation coefficients of the attributes with respect to
their decision class as a first estimation of which attributes
could be removed from the decision table. The results are
presented in Table 2.

V. RESULTS

Table I present a description of the attribute labels and the
value ranges for all nine attributes in the Wisconsin Breast
cancer dataset. The three bold entries were the attributes
of the reduced dataset as discussed in the text. The data in
the decision table was completely discretised, and we
imputed missing values (16 of them) using a conditioned
median filling method available within Rosetta, an
implementation of rough sets available from the internet
[9]. The decision table was split 70/30 - training and
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TABLE 1: Wisconsin Breast cancer Dataset description

Patient Number NOT USED
Clump Thickness 1-10
Uniformity of Cell Size 1-10
Cell Shape Uniformity 1-10
Marginal Adhesion 1-10
Single- Epithelial Cell Size 1-10
Bare-Nuclei 1-10
Bland-Chromatin 1-10
Normal-Nucleoli 1-10
Mitoses 1-10
Decision Class 0 = Benign,

1 = Malignant

TABLE 2: Pearson Correlation coefficients for all attributes
used in the decision table. Attributes with a '*' indicate
highest correlation coefficient

Clump Thickness 0.71
Uniformity of Cell Size 0.82 *
Uniformity of Cell Shape 0.82 *
Marginal Adhesion 0.69
Single- Epithelial Cell Size 0.68
Bare-Nuclei 0.80 *
Bland-Chromatin 0.75
Normal-Nucleoli 0.70
Mitoses 0.42

Lastly, we examined the average number of rules that were
generated from each of x-attribute based classification
scheme, summarised in Table 4.

TABLE 3: Sample confusion matrices randomly selected for
a series of attributes selected based on their correlation
coefficients. Please note 'Malig' is short for 'malignant'
and 'Attrib' is short for attribute. Please note all
calculated values are
decimal places.

truncated with rounding to two

9 Attrib. Benign Malignant
Benign 209 23 0.90
Malig. 22 95 0.81

0.90 0.91 0.87
5 Attrib.
Benign 201 31 0.87
Malig. 17 100 0.90

0.92 0.76 0.86
3 Attrib.
Benign 202 36 0.85
Malig. 14 97 0.87

0.94 0.73 0.86

TABLE 4:. Summary of the average number of rules (10
trials) for each of the x-attribute classifications

9-attributes 5-attributes 3-attributes
26,4531 1,813 81

testing with 10-fold cross validation. We generated
approximate reducts using the exhaustive RSES facility.
From the collection of approximate reducts, we generated
the decision rules that were used to classify all objects in
the decision table to their respective decision class ('0' =

benign or '1' = malignant'). In addition, based on the
correlation coefficients (depicted in Table 2), we masked
off attributes from the decision table that had a correlation
coefficient below a given threshold. The 5-attribute
threshold was 0.70, and the 3-attribute threshold was 0.79.
In table 3, we present an example classification from the
confusion matrix with all 9, 5 and 3 attributes. The 5-
attribute rule generation facility used the attributes with the
five largest correlation coefficient and the 3-attribute rules
set from the attributes with the top three correlation
coefficients. We also tried various exhaustive
combinations of attributes to see which provided the best
classification accuracy. The results (data not shown)
indicate that those highlighted in Table 2 provided the
greatest accuracy - indicating a positive correlation
between the correlation coefficient and class prediction.

The results from this part of the study conclude the
contribution of rough sets to this hybrid classifier. The
goal of reducing the attribute set has been achieved, and
now we report the results from the PNN classifier. Table 3,
above, the confusion matrix bold values at the bottom right
hand corners of each confusion matrix entry is the overall
accuracy, according to the following formula:

Acc =TP+TN /(TP+FP+TN+FN) (3)

We split the data into a 70/30 split in order to derive a
value for the smoothing function that will be used in the
PNN classification algorithm. In addition, we wished to
determine whether the 16 missing values would have an
impact on the classification accuracy of the PNN. We
therefore trained the classifier using two version of the
dataset: one where any object with 1 or more missing
values were removed and the other with the full set of
objects including those with missing attribute values.
Initially, we used the full set of attributes in order to
compare the results with those obtained from using rough
sets. The data for this experiment are presented in Table 5.
In addition, we used only the three attributes with the
highest correlation coefficient and repeated the procedure
as above. w present those results in Table 6. Note that the
values reported in Tables 5 & 6 are the average of 10 runs
(using 10-fold validation) to enhance the statistical
significance of our results.

TABLE 5: Summary of the PNN classification results using
the full set of attributes (all 9). The classification results
for the training and test cases are presented for the DT
without missing values. The 683 columns refer to the
decision table with objects removed if they contain missing
value(s).

Training Testing
683 699 683 699
100% 100% 93% 92%
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Lastly, we present the results of the PNN classification
using only the reduced dataset (i.e. with the attributes with
the 3 largest correlation coefficients) in Table 6. We did
not test using the partial decision table (i.e. removing
objects with missing values).

TABLE 6: Summary of PNN results using the reduced
decision table (3-attributes - the same ones in the last entry
in Table 3)

Training Testing
99% 85%

IV. CONCLUSION
In this study, we present a hybrid classification system
incorporating an implementation of rough sets and a
probabilistic neural network to classify a well known
breast cancer dataset. The rough sets component provided
a means of reducing the number of attributes. We used the
Pearson correlation coefficient as a starting point for
reducing the number of attributes, based on a user defined
threshold. We corroborated that the correlation coefficient
was indeed a useful measure of the overall importance of a
given attribute with respect to classification accuracy. In
this dataset, the correlations were all quite high. But in
general, this is not the case. From our experience, many
attributes have small Pearson correlation coefficients
(many are negative) and therefore one can not rely on this
value alone. We tested the effect of removing particular
attributes by performing a complete rough sets based
classification. We performed this process exhaustively in
this particular case. If there are a large number of
attributes, then this process can become prohibitive. The
PNN algorithm was then employed to perform
classification - both to see how it performed on this
dataset and to have a basis for comparison of the
classification results obtained from using rough sets alone.
The classification results from the two methodologies were
fairly similar to one another, although the PNN generally
outperformed the rough set classifier in this instance. The
classification results were also consistent with some of the
highest results obtained from other classifiers published in
the literature [10],[11]. In general, a PNN is usually faster
to run, because the pre-processing stages involved in rough
sets are not required in a PNN. It can handle missing data
items better than rough sets - which generally requires
imputation.

We plan to carry out further experimentation on how these
two technologies can be combined in a seamless fashion.
The result would produce a classifier that has the
advantages of producing a rule based system, suitable for
use in an expert-system, along with the noise tolerance of a
PNN. This is a typical requirement when working with
small biomedical datasets that are filled with missing
values.
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